1
|
Barman P, Ansari FA, Verma AK, Chabukdhara M. Harvesting of microalgae using Saccharum officinarum bagasse: characterization, process optimization, and evaluation of harvesting potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36507-z. [PMID: 40374980 DOI: 10.1007/s11356-025-36507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 05/05/2025] [Indexed: 05/18/2025]
Abstract
In microalgae downstream processing, biomass harvesting is a key step that requires a huge amount of energy. Microalgae harvesting can directly influence the microalgal biomass industry for its wide applications. In the present work, sugarcane bagasse (SB) was investigated as a plant waste-derived flocculant for harvesting microalgae. The SB with 40mg/L exhibited harvesting efficiency (HE) of 93.6% and 89.48% at pH 7.5 and 9.5, respectively. SB showed a negative surface charge, indicating that the flocculation mechanism in the present study is not primarily through charge neutralization. Elemental analysis of harvested biomass showed the presence of 27.07% of carbon, 6.83% of hydrogen, and 5.86% of nitrogen. Overall, results indicate the possible utility of SB as low-cost eco-friendly plant-based waste material for mixed microalgae harvesting. FTIR (Fourier-transform infrared), Zeta potential, SEM (scanning electron microscope), and EDX (energy-dispersive X-ray) analysis were performed to assess the characteristics of SB and mechanism of harvesting. The FTIR spectrum analysis of SB revealed the presence of multiple functional groups indicating their possible role in flocculation by bridging mechanisms. The SB has promising potential to be used at a demonstration scale for microalgae harvesting for various applications.
Collapse
Affiliation(s)
- Pooja Barman
- Department of Environmental Biology and Wildlife Sciences, Cotton University, Guwahati, Assam, 781001, India
| | - Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | | | - Mayuri Chabukdhara
- Department of Environmental Biology and Wildlife Sciences, Cotton University, Guwahati, Assam, 781001, India.
| |
Collapse
|
2
|
Haider MN, O'Higgins L, O'Shea R, Archer L, Wall DM, Verma N, Rodero MDR, Mehmood MA, Murphy JD, Bose A. Selecting optimal algal strains for robust photosynthetic upgrading of biogas under temperate oceanic climates. Biotechnol Adv 2025; 82:108581. [PMID: 40258525 DOI: 10.1016/j.biotechadv.2025.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
Biogas generated from anaerobic digestion can be upgraded to biomethane by photosynthetic biogas upgrading, using CO2 as a bioresource for algal (cyanobacteria and microalgae) cultivation. This allows the upgrading technology to offer economic and environmental benefits to conventional physiochemical upgrading techniques (which can be energy-intensive and costly) by co-generating biomethane with high-value biomass. However, a critical challenge in implementing this technology in temperate oceanic climatic conditions (as found in Japan, and the northwest coasts of Europe and of North America, with average temperatures ranging between 5 and 20 °C) is the selection of algal strains that must be capable of sustained growth under lower ambient temperatures. Accordingly, this paper investigated the selection of algae that met seven key criteria: optimal growth at high pH (9-11); at alkalinity of 1.5-2.5 g inorganic carbon per litre; operation at low temperature (5-20 °C); tolerance to high CO2 concentrations (above 20 %); capability for mixotrophic cultivation; ability to accumulate high-value metabolites such as photosynthetic pigments and bioactive fatty acids; and ease of harvesting. Of the twenty-six algal species assessed and ranked using a Pugh Matrix, Anabaena sp. and Phormidium sp. were assessed as the most favourable species, followed by Oscillatoria sp., Spirulina subsalsa, and Leptolyngbya sp. Adaptive laboratory evolution together with manipulation of abiotic factors could be effectively utilised to increase the efficiency and economic feasibility of the use of the selected strain in a photosynthetic biogas upgrading system, through improvement of growth and yield of high-value compounds.
Collapse
Affiliation(s)
- Muhammad Nabeel Haider
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Linda O'Higgins
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Richard O'Shea
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Lorraine Archer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - David M Wall
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Nikita Verma
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - María Del Rosario Rodero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Jerry D Murphy
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland
| | - Archishman Bose
- MaREI Centre for energy, climate and marine, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Engineering and Architecture, University College Cork, Ireland.
| |
Collapse
|
3
|
Núñez J, Maril M, Pizarro-Castillo L, Lara C, Yeber M, Carrasco C. Electrocoagulation of landfill leachate: Transforming a hazardous residue into a source of irrigation water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122856. [PMID: 39405864 DOI: 10.1016/j.jenvman.2024.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Electrocoagulation of landfill leachate has been widely investigated, however, only few reports include the reuse of the treated water. In this work, treated leachate is evaluated as irrigation water. The main obstacle is the high Sodium Absorption Ratio (SAR=Na+/(Ca2++Mg2+)/2. Reducing this indicator involves decreasing Na+ and increasing Mg2+ or Ca2+. Sodium concentration reduction is difficult by electrochemical methods (E0 = -2.71 V); Ca2+ increasing is not feasible as it precipitates. Hence, the use of different Al-Mg anodes was tested tending to increase Mg2+ concentration in the treated water The alloy 88%wtAl-12%wtMg was able to remove 52.9% of COD, 98.1% of turbidity, 97.9% of color, obtaining a SAR of 8.2 meq·L-1, total hardness (TH) of 64.2 meq·L-1 and a soluble sodium percentage (SSP) of 75.8 meq·L-1. This was achieved by working at a current density of 15 mA cm-2, a treatment time of 15 min and a pH 5.0. The phytotoxicity of the treated leachate was evaluated by the germination index using Lactuca Sativa L., reaching a value of 83.2%, which is considered excellent for irrigation water. During growth, 3-4 primary leaves were observed in seedings after 21 days, similar to when potable water was used. The results demonstrate that electrocoagulation is an adequate treatment technique for the reuse of landfill leachate if appropriated materials are used as anodes working in well selected operational variables.
Collapse
Affiliation(s)
- Javier Núñez
- Thin Films and Electrochemical Process Laboratory, Department of Materials Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepción, Chile; Solar Energy Research Center, SERC, Av. Tupper 2007, Santiago, Chile.
| | - Marisol Maril
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad del Bío-Bío, Av. Collao 1202, Concepción, Chile
| | - Luis Pizarro-Castillo
- Thin Films and Electrochemical Process Laboratory, Department of Materials Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepción, Chile
| | - Carolina Lara
- Thin Films and Electrochemical Process Laboratory, Department of Materials Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepción, Chile
| | - Maria Yeber
- Departament of Environmental Chemistry, Faculty of Sciences, Universidad católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción, Chile
| | - Claudia Carrasco
- Thin Films and Electrochemical Process Laboratory, Department of Materials Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepción, Chile; Solar Energy Research Center, SERC, Av. Tupper 2007, Santiago, Chile.
| |
Collapse
|
4
|
Annamalaisamy K, Kumaran C. An investigation into the performance and perikinetics of Brassica nigra meal in the treatment of real vegetable oil refinery condensate effluent. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11144. [PMID: 39434438 DOI: 10.1002/wer.11144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
In this study, the treatment of vegetable oil refinery plant condensate effluent (VORCE) having high total suspended solids (TSS) and chemical oxygen demand (COD) generated from acid oil unit was focused. The utilization of waste Brassica nigra meal (BNM) as protein flocculant in treating VORCE was explored. The B. nigra meal flocculant (BNMF) exhibited a crystalline nature, with the presence of amino and carboxyl functional groups, rendering it highly efficient (89.69% efficiency) in floc formation. Zeta potential and particle size (-5.6 mV and 240.68 nm, respectively) indicate BNMF's effectiveness in initiating floc formation. The interactive effects of pH, dosage, settling time on COD, and TSS removal were investigated using the Box-Behnken design. At an optimal pH of 6.9 and BNMF dosage of 0.77 g/L, a maximum removal of 85.38% COD and 72.56% TSS was obtained. The perikinetic theory for the coagulation-flocculation followed a second-order rate reaction with high Kc (0.0001 L/mg min), low settling time (37.04 min), and high collision efficiency (2.703 × 1017), indicating the model's significance in achieving maximum COD and TSS removal. These findings highlight the potential use of BNMF in the treatment of VORCE, leading to circular economy by valorizing waste from mustard oil extraction and zero discharge. PRACTITIONER POINTS: Valorization of waste Brassica nigra meal (BNM) as a potent protein flocculant Optimization for vegetable oil refinery condensate effluent (VORCE) treatment was done. Interactive effects of the process parameters were analyzed using Design expert. Perikinetic theory for VORCE treatment follows second-order reaction rate with high Kc.
Collapse
Affiliation(s)
- Kavithakani Annamalaisamy
- Nanomaterials and Environmental Research Laboratory, Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, India
| | - Chithra Kumaran
- Nanomaterials and Environmental Research Laboratory, Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, India
| |
Collapse
|
5
|
Zhang S, Yi X, He D, Tang X, Chen Y, Zheng H. Recent progress and perspectives of typical renewable bio-based flocculants: characteristics and application in wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46877-46897. [PMID: 38980480 DOI: 10.1007/s11356-024-34199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
The research on bio-based flocculants for waste resource utilization and environmental protection has garnered significant attention. Bio-based flocculants encompass plant-based, animal-based, and microbial variants that are prepared and modified through biological, chemical, and physical methods. These flocculants possess abundant functional groups, unique structures, and distinctive characteristics. This review comprehensively discussed the removal rates of conventional pollutants and emerging pollutants by bio-based flocculants, the interaction between these flocculants and pollutants, their impact on flocculation performance in wastewater treatment, as well as their application cost. Furthermore, it described the common challenges faced by bio-based flocculants in practical applications along with various improvement strategies to address them. With their safety profile, environmental friendliness, efficiency, renewability, and wide availability from diverse sources, bio-based flocculants hold great potential for widespread use in wastewater treatment.
Collapse
Affiliation(s)
- Shixin Zhang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Xiaohui Yi
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Dilin He
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Xiaomin Tang
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, People's Republic of China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
6
|
Getahun M, Befekadu A, Alemayehu E. Coagulation process for the removal of color and turbidity from wet coffee processing industry wastewater using bio-coagulant: Optimization through central composite design. Heliyon 2024; 10:e27584. [PMID: 38560241 PMCID: PMC10980941 DOI: 10.1016/j.heliyon.2024.e27584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
The growing problem of industrial pollution in developing countries, especially Ethiopia, has sparked serious issues about the quality of the water, particularly when it comes to the effluent from wet coffee processing industries. In response, this study investigates the potential of utilizing natural coagulants, Acanthus sennii C., Moringa stenopetala B., and Aloe vera L., either individually or in combination, for the treatment of coffee effluent. Methodologically, the study systematically varies operational parameters, including coagulant dose, pH levels, stirring speed, and stirring time, to evaluate their impact on coagulation efficiency. Experimental data undergo statistical analysis, employing ANOVA, while computational optimization techniques are employed using Design Expert software to determine optimal conditions. Notably, the blended form of the three coagulants emerges as particularly promising, yielding optimal conditions of 0.750 g/L coagulant dosage, pH 8.76, agitation speed of 80.73 rpm, and agitation time of 19.23 min. Under these optimized conditions, the blended coagulant achieves remarkable removal efficiencies, approximately 99.99% for color and 98.7% for turbidity. These findings underscore the efficiency of natural coagulants, particularly in blended form, for sustainable wastewater treatment in wet coffee processing.
Collapse
Affiliation(s)
- Moltot Getahun
- Werabe Universitya, Institute of Technology, Department of Water Supply and environmental Engineering,Werabe, Box-046.Ethiopia
- Jimma University, Jimma Institute of Technology, Faculty of Civil and Environmental Engineering, Jimma, Po Box - 378.Ethiopia
| | - Adisu Befekadu
- Jimma University, Jimma Institute of Technology, Faculty of Civil and Environmental Engineering, Jimma, Po Box - 378.Ethiopia
| | - Esayas Alemayehu
- Jimma University, Jimma Institute of Technology, Faculty of Civil and Environmental Engineering, Jimma, Po Box - 378.Ethiopia
- Center of Excellence for Water Management, Addis Ababa University, Addis Ababa, Po Box-1176.Ethiopia
| |
Collapse
|
7
|
Meetiyagoda TAOK, Samarakoon T, Takahashi T, Fujino T. Cytogenotoxicity of raw and treated dairy manure slurry by two-stage chemical and electrocoagulation: An application of the Allium cepa bioassay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170001. [PMID: 38218494 DOI: 10.1016/j.scitotenv.2024.170001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Livestock farming is an essential agricultural practice. However, the improper management of livestock wastes and discharge of untreated or partially treated livestock manure slurry poses significant environmental problems. In this study, we aimed to compare the cytogenotoxic potential of untreated and treated dairy manure slurry treated with a two-stage chemical and electrocoagulation (EC) using the Allium cepa bioassay. The A. cepa bioassay is a well-established standard tool for assessing the cytogenotoxic effects of environmental contaminants, especially those that are occurred as complex contaminant mixtures. The dairy manure slurry was subjected to chemical treatment utilizing polyaluminum chloride (PAC) and cationic polyacrylamide (CPAM) at optimized conditions, followed by EC utilizing either aluminum (Al) or steel anodes. The treated and untreated samples were then evaluated for their potential cytogenotoxicty using the A. cepa bioassay, by measuring the nuclear abnormalities (NAs) and chromosomal aberrations (CAs), along with the mitotic indices (MIs). Our findings revealed a significant reduction in cytogenotoxic indicators in the treated liquid fraction compared to the untreated dairy manure slurry. Specifically, the frequency of total NAs showed a significant reduction from 154 ‰ to 37 ‰ when the dairy manure slurry was treated with chemical coagulation followed by EC utilizing an Al anode. Moreover, the MI exhibited a significant improvement from 7 ‰ to 123 ‰, suggesting the mitigation of toxic effects. These results collectively demonstrate the effectiveness of the two-stage chemical and EC treatment under optimal conditions in treating diary manure slurry while reducing its cytogenotoxicity for living systems. The A. cepa bioassay proved to be a sensitive and reliable method for assessing the toxicity of the treated samples. The efficient solid-liquid separation and the reduction of toxicity in the liquid fraction for biological systems achieved through this treatment process highlight its potential for sustainable management of livestock waste and the preservation of water quality. Nevertheless, further studies are required to assess the toxicity of solid fraction.
Collapse
Affiliation(s)
| | - Thilomi Samarakoon
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan; Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya 11600, Sri Lanka.
| | - Toshinori Takahashi
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Takeshi Fujino
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| |
Collapse
|
8
|
Yang X, Wang S, Pi K, Ge H, Zhang S, Gerson AR. Coagulation as an effective method for cyanobacterial bloom control: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11002. [PMID: 38403998 DOI: 10.1002/wer.11002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Eutrophication, the over-enrichment with nutrients, for example, nitrogen and phosphorus, of ponds, reservoirs and lakes, is an urgent water quality issue. The most notorious symptom of eutrophication is a massive proliferation of cyanobacteria, which cause aquatic organism death, impair ecosystem and harm human health. The method considered to be most effective to counteract eutrophication is to reduce external nutrient inputs. However, merely controlling external nutrient load is insufficient to mitigate eutrophication. Consequently, a rapid diminishing of cyanobacterial blooms is relied on in-lake intervention, which may encompass a great variety of different approaches. Coagulation/flocculation is the most used and important water purification unit. Since cyanobacterial cells generally carry negative charges, coagulants are added to water to neutralize the negative charges on the surface of cyanobacteria, causing them to destabilize and precipitate. Most of cyanobacteria and their metabolites can be removed simultaneously. However, when cyanobacterial density is high, sticky secretions distribute outside cells because of the small size of cyanobacteria. The sticky secretions are easily to form complex colloids with coagulants, making it difficult for cyanobacteria to destabilize and resulting in unsatisfactory treatment effects of coagulation on cyanobacteria. Therefore, various coagulants and coagulation methods were developed. In this paper, the focus is on the coagulation of cyanobacteria as a promising tool to manage eutrophication. Basic principles, applications, pros and cons of chemical, physical and biological coagulation are reviewed. In addition, the application of coagulation in water treatment is discussed. It is the aim of this review article to provide a significant reference for large-scale governance of cyanobacterial blooms. PRACTITIONER POINTS: Flocculation was a promising tool for controlling cyanobacteria blooms. Basic principles of four kinds of flocculation methods were elucidated. Flocculant was important in the flocculation process.
Collapse
Affiliation(s)
- Xian Yang
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, China
| | - Shulian Wang
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Kewu Pi
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, China
- National Engineering Research Center of Advanced Technology and Equipment for Water Environment Pollution Monitoring, Hubei University of Technology, Wuhan, China
| | - Hongmei Ge
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, China
| | - Shuo Zhang
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, China
| | - Andrea R Gerson
- Blue Minerals Consultancy, Wattle Grove, Tasmania, Australia
| |
Collapse
|
9
|
Chen H, Xu H, Zhong C, Liu M, Yang L, He J, Sun Y, Zhao C, Wang D. Treatment of landfill leachate by coagulation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169294. [PMID: 38110093 DOI: 10.1016/j.scitotenv.2023.169294] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Landfill leachate is a seriously polluted and hazardous liquid, which contains a high concentration of refractory organics, ammonia nitrogen, heavy metals, inorganic salts, and various suspended solids. The favorable disposal of landfill leachate has always been a hot and challenging issue in wastewater treatment. As one of the best available technologies for landfill leachate disposal, coagulation has been studied extensively. However, there is an absence of a systematic review regarding coagulation in landfill leachate treatment. In this paper, a review focusing on the characteristics, mechanisms, and application of coagulation in landfill leachate treatment was provided. Different coagulants and factors influencing the coagulation effect were synthetically summarized. The performance of coagulation coupled with other processes and their complementary advantages were elucidated. Additionally, the economic analysis conducted in this study suggests the cost-effectiveness of the coagulation process. Based on previous studies, challenges and perspectives met by landfill leachate coagulation treatment were also put forward. Overall, this review will provide a reference for the coagulation treatment of landfill leachate and promote the development of efficient and eco-friendly leachate treatment technology.
Collapse
Affiliation(s)
- Hongni Chen
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Hui Xu
- Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530006, China
| | - Chao Zhong
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Mingjie Liu
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Liwei Yang
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Jiaojie He
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Yan Sun
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Chuanliang Zhao
- School of Civil Engineering, Chang'an University, Xi'an 710061, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Dongsheng Wang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Banerjee S, Cabrera-Barjas G, Tapia J, Fabi JP, Delattre C, Banerjee A. Characterization of Chilean hot spring-origin Staphylococcus sp. BSP3 produced exopolysaccharide as biological additive. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:15. [PMID: 38310179 PMCID: PMC10838260 DOI: 10.1007/s13659-024-00436-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
A type of high molecular weight bioactive polymers called exopolysaccharides (EPS) are produced by thermophiles, the extremophilic microbes that thrive in acidic environmental conditions of hot springs with excessively warm temperatures. Over time, EPS became important as natural biotechnological additives because of their noncytotoxic, emulsifying, antioxidant, or immunostimulant activities. In this article, we unravelled a new EPS produced by Staphylococcus sp. BSP3 from an acidic (pH 6.03) San Pedro hot spring (38.1 °C) located in the central Andean mountains in Chile. Several physicochemical techniques were performed to characterize the EPS structure including Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Atomic Force Microscopy (AFM), High-Performance Liquid Chromatography (HPLC), Gel permeation chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), 1D Nuclear Magnetic Resonance (NMR), and Thermogravimetric analysis (TGA). It was confirmed that the amorphous surface of the BSP3 EPS, composed of rough pillar-like nanostructures, is evenly distributed. The main EPS monosaccharide constituents were mannose (72%), glucose (24%) and galactose (4%). Also, it is a medium molecular weight (43.7 kDa) heteropolysaccharide. NMR spectroscopy demonstrated the presence of a [→ 6)-⍺-D-Manp-(1 → 6)-⍺-D-Manp-(1 →] backbone 2-O substituted with 1-⍺-D-Manp. A high thermal stability of EPS (287 °C) was confirmed by TGA analysis. Emulsification, antioxidant, flocculation, water-holding (WHC), and oil-holding (OHC) capacities are also studied for biotechnological industry applications. The results demonstrated that BSP3 EPS could be used as a biodegradable material for different purposes, like flocculation and natural additives in product formulation.
Collapse
Affiliation(s)
- Srijan Banerjee
- Instituto de Química de Recursos Naturales, Universidad de Talca, CP 3460000, Talca, Chile
| | - Gustavo Cabrera-Barjas
- Universidad San Sebastián Campus Las Tres Pascualas, Facultad de Ciencias Para el Cuidado de la Salud, Lientur 1457, CP 4080871, Concepción, Chile
| | - Jaime Tapia
- Instituto de Química de Recursos Naturales, Universidad de Talca, CP 3460000, Talca, Chile
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CePID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| | - Cedric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005, Paris, France
| | - Aparna Banerjee
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, CP 3467987, Talca, Chile.
| |
Collapse
|
11
|
Selepe TN, Maliehe TS. Bioflocculation of pollutants in wastewater using flocculant derived from Providencia huaxiensis OR794369.1. BMC Microbiol 2024; 24:39. [PMID: 38281910 PMCID: PMC10823601 DOI: 10.1186/s12866-023-03144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Water pollution has become a major environmental and health concern due to increasing population and industrialisation. Microbial flocculants are promising agents for treatment of contaminated water owing to their effectiveness, eco-friendliness, and high biosafety levels. In this study, culture conditions of Providencia huaxiensis OR794369.1 were optimised and its bioflocculant was extracted, characterised and used to treat wastewater. RESULTS The maximum flocculating activity of 92% and yield of 3.5 g/L were obtained when cultivation conditions were: 3% inoculum size, starch, casein, initial pH of 6, cultivation temperature of 30 oC and 72 h of fermentation. The bioflocculant is an amorphous glycoprotein biomolecule with 37.5% carbohydrates, 27.9% protein, and 34.6% uronic acids. It is composed of hydroxyl, amino, alkanes, carboxylic acid and amines groups as its main functional structures. It was found to be safe to use as it demonstrated non-cytotoxic effects on bovine dermis and African green monkey kidney cells, illustrating median inhibitory concentration (IC50) values of 180 and > 500 µg/mL on both cell lines, respectively. It demonstrated the removal efficiencies of 90% on chemical oxygen demand (COD), 97% on biological oxygen demand (BOD) and 72% on Sulphur on coal mine wastewater. It also revealed the reduction efficacies of 98% (COD) and 92% (BOD) and 70% on Sulphur on domestic wastewater. CONCLUSION The bioflocculant was effective in reducing pollutants and thus, illustrated potential to be used in wastewater treatment process as an alternative.
Collapse
Affiliation(s)
- Tlou Nelson Selepe
- Department of Water and Sanitation, University of Limpopo, Private Bag X1106, Polokwane, 0727, South Africa.
| | - Tsolanku Sidney Maliehe
- Department of Water and Sanitation, University of Limpopo, Private Bag X1106, Polokwane, 0727, South Africa
| |
Collapse
|
12
|
Bankole AO, Moruzzi R, Negri RG, Bressane A, Reis AG, Sharifi S, James AO, Bankole AR. Machine learning framework for modeling flocculation kinetics using non-intrusive dynamic image analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168452. [PMID: 37956843 DOI: 10.1016/j.scitotenv.2023.168452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
The implementation of a machine learning (ML) model to improve both the effectiveness and sustainability of the water treatment system is a significant challenge in the water sector, with the optimization of flocculation processes being a major setback. The objective of this study was to develop a ML model for predicting flocs evolution of the flocculation process in water treatment. Furthermore, we have devised a framework for its potential adoption in large-scale water treatment. Therefore, the paper can be split into two parts. In the first one, flocculation evolution has been studied from an experimental setup, using a non-intrusive image acquisition method. Subsequently, the ML framework has been implemented. Batch assay data of two velocity gradients (Gf 20 and 60 s-1) and flocculation time of three hours were partitioned into five groups for flocs length range 0.27-3.5 mm and upscaled using linear method. Multilayer Perceptron (MLP) and Long-Short Term Memory (LSTM) models, and traditional time series model, Auto Regressive Integrated Moving Average (ARIMA) were explored to predict floc length evolution data. The experiments illustrate the kinetics of flocculation, where the initial stage is characterized by a rapid floc growth followed by a plateau during which floc length fluctuates within a narrow range. Results demonstrate that ML is sensitive to flocculation; however, the model should be selected with care. ARIMA model is not suitable for predicting number of flocs with negative test accuracy (R2). In contrast, MLP recorded R2 of 0.86-1.0 for training and 0.92-1.0 for testing, across Gf 20 s-1 and Gf 60 s-1. LSTM model has the best prediction R2 of 0.92-1.00 for Gf 20 s-1 and accurately predicts the number of flocs across all groups and Gfs. Our study has proven that the developed framework could be replicated for water treatment modeling and promotes the application of smart technology in water treatment.
Collapse
Affiliation(s)
- Abayomi O Bankole
- Civil and Environmental Engineering Department, Faculty of Engineering, Sao Paulo State University, Bauru 17033-360, Brazil; Water Resources Management and Agrometeorology Department, COLERM, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Rodrigo Moruzzi
- Civil and Environmental Engineering Department, Faculty of Engineering, Sao Paulo State University, Bauru 17033-360, Brazil; Environmental Engineering Department, Institute of Science and Technology, Sao Paulo State University, Sao Jose dos Campos 12245-000, Brazil.
| | - Rogerio G Negri
- Environmental Engineering Department, Institute of Science and Technology, Sao Paulo State University, Sao Jose dos Campos 12245-000, Brazil
| | - Adriano Bressane
- Civil and Environmental Engineering Department, Faculty of Engineering, Sao Paulo State University, Bauru 17033-360, Brazil; Environmental Engineering Department, Institute of Science and Technology, Sao Paulo State University, Sao Jose dos Campos 12245-000, Brazil
| | - Adriano G Reis
- Civil and Environmental Engineering Department, Faculty of Engineering, Sao Paulo State University, Bauru 17033-360, Brazil; Environmental Engineering Department, Institute of Science and Technology, Sao Paulo State University, Sao Jose dos Campos 12245-000, Brazil
| | - Soroosh Sharifi
- Department of Civil Engineering, Faculty of Engineering, University of Birmingham, United Kingdom
| | - Abraham O James
- Civil and Environmental Engineering Department, Faculty of Engineering, Sao Paulo State University, Bauru 17033-360, Brazil; Environmental Management and Toxicology Department, COLERM, Federal University of Agriculture, Abeokuta, Nigeria
| | - Afolashade R Bankole
- Civil and Environmental Engineering Department, Faculty of Engineering, Sao Paulo State University, Bauru 17033-360, Brazil
| |
Collapse
|
13
|
Ramli NN, Kurniawan SB, Ighalo JO, Mohd Said NS, Marsidi N, Buhari J, Ramli Shah RA, Zulkifli M, Alias J, Daud NM, Ahmad J, Othman AR, Sheikh Abdullah SR, Abu Hasan H. A review of the treatment technologies for hexavalent chromium contaminated water. Biometals 2023; 36:1189-1219. [PMID: 37209220 DOI: 10.1007/s10534-023-00512-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
The toxicity of hexavalent chromium (Cr(VI)) present in the environment has exceeded the current limits or standards and thus may lead to biotic and abiotic catastrophes. Accordingly, several treatments, including chemical, biological, and physical approaches, are being used to reduce Cr(VI) waste in the surrounding environment. This study compares the Cr(VI) treatment approaches from several areas of science and their competence in Cr(VI) removal. As an effective combination of physical and chemical approaches, the coagulation-flocculation technique removes more than 98% of Cr(VI) in less than 30 min. Most membrane filtering approaches can remove up to 90% of Cr(VI). Biological approaches that involve the use of plants, fungi, and bacteria also successfully eliminate Cr(VI) but are difficult to scale up. Each of these approaches has its benefits and drawbacks, and their applicability is determined by the research aims. These approaches are also sustainable and environmentally benign, thus limiting their effects on the ecosystem.
Collapse
Affiliation(s)
- Nur Nadhirah Ramli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81, Třeboň, Czech Republic
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, P. M. B., 5025, Nigeria
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nuratiqah Marsidi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Junaidah Buhari
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Radhiatul Atiqah Ramli Shah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Maryam Zulkifli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Jahira Alias
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nurull Muna Daud
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Jamilah Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
14
|
Owodunni AA, Ismail S, Olaiya NG. Parametric study of novel plant-based seed coagulant in modeled wastewater turbidity removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124677-124685. [PMID: 35678970 DOI: 10.1007/s11356-022-21353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Chemical coagulants like alum, ferric salts, and polyacrylamide derivatives are helpful in water treatment. However, the long-term detrimental effects of chemical coagulants on humans and the environment require alternative research for natural coagulants. This study used novel leguminous (green beans (GB), pigeon pea (PP)), fruit seeds (Tamarind indica (TI), and date palm (DS)) as coagulants to remove turbidity. The seeds were powdered, and the crude active coagulants were extracted with distilled water and a 1 M NaCl solution. The result showed that PP's distilled water extract had the highest turbidity removal of 81.12%, while DS had the least performance of 62.54%. The NaCl extract of PP had the highest removal (94.62%), followed by TI (76.08%). This study found the optimum doses for GB, TI, PP, and DS to be 50, 40, 10, and 70 mL/L, with their optimum pH at 3, 1, 3, and 1, respectively. The FTIR spectra confirmed the existence of -OH, -NH, COOH, C = O, C-C, and C-H peaks, indicating the presence of protein-specific functional groups supporting their potential use as coagulants. Therefore, PP would have been used based on turbidity performance; however, due to their nutritional value, TI and DS are suitable seeds for the coagulation-flocculation treatment of turbid water because they are waste materials.
Collapse
Affiliation(s)
- Amina Adedoja Owodunni
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Suzylawati Ismail
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| | - Niyi Gideon Olaiya
- Department of Industrial and Production Engineering, Federal University of Technology Akure, PMB 704, Akure, Ondo State, Nigeria
| |
Collapse
|
15
|
Zahmatkesh S, Karimian M, Chen Z, Ni BJ. Combination of coagulation and adsorption technologies for advanced wastewater treatment for potable water reuse: By ANN, NSGA-II, and RSM. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119429. [PMID: 39491942 DOI: 10.1016/j.jenvman.2023.119429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
To reuse water and reduce water pollution, such as chemical oxygen demand (COD), total suspended solids (TSS), PO4, NTU, and NO3, advanced wastewater treatment technologies (a combination of coagulation (FeCl3) and adsorption (Activated Carbon (AC))) are attractive. Considering that water reclamation can help provide an irrigation system for crops and domestic purified water, removing organic matter and nutrients prior to wastewater reuse is fundamental. In order to remove contaminants like organic matter and nutrients from wastewater, advanced wastewater treatment processes are recommended. The purpose of this paper is to investigate various doses of AC and FeCl3 in wastewater treatment and study the optimum conditions for the removal of COD, TSS, PO4, NTU, and NO3. Furthermore, the evaluated FeCl3'/AC's optimum functioning pH ranges from 6.5 to 8.0, and their optimum working times range from 2.5 to 5.5 h. The optimum concentrations of AC were 0.1-25 g/L and 0.1-5 g/L of FeCl3. The most significant COD elimination rate (98%), the highest TSS elimination efficiency (94%), NTU elimination performance (99%), PO4 elimination (99%), and NO3 elimination (67%), among the investigated FeCl3 and AC. Secondly, the effects of operational variables such as AC, FeCl3, time, and solution pH were modeled, optimized, and evaluated using response surface techniques based on the D-Optimal design. Input from the response surface approach findings was used to develop an artificial neural network-based prediction model and Non-dominated Sorting Genetic Algorithm II (NSGA-II).
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico; Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Melika Karimian
- Faculty of Civil Engineering, Architecture and Urban Planning, University of Eyvanekey, Iran
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
16
|
Tsilo PH, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Application of Iron Nanoparticles Synthesized from a Bioflocculant Produced by Yeast Strain Pichia kudriavzevii Obtained from Kombucha Tea SCOBY in the Treatment of Wastewater. Int J Mol Sci 2023; 24:14731. [PMID: 37834177 PMCID: PMC10572716 DOI: 10.3390/ijms241914731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Studying the production of Iron (Fe) nanoparticles using natural substances is an intriguing area of research in nanotechnology, as these nanoparticles possess biocompatibility and natural stability, which make them useful for a variety of industrial applications. The study utilized Fe nanoparticles that were synthesized using a bioflocculant and applied to eliminate different kinds of pollutants and dyes found in wastewater and solutions. The study involved the generation of Fe nanoparticles through a bioflocculant obtained from Pichia kudriavzevii, which were evaluated for their flocculation and antimicrobial capabilities. The impact of the Fe nanoparticles on human embryonic kidney (HEK 293) cell lines was studied to assess their potential cytotoxicity effects. An array of spectroscopic and microscopic methods was employed to characterize the biosynthesized Fe nanoparticles, including SEM-EDX, FT-IR, TEM, XRD, UV-vis, and TGA. A highly efficient flocculating activity of 85% was achieved with 0.6 mg/mL dosage of Fe nanoparticles. The biosynthesized Fe nanoparticles demonstrated a noteworthy concentration-dependent cytotoxicity effect on HEK 293 cell lines with the highest concentration used resulting in 34% cell survival. The Fe nanoparticles exhibited strong antimicrobial properties against a variety of evaluated Gram-positive and Gram-negative microorganisms. The efficiency of removing dyes by the nanoparticles was found to be higher than 65% for the tested dyes, with the highest being 93% for safranine. The Fe nanoparticles demonstrated remarkable efficiency in removing various pollutants from wastewater. In comparison to traditional flocculants and the bioflocculant, biosynthesized Fe nanoparticles possess significant potential for eliminating both biological oxygen demand (BOD) and chemical oxygen demand (COD) from wastewater samples treated. Hence, the Fe nanoparticles synthesized in this way have the potential to substitute chemical flocculants in the treatment of wastewater.
Collapse
Affiliation(s)
- Phakamani H. Tsilo
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, Kwadlangezwa 3886, South Africa; (P.H.T.); (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, Kwadlangezwa 3886, South Africa; (P.H.T.); (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, Kwadlangezwa 3886, South Africa; (P.H.T.); (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, Kwadlangezwa 3886, South Africa; (P.H.T.); (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Department of Chemistry, Faculty Science, Agriculture, and Engineering, University of Zululand, Private Bag X1001, Kwadlangezwa 3886, South Africa
| |
Collapse
|
17
|
Iwuozor KO, Adeniyi AG, Emenike EC, Ojeyemi T, Egbemhenghe AU, Okorie CJ, Ayoku BD, Saliu OD. Prospects and challenges of utilizing sugarcane bagasse as a bio-coagulant precursor for water treatment. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 39:e00805. [PMID: 37448785 PMCID: PMC10336157 DOI: 10.1016/j.btre.2023.e00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Sugarcane bagasse is an abundant and renewable agricultural waste material generated by the sugar industry worldwide. The use of sugarcane bagasse as a bio-coagulant precursor in water treatment is an eco-friendly and cost-effective approach that has shown great potential. This article reviewed the prospects and challenges of utilizing sugarcane bagasse as a bio-coagulant precursor for water treatment. The article reviewed past studies and explored the properties and chemical composition of sugarcane bagasse and the bioactive compounds that can be extracted from it, as well as their potential coagulation performance in water treatment. It was observed that there are few studies that have been published on the subject. The effectiveness of sugarcane bagasse-based coagulants varies depending on several factors, such as pH, temperature, and water quality parameters. However, the lack of standardization in the production of sugarcane bagasse-based coagulants is a challenge that needs to be addressed. Additionally, the optimization of extraction and processing methods to enhance the effectiveness of sugarcane bagasse-based coagulants needs to be investigated further. In conclusion, the use of sugarcane bagasse as a bio-coagulant precursor holds great promise for the future of sustainable water treatment. The potential for sugarcane bagasse to be used as a bio-coagulant precursor highlights the importance of exploring alternative and sustainable materials for water treatment.
Collapse
Affiliation(s)
- Kingsley O. Iwuozor
- Nigeria Sugar Institute, Ilorin, Nigeria
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Adewale George Adeniyi
- Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
- Chemical Engineering Department, Landmark University, Omu-Aran, Nigeria
| | - Ebuka Chizitere Emenike
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Toluwalase Ojeyemi
- Department of Crop Protection and Environmental Biology, University of Ibadan, Nigeria
- Department of Environmental Toxicology, Texas Tech University, U.S.A
| | - Abel U. Egbemhenghe
- Department of Chemistry, Lagos State University, Ojo, Lagos State, Nigeria
- Department of Chemistry and Biochemistry, College of Art and science, Texas Tech University, U.S.A
| | - Chika J. Okorie
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
- Department of Chemistry and Biochemistry, College of Art and science, Texas Tech University, U.S.A
| | - Bridget Dunoi Ayoku
- Department of Pure and Industrial Chemistry, University of Port Harcourt, Rivers state, Nigeria
- African Regional Aquaculture Centre, (ARAC) Allu, Port Harcourt, Rivers State, Nigeria
| | | |
Collapse
|
18
|
Singh HM, Sharma M, Tyagi VV, Goria K, Buddhi D, Sharma A, Bruno F, Sheoran S, Kothari R. Potential of biogenic and non-biogenic waste materials as flocculant for algal biomass harvesting: Mechanism, parameters, challenges and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117591. [PMID: 36996549 DOI: 10.1016/j.jenvman.2023.117591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
In this review article, waste materials (biogenic/non-biogenic) are focused as the flocculants for harvesting of algal biomass. Chemical flocculants are widely utilized for the effective harvesting of algal biomass at a commercial scale while the high cost is a major drawback. The waste materials-based flocculants (WMBF) are started to utilize as one of the cost-effective performance for dual benefits of waste minimization and reuse for sustainable recovery of biomass. The novelty of the article is articulated with the objective that presents an insight of WMBF, classification of WMBF, preparation methods of WMBF, mechanisms of flocculation, factors affecting flocculation-mechanism, challenges and future recommendations that are required for harvesting of algae. The WMBF are shown similar flocculation mechanisms and flocculation efficiencies as chemical flocculants. Thus, the utilization of waste material for the flocculation process of algal cells minimizes the waste load into the environment and transforms the waste materials into valuable resources.
Collapse
Affiliation(s)
- Har Mohan Singh
- School of Energy Management, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India
| | - Mriduta Sharma
- School of Energy Management, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India
| | - V V Tyagi
- School of Energy Management, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India.
| | - Kajol Goria
- Department of Environmental Sciences, Central University of Jammu, Rahya Suchani, (Bagla) Samba, J&K, 181143, India
| | - D Buddhi
- Uttaranchal Institute of Technology, Uttaranchal University, Uttarakhand, 248007, Dehradun, India
| | - Atul Sharma
- Non-Conventional Energy Laboratory, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi, UP, India
| | - Frank Bruno
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Australia
| | - Shane Sheoran
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Australia
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya Suchani, (Bagla) Samba, J&K, 181143, India.
| |
Collapse
|
19
|
Khalid Salem A, Fadhile Almansoory A, Al-Baldawi IA. Potential plant leaves as sustainable green coagulant for turbidity removal. Heliyon 2023; 9:e16278. [PMID: 37251892 PMCID: PMC10213182 DOI: 10.1016/j.heliyon.2023.e16278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
Chemical coagulation-flocculation has been used widely in water and wastewater treatment. In the present study, green coagulant was investigated. The role of Iraqi plants was examined to remove turbidity by using kaolin synthetic water. Thirteen selected plants were prepared as powdered coagulant. The experiment was run based on coagulant mass varied from 0 to 10,000 mg/L for each plant with a rapid mixing speed of 180 rpm for 5 min, slow mixing speed at 50 rpm for 15 min and settling time for 30 min. The seven best green coagulants are Albizia lebbeck (L.), Clerodendrum inerme (10,000 mg/L), Azadirachta indica, Conocarpus lancifolius, Phoenix dactylifera (5000 mg/L), Dianthus caryophyllus (3000 mg/L) and Nerium oleander (1000 mg/L) with turbidity removal rates of 39.3%, 51.9%, 67.2%, 75.5%, 51.0%, 52.6% and 57.2%, respectively. The selected seven plants that were used as green coagulants are economically feasible to achieve the highest turbidity and removal of other compounds.
Collapse
Affiliation(s)
- Ayat Khalid Salem
- Department of Ecology, College of Science, University of Basrah, Basrah, Iraq
| | | | - Israa Abdulwahab Al-Baldawi
- Department of Biochemical Engineering, Al-khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
20
|
Hussin AA, Hidayah Ahmad NA, Mohd Asri NF, Nik Malek NAN, Mohd Amin MF, Kamaroddin MF. Cultivation of Arthrospira platensis and harvesting using edible fungi isolated from mould soybean cake. BIORESOURCE TECHNOLOGY 2023; 373:128743. [PMID: 36791974 DOI: 10.1016/j.biortech.2023.128743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In this study, the cultivation and harvesting of Arthrospira platensis biomass were proposed via simple, safe, and efficient techniques for direct consumption. Cultivation of microalgae in a covered macrobubble column under outdoor conditions resulted in significant differences (p < 0.05) with a maximum dry cell weight (Xm) of 0.959 ± 0.046 g/L. Notably, outdoor cultures resulted in approximately twofold biomass compared to indoor cultures. This outcome shows that the developed outdoor setup integrated with solar panels while utilising Malaysia's weather and atmospheric air as carbon sources is viable. Meanwhile, for harvesting, the screening showed that the fungus isolated from mould soybean cake (tempeh) starter indicated the highest harvesting efficiency, which was then further identified as Rhizopus microsporus, microscopically and molecularly. Overall, the economical and portable setup of outdoor cultivation coupled with safe harvesting via locally isolated fungus from tempeh as a bioflocculant would provide sustainability to produce A. platensis biomass.
Collapse
Affiliation(s)
- Aimi Alina Hussin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Nur Amira Hidayah Ahmad
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Nur Fakhira Mohd Asri
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Nik Ahmad Nizam Nik Malek
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | | | - M Farizal Kamaroddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| |
Collapse
|
21
|
Pacheco HGJ, Elguera NY, Ancco M, Castro AELF, Meza MEB, Almeida VC. Combined coagulation-electrocoagulation process using biocoagulant from the Opuntia ficus-indica for treatment of cheese whey wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:491. [PMID: 36943586 DOI: 10.1007/s10661-023-11095-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
This work reports a combined coagulation-electrocoagulation process using a biocoagulant from the Opuntia ficus-indica for treatment of cheese whey wastewater. The process parameters as pH, biocoagulant dosage, and current density were evaluated from the chemometric tools. A Box-Behnken design was used, having as responses the removal percentages of turbidity and chemical oxygen demand (COD). The results showed that for the studied variable ranges, linear models were obtained and the pH was parameter more significant for treatment proposed. The pH showed synergic effect with the investigated parameters, while the biocoagulant dosage and density current showed antagonistic effects. The desirability function was used to optimization of process, and suggested values were pH 10.0, biocoagulant dosage of 4.4 g L-1, and current density of 31.5 mA cm-2, which showed removals of turbidity and COD of 98.9 and 83.8%, respectively.
Collapse
Affiliation(s)
- Hugo G J Pacheco
- Instituto de Investigación e Innovación en Energías Renovables y Medio Ambiente, Lima, Peru
- Universidad Católica de Santa María, Urb. San José, San Jose s/n, Yanahuara, Arequipa, Peru
| | - Naysha Y Elguera
- Instituto de Investigación e Innovación en Energías Renovables y Medio Ambiente, Lima, Peru
| | - Midwar Ancco
- Instituto de Investigación e Innovación en Energías Renovables y Medio Ambiente, Lima, Peru
| | - Antonio E L F Castro
- Instituto de Investigación e Innovación en Energías Renovables y Medio Ambiente, Lima, Peru
| | - Maria E B Meza
- Universidad Católica de Santa María, Urb. San José, San Jose s/n, Yanahuara, Arequipa, Peru
| | - Vitor C Almeida
- Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, Maringá , Paraná, 87020-900, Brazil.
| |
Collapse
|
22
|
Skotta A, Jimai A, Elhayaoui W, El-Asri A, Tamimi M, Assabbane A, El Issami S. Suspended matter and heavy metals (Cu and Zn) removal from water by coagulation/flocculation process using a new Bio-flocculant: Lepidium sativum. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
23
|
Liu Y, Zeng Y, Yang J, Chen P, Sun Y, Wang M, Ma Y. A bioflocculant from Corynebacterium glutamicum and its application in acid mine wastewater treatment. Front Bioeng Biotechnol 2023; 11:1136473. [PMID: 36926688 PMCID: PMC10011464 DOI: 10.3389/fbioe.2023.1136473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Although many microorganisms have been found to produce bioflocculants, and bioflocculants have been considered as attractive alternatives to chemical flocculants in wastewater treatment, there are few reports on bioflocculants from the safe strain C. glutamicum, and the application of bioflocculants in acid wastewater treatment is also rare attributed to the high content of metal ions and high acidity of the water. In this study, a novel bioflocculant produced by Corynebacterium glutamicum Cg1-P30 was investigated. An optimal production of this bioflocculant with a yield of 0.52 g/L was achieved by Box-Behnken design, using 12.20 g/L glucose, 4.00 g/L corn steep liquor and 3.60 g/L urea as carbon and nitrogen source. The structural characterization revealed that the bioflocculant was mainly composed of 37.50% neutral sugar, 10.03% uronic acid, 6.32% aminosugar and 16.51% protein. Carboxyl, amine and hydroxyl groups were the functional groups in flocculation. The biofocculant was thermally stable and dependent on metal ions and acidic pH, showing a good flocculating activity of 91.92% at the dosage of 25 mg/L by aid of 1.0 mM Fe3+ at pH 2.0. Due to these unique properties, the bioflocculant could efficiently remove metal ions such as Fe, Al, Zn, and Pb from the real acid mine wastewater sample without pH adjustment, and meanwhile made the acid mine wastewater solution become clear with an increased neutral pH. These findings suggested the great potential application of the non-toxic bioflocculant from C. glutamicum Cg1-P30 in acid mine wastewater treatment.
Collapse
Affiliation(s)
- Yinlu Liu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yan Zeng
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Peng Chen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Min Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yanhe Ma
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
24
|
Microalgae-mediated wastewater treatment for biofuels production: A comprehensive review. Microbiol Res 2022; 265:127187. [DOI: 10.1016/j.micres.2022.127187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 01/20/2023]
|
25
|
Xu M, Yang M, Sun H, Gao M, Wang Q, Wu C. Bioconversion of biowaste into renewable energy and resources: A sustainable strategy. ENVIRONMENTAL RESEARCH 2022; 214:113929. [PMID: 35868577 DOI: 10.1016/j.envres.2022.113929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 05/27/2023]
Abstract
Due to its high amount of organic and biodegradable components that can be recycled, biowaste is not only a major cause of environmental contamination, but also a vast store of useful materials. The transformation of biowaste into energy and resources via biorefinery is an unavoidable trend, which could aid in reducing carbon emissions and alleviating the energy crisis in light of dwindling energy supplies and mounting environmental difficulties related with solid waste. In addition, the current pandemic and the difficult worldwide situation, with their effects on the economic, social, and environmental aspects of human life, have offered an opportunity to promote the transition to greener energy and sources. In this context, the current advancements and possible trends of utilizing widely available biowaste to produce key biofuels (such as biogas and biodiesel) and resources (such as organic acid, biodegradable plastic, protein product, biopesticide, bioflocculant, and compost) are studied in this review. To achieve the goal of circular bioeconomy, it is necessary to turn biowaste into high-value energy and resources utilizing biological processes. In addition, the usage of recycling technologies and the incorporation of bioconversion to enhance process performance are analyzed critically. Lastly, this work seeks to reduce a number of enduring obstacles to the recycling of biowaste for future use in the circular economy. Although it could alleviate the global energy issue, additional study, market analysis, and finance are necessary to commercialize alternative products and promote their future use. Utilization of biowaste should incorporate a comprehensive approach and a methodical style of thinking, which can facilitate product enhancement and decision optimization through multidisciplinary integration and data-driven techniques.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Min Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
26
|
Nie Y, Wang Z, Wang W, Zhou Z, Kong Y, Ma J. Bio-flocculation of Microcystis aeruginosa by using fungal pellets of Aspergillus oryzae: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129606. [PMID: 35863225 DOI: 10.1016/j.jhazmat.2022.129606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Algal blooms caused by eutrophication are global phenomena that seriously threaten the sustainable use of freshwater resources. Traditional water treatment chemicals often typically lead to high levels of residue and cause damage to the morphology of algal cells. This study investigated an eco-friendly fungal bio-flocculant, Aspergillus oryzae, to remove the representative microalgae (Microcystis aeruginosa). Furthermore, it explored crucial flocculation parameters, adsorption kinetics, and thermodynamics of microalgae using A. oryzae. Accordingly, a flocculation efficiency of >95% was achieved when the fungus was cultured for six days, flocculant dosage was 11 g/L, rotation speed was 100 rpm, temperature was 25 °C, flocculation time was 5 h, and pH ranged between 4.0 and 9.0. KEGG analysis based on the genomic data, and chemical composition analysis revealed that proteins and polysaccharides were the major components of metabolites. Zeta potential analysis, scanning electron microscopy, three-dimensional fluorescence, X-ray spectroscopy, and infrared spectroscopy, electrostatic attraction revealed that electrostatic attraction promoted the destabilization and aggregation of microalgae. Additionally, hyphal surface adsorption and chemisorption from extracellular proteins and exopolysaccharides aided in the removal of microalgae. Therefore, fungi-based bio-flocculants have the potential to remove microalgae in a simple, effective, and eco-friendly manner without the complex extraction of extracellular metabolites.
Collapse
Affiliation(s)
- Yong Nie
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Zimin Wang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Wei Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhengyu Zhou
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Yanli Kong
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Jiangya Ma
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China.
| |
Collapse
|
27
|
The Synergistic Effects of Al3+ and Chitosan on the Solid–Liquid Separation of Coal Wastewater and Their Mechanism of Action. Polymers (Basel) 2022; 14:polym14193970. [PMID: 36235917 PMCID: PMC9572499 DOI: 10.3390/polym14193970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
It is important to identify an environmentally friendly and efficient flocculant that can replace polyacrylamide for the solid–liquid separation of coal wastewater. In this study, to explore whether chitosan can be used as an environmentally friendly and efficient flocculant for the solid–liquid separation of coal wastewater, AlCl3–chitosan was used to conduct flocculation–sedimentation and dewatering tests under different chitosan dosages and shear-strength conditions for the prepared coal wastewater. Focused beam reflectance was measured to dynamically monitor the number of refractory fine particles, and the settled flocs were photographed and analyzed with microscopy to explore the effect of AlCl3–chitosan on the flocculation settlement effect and floc characteristics. The synergistic mechanisms of AlCl3 and chitosan were investigated using quartz crystal dissipative microbalance and zeta potential measurement. The results showed that the addition of chitosan can significantly improve the flocculation–sedimentation and dewatering effects of coal wastewater. A reasonable dosage under a certain shear strength is conducive to the reduction of fine slime particles, which results in a compact floc structure, increases the floc size, and improves the settling effect. The synergistic effect of AlCl3–chitosan improved the electric neutralization and adsorption bridging abilities of the chitosan, and the mixed solution of AlCl3 and chitosan had stronger adsorption on the carbon surface. This study provides a new approach to the selection of flocculants for coal wastewater treatment.
Collapse
|
28
|
Kurniawan SB, Imron MF, Sługocki Ł, Nowakowski K, Ahmad A, Najiya D, Abdullah SRS, Othman AR, Purwanti IF, Hasan HA. Assessing the effect of multiple variables on the production of bioflocculant by Serratia marcescens: Flocculating activity, kinetics, toxicity, and flocculation mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155564. [PMID: 35504385 DOI: 10.1016/j.scitotenv.2022.155564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Bioflocculants gain attention as alternatives to chemical flocculants because they are more environmentally friendly and highly biodegradable. This study aims to improve the bioflocculant production by Serratia marcescens using one-variable-at-a-time (OVAT) analysis and analyze its flocculating activity performance, toxicity, and the flocculation mechanism. The effect of multiple variables including initial inoculum size, pH, mixing speed, temperature, growth medium, and incubation period was assessed through OVAT. Flocculating activity was then determined via jar test analysis, and toxicity test was performed using Daphnia magna and Daphnia pulex. The flocculation mechanism was determined via particle size distribution and zeta potential analysis. The optimum conditions for the improved bioflocculant production were as follows: 10% v/v initial inoculum size, pH 7, mixing speed of 150 rpm, room temperature, nutrient broth medium, and 72 h of incubation period. Scanning electron microscopy showed flake-like intact structure with coarse surface. The produced bioflocculant showed flocculating activity of 48% in 5227 ± 580 NTU initial kaolin turbidity with 1 mg/L concentration and 5% v/v dosage of bioflocculant, following the second-order kinetics. Toxicity test to D. magna and D. pulex showed the 48 h LC50 values of 8.06 and 6.42 g/L, respectively; these values are greatly higher than the fabricated chemical flocculants. The flocculation process using bioflocculant produced by S. marcescens was suggested to occur via bridging mechanism because it greatly affected the particle size distribution. Results indicated that bioflocculant produced by S. marcescens is much environmentally friendly and has great potential for turbidity removal in water/wastewater.
Collapse
Affiliation(s)
- Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia.
| | - Łukasz Sługocki
- Department of Hydrobiology, Institute of Biology, University of Szczecin, Felczaka 3c, 71-712 Szczecin, Poland; Center of Molecular Biology and Biotechnology, University of Szczecin, Wąska 13, 71-715 Szczecin, Poland
| | - Kacper Nowakowski
- Department of Hydrobiology, Institute of Biology, University of Szczecin, Felczaka 3c, 71-712 Szczecin, Poland
| | - Azmi Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Department of Polytechnic Education and Community College, Ministry of Higher Education, 62100 Putrajaya, Malaysia
| | - Dhuroton Najiya
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ipung Fitri Purwanti
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
29
|
Selepe TN, Maliehe TS, Moganedi K, Masoko P, Mulaudzi V. Isolation and Optimisation of Culture Conditions for a Marine Bioflocculant-Producing Bacterium and Application of Its Bioflocculant in Wastewater Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10237. [PMID: 36011872 PMCID: PMC9408499 DOI: 10.3390/ijerph191610237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The application of bioflocculants has become an alternative to that of chemical flocculants in wastewater treatment due to their environmental friendliness and non-toxic effects. This study aimed at isolating a bioflocculant-producing bacterium from marine water, optimisation of its culture conditions, and investigation of the removal efficiency of its bioflocculant on pollutants in wastewater. The bacterium was identified by 16S rRNA gene analysis. Optimal carbon and nitrogen sources, inoculum size, temperature, pH, and time were determined by the one-factor-at-a-time assay. The cytotoxicity of the bioflocculant was assessed on African green monkey kidney and bovine dermis cells using a tetrazolium-based columetric (MTT) method. Its removal efficiencies on chemical oxygen demand (COD), biological oxygen demand (BOD) and sulphur were determined using the Jar test method. The bacterial isolate was identified as Ochrobactrum oryzae AB84113. A maximum flocculating activity of 92% and a yield of 3.768 g/L were obtained when a 1% (v/v) inoculum size was used in the presence of starch and yeast extract at pH 7, 30 °C, and after 72 h of cultivation. The bioflocculant demonstrated non-cytotoxic effects on bovine dermis and African green monkey kidney cells. The bioflocculant removed 98% COD, 91% BOD and 86% of Sulphur. The bioflocculant has potential for pollutant removal from industrial wastewater.
Collapse
Affiliation(s)
- Tlou Nelson Selepe
- Department of Water and Sanitation, University of Limpopo, Private Bag X1106, Polokwane 0727, South Africa
| | - Tsolanku Sidney Maliehe
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Polokwane 0727, South Africa
| | - Kgabo Moganedi
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Polokwane 0727, South Africa
| | - Peter Masoko
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Polokwane 0727, South Africa
| | - Vusimuzi Mulaudzi
- Department of Chemistry, University of Limpopo, Private Bag X1106, Polokwane 0727, South Africa
| |
Collapse
|
30
|
Alnawajha MM, Kurniawan SB, Imron MF, Abdullah SRS, Hasan HA, Othman AR. Plant-based coagulants/flocculants: characteristics, mechanisms, and possible utilization in treating aquaculture effluent and benefiting from the recovered nutrients. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58430-58453. [PMID: 35759099 DOI: 10.1007/s11356-022-21631-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The increasing intensification of the aquaculture industry requires the development of new strategies to reduce the negative impacts of wastewater on the environment. Plant-based coagulants/flocculants, regarded as one of the environmentally friendly technologies for wastewater treatment, show good performance in the removal of suspended solids from wastewater. The aforementioned technology involves the utilization of plants as coagulants/flocculants in the treatment process and produces nontoxic sludge as treatment by-products. The produced sludge could be converted into valuable compounds used in agriculture. This review summarizes coagulation-flocculation by using plant-based coagulants/flocculants, its mechanisms, operational factors that control the treatment process, and its application in the treatment of wastewater, especially aquaculture effluent. Moreover, this work discusses the potential utilization of aquaculture sludge as a valuable compound used in agriculture. The presented review aims to emphasize the potential of using plant-based coagulants/flocculants in the treatment of aquaculture effluent and explore the potential of using the produced sludge as fertilizer for plants to solve problems related to sludge handling and the toxicity of inorganic coagulants in a recirculating aquaculture system. This paper concluded that utilization of recovered nutrients in the form of solids is feasible for agricultural purposes, while a hydroponic system can be used to reclaim the nutrients in the form of solution.
Collapse
Affiliation(s)
- Mohammad Mohammad Alnawajha
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Muhammad Fauzul Imron
- Department of Biology, Faculty of Science and Technology, Study Program of Environmental Engineering, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya, 60115, Indonesia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
31
|
Nouj N, Hafid N, El Alem N, Buciscanu II, Maier SS, Samoila P, Soreanu G, Cretescu I, Stan CD. Valorization of β-Chitin Extraction Byproduct from Cuttlefish Bone and Its Application in Food Wastewater Treatment. MATERIALS 2022; 15:ma15082803. [PMID: 35454495 PMCID: PMC9025758 DOI: 10.3390/ma15082803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/02/2022]
Abstract
The nontoxicity, worldwide availability and low production cost of cuttlefish bone products qualify them an excellent biocoagulant to treat food industry wastewater. In this study, cuttlefish bone liquid waste from the deproteinization step was used as a biocoagulant to treat food industry wastewater. This work concerns a waste that has never before been investigated. The objectives of this work were: the recovery of waste resulting from cuttlefish bone deproteinization, the replacementof chemical coagulants with natural ones to preserve the environment, and the enhancement ofthe value of fishery byproducts. A quantitative characterization of the industrial effluents of a Moroccan food processing plant was performed. The physicochemical properties of the raw cuttlefish bone powder and the deproteinization liquid extract were determined using specific analysis techniques: SEM/EDX, FTIR, XRD and 1H-NMR. The protein content of the deproteinization liquid was determined by OPA fluorescent assay. The zeta potential of the liquid extract was also determined. The obtained analytical results showed that the deproteinization liquid waste contained an adequate amount of soluble chitin fractions that could be used in food wastewater treatment. The effects of the coagulant dose and pH on the food industrial effluents were studied to confirm the effectiveness of the deproteinization liquid extract. Under optimal conditions, the coagulant showed satisfactory results. Process optimization was performed using the Box–Behnken design and response surface methodology. Thus, the optimal removal efficiencies predicted using this model for turbidity (99.68%), BOD5 (97.76%), and COD (82.92%) were obtained at a dosage of 8 mL biocoagulant in 0.5 L of food processing wastewater at an alkaline pH of 11.
Collapse
Affiliation(s)
- Nisrine Nouj
- Material and Environmental Laboratory, Department of Chemistry, Faculty of Sciences, IBN ZOHR University, Agadir 80000, Morocco; (N.H.); (N.E.A.)
- Correspondence: (N.N.); (I.C.)
| | - Naima Hafid
- Material and Environmental Laboratory, Department of Chemistry, Faculty of Sciences, IBN ZOHR University, Agadir 80000, Morocco; (N.H.); (N.E.A.)
| | - Noureddine El Alem
- Material and Environmental Laboratory, Department of Chemistry, Faculty of Sciences, IBN ZOHR University, Agadir 80000, Morocco; (N.H.); (N.E.A.)
| | - Ingrid Ioana Buciscanu
- Department of Chemical Engineering in Textiles and Leather, Faculty of Industrial Design and Business Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (I.I.B.); (S.S.M.)
| | - Stelian Sergiu Maier
- Department of Chemical Engineering in Textiles and Leather, Faculty of Industrial Design and Business Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (I.I.B.); (S.S.M.)
| | - Petrisor Samoila
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica Vodӑ, 700487 Iasi, Romania;
| | - Gabriela Soreanu
- Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Igor Cretescu
- Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Correspondence: (N.N.); (I.C.)
| | - Catalina Daniela Stan
- Department of Drug Industry and Pharmaceutical Biotechnology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University St., 700115 Iasi, Romania;
| |
Collapse
|
32
|
Ban Y. Purification of bathing wastewater by double suspended layer fluidized bed reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2375-2388. [PMID: 35486461 DOI: 10.2166/wst.2022.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An external radial magnetic field and built-in stainless steel balls formed a magnetic suspended layer (MSL), as observed in this study. Under the condition of crossflow inflow, the flocculating agent and coagulant aids form a flocculated particles suspension layer (FPSL). Thus a double suspended fluidized bed reactor was constructed to treat bathing wastewater. A particle image velocimetry device was used to detect flow patterns and analyze the flocculation conditions. The results showed that under the condition of crossflow inflow, at the same time, the flooding water was 0.023-2.101 m3/h, and the dosage of poly aluminum chloride (PAC) and polyacrylic amide (PAM) was 90 mg/L and 1.5 mg/L, respectively, and removal rates of turbidity, chemical oxygen demand (CODCr) and linear alkylbenzene sulphonates (LAS) reached more than 99, 90, and 80%. Filtration, grid flocculation and particle interception were functions of the MSL. Meanwhile, the crossflow input created additional vortexes, increasing the likelihood of flocculation particle collision, improving the flocculation conditions and cleaning the MSL. The reactor aids in the development of the initial flocculated particles suspension layer, flocculation strengthening, chemical dosage reduction, effluent qualities improvement, and effluent stability maintenance.
Collapse
Affiliation(s)
- YunXiao Ban
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China E-mail:
| |
Collapse
|
33
|
Adeleke VT, Madlala NE, Adeniyi AA, Lokhat D. Molecular Interactions Associated with Coagulation of Organic Pollutants by 2S Albumin of Plant Proteins: A Computational Approach. Molecules 2022; 27:1685. [PMID: 35268786 PMCID: PMC8912086 DOI: 10.3390/molecules27051685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
The removal of organic pollutants is a major challenge in wastewater treatment technologies. Coagulation by plant proteins is a promising technique for this purpose. The use of these proteins has been experimentally investigated and reported in the literature. However, the determination of the molecular interactions of these species is experimentally challenging and the computational approach offers a suitable alternative in gathering useful information for this system. The present study used a molecular dynamic simulation approach to predict the potentials of using Moringa oleifera (MO), Arachis hypogaea, Bertholletia excelsa, Brassica napus, and Helianthus annuus plant proteins for the coagulation of organic pollutants and the possible mechanisms of coagulation of these proteins. The results showed that the physicochemical and structural properties of the proteins are linked to their performance. Maximum coagulation of organic molecules to the proteins is between 50-100%. Among five proteins studied for coagulation, Brassica napus and Helianthus annuus performed better than the well-known MO protein. The amino acid residues interacting with the organic molecules play a significant role in the coagulation and this is peculiar with each plant protein. Hydrogen bond and π-interactions dominate throughout the protein-pollutants molecular interactions. The reusability of the proteins after coagulation derived from their structural quality analysis along with the complexes looks promising and most of them are better than that of the MO. The results showed that the seed proteins studied have good prediction potentials to be used for the coagulation of organic pollutants from the environment, as well as the insights into their molecular activities for bioremediation.
Collapse
Affiliation(s)
- Victoria T. Adeleke
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa; (N.E.M.); (D.L.)
| | - Nkosinathi E. Madlala
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa; (N.E.M.); (D.L.)
| | - Adebayo A. Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa;
- Department of Industrial Chemistry, Federal University, Oye Ekiti 370111, Nigeria
| | - David Lokhat
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa; (N.E.M.); (D.L.)
| |
Collapse
|