1
|
Otieno TA, Otieno LA, Rotich B, Löhr K, Kipkulei HK. Modeling climate change impacts and predicting future vulnerability in the Mount Kenya forest ecosystem using remote sensing and machine learning. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:631. [PMID: 40329020 PMCID: PMC12055643 DOI: 10.1007/s10661-025-14089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
The Mount Kenya forest ecosystem (MKFE), a crucial biodiversity hotspot and one of Kenya's key water towers, is increasingly threatened by climate change, putting its ecological integrity and vital ecosystem services at risk. Understanding the interactions between climate extremes and forest dynamics is essential for conservation planning, especially in the Mount Kenya Forest Ecosystem (MKFE), where rising temperatures and erratic rainfall are altering vegetation patterns, reducing forest resilience, and threatening both biodiversity and water security. This study integrates remote sensing and machine learning to assess historical vegetation changes and predict areas at risk in the future. Landsat imagery from 2000 to 2020 was used to derive vegetation indices comprising the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil-Adjusted Vegetation Index (SAVI), and Bare Soil Index (BSI). Climate variables, including extreme precipitation and temperature indices, were extracted from CHIRPS and ERA5 datasets. Machine learning models, including Random Forest (RF), XGBoost, and Support Vector Machines (SVM), were trained to assess climate-vegetation relationships and predict future vegetation dynamics under the SSP245 climate scenario using Coupled Model Intercomparison Project Phase 6 (CMIP6) downscaled projections. The RF model achieved high accuracy (R2 = 0.82, RMSE = 0.15) in predicting the dynamics of vegetation conditions. Model projections show a 49-55% decline in EVI across forest areas by 2040, with the most pronounced losses likely in lower montane zones, which are more sensitive to climate-induced vegetation stress. Results emphasize the critical role of precipitation in sustaining forest health and highlight the urgent need for adaptive management strategies, including afforestation, sustainable land-use planning, and policy-driven conservation efforts. This study provides a scalable framework for modelling climate impacts on forest ecosystems globally and offers actionable insights for policymakers.
Collapse
Affiliation(s)
- Terry Amolo Otieno
- Department of Geomatic Engineering and Geospatial Information Systems, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box, Nairobi, 62000 00200, Kenya
| | - Loventa Anyango Otieno
- Department of Geomatic Engineering and Geospatial Information Systems, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box, Nairobi, 62000 00200, Kenya
| | - Brian Rotich
- Faculty of Environmental Studies and Resources Development, Chuka University, P.O. Box 109-60400, Chuka, Kenya
| | - Katharina Löhr
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development (HNEE), Alfred-Moeller-Str. 1, 16225, Eberswalde, Germany
| | - Harison Kiplagat Kipkulei
- Department of Geomatic Engineering and Geospatial Information Systems, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box, Nairobi, 62000 00200, Kenya.
- Center for Climate Resilience, University of Augsburg, Universitätsstraße 12, 86159, Augsburg, Germany.
| |
Collapse
|
2
|
Yan Y, Hong S, Chen A, Peñuelas J, Allen CD, Hammond WM, Munson SM, Myneni RB, Piao S. Satellite-based evidence of recent decline in global forest recovery rate from tree mortality events. NATURE PLANTS 2025; 11:731-742. [PMID: 40251283 DOI: 10.1038/s41477-025-01948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/21/2025] [Indexed: 04/20/2025]
Abstract
Climate-driven forest mortality events have been extensively observed in recent decades, prompting the question of how quickly these affected forests can recover their functionality following such events. Here we assessed forest recovery in vegetation greenness (normalized difference vegetation index) and canopy water content (normalized difference infrared index) for 1,699 well-documented forest mortality events across 1,600 sites worldwide. By analysing 158,427 Landsat surface reflectance images sampled from these sites, we provided a global assessment on the time required for impacted forests to return to their pre-mortality state (recovery time). Our findings reveal a consistent decline in global forest recovery rate over the past decades indicated by both greenness and canopy water content. This decline is particularly noticeable since the 1990s. Further analysis on underlying mechanisms suggests that this reduction in global forest recovery rates is primarily associated with rising temperatures and increased water scarcity, while the escalation in the severity of forest mortality contributes only partially to this reduction. Moreover, our global-scale analysis reveals that the recovery of forest canopy water content lags significantly behind that of vegetation greenness, implying that vegetation indices based solely on greenness can overestimate post-mortality recovery rates globally. Our findings underscore the increasing vulnerability of forest ecosystems to future warming and water insufficiency, accentuating the need to prioritize forest conservation and restoration as an integral component of efforts to mitigate climate change impacts.
Collapse
Affiliation(s)
- Yuchao Yan
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Guangdong Key Laboratory for Urbanization and Geo-Simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
| | - Songbai Hong
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
| | - Craig D Allen
- Department of Geography and Environmental Studies, University of New Mexico, Albuquerque, NM, USA
| | - William M Hammond
- Institute of Food and Agricultural Sciences, Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Seth M Munson
- US Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA
| | - Ranga B Myneni
- Department of Earth and Environment, Boston University, Boston, MA, USA
| | - Shilong Piao
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| |
Collapse
|
3
|
Nicoud B, Bayle A, Corona C, Chambard RP, Francon L, Fructus M, Bensa M, Choler P. Climate, not land-use, drives a recent acceleration of larch expansion at the forest-grassland ecotone in the southern French alps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178326. [PMID: 39754945 DOI: 10.1016/j.scitotenv.2024.178326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/07/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
In recent decades significant forest expansion into treeless alpine zones has been observed across global mountain ranges, including the Alps, driven by a complex interplay of global warming and land-use changes. The upward shift of treelines has far-reaching implications for ecosystem functioning, biodiversity, and biogeochemical cycles. However, climate variables alone account for only a fraction of treeline dynamics, highlighting substantial research gaps concerning the influence of non-climatic factors. This study addresses these gaps by combining dendrochronological methods, high-resolution bioclimatic data, and historical land-use records to investigate treeline dynamics in the southern French Alps. Our results reveal a marked acceleration in tree establishment, starting in the early 2000s, attributable primarily to climate change rather than the pastoral abandonment of the 19th century. We demonstrate that historical land-use changes created predisposing conditions for tree establishment, while recent climate change has increasingly acted as an accelerator for this dynamic. While key climatic factors, such as thermal indicators and growing season length, are identified as significant contributors to treeline shifts, our study highlights the need for further research to disentangle the specific drivers of tree recruitment and survival in the context of ongoing climate change.
Collapse
Affiliation(s)
- Baptiste Nicoud
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Arthur Bayle
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Christophe Corona
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Rémy Perron Chambard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France; AgroParisTech, 91120 Palaiseau, France
| | - Loïc Francon
- Department of Geography, University of Bonn, Meckenheimer Allee 166, 53115 Bonn, Germany
| | - Mathieu Fructus
- Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d'Études de la Neige, Grenoble, France
| | | | - Philippe Choler
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| |
Collapse
|
4
|
Shakas A, Hediger R, Gessler A, Singha K, de Pasquale G, D'Odorico P, Wagner FM, Schaub M, Maurer H, Griess H, Gisler J, Meusburger K. Does optimality partitioning theory fail for belowground traits? Insights from geophysical imaging of a drought-release experiment in a Scots Pine forest. THE NEW PHYTOLOGIST 2025; 245:546-558. [PMID: 39558713 DOI: 10.1111/nph.20245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024]
Abstract
We investigate the impact of a 20-yr irrigation on root water uptake (RWU) and drought stress release in a naturally dry Scots pine forest. We use a combination of electrical resistivity tomography to image RWU, drone flights to image the crown stress and sensors to monitor soil water content. Our findings suggest that increased water availability enhances root growth and resource use efficiency, potentially increasing trees' resistance to future drought conditions by enabling water uptake from deeper soil layers. This research highlights the significant role of ecological memory and legacy effects in determining tree responses to environmental changes.
Collapse
Affiliation(s)
- Alexis Shakas
- Department of Earth and Planetary Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Roman Hediger
- Department of Earth and Planetary Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Kamini Singha
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO, 80401, USA
| | - Giulia de Pasquale
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), 1305, La Serena, Chile
| | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Florian M Wagner
- Geophysical Imaging and Monitoring, RWTH Aachen University, 52062, Aachen, Germany
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Hansruedi Maurer
- Department of Earth and Planetary Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Holger Griess
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Jonas Gisler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| |
Collapse
|
5
|
Camarero JJ, Salinas-Bonillo MJ, Valeriano C, Rubio-Cuadrado Á, Fernández-Cortés Á, Tamudo E, Montes F, Cabello J. Watering the trees for the forest: Drought alleviation in oaks and pines by ancestral ditches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175353. [PMID: 39116482 DOI: 10.1016/j.scitotenv.2024.175353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Traditional ditches ("acequias" in Spanish) derive meltwater and infiltrate groundwater providing ecological services downstream in the semi-arid Sierra Nevada range (SE Spain). Therefore, they may act as a nature-based solution by alleviating drought stress in trees growing near ditches by enhancing growth and reducing their intrinsic water-use efficiency (iWUE). Such a mitigation role of acequias is critical given that some oak (Quercus pyrenaica) and pine (Pinus sylvestris) stands reach their xeric distribution limits in Europe. We compared tree-ring width data and wood δ13C, a proxy of iWUE, in oak and pine stands located near or far (control) from ditches with different infiltration capacity in two watersheds. We assessed how trees responded to climate data, drought stress, and vegetation greenness through correlations and resilience indices. Oak trees located near ditches grew more and responded less to precipitation, soil moisture, a drought index, and greenness than control trees. In pines, we did not find this pattern, and ditch trees grew more than control trees only during an extremely dry year (1995). Climate-growth correlations suggested a longer growing season in ditch pines. Growth of ditch oaks from the "Acequia Nueva" (AN), with high infiltration capacity, responded more to autumn soil moisture and showed the lowest δ13C. Growth was enhanced by cool-wet spring conditions in pines and also by warm-wet conditions in the prior winter in the case of oaks. Control trees showed lower resistance to drought. Control trees presented higher wood δ13C values except for old oaks from the "Acequia Grande" (AG) site which may show long-term acclimation. Traditional ditches alleviate drought stress in oak and pine stands subjected to regional xeric climate conditions.
Collapse
Affiliation(s)
- J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain.
| | - María J Salinas-Bonillo
- Departamento de Biología y Geología, Universidad de Almería, 04120 Almería, Spain; Centro Andaluz para el Cambio Global, Hermelindo Castro (ENGLOBA), Universidad de Almería, Almería, Spain.
| | - Cristina Valeriano
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain; Laboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell Street, Building no. 45, Tucson, AZ 85721, USA.
| | - Álvaro Rubio-Cuadrado
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain; Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Ángel Fernández-Cortés
- Departamento de Biología y Geología, Universidad de Almería, 04120 Almería, Spain; Centro Andaluz para el Cambio Global, Hermelindo Castro (ENGLOBA), Universidad de Almería, Almería, Spain.
| | - Elisa Tamudo
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain.
| | - Fernando Montes
- Departamento de Dinámica y Gestión Forestal, Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Ctra. La Coruña km 7.5, 28040 Madrid, Spain.
| | - Javier Cabello
- Departamento de Biología y Geología, Universidad de Almería, 04120 Almería, Spain; Centro Andaluz para el Cambio Global, Hermelindo Castro (ENGLOBA), Universidad de Almería, Almería, Spain.
| |
Collapse
|
6
|
Martinez Del Castillo E, Torbenson MCA, Reinig F, Konter O, Ziaco E, Büntgen U, Esper J. Diverging growth trends and climate sensitivities of individual pine trees after the 1976 extreme drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174370. [PMID: 38945248 DOI: 10.1016/j.scitotenv.2024.174370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Summer droughts are affecting the productivity and functioning of central European forests, with potentially lasting consequences for species composition and carbon sequestration. Long-term recovery rates and individual growth responses that may diverge from species-specific and population-wide behaviour are, however, poorly understood. Here, we present 2052 pine (Pinus sylvestris) ring width series from 19 forest sites in south-west Germany to investigate growth responses of individual trees to the exceptionally hot and dry summer of 1976. This outstanding drought event presents a distinctive test case to examine long-term post-drought recovery dynamics. We have proposed a new classification approach to identify a distinct sub-population of trees, referred to as "temporarily affected trees", with a prevalence ranging from 9 to 33 % across the forest stands. These trees exhibited an exceptionally prolonged growth suppression, lasting over a decade, indicating significantly lower resilience to the 1976 drought and a 50 % reduced capacity to recover to pre-drought states. Furthermore, shifts in resilience and recovery dynamics are accompanied by changing climate sensitivities, notably an increased response to maximum temperatures and summer droughts in post-1976 affected pines. Our findings underscore the likely interplay between individual factors and micro-site conditions that contribute to divergent tree responses to droughts. Assessing these factors at the individual tree level is recommended to advancing our understanding of forest responses to extreme drought events. By analyzing sub-population growth patterns, our study provides valuable insights into the impacts of summer droughts on central European forests in context of increasing drought events.
Collapse
Affiliation(s)
| | - Max C A Torbenson
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Frederick Reinig
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Oliver Konter
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Emanuele Ziaco
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Cambridge, United Kingdom; Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), Brno, Czech Republic; Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic; Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Jan Esper
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany; Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), Brno, Czech Republic
| |
Collapse
|
7
|
Nowakowska J, Dang M, Kiełtyk P, Niemczyk M, Malewski T, Szulc W, Rutkowska B, Borowik P, Oszako T. Silicon Modifies Photosynthesis Efficiency and hsp Gene Expression in European Beech ( Fagus sylvatica) Seedlings Exposed to Drought Stress. Genes (Basel) 2024; 15:1233. [PMID: 39336824 PMCID: PMC11431362 DOI: 10.3390/genes15091233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Climate change is leading to severe and long-term droughts in European forest ecosystems. can have profound effects on various physiological processes, including photosynthesis, gene expression patterns, and nutrient uptake at the developmental stage of young trees. Objectives: Our study aimed to test the hypothesis that the application of silica (SiO2) influences photosynthetic efficiency and gene expression in 1- to 2-year-old Fagus sylvatica (L.) seedlings. Additionally, we aimed to assess whether silicon application positively influences the structural properties of leaves and roots. To determine whether the plant physiological responses are genotype-specific, seedlings of four geographically different provenances were subjected to a one-year evaluation under greenhouse conditions. Methods: We used the Kruskal-Wallis test followed by Wilcoxon's test to evaluate the differences in silicon content and ANOVA followed by Tukey's test to evaluate the physiological responses of seedlings depending on treatment and provenance. Results: Our results showed a significantly higher Si content in the roots compared with the leaves, regardless of provenance and treatment. The most significant differences in photosynthetic performance were found in trees exposed to Si treatment, but the physiological responses were generally nuanced and provenance-dependent. Expression of hsp70 and hsp90 was also increased in leaf tissues of all provenances. These results provide practical insights that Si can improve the overall health and resilience of beech seedlings in nursery and forest ecosystems, with possible differences in the beneficial role of silicon application arising from the large differences in wild populations of forest tree species.
Collapse
Affiliation(s)
- Justyna Nowakowska
- Faculty of Biology and Environmental Sciences, Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland; (J.N.); (P.K.)
| | - Monika Dang
- Faculty of Biology and Environmental Sciences, Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland; (J.N.); (P.K.)
| | - Piotr Kiełtyk
- Faculty of Biology and Environmental Sciences, Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland; (J.N.); (P.K.)
| | - Marzena Niemczyk
- Department of Silviculture and Forest Tree Genetics, Forest Research Institute, 05-090 Sękocin Stary, Poland;
| | - Tadeusz Malewski
- Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, 00-679 Warsaw, Poland;
| | - Wiesław Szulc
- Institute of Agriculture, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (W.S.); (B.R.)
| | - Beata Rutkowska
- Institute of Agriculture, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (W.S.); (B.R.)
| | - Piotr Borowik
- Forest Protection Department, Forest Research Institute, 05-090 Sękocin Stary, Poland;
| | - Tomasz Oszako
- Forest Protection Department, Forest Research Institute, 05-090 Sękocin Stary, Poland;
| |
Collapse
|
8
|
Gauthey A, Kahmen A, Limousin JM, Vilagrosa A, Didion-Gency M, Mas E, Milano A, Tunas A, Grossiord C. High heat tolerance, evaporative cooling, and stomatal decoupling regulate canopy temperature and their safety margins in three European oak species. GLOBAL CHANGE BIOLOGY 2024; 30:e17439. [PMID: 39092538 DOI: 10.1111/gcb.17439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Heatwaves and soil droughts are increasing in frequency and intensity, leading many tree species to exceed their thermal thresholds, and driving wide-scale forest mortality. Therefore, investigating heat tolerance and canopy temperature regulation mechanisms is essential to understanding and predicting tree vulnerability to hot droughts. We measured the diurnal and seasonal variation in leaf water potential (Ψ), gas exchange (photosynthesis Anet and stomatal conductance gs), canopy temperature (Tcan), and heat tolerance (leaf critical temperature Tcrit and thermal safety margins TSM, i.e., the difference between maximum Tcan and Tcrit) in three oak species in forests along a latitudinal gradient (Quercus petraea in Switzerland, Quercus ilex in France, and Quercus coccifera in Spain) throughout the growing season. Gas exchange and Ψ of all species were strongly reduced by increased air temperature (Tair) and soil drying, resulting in stomatal closure and inhibition of photosynthesis in Q. ilex and Q. coccifera when Tair surpassed 30°C and soil moisture dropped below 14%. Across all seasons, Tcan was mainly above Tair but increased strongly (up to 10°C > Tair) when Anet was null or negative. Although trees endured extreme Tair (up to 42°C), positive TSM were maintained during the growing season due to high Tcrit in all species (average Tcrit of 54.7°C) and possibly stomatal decoupling (i.e., Anet ≤0 while gs >0). Indeed, Q. ilex and Q. coccifera trees maintained low but positive gs (despite null Anet), decreasing Ψ passed embolism thresholds. This may have prevented Tcan from rising above Tcrit during extreme heat. Overall, our work highlighted that the mechanisms behind heat tolerance and leaf temperature regulation in oak trees include a combination of high evaporative cooling, large heat tolerance limits, and stomatal decoupling. These processes must be considered to accurately predict plant damages, survival, and mortality during extreme heatwaves.
Collapse
Affiliation(s)
- Alice Gauthey
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Ansgar Kahmen
- Physiological Plant Ecology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Jean-Marc Limousin
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Alberto Vilagrosa
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Department Ecology, University of Alicante, Alicante, Spain
| | - Margaux Didion-Gency
- Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Birmensdorf, Switzerland
| | - Eugénie Mas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, District of Columbia, USA
| | - Arianna Milano
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Alex Tunas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
9
|
Martes L, Pfleiderer P, Köhl M, Sillmann J. Using climate envelopes and earth system model simulations for assessing climate change induced forest vulnerability. Sci Rep 2024; 14:17076. [PMID: 39048656 PMCID: PMC11269643 DOI: 10.1038/s41598-024-68181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Changing climatic conditions threaten forest ecosystems. Drought, disease and infestation, are leading to forest die-offs which cause substantial economic and ecological losses. In central Europe, this is especially relevant for commercially important coniferous tree species. This study uses climate envelope exceedance (CEE) to approximate species risk under different future climate scenarios. To achieve this, we used current species presence-absence and historical climate data, coupled with future climate scenarios from various Earth System Models. Climate scenarios tended towards drier and warmer conditions, causing strong CEEs especially for spruce. However, we show that annual averages of temperature and precipitation obscure climate extremes. Including climate extremes reveals a broader increase in CEEs across all tree species. Our study shows that the consideration of climate extremes, which cannot be adequately reflected in annual averages, leads to a different assessment of the risk of forests and thus the options for adapting to climate change.
Collapse
Affiliation(s)
- Leam Martes
- Institute for Wood Science - World Forestry, Universität Hamburg, Leuschnerstraße 91, 21029, Hamburg, Germany.
| | - Peter Pfleiderer
- Research Unit for Sustainability and Climate Risks, Universität Hamburg, Grindelberg 5, 20144, Hamburg, Germany
- Climate Analytics, Berlin, Germany
| | - Michael Köhl
- Institute for Wood Science - World Forestry, Universität Hamburg, Leuschnerstraße 91, 21029, Hamburg, Germany
| | - Jana Sillmann
- Research Unit for Sustainability and Climate Risks, Universität Hamburg, Grindelberg 5, 20144, Hamburg, Germany
| |
Collapse
|
10
|
Camarero JJ, Gazol A, Valeriano C, Vergarechea M, Cattaneo N. Growth data of outlying plantations allows benchmarking the tolerance to climate extremes and drought stress in the European larch. FRONTIERS IN PLANT SCIENCE 2024; 15:1404347. [PMID: 38882570 PMCID: PMC11176551 DOI: 10.3389/fpls.2024.1404347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
Introduction Plantations located outside the species distribution area represent natural experiments to assess tree tolerance to climate variability. Climate change amplifies warming-related drought stress but also leads to more climate extremes. Methods We studied plantations of the European larch (Larix decidua), a conifer native to central and eastern Europe, in northern Spain. We used climate, drought and tree-ring data from four larch plantations including wet (Valgañón, site V; Santurde, site S), intermediate (Ribavellosa, site R) and dry (Santa Marina, site M) sites. We aimed to benchmark the larch tolerance to climate and drought stress by analysing the relationships between radial growth increment (hereafter growth), climate data (temperature, precipitation, radiation) and a drought index. Results Basal area increment (BAI) was the lowest in the driest site M (5.2 cm2 yr-1; period 1988-2022), followed by site R (7.5 cm2 yr-1), with the youngest and oldest and trees being planted in M (35 years) and R (150 years) sites. BAI peaked in the wettest sites (V; 10.4 cm2 yr-1; S, 10.8 cm2 yr-1). We detected a sharp BAI reduction (30% of the regional mean) in 2001 when springto-summer conditions were very dry. In the wettest V and S sites, larch growth positively responded to current March and June-July radiation, but negatively to March precipitation. In the R site, high April precipitation enhanced growth. In the driest M site, warm conditions in the late prior winter and current spring improved growth, but warm-sunny conditions in July and dry-sunny conditions in August reduced it. Larch growth positively responded to spring-summer wet conditions considering short (1-6 months) and long (9-24 months) time scales in dry (site M) and wet-intermediate (sites S and R) sites, respectively. Discussion Larch growth is vulnerable to drought stress in dry slow-growing plantations, but also to extreme spring wet-cloudy events followed by dry-hot conditions in wet fast-growing plantations.
Collapse
Affiliation(s)
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
| | - Cristina Valeriano
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, United States
| | - Marta Vergarechea
- Department of Forest Management, Division of Forest and Forest Resources, NIBIO (Norwegian Institute for Bioeconomy Research), Ås, Norway
| | - Nicolás Cattaneo
- Department of Forest Management, Division of Forest and Forest Resources, NIBIO (Norwegian Institute for Bioeconomy Research), Ås, Norway
| |
Collapse
|
11
|
Safaei M, Kleinebecker T, Weis M, Große-Stoltenberg A. Tracking effects of extreme drought on coniferous forests from space using dynamic habitat indices. Heliyon 2024; 10:e27864. [PMID: 38560251 PMCID: PMC10981029 DOI: 10.1016/j.heliyon.2024.e27864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Terrestrial ecosystems such as coniferous forests in Central Europe are experiencing changes in health status following extreme droughts compounding with severe heat waves. The increasing temporal resolution and spatial coverage of earth observation data offer new opportunities to assess these dynamics. Dense time-series of optical satellite data allow for computing Dynamic Habitat Indices (DHIs), which have been predominantly used in biodiversity studies. However, DHIs cover three aspects of vegetation changes that could be affected by drought: annual productivity, minimum cover, and seasonality. Here, we evaluate the health status of coniferous forests in the federal state of Hesse in Germany over the period 2017-2020 including the severe drought year of 2018 using DHIs based on the Normalized Difference Vegetation Index (NDVI) for drought assessment. To identify the most important variables affecting coniferous forest die-off, a series of environmental variables together with the three DHIs components were used in a logistic regression (LR) model. Each DHI component changed significantly across non-damaged and damaged sites in all years (p-value 0.05). When comparing 2017 to 2019, DHI-based annual productivity decreased and seasonality increased. Most importantly, none of the DHI components had reached pre-drought conditions, which likely indicates a change in ecosystem functioning. We also identified spatially explicit areas highly affected by drought. The LR model revealed that in addition to common environmental parameters related to temperature, precipitation, and elevation, DHI components were the most important factors explaining the health status. Our analysis demonstrates the potential of DHIs to capture the effect of drought events on Central European coniferous forest ecosystems. Since the spaceborne data are available at the global level, this approach can be applied to track the dynamics of ecosystem conditions in other regions, at larger spatial scales, and for other Land Use/Land Cover types.
Collapse
Affiliation(s)
- Mojdeh Safaei
- Division of Landscape Ecology and Landscape Planning, Institute of Landscape Ecology and Resource Management, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff Ring 26-32, 35392, Giessen, Germany
| | - Till Kleinebecker
- Division of Landscape Ecology and Landscape Planning, Institute of Landscape Ecology and Resource Management, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff Ring 26-32, 35392, Giessen, Germany
- Center for International Development and Environmental Research (ZEU), Senckenbergstrasse 3, 35390, Giessen, Germany
| | - Manuel Weis
- Hessian Agency for Nature Conservation, Environment and Geology (HLNUG), Rheingaustraße 186, 65203, Wiesbaden, Germany
| | - André Große-Stoltenberg
- Division of Landscape Ecology and Landscape Planning, Institute of Landscape Ecology and Resource Management, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff Ring 26-32, 35392, Giessen, Germany
- Center for International Development and Environmental Research (ZEU), Senckenbergstrasse 3, 35390, Giessen, Germany
| |
Collapse
|
12
|
Gazol A, Valeriano C, Colangelo M, Ibáñez R, Valerio M, Rubio-Cuadrado Á, Camarero JJ. Growth of tree (Pinus sylvestris) and shrub (Amelanchier ovalis) species is constrained by drought with higher shrub sensitivity in dry sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170539. [PMID: 38296069 DOI: 10.1016/j.scitotenv.2024.170539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
We lack understanding of how variable is radial growth of coexisting tree and shrub species, and how growth is constrained by drought depending on site aridity. Here, we compared the radial growth of two widespread and coexisting species, a winter deciduous shrub (Amelanchier ovalis Medik.) and an evergreen conifer tree (Pinus sylvestris L.). We sampled four sites in Northeastern Spain subjected to different aridity levels and used dendrochronological methods to quantify growth patterns and responses to climate variables. The growth of the two species varied between regions, being lower in the driest sites. The first-order autocorrelation (growth persistence) was higher in more mesic sites but without clear differences between species. Tree and shrub growth negatively responded to elevated summer temperatures and positively to spring-summer precipitation and wet conditions. However, negative growth responses of the shrub to drought were only observed in the two driest sites in contrast to widespread responses of the tree. Abrupt growth reductions were common in the drier sites, but resilience indices show that the two species rapidly recovered pre-drought growth levels. The lower growth synchrony of the shrub as compared to the tree can be due to the multistemmed architecture, fast growth and low stature of the shrub. Besides, the high dependency of the shrub growth on summer rainfall can explain why drought limitations were only apparent in the two driest sites. In any case, results point out to the dendrochronological potential of shrubs, which is particularly relevant giving its ability to inhabit woodlands and treeless regions under harsh climatic conditions. Nevertheless, further research is required to elucidate the capacity of shrub species to tolerate drought, as well as to understand how shrubs thrive in water- and cold-limited environments.
Collapse
Affiliation(s)
- Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain.
| | - Cristina Valeriano
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain
| | - Michele Colangelo
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Ricardo Ibáñez
- Departamento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, Pamplona 31008, Navarra, Spain
| | - Mercedes Valerio
- Departamento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, Pamplona 31008, Navarra, Spain; Department of Botany, Faculty of Sciences, University of South Bohemia, Na Zlaté stoce 1, 370 05 České Budějovice, Czech Republic
| | - Álvaro Rubio-Cuadrado
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, E-50192 Zaragoza, Spain
| |
Collapse
|
13
|
Shekhar A, Hörtnagl L, Paul-Limoges E, Etzold S, Zweifel R, Buchmann N, Gharun M. Contrasting impact of extreme soil and atmospheric dryness on the functioning of trees and forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169931. [PMID: 38199368 DOI: 10.1016/j.scitotenv.2024.169931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Recent studies indicate an increase in the frequency of extreme compound dryness days (days with both extreme soil AND air dryness) across central Europe in the future, with little information on their impact on the functioning of trees and forests. This study aims to quantify and assess the impact of extreme soil dryness, extreme air dryness, and extreme compound dryness on the functioning of trees and forests. For this, >15 years of ecosystem-level (carbon dioxide and water vapor fluxes) and 6-10 years of tree-level measurements (transpiration and growth) each from a montane mixed deciduous forest (CH-Lae) and a subalpine evergreen coniferous forest (CH-Dav) in Switzerland, is used. The results showed extreme air dryness limitation on CO2 fluxes and extreme soil dryness limitations on water vapor fluxes. Additionally, CH-Dav was mainly affected by extreme air dryness whereas CH-Lae was affected by both extreme soil dryness and extreme air dryness. The impact of extreme compound dryness on net CO2 uptake (about 75 % decrease) was more due to higher increased ecosystem respiration (40 % and 70 % increase at CH-Dav and CH-Lae, respectively) than decreased gross primary productivity (10 % and 40 % decrease at CH-Dav and CH-Lae, respectively). A significant negative impact on evapotranspiration and transpiration was only observed at CH-Lae during extreme soil and compound dryness (about 25 % decrease). Furthermore, with some differences, the tree-level impact on tree water deficit, transpiration, and growth were consistent with the ecosystem-level impact on carbon uptake and evapotranspiration. Finally, the impact of extreme dryness showed no significant relationship with tree allometry (diameter and height) but across different tree species. The projected future is likely to expose these forest areas to more extreme and frequent dryness conditions, thus compromising the functioning of trees and forests, thereby calling for management interventions to increase the adaptive capacity and resistance of these forests.
Collapse
Affiliation(s)
- Ankit Shekhar
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland.
| | - Lukas Hörtnagl
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Eugénie Paul-Limoges
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Sophia Etzold
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Mana Gharun
- Faculty of Geosciences, University of Münster, 48149 Münster, Germany
| |
Collapse
|
14
|
O'Connell BP, Wiley E. Heatwaves do not limit recovery following defoliation but alter leaf drought tolerance traits. PLANT, CELL & ENVIRONMENT 2024; 47:482-496. [PMID: 37877185 DOI: 10.1111/pce.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
As heatwave frequency increases, they are more likely to coincide with other disturbances like insect defoliation. But it is unclear if high temperatures after defoliation impact canopy recovery or leaf traits which may affect response to further stressors like drought. To examine these stressor interactions, we subjected defoliated (DEF) and undefoliated (UNDEF) oak saplings to a simulated spring heatwave of +10°C for 25 days. We measured gas exchange, leaf area recovery, carbohydrate storage, turgor loss point (ΨTLP ), and minimum leaf conductance (gmin ). During the heatwave, stem respiration exhibited stronger thermal acclimation in DEF than UNDEF saplings, while stomatal conductance and net photosynthesis increased. The heatwave did not affect leaf area recovery or carbohydrate storage of DEF saplings, but reflush leaves had higher gmin than UNDEF leaves, and this was amplified by the heatwave. Across all treatments, higher gmin was associated with higher daytime stomatal conductance and a lower ΨTLP . The results suggest defoliation stress may not be exacerbated by higher temperatures. However, reflush leaves are less conservative in their water use, limiting their ability to minimise water loss. While lower ΨTLP could help DEF trees maintain gas exchange under mild drought, they may be more vulnerable to dehydration under severe drought.
Collapse
Affiliation(s)
| | - Erin Wiley
- Department of Biology, University of Central Arkansas, Conway, Arkansas, USA
| |
Collapse
|
15
|
Aldea J, Dahlgren J, Holmström E, Löf M. Current and future drought vulnerability for three dominant boreal tree species. GLOBAL CHANGE BIOLOGY 2024; 30:e17079. [PMID: 38273579 DOI: 10.1111/gcb.17079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/27/2024]
Abstract
Climate change is projected to increase the frequency and severity of droughts, possibly causing sudden and elevated tree mortality. Better understanding and predictions of boreal forest responses to climate change are needed to efficiently adapt forest management. We used tree-ring width chronologies from the Swedish National Forest Inventory, sampled between 2010 and 2018, and a random forest machine-learning algorithm to identify the tree, stand, and site variables that determine drought damage risk, and to predict their future spatial-temporal evolution. The dataset consisted of 16,455 cores of Norway spruce, Scots pine, and birch trees from all over Sweden. The risk of drought damage was calculated as the probability of growth anomaly occurrence caused by past drought events during 1960-2010. We used the block cross-validation method to compute model predictions for drought damage risk under current climate and climate predicted for 2040-2070 under the RCP.2.6, RCP.4.5, and RCP.8.5 emission scenarios. We found local climatic variables to be the most important predictors, although stand competition also affects drought damage risk. Norway spruce is currently the most susceptible species to drought in southern Sweden. This species currently faces high vulnerability in 28% of the country and future increases in spring temperatures would greatly increase this area to almost half of the total area of Sweden. Warmer annual temperatures will also increase the current forested area where birch suffers from drought, especially in northern and central Sweden. In contrast, for Scots pine, drought damage coincided with cold winter and early-spring temperatures. Consequently, the current area with high drought damage risk would decrease in a future warmer climate for Scots pine. We suggest active selection of tree species, promoting the right species mixtures and thinning to reduce tree competition as promising strategies for adapting boreal forests to future droughts.
Collapse
Affiliation(s)
- Jorge Aldea
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Lomma, Sweden
- Instituto de Ciencias Forestales ICIFOR-INIA, CSIC, Madrid, Spain
| | - Jonas Dahlgren
- Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Emma Holmström
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Magnus Löf
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
16
|
He P, Sardans J, Wang X, Ma C, Man L, Peñuelas J, Han X, Jiang Y, Li MH. Nutritional changes in trees during drought-induced mortality: A comprehensive meta-analysis and a field study. GLOBAL CHANGE BIOLOGY 2024; 30:e17133. [PMID: 38273504 DOI: 10.1111/gcb.17133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Both macronutrients and micronutrients are essential for tree growth and development through participating in various ecophysiological processes. However, the impact of the nutritional status of trees on their ability to withstand drought-induced mortality remains inconclusive. We thus conducted a comprehensive meta-analysis, compiling data on 11 essential nutrients from 44 publications (493 independent observations). Additionally, a field study was conducted on Pinus sylvestris L. trees with varying drought-induced vitality loss in the "Visp" forest in southern Switzerland. No consistent decline in tree nutritional status was observed during tree mortality. The meta-analysis revealed significantly lower leaf potassium (K), iron (Fe), and copper (Cu) concentrations with tree mortality. However, the field study showed no causal relationships between nutritional levels and the vitality status of trees. This discrepancy is mainly attributed to the intrinsic differences in the two types of experimental designs and the ontogenetic stages of target trees. Nutrient reductions preceding tree mortality were predominantly observed in non-field conditions, where the study was conducted on seedlings and saplings with underdeveloped root systems. It limits the nutrient uptake capacity of these young trees during drought. Furthermore, tree nutritional responses are also influenced by many variables. Specifically, (a) leaf nutrients are more susceptible to drought stress than other organs; (b) reduced tree nutrient concentrations are more prevalent in evergreen species during drought-induced mortality; (c) of all biomes, Mediterranean forests are most vulnerable to drought-induced nutrient deficiencies; (d) soil types affect the direction and extent of tree nutritional responses. We identified factors that influence the relationship between tree nutritional status and drought survival, and proposed potential early-warning indicators of impending tree mortality, for example, decreased K concentrations with declining vitality. These findings contribute to our understanding of tree responses to drought and provide practical implications for forest management strategies in the context of global change.
Collapse
Affiliation(s)
- Peng He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Xiaoyu Wang
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Jiyang College, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Chengcang Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Liang Man
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Xingguo Han
- College of Life Sciences, Hebei University, Baoding, China
| | - Yong Jiang
- College of Life Sciences, Hebei University, Baoding, China
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|
17
|
Alderotti F, Sillo F, Brilli L, Bussotti F, Centritto M, Ferrini F, Gori A, Inghes R, Pasquini D, Pollastrini M, Saurer M, Cherubini P, Balestrini R, Brunetti C. Quercus ilex L. dieback is genetically determined: Evidence provided by dendrochronology, δ 13C and SSR genotyping. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166809. [PMID: 37690750 DOI: 10.1016/j.scitotenv.2023.166809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/20/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Quercus ilex L. dieback has been reported in several Mediterranean forests, revealing different degree of crown damages even in close sites, as observed in two Q. ilex forest stands in southern Tuscany (IT). In this work, we applied a novel approach combining dendrochronological, tree-ring δ13C and genetic analysis to test the hypothesis that different damage levels observed in a declining (D) and non-declining (ND) Q. ilex stands are connected to population features linked to distinct response to drought. Furthermore, we investigated the impact of two major drought events (2012 and 2017), that occurred in the last fifteen years in central Italy, on Q. ilex growth and intrinsic water use efficiency (WUEi). Overall, Q. ilex showed slightly different ring-width patterns between the two stands, suggesting a lower responsiveness to seasonal climatic variations for trees at D stand, while Q. ilex at ND stand showed changes in the relationship between climatic parameters and growth across time. The strong divergence in δ13C signals between the two stands suggested a more conservative use of water for Q. ilex at ND compared to D stand that may be genetically driven. Q. ilex at ND resulted more resilient to drought compared to trees at D, probably thanks to its safer water strategy. Genotyping analysis based on simple-sequence repeat (SSR) markers revealed the presence of different Q. ilex populations at D and ND stands. Our study shows intraspecific variations in drought response among trees grown in close. In addition, it highlights the potential of combining tree-ring δ13C data with SSR genotyping for the selection of seed-bearing genotypes aimed to preserve Mediterranean holm oak ecosystem and improve its forest management.
Collapse
Affiliation(s)
- Francesca Alderotti
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Fabiano Sillo
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Lorenzo Brilli
- CNR-IBE, National Research Council of Italy (CNR), Institute for the BioEconomy, Via Caproni 8, 50145 Firenze, Italy
| | - Filippo Bussotti
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Mauro Centritto
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Francesco Ferrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy; National Biodiversity Future Center (www.nfbc.it), Italy
| | - Antonella Gori
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Roberto Inghes
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Dalila Pasquini
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Martina Pollastrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Biodiversity Future Center (www.nfbc.it), Italy
| | - Matthias Saurer
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Paolo Cherubini
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; University of British Columbia, Department of Forest and Conservation Sciences, Vancouver, BC, Canada
| | - Raffaella Balestrini
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Cecilia Brunetti
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy.
| |
Collapse
|
18
|
van der Woude AM, Peters W, Joetzjer E, Lafont S, Koren G, Ciais P, Ramonet M, Xu Y, Bastos A, Botía S, Sitch S, de Kok R, Kneuer T, Kubistin D, Jacotot A, Loubet B, Herig-Coimbra PH, Loustau D, Luijkx IT. Temperature extremes of 2022 reduced carbon uptake by forests in Europe. Nat Commun 2023; 14:6218. [PMID: 37803032 PMCID: PMC10558467 DOI: 10.1038/s41467-023-41851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
The year 2022 saw record breaking temperatures in Europe during both summer and fall. Similar to the recent 2018 drought, close to 30% (3.0 million km2) of the European continent was under severe summer drought. In 2022, the drought was located in central and southeastern Europe, contrasting the Northern-centered 2018 drought. We show, using multiple sets of observations, a reduction of net biospheric carbon uptake in summer (56-62 TgC) over the drought area. Specific sites in France even showed a widespread summertime carbon release by forests, additional to wildfires. Partial compensation (32%) for the decreased carbon uptake due to drought was offered by a warm autumn with prolonged biospheric carbon uptake. The severity of this second drought event in 5 years suggests drought-induced reduced carbon uptake to no longer be exceptional, and important to factor into Europe's developing plans for net-zero greenhouse gas emissions that rely on carbon uptake by forests.
Collapse
Affiliation(s)
- Auke M van der Woude
- University of Groningen, Centre for Isotope Research, Groningen, 8481 NG, The Netherlands
- Wageningen University, Meteorology & Air Quality Dept, Wageningen, 6700 AA, The Netherlands
| | - Wouter Peters
- University of Groningen, Centre for Isotope Research, Groningen, 8481 NG, The Netherlands.
- Wageningen University, Meteorology & Air Quality Dept, Wageningen, 6700 AA, The Netherlands.
| | - Emilie Joetzjer
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000, Nancy, France
| | - Sébastien Lafont
- Functional Ecology and Environmental Physics, Ephyse, INRA, Villenave d'Ornon, France
| | - Gerbrand Koren
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Philippe Ciais
- UMR CEA-CNRS-UVSQ, Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
| | - Michel Ramonet
- UMR CEA-CNRS-UVSQ, Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
| | - Yidi Xu
- UMR CEA-CNRS-UVSQ, Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
| | - Ana Bastos
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | | | - Stephen Sitch
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Remco de Kok
- Wageningen University, Meteorology & Air Quality Dept, Wageningen, 6700 AA, The Netherlands
- ICOS ERIC, Carbon Portal, Geocentrum II, Sölvegatan 12, SE-22362, Lund, Sweden
| | - Tobias Kneuer
- Deutscher Wetterdienst, Hohenpeissenberg Meteorological Observatory, Hohenpeissenberg, Germany
| | - Dagmar Kubistin
- Deutscher Wetterdienst, Hohenpeissenberg Meteorological Observatory, Hohenpeissenberg, Germany
| | - Adrien Jacotot
- Sol, Agro et hydrosystèmes, Spatialisation (SAS), UMR 1069, INRAE, Institut Agro, Rennes, France
| | - Benjamin Loubet
- Université Paris Saclay, AgroParisTech, INRAE, UMR 1402 ECOSYS, 91120, Palaiseau, France
| | | | - Denis Loustau
- ISPA, Bordeaux Sciences Agro, INRAE, F-33140, Villenave d'Ornon, France
| | - Ingrid T Luijkx
- Wageningen University, Meteorology & Air Quality Dept, Wageningen, 6700 AA, The Netherlands
| |
Collapse
|
19
|
Paul AR, Maity R. Future projection of climate extremes across contiguous northeast India and Bangladesh. Sci Rep 2023; 13:15616. [PMID: 37730816 PMCID: PMC10511735 DOI: 10.1038/s41598-023-42360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
In recent times, India has experienced a significant increase in the frequency and intensity of extreme weather events, particularly in northeast India (NEI), an area known for its rich natural resources. Despite the geographic continuity of NEI and Bangladesh, previous studies have failed to consider their interconnectedness, resulting in an incomplete understanding of the situation. To bridge this gap, a comprehensive study encompassed the entire NEI, including West Bengal and Bangladesh (hereafter referred to as NEIB). This study examined climate extremes in NEIB, utilizing 12 temperature-based and 8 precipitation-based indices developed by the Expert Team on Climate Change Detection and Indices. Analysis was performed on temperature and precipitation data obtained from the India Meteorological Department and Bangladesh Meteorological Department covering the period 1981-2021. Additionally, climate projections from 14 Global Climate Models participating in the CMIP6 were incorporated for the period 2015-2100, considering four different Shared Socioeconomic Pathways (SSPs) scenarios. Findings revealed that under the SSP585 scenario, a substantial rise of 4 °C in maximum temperatures and 5.5 °C in minimum temperatures by the end of the twenty-first century. Warming indices, such as the summer days index, indicated an expected increase of 53 days, while the Warm spell days index was estimated to rise by approximately 2 days. Heavy precipitation days (R20mm) were projected to increase by up to 14 days, with a notable impact in Meghalaya. While the number of rainy days is expected to decrease, the overall magnitude of precipitation is anticipated to remain relatively stable. Notably, the Simple daily intensity index demonstrated a rise of 2.4 mm/day compared to the current baseline of 14.4 mm/day. These projected changes have significant ramifications for water resources, agriculture, health, and infrastructure in the region.
Collapse
Affiliation(s)
- Ashesh Rudra Paul
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Rajib Maity
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
20
|
Batool A, Ali Z, Mohsin M, Shakeel M. A generalized procedure for joint monitoring and probabilistic quantification of extreme climate events at regional level. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1223. [PMID: 37725297 DOI: 10.1007/s10661-023-11717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023]
Abstract
Droughts and heat waves are currently recognized as two of the most serious threats associated with climate changes. Drought is characterized by prolonged dry periods, low precipitation, and high temperature, while heat wave refers to an extended period of exceptionally high temperature, surpassing the region's average for that time of year. There is a close relationship between droughts and heat waves, as both are often caused by similar weather patterns and can exacerbate each other's impacts. Therefore, it is crucial to monitor and quantify both droughts and heat waves jointly at a regional level in order to develop sustainable policies and effectively manage water resources. This article develops a new index, the standardized composite index for climate extremes (SCICE), for joint monitoring and probabilistic quantification of extreme climate events at regional level. The procedure of SCICE is mainly based on the joint standardization of standardized precipitation index (SPI) and standardized temperature index (STI). In the application of SCICE, results reveal that the long-term probabilities of the joint occurrence of dry and hot events are significantly greater than those of wet and cold events. Furthermore, the outcomes of the comparative assessment support the validity of using SCICE as a compact statistical approach in regional drought analysis. In summation, the study demonstrates the capability of SCICE to effectively characterize and assess the joint monitoring of drought and heat waves at a regional level, providing a comprehensive approach to understanding the joint impact of climate extremes.
Collapse
Affiliation(s)
- Aamina Batool
- College of Statistical Sciences, University of the Punjab, Lahore, Pakistan
| | - Zulfiqar Ali
- College of Statistical Sciences, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Mohsin
- College of Statistical Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shakeel
- College of Statistical Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
21
|
Julio Camarero J. Imprints of climate stress on tree growth (the past as harbinger of the future): ecological stress memory in Tibetan Plateau juniper forests. Proc Biol Sci 2023; 290:20222241. [PMID: 36722084 PMCID: PMC9890091 DOI: 10.1098/rspb.2022.2241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023] Open
Affiliation(s)
- J. Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, 50192 Zaragoza, Spain
| |
Collapse
|
22
|
Tonelli E, Vitali A, Malandra F, Camarero JJ, Colangelo M, Nolè A, Ripullone F, Carrer M, Urbinati C. Tree-ring and remote sensing analyses uncover the role played by elevation on European beech sensitivity to late spring frost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159239. [PMID: 36208754 DOI: 10.1016/j.scitotenv.2022.159239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/03/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Extreme climate events such as late spring frosts (LSFs) negatively affect productivity and tree growth in temperate beech forests. However, detailed information on how these forests recover after such events are still missing. We investigated how LSFs affected forest cover and radial growth in European beech (Fagus sylvatica L.) populations located at different elevations at four sites in the Italian Apennines, where LSFs have been recorded. We combined tree-ring and remote-sensing data to analyse the sensitivity and recovery capacity of beech populations to LSFs. Using daily temperature records, we reconstructed LSF events and assessed legacy effects on growth. We also evaluated the role played by elevation and stand structure as modulators of LSFs impacts. Finally, using satellite images we computed Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and LAI (Leaf Area Index) to evaluate the post-LSF canopy recovery. The growth reduction in LSF-affected trees ranged from 36 % to 84 %. We detected a negative impact of LSF on growth only during the LSF year, with growth recovery occurring within 1-2 years after the event. LSF-affected stands featured low vegetation indices until late June, i.e. on average 75 days after the frost events. We did not find a clear relationship between beech forest elevation and occurrence of LSFs defoliations. Our results indicate a high recovery capacity of common beech and no legacy effects of LSFs.
Collapse
Affiliation(s)
- Enrico Tonelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Alessandro Vitali
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy.
| | - Francesco Malandra
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE, CSIC), Apdo. 202, 50192 Zaragoza, Spain
| | - Michele Colangelo
- Instituto Pirenaico de Ecología (IPE, CSIC), Apdo. 202, 50192 Zaragoza, Spain; School of Agricultural, Forest, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Angelo Nolè
- School of Agricultural, Forest, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Francesco Ripullone
- School of Agricultural, Forest, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Marco Carrer
- Universitá degli Studi di Padova, Dipartimento Territorio e Sistemi Agro-Forestali (TeSAF), Viale dell'Università 16, 35020 Legnaro, Italy
| | - Carlo Urbinati
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
23
|
Roibu CC, Palaghianu C, Nagavciuc V, Ionita M, Sfecla V, Mursa A, Crivellaro A, Stirbu MI, Cotos MG, Popa A, Sfecla I, Popa I. The Response of Beech ( Fagus sylvatica L.) Populations to Climate in the Easternmost Sites of Its European Distribution. PLANTS (BASEL, SWITZERLAND) 2022; 11:3310. [PMID: 36501348 PMCID: PMC9738208 DOI: 10.3390/plants11233310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
In the context of forecasted climate change scenarios, the growth of forest tree species at their distribution margin is crucial to adapt current forest management strategies. Analyses of beech (Fagus sylvatica L.) growth have shown high plasticity, but easternmost beech populations have been rarely studied. To describe the response of the marginal beech population to the climate in the far east sites of its distribution, we first compiled new tree ring width chronologies. Then we analyzed climate-growth relationships for three marginal beech populations in the Republic of Moldova. We observed a relatively high growth rate in the marginal populations compared to core distribution sites. Our analyses further revealed a distinct and significant response of beech growth to all climatic variables, assessing for the first time the relationship between growth and vapor pressure deficit (VPD) which described how plant growth responds to drought. These results highlight that accumulated water deficit is an essential limiting factor of beech growth in this region. In conclusion, beech growth in the easternmost marginal population is drought-limited, and the sensitivity to VPD will need to be considered in future studies to update the forest management of other economic and ecologically important species.
Collapse
Affiliation(s)
- Cătălin-Constantin Roibu
- Forest Biometrics Laboratory, Faculty of Forestry, “Ștefan cel Mare” University of Suceava, Universității Street, No. 13, 720229 Suceava, Romania
| | - Ciprian Palaghianu
- Forest Biometrics Laboratory, Faculty of Forestry, “Ștefan cel Mare” University of Suceava, Universității Street, No. 13, 720229 Suceava, Romania
| | - Viorica Nagavciuc
- Forest Biometrics Laboratory, Faculty of Forestry, “Ștefan cel Mare” University of Suceava, Universității Street, No. 13, 720229 Suceava, Romania
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen Street No. 12, 27570 Bremerhaven, Germany
| | - Monica Ionita
- Forest Biometrics Laboratory, Faculty of Forestry, “Ștefan cel Mare” University of Suceava, Universității Street, No. 13, 720229 Suceava, Romania
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen Street No. 12, 27570 Bremerhaven, Germany
| | - Victor Sfecla
- Forest Biometrics Laboratory, Faculty of Forestry, “Ștefan cel Mare” University of Suceava, Universității Street, No. 13, 720229 Suceava, Romania
- Forestry and Plants Protection Department, Technical University of Moldova, Block 1, Stefan cel Mare si Sfant Boulevard 168, MD-2004 Chișinău, Moldova
| | - Andrei Mursa
- Forest Biometrics Laboratory, Faculty of Forestry, “Ștefan cel Mare” University of Suceava, Universității Street, No. 13, 720229 Suceava, Romania
| | - Alan Crivellaro
- Forest Biometrics Laboratory, Faculty of Forestry, “Ștefan cel Mare” University of Suceava, Universității Street, No. 13, 720229 Suceava, Romania
| | - Marian-Ionut Stirbu
- Forest Biometrics Laboratory, Faculty of Forestry, “Ștefan cel Mare” University of Suceava, Universității Street, No. 13, 720229 Suceava, Romania
| | - Mihai-Gabriel Cotos
- Forest Biometrics Laboratory, Faculty of Forestry, “Ștefan cel Mare” University of Suceava, Universității Street, No. 13, 720229 Suceava, Romania
| | - Andrei Popa
- National Research and Development Institute for Silviculture “Marin Drăcea”, Calea Bucovinei No. 76bis, 725100 Câmpulung Moldovenesc, Romania
- Faculty of Silviculture and Forest Engineering, Transilvania University of Brașov, 500036 Brașov, Romania
| | - Irina Sfecla
- Forestry and Plants Protection Department, Technical University of Moldova, Block 1, Stefan cel Mare si Sfant Boulevard 168, MD-2004 Chișinău, Moldova
- “Alexandru Ciubotaru” National Botanical Garden (Institute), 18 Padurii, str., MD-2002 Chisinau, Moldova
| | - Ionel Popa
- National Research and Development Institute for Silviculture “Marin Drăcea”, Calea Bucovinei No. 76bis, 725100 Câmpulung Moldovenesc, Romania
- Center of Mountain Economy, INCE-CE-MONT Vatra Dornei, Petreni Street No. 49, 725700 Vatra Dornei, Romania
| |
Collapse
|
24
|
Libonati R, Geirinhas JL, Silva PS, Monteiro Dos Santos D, Rodrigues JA, Russo A, Peres LF, Narcizo L, Gomes MER, Rodrigues AP, DaCamara CC, Pereira JMC, Trigo RM. Drought-heatwave nexus in Brazil and related impacts on health and fires: A comprehensive review. Ann N Y Acad Sci 2022; 1517:44-62. [PMID: 36052446 DOI: 10.1111/nyas.14887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Climate change is drastically altering the frequency, duration, and severity of compound drought-heatwave (CDHW) episodes, which present a new challenge in environmental and socioeconomic sectors. These threats are of particular importance in low-income regions with growing populations, fragile infrastructure, and threatened ecosystems. This review synthesizes emerging progress in the understanding of CDHW patterns in Brazil while providing insights about the impacts on fire occurrence and public health. Evidence is mounting that heatwaves are becoming increasingly linked with droughts in northeastern and southeastern Brazil, the Amazonia, and the Pantanal. In those regions, recent studies have begun to build a better understanding of the physical mechanisms behind CDHW events, such as the soil moisture-atmosphere coupling, promoted by exceptional atmospheric blocking conditions. Results hint at a synergy between CDHW events and high fire activity in the country over the last decades, with the most recent example being the catastrophic 2020 fires in the Pantanal. Moreover, we show that HWs were responsible for increasing mortality and preterm births during record-breaking droughts in southeastern Brazil. This work paves the way for a more in-depth understanding on CDHW events and their impacts, which is crucial to enhance the adaptive capacity of different Brazilian sectors.
Collapse
Affiliation(s)
- Renata Libonati
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - João L Geirinhas
- Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia S Silva
- Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | | | - Julia A Rodrigues
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Russo
- Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Leonardo F Peres
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Narcizo
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Monique E R Gomes
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andreza P Rodrigues
- Escola de Enfermagem Anna Nery, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos C DaCamara
- Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - José Miguel C Pereira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal.,TERRA Associate Laboratory, Tapada da Ajuda, Portugal
| | - Ricardo M Trigo
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
25
|
Two Nothofagus Species in Southernmost South America Are Recording Divergent Climate Signals. FORESTS 2022. [DOI: 10.3390/f13050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent climatic trends, such as warming temperatures, decrease in rainfall, and extreme weather events (e.g., heatwaves), are negatively affecting the performance of forests. In northern Patagonia, such conditions have caused tree growth reduction, crown dieback, and massive die-back events. However, studies looking at these consequences in the southernmost temperate forest (Nothofagus betuloides and Nothofagus pumilio) are much scarcer, especially in southernmost South America (SSA). These forests are also under the influence of the positive phase of Antarctic Oscillation (AAO, also known as Southern Annular Mode, SAM) that has been associated with increasing trends in temperature, drought, and extreme events in the last decades. This study evaluated the growth patterns and the climatic response of eight new tree-ring chronologies from Nothofagus species located at the upper treeline along different environmental gradients in three study areas: Punta Arenas, Yendegaia National Park, and Navarino Island in SSA. The main modes of the ring-width index (RWI) variation were studied using principal component analysis (PCA). We found that PC1 has the higher loadings for sites with precipitation values over 600 mm/yr, PC2 with N. betuloides sites, and PC3 with higher loadings for sites with precipitation values below 600 mm/yr. Our best growth-climate relationships are between N. betuloides and AAO and the most northeastern site of N. pumilio with relative humidity (which coincides with heatwaves and extreme drought). The climatic signals imprinted in the southernmost forests are sensitive to climatic variability, the climate forcing AAO, and the effects of climate change in the last decades.
Collapse
|
26
|
Češljar G, Jovanović F, Brašanac-Bosanac L, Đorđević I, Mitrović S, Eremija S, Ćirković-Mitrović T, Lučić A. Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia. PLANTS (BASEL, SWITZERLAND) 2022; 11:1286. [PMID: 35631711 PMCID: PMC9144404 DOI: 10.3390/plants11101286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
This paper presents research results on forest decline in Serbia. The results were obtained through monitoring defoliation of 34 tree species at 130 sample plots during the period from 2004 to 2018. This research aimed to determine whether the occurrence of defoliation and tree mortality were caused by drought. Defoliation was assessed in 5% steps according to the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) methodology. All the trees recorded as dead were singled out, and annual mortality rates were calculated. To determine changes in air temperature and precipitation regimes during the study period, we processed and analysed climatic data related to air temperature and precipitation throughout the year and in the growing season at 28 main weather stations in Serbia. Tree mortality patterns were established by classifying trees into three groups. The first group of trees exhibited a gradual increase in defoliation during the last few years of monitoring, with dying as the final outcome. The second group was characterised by sudden death of trees. The third group of trees reached a higher degree of defoliation immediately after the first monitoring year, and the trees died after several years. Tree mortality rates were compared between years using the Standardised Precipitation Evaporation Index (SPI) and the Standardised Precipitation Evapotranspiration Index (SPEI), the most common methods used to monitor drought. The most intensive forest decline was recorded during the period from 2013 to 2016, when the largest percentage of the total number of all trees died. According to the annual mortality rates calculated for the three observation periods (2004-2008, 2009-2013, and 2014-2018) the highest forest decline rate was recorded in the period from 2014 to 2018, with no statistically significant difference between broadleaved and coniferous tree species. As the sample of coniferous species was small, the number of sample plots should be increased in order to achieve better systematic forest condition monitoring in Serbia. The analysis of the relationship between defoliation and climatic parameters proved the correlation between them. It was noted that the forest decline in Serbia was preceded by an extremely dry period with high temperatures from 2011 to 2013, supporting the hypothesis that it was caused by drought. We therefore conclude that these unfavourable climatic conditions had serious and long-term consequences on forest ecosystems in Serbia.
Collapse
Affiliation(s)
- Goran Češljar
- Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, 11030 Belgrade, Serbia;
| | - Filip Jovanović
- Department of Forest Establishment, Silviculture and Ecology, Institute of Forestry, 11030 Belgrade, Serbia; (F.J.); (S.E.); (T.Ć.-M.)
| | - Ljiljana Brašanac-Bosanac
- Department of Environmental Protection and Improvement, Institute of Forestry, 11030 Belgrade, Serbia; (L.B.-B.); (S.M.)
| | - Ilija Đorđević
- Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, 11030 Belgrade, Serbia;
| | - Suzana Mitrović
- Department of Environmental Protection and Improvement, Institute of Forestry, 11030 Belgrade, Serbia; (L.B.-B.); (S.M.)
| | - Saša Eremija
- Department of Forest Establishment, Silviculture and Ecology, Institute of Forestry, 11030 Belgrade, Serbia; (F.J.); (S.E.); (T.Ć.-M.)
| | - Tatjana Ćirković-Mitrović
- Department of Forest Establishment, Silviculture and Ecology, Institute of Forestry, 11030 Belgrade, Serbia; (F.J.); (S.E.); (T.Ć.-M.)
| | - Aleksandar Lučić
- Department of Genetics, Plant Breeding, Seed and Nursery Production, Institute of Forestry, 11030 Belgrade, Serbia;
| |
Collapse
|
27
|
Jaime L, Batllori E, Ferretti M, Lloret F. Climatic and stand drivers of forest resistance to recent bark beetle disturbance in European coniferous forests. GLOBAL CHANGE BIOLOGY 2022; 28:2830-2841. [PMID: 35090075 DOI: 10.1111/gcb.16106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Bark beetle infestation is a major driver of tree mortality that may be critical for forest persistence under climate change and the forecasted increase of extreme heat and drought episodes. Under this context, the environmental position of host tree populations within the species' climatic niche (central vs. marginal populations) is expected to be a determinant in the dynamics of insect-host systems. Here, we analyzed the recent patterns of bark beetle disturbance and forest resistance across European coniferous forests during the 2010-2018 period. We obtained bark beetle attack and tree mortality data from successive continental-scale forest condition surveys on 130 plots including five host trees and five bark beetle species, and characterized the climatic niche of each species. Then, we analyzed the overall forest resistance and species-specific responses, in terms of bark beetle attack and induced tree mortality, in relation to the distance to the niche optimum of both host tree and beetle species, previous drought events, and plot characteristics. Regional patterns of recent disturbance revealed that forests in central, north, and east of Europe could be at risk under the attack of multivoltine bark beetle species. We found that overall forest resistance to beetle attack was determined by several driving factors, which varied among species responses. Particularly, the environmental position of the affected forest within the host and beetle species' climatic niche and plot characteristics mediated the influence of drought on the resistance to beetle attack. In turn, forest resistance to induced tree mortality was determined exclusively by the maximum intensity and duration of drought events. Our findings highlight the importance of disturbance interactions and suggest that the joint influence of drought events and bark beetle disturbance will threaten the persistence of European coniferous forests, even in those tree populations close to their species' climatic optimum.
Collapse
Affiliation(s)
- Luciana Jaime
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Cerdanyola del Vallès, Spain
| | - Enric Batllori
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Cerdanyola del Vallès, Spain
- Unitat de Botànica i Micologia, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Marco Ferretti
- Forest Resources and Management, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Francisco Lloret
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Cerdanyola del Vallès, Spain
- Unitat d'Ecologia, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|