1
|
Thathola P, Bhowmik M, Haldar S. Tracking toxic threats: Bioaccumulation of persistent organic pollutants in benthic macroinvertebrates of the Gulf of Khambhat, India. MARINE POLLUTION BULLETIN 2025; 218:118207. [PMID: 40424769 DOI: 10.1016/j.marpolbul.2025.118207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/22/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
The Gulf of Khambhat (GoKh), India is impacted by chemical pollution from industrial and anthropogenic activities. This study assesses the presence and bioaccumulation of persistent organic pollutants (POPs) in coastal waters, sediments, and benthic macroinvertebrates (Polychaeta, Gastropoda, Malacostraca). Four POPs groups such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), α-hexabromocyclododecane (α-HBCD), and bromodiphenyl ethers (BDE) were analysed, with focus on 24 target compounds. PAHs were the most prevalent, with concentrations reaching 8.08 μg/mL in water, 12.15 μg/g in sediment, and 2.07 μg/g in benthic organisms. PCBs, ꭤ- HBCD, and BDE were detected at lower levels. Bioaccumulation factors (BSAF: 0.02-0.42; BSF: 0.01-0.29) indicated significant pollutant uptake, particularly in polychaetes and gastropods. These findings establish baseline data on POPs contamination in GoKh, highlighting the vulnerability of intertidal ecosystems and the need for mitigation strategies.
Collapse
Affiliation(s)
- Pooja Thathola
- Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, India
| | - Moumita Bhowmik
- Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Soumya Haldar
- Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Jin M, Zhou Q, Fu L, Lin CT, Wu W. Microplastic contamination in sediments: Analytical techniques and case-based evaluations. Talanta 2025; 294:128267. [PMID: 40334511 DOI: 10.1016/j.talanta.2025.128267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Microplastics (MPs) pollution in sediments has gained critical attention due to its pervasive presence and potential ecological risks. This review synthesizes the latest advancements in analytical techniques, providing a comprehensive overview of separation and identification methods tailored to complex sedimentary matrices. Density-based approaches, such as ZnCl2 or NaI solutions, and enzymatic digestions are increasingly refined to isolate MPs of varying sizes, yet discrepancies in mesh sizes, reagent concentrations, and digestion protocols continue to complicate cross-study comparisons. Meanwhile, cutting-edge spectroscopic tools-μFTIR, Raman imaging, thermal analyses-have greatly enhanced polymer identification down to the tens-of-micrometers scale. Case studies spanning urban estuaries to remote deep-sea basins underscore the pervasive nature of MPs worldwide, with fibers and fragments frequently dominating sediment samples. Factors such as polymer density, hydrodynamics, and biofouling contribute to the diverse distribution patterns, revealing that even ostensibly pristine environments are not exempt from contamination. Although the precise ecological and toxicological consequences of long-term sediment-bound MPs remain partly unclear, growing evidence points to intricate interactions with co-occurring contaminants and potential trophic transfer. To address these knowledge gaps, this review emphasizes the urgent need for methodological standardization and collaborative initiatives, particularly for emerging challenges like nanoplastic detection. By integrating robust sampling approaches, advanced analytical tools, and interdisciplinary research, scientists and policymakers can more accurately map and mitigate the impacts of sediment-associated MPs on aquatic ecosystems.
Collapse
Affiliation(s)
- Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China.
| |
Collapse
|
3
|
Isaac Chandran PJ, Veerasingam S. Laser Direct Infrared Spectroscopy: A cutting-edge approach to microplastic detection in environmental samples. Talanta 2025; 284:127284. [PMID: 39591864 DOI: 10.1016/j.talanta.2024.127284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Microplastic pollution has emerged as a significant global environmental concern, affecting marine, terrestrial, and atmospheric ecosystems. As microplastic contamination continues to intensify, the need for precise, efficient, and scalable detection method is growing. This review highlights recent advancements in microplastic detection technologies, with a particular focus on Laser Direct Infrared (LDIR) spectroscopy. Utilizing a Quantum Cascade Laser (QCL), LDIR offers rapid, sensitive, and automated detection capabilities. It significantly reduces analysis time compared to conventional techniques such as Fourier Transform Infrared (FTIR) and Raman spectroscopic techniques, making it ideal for large-scale environmental monitoring. Its ability to identify particles as small as 10 μm, combined with enhanced wavelength accuracy, positions LDIR as a promising tool for microplastic analysis across various environmental matrices. Despite some limitations, such as a narrower spectral range, LDIR's superior speed and precision make it a critical advancement for understanding and addressing the global microplastic crisis.
Collapse
Affiliation(s)
| | - S Veerasingam
- Environment Science Center, Qatar University, Doha, P.O Box 2713, Qatar.
| |
Collapse
|
4
|
Andrade C, Sepúlveda T, Pinto B, Rivera C, Aldea C, Urbina M. The feeding mode effect: influence on particle ingestion by four invertebrates from Sub-Antarctic and Antarctic waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8318-8339. [PMID: 40069477 PMCID: PMC11953159 DOI: 10.1007/s11356-025-36144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/17/2025] [Indexed: 03/29/2025]
Abstract
Microplastic (MP) pollution is a significant threat to marine environments not only due to its widespread presence but also because of the alarming emergence of ingestion records among benthic organisms. In this study, MP prevalence was assessed in the stomach of the crustaceans Lithodes santolla and Grimothea gregaria and the gastropods Nacella deaurata and N. concinna. Particles were analyzed with Fourier-transform infrared (FTIR) spectroscopy. Overall, the analysis revealed that the particles were mainly microfibers composed of cellulose/rayon (60%), followed by MPs (30%), and undetermined not registered in the library (10%). Higher prevalence was found in marine benthic grazers compared to scavengers, with the latter showing low particle prevalence in their stomach contents. Grazers presented a significantly higher abundance per individual but a lower size of ingested particles compared to scavengers. When grouped by trophic levels, tertiary consumers presented significantly lower abundances per individual but larger sizes of the ingested particles. Pearson's correlations showed no significant associations between particle abundance/size and species body size. The results of this study may suggest that continued MP pollution in marine environments and the associated accidental ingestion by marine organisms will alter the energy flow and organic matter availability in benthic food webs, with species that perform certain functional traits more susceptible to being affected.
Collapse
Affiliation(s)
- Claudia Andrade
- Laboratorio de Ecología Funcional, Instituto de La Patagonia, Universidad de Magallanes, Av. Pdte. Manuel Bulnes #01890, Punta Arenas, Chile.
| | - Taryn Sepúlveda
- Laboratorio de Ecología Funcional, Instituto de La Patagonia, Universidad de Magallanes, Av. Pdte. Manuel Bulnes #01890, Punta Arenas, Chile
| | - Bárbara Pinto
- Laboratorio de Ecología Funcional, Instituto de La Patagonia, Universidad de Magallanes, Av. Pdte. Manuel Bulnes #01890, Punta Arenas, Chile
| | - Cristóbal Rivera
- Laboratorio de Ecología Funcional, Instituto de La Patagonia, Universidad de Magallanes, Av. Pdte. Manuel Bulnes #01890, Punta Arenas, Chile
| | - Cristian Aldea
- Departamento de Ciencias y Recursos Naturales, Facultad de Ciencias, Universidad de Magallanes, Punta Arenas, Chile
- Centro de Investigación Gaia-Antártica, Instituto de La Patagonia, Universidad de Magallanes, Punta Arenas, Chile
| | - Mauricio Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile
| |
Collapse
|
5
|
Liu M, Wang M, Sun X, Mu J, Teng T, Jin N, Song J, Li B, Zhang D. Polypropylene microplastics triggered mouse kidney lipidome reprogramming combined with ROS stress as revealed by lipidomics and Raman biospectra. CHEMOSPHERE 2025; 370:143926. [PMID: 39667527 DOI: 10.1016/j.chemosphere.2024.143926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Microplastics intrigue kidney toxicity such as mitochondrial dysfunction and inflammation promotion. However, as an organ relying heavily on fatty acid oxidation, how microplastics influence kidney lipidomes remain unclear. Hence, we performed Raman spectra and multidimensional mass spectrometry-based shotgun lipidomics to decode kidney lipidomics landscape under polypropylene microplastics exposure. Kidney functions and cellular redox homeostasis were remarkably disturbed as revealed by levels of biochemical renal function markers, malonaldehyde, hydrogen peroxide and antioxidants. Ultrastructure alterations including the foot process fusion implied the kidney injury associated with lipidomic changes. Raman spectra successfully further confirmed the cellular change of reactive oxygen species and lipid disorders. Lipidomics showed that polypropylene microplastics caused abnormal lipidome and irregular exchange by remodeling triglycerides and phospholipids. Genes involved in lipid metabolism such as Fads1 and Elovl5 exhibited highly diversified expression profiles responding to polypropylene microplastics stress and possessed significant correlations with ROS indicators. These results explained ultrastructure alterations and aggravation of kidney injuries. Our work revealed polypropylene microplastics inducing lipidomic detriment in mouse kidney by Raman spectra and lipidomics firstly, elucidating the significances of lipidomic remodeling coupled with ROS stress in the kidney damages. The findings provided reliable evidence on the health risks of polypropylene microplastics in kidney.
Collapse
Affiliation(s)
- Mingying Liu
- Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Miao Wang
- Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Xinglin Sun
- Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Ju Mu
- Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Tingting Teng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun, 130021, PR China; College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Naifu Jin
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Jiaxuan Song
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Bei Li
- State Key Lab of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, PR China; HOOKE Instruments Ltd., Changchun, 130033, PR China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun, 130021, PR China; College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, PR China.
| |
Collapse
|
6
|
Furlan I, Fornari M, Sawakuchi AO, Giannini PCF, Dipold J, de Freitas AZ, Wetter NU, Semensatto D. Morphodynamics drive the transport and accumulation of anthropogenic microparticles in tropical coastal depositional systems in southeastern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177479. [PMID: 39547382 DOI: 10.1016/j.scitotenv.2024.177479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
A significant limitation in current coastal pollution research is that microplastics (<5 mm) comprise only a fraction of all anthropogenic microparticles (AMP, <5 mm) scale residues. Comprehensive AMP assessments, including those comprising semisynthetic, and modified natural compositions, are lacking. For instance, the accumulation of AMP in different coastal morphological features within a depositional system remains poorly known, fueling long-lasting debates about the distribution process of microparticles. Using a multi-proxy approach, we address mutual interactions between distinct surface morphologies (tidal flats, beaches, and foredunes) and transport and deposition dynamics of AMP. This issue was addressed by analyzing sediment and water samples collected at a marine protected area in the south coastal of São Paulo (Brazil). Here, we showed that AMP abundance in the tidal mudflat (18,500-20,500 particles/kg) was four times higher than in beach sands (4700-5900 particles/kg), while the lowest abundance was observed in foredune sands (4350 particles/kg). This can be attributed to the low-energy hydrodynamics of tidal flats associated with the cohesive behavior of muddy sediments, which consequently favor trapping and act as the main sink for AMP. Further, coastal processes (waves and currents) drive AMP onshore through sediment transport from the surfzone to the beach, from where the AMP becomes available for onshore eolian transport. Higher AMP abundance (85 particles/l) was observed in the marine water samples compared to the estuarine water samples (35 particles/l). Fibers <1 mm appeared as the predominant AMP in the sediment (99-100 %) and water (80-95 %) samples, primarily consisting of modified cellulose (73 %), dye signature only (16 %), and microplastics (11 %). Consequently, we argue that to fully comprehend the spatial distribution of AMP in coastal sediments and waters, it is crucial to analyze these microparticles from an integrated perspective, primarily considering the hydro-wind dynamics of different coastal morpho-sedimentary compartments combined with sediment grain size.
Collapse
Affiliation(s)
- Isabela Furlan
- Biosciences Institute, São Paulo State University (UNESP), São Vicente 11330-900, Brazil.
| | - Milene Fornari
- Biosciences Institute, São Paulo State University (UNESP), São Vicente 11330-900, Brazil.
| | | | | | - Jessica Dipold
- Nuclear and Energy Research Institute (IPEN), University of São Paulo (USP), São Paulo 05508-000, Brazil
| | | | - Niklaus Ursus Wetter
- Nuclear and Energy Research Institute (IPEN), University of São Paulo (USP), São Paulo 05508-000, Brazil
| | - Décio Semensatto
- Department of Environmental Sciences, Federal University of São Paulo (UNIFESP), Diadema 09972270, Brazil
| |
Collapse
|
7
|
Vethanayaham J, Partheeban EC, Rajendran R. Ecological risk assessment and characterization of microplastics in the beach sediments of southeast coast of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1232. [PMID: 39570422 DOI: 10.1007/s10661-024-13379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
This study explores spatiotemporal variations of microplastics (MPs) in beach sediments along India's southeast coast, focusing on Tamil Nadu and Puducherry from 2020 to 2021. The MPs were extracted from the sediments through density separation and wet peroxidation. Following extraction, they were quantified and physically characterized using stereo-microscopy and chemically analyzed using ATR-FTIR. During the monsoon, Chennai (923 ± 380 MPs/kg) exhibited the highest MP abundance, followed by Puducherry (805 ± 222 MPs/kg), Nagapattinam (799 ± 257 MPs/kg), Thoothukudi (653 ± 258 MPs/kg), Rameswaram (585 ± 151 MPs/kg), and Kanyakumari (344 ± 71 MPs/kg). Similarly, in summer, Chennai (719 ± 192 MPs/kg) recorded the highest mean, trailed by Puducherry (645 ± 163 MPs/kg), Rameswaram (529 ± 138 MPs/kg), Nagapattinam (523 ± 95 MPs/kg), Thoothukudi (492 ± 104 MPs/kg), and Kanyakumari (335 ± 72 MPs/kg). Fibers predominated as the most common MP type. FTIR revealed polymers like polystyrene, polyethylene terephthalate, polyethylene, polypropylene, polyurethane, and polyamide. The Polymer Hazard Index indicated high polymer pollution risk, while the Pollution Load Index showed minimal contamination. The Potential Ecological Risk Index revealed low-to-medium MP pollution levels. Tailored strategies addressing plastic usage reduction and mitigation of terrestrial MP sources are imperative for coastal ecosystem resilience.
Collapse
Affiliation(s)
- Jebashalomi Vethanayaham
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | | | - Rajaram Rajendran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
8
|
Liu B, Ye K, Lu Y, Deng H, Yang J, Li K, Liu L, Zheng H, Sun K, Jiang Y. Occurrence and risk assessment of microplastics on the Shenzhen coast, South China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117227. [PMID: 39442256 DOI: 10.1016/j.ecoenv.2024.117227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Microplastics (MPs) have attracted increasing attention worldwide owing to their widespread presence and potential risks to terrestrial and marine ecosystems. Estimating the pollution status and risk levels of MPs in coastal ecosystems is necessary; however, these are poorly understood in coastal megacities. Here, the abundance and characteristics of MPs in seawater, marine sediment, marine organisms, and beaches in the Shenzhen coastal ecosystems and land sources (river and sewage outfall) were simultaneously investigated, and the annual MPs load of rivers and MP-induced ecological risks were evaluated. The results showed that MPs pollution was prevalent in Shenzhen coastal ecosystems, with the average abundances of 2.40 ± 2.48 items/m3, 404.21 ± 431.48 items/kg, 1.66 ± 1.96 items/individual, and 1648.99 ± 1908.19 items/kg in seawater, marine sediment, marine organisms, and beach sands, respectively. The detected MPs were predominantly fibrous/granular, transparent/white, < 1 mm in size, and polyethylene terephthalate/polyethylene/polystyrene. The spatial distribution patterns of marine MPs are influenced mainly by anthropogenic activities and freshwater inflows (rivers and sewage outfalls). Pollution hotspots of MPs were identified in the Pearl River Estuary, which has a high population, gross domestic product, and river and wastewater discharge. Furthermore, the negative correlation between the abundance of MPs in seawater and salinity indicates that freshwater inflow carrying MPs to the sea is an important source of marine MPs pollution. It has been estimated that approximately 8320 billion MPs particles, weighing 274.55 tons, flow into the Shenzhen coast annually through river input. Based on the MPs polymer types and quantities, the ecological risk of MPs pollution in the Shenzhen coastal ecosystem is moderate and deserves further attention. These findings deepen the understanding of MPs pollution, sources, and ecological risks in the southern coastal region of China, and are helpful for employing effective management strategies to control marine MPs pollution.
Collapse
Affiliation(s)
- Bingjie Liu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Kuangmin Ye
- Guangdong Provincial Academy of Environmental Sciences, Guangzhou 510045, China
| | - Yao Lu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Hanqiang Deng
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Jing Yang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Kaiming Li
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Liuqingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Kaifeng Sun
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Yuxia Jiang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China.
| |
Collapse
|
9
|
Su Q, Li Y, Lu N, Qu L, Zhou X, Yu Y, Lu D, Han J, Han J, Xu X, Wang X. Abundance, characteristics and ecological risk assessment of microplastics in ship ballast water in ports around Liaodong Peninsula, China. MARINE POLLUTION BULLETIN 2024; 207:116812. [PMID: 39154576 DOI: 10.1016/j.marpolbul.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
The development of the shipping industry has led to a large volume of ballast water discharge annually. This accelerates pollutants' transfer and dispersion, such as microplastics. Currently, empirical data on microplastics in ballast water are rarely available. This study innovatively investigated the abundance, morphological characteristics (particle size, shape, and color), and polymer composition of microplastics in ballast water from ports surrounding the Liaodong Peninsula. The results revealed that the average abundance of microplastics in 13 ships' ballast water was 6071.30 ± 1313.85 items/m3. Notably, the small microplastics (0.06-2.50 mm) were most abundant, accounting for 94.52 % of the total microplastics. Transparent, fiber, and polyethylene glycol terephthalate were the most prevalent color, shape, and polymer composition of microplastics detected in the ballast water. The risk assessment indicated that these microplastics present ecological risks to organisms. These findings suggest that ship ballast water is the potential "hotspot" for marine microplastics transport.
Collapse
Affiliation(s)
- Qing Su
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yuxia Li
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Na Lu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ling Qu
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xin Zhou
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yue Yu
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Daping Lu
- Liaoning Maritime Safety Administration, PRC, Dalian 116026, China
| | - Junsong Han
- Liaoning Maritime Safety Administration, PRC, Dalian 116026, China
| | - Jianbo Han
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xiaotong Xu
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xiaomeng Wang
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China.
| |
Collapse
|
10
|
Conger E, Dziobak M, McCabe EJB, Curtin T, Gaur A, Wells RS, Weinstein JE, Hart LB. An analysis of suspected microplastics in the muscle and gastrointestinal tissues of fish from Sarasota Bay, FL: exposure and implications for apex predators and seafood consumers. ENVIRONMENTS 2024; 11:185. [PMID: 39391169 PMCID: PMC11466323 DOI: 10.3390/environments11090185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microplastics have been found in the gastrointestinal (GI) fluid of bottlenose dolphins (Tursiops truncatus), inhabiting Sarasota Bay, FL, suggesting exposure by ingestion, possibly via contaminated fish. To better understand the potential for trophic transfer, muscle and GI tissues from 11 species of dolphin prey fish collected from Sarasota Bay were screened for microplastics (particles <5 mm diameter). Suspected microplastics were found in 82% of muscle samples (n=89), and 97% of GI samples (n=86). Particle abundance and shapes varied by species (p<0.05) and foraging habit (omnivore vs. carnivore, p<0.05). Pinfish (Lagodon rhomboides) had the highest particle abundance for both tissue types (muscle: 0.38 particles/g; GI: 15.20 particles/g), which has implications for dolphins as they are a common prey item. Findings from this study support research demonstrating the ubiquity of estuarine plastic contamination and underscore the risks of ingestion exposure for wildlife and potentially seafood consumers.
Collapse
Affiliation(s)
- Eric Conger
- Department of Biology, School of Sciences, Mathematics, and Engineering, College of Charleston, Charleston, SC, USA
| | - Miranda Dziobak
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Elizabeth J Berens McCabe
- Sarasota Dolphin Research Program, Brookfield Zoo Chicago, c/o Mote Marine Laboratory, Sarasota, FL, USA
| | - Tita Curtin
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, USA
| | - Ayushi Gaur
- Department of Biology, School of Sciences, Mathematics, and Engineering, College of Charleston, Charleston, SC, USA
| | - Randall S Wells
- Sarasota Dolphin Research Program, Brookfield Zoo Chicago, c/o Mote Marine Laboratory, Sarasota, FL, USA
| | | | - Leslie B Hart
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, USA
| |
Collapse
|
11
|
Gan M, Zhang Y, Shi P, Cui L, Zhang C, Guo J. Occurrence, potential sources, and ecological risk assessment of microplastics in the inland river basins in Northern China. MARINE POLLUTION BULLETIN 2024; 205:116656. [PMID: 38950516 DOI: 10.1016/j.marpolbul.2024.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Microplastics (MPs) are the pollutants, found widely across various environmental media. However, studies on the MP pollution in urban rivers and the necessary risk assessments remain limited. In this study, the abundance and characteristics of microplastics in a typical urban river were examined to evaluate their distribution, sources, and ecological risks. It was observed that the abundance of MPs in sediments (220-2840 items·kg-1 dry weight (DW)) was much higher than that in surface water (2.9-10.3 items·L-1), indicating that the sediment is the "sink" of river MPs. Surface water and sediment were dominated by small particle size MPs (< 0.5 mm). Fiber and debris were common shapes of MPs in rivers and sediments. The microplastics in river water and sediments were primarily white and transparent, respectively. Polypropylene (PP) and polyethylene (PE) were the major polymers found.
Collapse
Affiliation(s)
- Mufan Gan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Peng Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Lingzhou Cui
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chengqian Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
12
|
Solhaug A, Vlegels S, Eriksen GS. Atlantic salmon gill epithelial cell line ASG-10, an in vitro model for studying effects of microplastics in gills. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106946. [PMID: 38759525 DOI: 10.1016/j.aquatox.2024.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Microplastics are ubiquitous environmental pollutants frequently detected in aquatic environments. Here we used the Atlantic salmon epithelial gill cell line (ASG-10) to investigate the uptake and effects of polystyrene (PS) microplastic. The ASG-10 cell line has phagocytotic/endocytic capacities and can take up clear PS particles at 0.2 and 1.0 µm, while PS at 10 µm was not taken up. As a response to the uptake, the ASG-10 cells increased their lysosomal activity. Furthermore, no effects on the mitochondria were found, neither on the mitochondrial membrane potential nor the mitochondria morphology (branch length and diameter). Interestingly, even a very high concentration of PS (200 µg/ml) with all tested particle sizes had no effects on cell viability or cell cycle. The environmental toxin Benzo(a)pyrene (B(a)P), a known inducer of CYP1A, is highly hydrophobic and thus sticks to the PS particles. However, co-exposure of B(a)P and PS the particles did not increase the induction of CYP1A activity compared to B(a)P alone. Our study contributes to the understanding of the cellular effects of PS particles using a highly relevant Atlantic salmon gill epithelium in vitro model.
Collapse
Affiliation(s)
- Anita Solhaug
- Chemistry and Toxinology Research group, Norwegian Veterinary Institute, 1431 Ås, Norway.
| | - Sarah Vlegels
- Chemistry and Toxinology Research group, Norwegian Veterinary Institute, 1431 Ås, Norway
| | | |
Collapse
|
13
|
Choudhury TR, Riad S, Uddin FJ, Maksud MA, Alam MA, Chowdhury AMS, Mubin AN, Islam ARMT, Malafaia G. Microplastics in multi-environmental compartments: Research advances, media, and global management scenarios. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104379. [PMID: 38851130 DOI: 10.1016/j.jconhyd.2024.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
During the past decades, microplastics (MPs) have become an emerging concern due to their persistence and potential environmental threat. MP pollution has become so drastic that it has been found in the human food chain, breast milk, polar regions, and even the Himalayan basin, lake, etc. Inflammation, pulmonary hypertension, vascular occlusions, increased coagulability and blood cell cytotoxicity, disruption of immune function, neurotoxicity, and neurodegenerative diseases can all be brought on by severe microplastic exposure. Although many MPs studies have been performed on single environmental compartments, MPs in multi-environmental compartments have yet to be explored fully. This review aims to summarize the muti-environmental media, detection tools, and global management scenarios of MPs. The study revealed that MPs could significantly alter C flow through the soil-plant system, the structure and metabolic status of the microbial community, soil pH value, biomass of plant shoots and roots, chlorophyll, leaf C and N contents, and root N contents. This review reveals that MPs may negatively affect many C-dependent soil functions. Different methods have been developed to detect the MPs from these various environmental sources, including microscopic observation, density separation, Raman, and FT-IR analysis. Several articles have focused on MPs in individual environmental sources with a developed evaluation technique. This review revealed the extensive impacts of MPs on soil-plant systems, microbial communities, and soil functions, especially on water, suggesting possible disturbances to vital ecological processes. Furthermore, the broad range of detection methods explored emphasizes the significance of reliable analytical techniques in precisely evaluating levels of MP contamination in various environmental media. This paper critically discusses MPs' sources, occurrences, and global management scenarios in all possible environmental media and ecological health impacts. Future research opportunities and required sustainable strategies have also been suggested from Bangladesh and international perspectives based on challenges faced due to MP's pollution.
Collapse
Affiliation(s)
- Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh.
| | - Syed Riad
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - Foyez Jalal Uddin
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - M A Maksud
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - M Abbas Alam
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh; Bangladesh Accreditation Board, Dhaka 1000, Bangladesh
| | | | - Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
14
|
Xie S, Hamid N, Zhang T, Zhang Z, Peng L. Unraveling the nexus: Microplastics, antibiotics, and ARGs interactions, threats and control in aquaculture - A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134324. [PMID: 38640666 DOI: 10.1016/j.jhazmat.2024.134324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
In recent years, aquaculture has expanded rapidly to address food scarcity and provides high-quality aquatic products. However, this growth has led to the release of significant effluents, containing emerging contaminants like antibiotics, microplastics (MPs), and antibiotic resistance genes (ARGs). This study investigated the occurrence and interactions of these pollutants in aquaculture environment. Combined pollutants, such as MPs and coexisting adsorbents, were widespread and could include antibiotics, heavy metals, resistance genes, and pathogens. Elevated levels of chemical pollutants on MPs could lead to the emergence of resistance genes under selective pressure, facilitated by bacterial communities and horizontal gene transfer (HGT). MPs acted as vectors, transferring pollutants into the food web. Various technologies, including membrane technology, coagulation, and advanced oxidation, have been trialed for pollutants removal, each with its benefits and drawbacks. Future research should focus on ecologically friendly treatment technologies for emerging contaminants in aquaculture wastewater. This review provided insights into understanding and addressing newly developing toxins, aiming to develop integrated systems for effective aquaculture wastewater treatment.
Collapse
Affiliation(s)
- Shiyu Xie
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Tingting Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Zijun Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China.
| |
Collapse
|
15
|
Langknecht T, Pelletier M, Robinson S, Burgess RM, Ho KT. The distribution of sediment microplastics assemblages is driven by location and hydrodynamics, not sediment characteristics, in the Gulf of Maine, USA. MARINE POLLUTION BULLETIN 2024; 202:116393. [PMID: 38669855 PMCID: PMC11162549 DOI: 10.1016/j.marpolbul.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Microplastics (MP) are found in marine sediments across the globe, but we are just beginning to understand their spatial distribution and assemblages. In this study, we quantified MP in Gulf of Maine, USA sediments. MP were extracted from 20 sediment samples, followed by polymer identification using Raman spectroscopy. We detected 27 polymer types and 1929 MP kg-1 wet sediment, on average. Statistical analyses showed that habitat, hydrodynamics, and station proximity were more important drivers of MP assemblages than land use or sediment characteristics. Stations closer to one another were more similar in their MP assemblages, tidal rivers had higher numbers of unique plastic polymers than open water or embayment stations, and stations closer to shore had higher numbers of MP. There was little evidence of relationships between MP assemblages and land use, sediment texture, total organic carbon, or contaminants.
Collapse
Affiliation(s)
- Troy Langknecht
- ORAU c/o U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA; Rhode Island Department of Environmental Management, Bureau of Natural Resources, 235 Promenade Street, Providence, RI 02908, USA
| | - Marguerite Pelletier
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Sandra Robinson
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Robert M Burgess
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA.
| | - Kay T Ho
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| |
Collapse
|
16
|
Boateng CM, Addo S, Duodu CP, Danso-Abbeam H, Agyeman PC, Anyan KF, Asamoah EK, Blankson ER, Nyarko E, Matsuoka A. Microplastics in the Volta Lake: Occurrence, distribution, and human health implications. Heliyon 2024; 10:e29041. [PMID: 38596133 PMCID: PMC11002670 DOI: 10.1016/j.heliyon.2024.e29041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Pollution of plastic waste in aquatic ecosystems in Ghana is of significant concern with potential adverse effects on food safety and ecosystem function. This study examined the abundance and distribution of microplastics (MPs) in freshwater biota samples namely: the African river prawn (Macrobrachium vollenhovenii), the Volta clam (Galatea paradoxa), Nile tilapia (Oreochromis niloticus), and sediment from the Volta Lake. Both biota and sediment samples were subjected to microscopic identification and FTIR analysis. In biota samples, the highest mean microplastic abundance of 4.7 ± 2.1 items per individual was found in the prawn, while the Nile tilapia recorded the least (2.8 ± 0.6 items per individual). A total of 398 microplastic particles were observed in sediment samples from the Volta Lake. Microfibers were the major plastic shapes identified in biota and sediment samples. We examined the relationship between microplastic abundance, biota size, and sediment properties. Despite the lack of statistical significance, microplastic shape, size, and polymer composition in assessed organisms mirrored those in the benthic sediment. Polyethylene, polypropylene, polyester, and polystyrene were the four dominant polymer types identified in the organisms and sediments. Although the estimated human exposure was relatively low compared with studies from other regions of the world, the presence of microplastics raises concern for the safety of fisheries products consumed by the general populace in the country. This research is essential for developing effective mitigation measures and tackling the wider effects of microplastic contamination on Ghana's freshwater ecosystems, particularly the Volta Lake.
Collapse
Affiliation(s)
- Charles Mario Boateng
- Department of Marine and Fisheries Sciences, University of Ghana, Accra, Ghana
- School of Marine Science and Ocean Engineering, University of New Hampshire, USA
| | - Samuel Addo
- Department of Marine and Fisheries Sciences, University of Ghana, Accra, Ghana
| | - Collins Prah Duodu
- Department of Marine and Fisheries Sciences, University of Ghana, Accra, Ghana
| | - Harriet Danso-Abbeam
- Environmental Research Resource Centre, Ghana Atomic Energy Commission, P.O Box LG 80, Accra, Ghana
| | | | - Kofi Ferni Anyan
- Department of Marine and Fisheries Sciences, University of Ghana, Accra, Ghana
| | | | | | - Elvis Nyarko
- Regional Maritime University, Post Office Box GP 1115, Accra, Ghana
| | - Atsushi Matsuoka
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
17
|
Jankauskas L, Pinho GLL, Sanz-Lazaro C, Casado-Coy N, Rangel DF, Ribeiro VV, Castro ÍB. Microplastic in clams: An extensive spatial assessment in south Brazil. MARINE POLLUTION BULLETIN 2024; 201:116203. [PMID: 38422825 DOI: 10.1016/j.marpolbul.2024.116203] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Microplastic pollution is becoming a continuously growing environmental concern, while bivalve mollusks are particularly vulnerable due to their sessile habits and feeding through water filtration processes. Microplastic incidence in soft tissues of the clam Amarilladesma mactroides was assessed along unconsolidated substrates distributed in extensive coastal regions of southern Brazil. Influence of urbanization levels, distance to rivers and local hydrodynamics on microplastic accumulation by the clam was tested. The average concentration of microplastics was high (3.09 ± 2.11 particles.g-1), considering 16 sampled sites. Particles were mainly composed by polyamide, polyethylene and polyethylene terephthalate, while were mainly smaller, fibrous and colorless. High urbanization and closer proximity to rivers insured higher contamination, which is a trend observed globally. No influence of coastal hydrodynamics was seen. Considering obtained findings, A. mactroides presents good potential to be used as a valuable tool to assess microplastic contamination in unconsolidated substrates of beach areas.
Collapse
Affiliation(s)
- Laura Jankauskas
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | | | - Carlos Sanz-Lazaro
- Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, Spain
| | - Nuria Casado-Coy
- Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, Spain
| | | | | | - Ítalo Braga Castro
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil; Instituto do Mar, Universidade Federal de São Paulo, Santos, Brazil.
| |
Collapse
|
18
|
Villanova-Solano C, Díaz-Peña FJ, Hernández-Sánchez C, González-Sálamo J, Edo C, Vega-Moreno D, Fernández-Martín S, Fraile-Nuez E, Machín F, Hernández-Borges J. Beneath the water column: Uncovering microplastic pollution in the sublittoral coastal sediments of the Canary Islands, Spain. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133128. [PMID: 38134684 DOI: 10.1016/j.jhazmat.2023.133128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Marine ecosystems pollution by microplastics (MPs) is a global problem of special concern. The present study examines the prevalence and distribution of MPs and cellulosic particles in sublittoral coastal sediments of the Canary Islands archipelago (Spain). At twenty-six different locations alongside seven islands, three samples were taken parallel to the shoreline between 1 and 10 m depth (n = 78). Sediment samples were primarily digested with a H2O2 solution followed by four flotations in a saturated NaCl solution. The mean concentration obtained was 3.9 ± 1.6 items/g of dry weight. A similar distribution pattern was observed across all islands concerning particles morphology, color, size and composition: mainly colorless/translucent and blue fibers (60.0%). Additionally, fragments were also found, and to a much lesser extent microbeads, films and tangled messes. MicroFourier Transform Infrared spectroscopy analysis of 12.5% of the fibers, showed that they were mainly cellulosic (54.5%) -either natural or semisynthetic- followed by polyester (22.7%) and acrylic (4.5%). The potential correlation between particle distribution in nearshore sediments and wave intensity was also explored. This work provides the first comprehensive report on the current MPs content of the seabed of the region.
Collapse
Affiliation(s)
- Cristina Villanova-Solano
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Cintia Hernández-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Forense y Legal y Parasitología, Área de Medicina Preventiva y Salud Pública, Escuela Politécnica Superior de Ingeniería, Sección de Náutica, Máquinas y Radioelectrónica Naval, Universidad de La Laguna (ULL), Vía Auxiliar Paso Alto, 2, 38001 Santa Cruz de Tenerife, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Carlos Edo
- Departamento de Ingeniería Química, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Daura Vega-Moreno
- Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Sonia Fernández-Martín
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Eugenio Fraile-Nuez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), Consejo Superior de Investigaciones Científicas (CSIC), Calle Farola del Mar, 22, 38180 Santa Cruz de Tenerife, Spain
| | - Francisco Machín
- Departamento de Física, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain.
| |
Collapse
|
19
|
Xu Y, Sun Y, Lei M, Hou J. Phthalates contamination in sediments: A review of sources, influencing factors, benthic toxicity, and removal strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123389. [PMID: 38246215 DOI: 10.1016/j.envpol.2024.123389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/18/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Sediments provide habitat and food for benthos, and phthalates (PAEs) have been detected in numerous river and marine sediments as a widely used plastic additive. PAEs in sediments is not only toxic to benthos, but also poses a threat to pelagic fish and human health through the food chain, so it is essential to comprehensively assess the contamination of sediments with PAEs. This paper presents a critical evaluation of PAEs in sediments, which is embodied in the analysis of the sources of PAEs in sediments from multiple perspectives. Biological production is indispensable, while artificial synthesis is the most dominant, thus the focus was on analyzing the industrial and commercial sources of synthetic PAEs. In addition, since the content of PAEs in sediments varies, some factors affecting the content of PAEs in sediments are summarized, such as the properties of PAEs, the properties of plastics, and environmental factors (sediments properties and hydrodynamic conditions). As endocrine disruptors, PAEs can produce toxicity to its direct contacts. Therefore, the effects of PAEs on benthos immunity, endocrinology, reproduction, development, and metabolism were comprehensively analyzed. In addition, we found that reciprocal inhibition and activation of the systems lead to genotoxicity and apoptosis. Finally, the paper discusses the feasible measures to control PAEs in wastewater and leachate from the perspective of source control, and summarizes the in-situ treatment measures for PAEs contamination in sediments. This paper provides a comprehensive review of PAEs contamination in sediments, toxic effects and removal strategies, and provides an important reference for reducing the contamination and toxicity of PAEs to benthos.
Collapse
Affiliation(s)
- Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Yuqiong Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Ming Lei
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
20
|
Amenábar M, Aguilera MA, Gallardo C, Moore C, De Vine R, Lattin G, Gamba A, Luna-Acosta A, Thiel M. Spatial distribution of microplastics in a coastal upwelling region: Offshore dispersal from urban sources in the Humboldt Current System. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123157. [PMID: 38142808 DOI: 10.1016/j.envpol.2023.123157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
In coastal waters, higher concentrations of microplastics (MPs) are generally related to densely populated and industrialized areas, but intense upwelling and offshore transport in the Eastern Boundary Upwelling Systems (EBUS) may influence this pattern. The Humboldt Current System (HCS) along the coast of northern-central Chile represents a perfect model to test whether the abundance of MP at the sea surface decreases with distance from land-based sources, e.g., river mouths, harbors, and submarine wastewater outfalls. The sea surface was sampled with a manta trawl to examine the abundance, composition, and distribution of floating MPs, and Generalized Additive Mixed Models (GAMMs) were performed to examine the relationship between MP abundance (particles km-2) and the distance to putative sources. MPs were found in all 57 net tows, with an average of ⁓120,000 MP km-2 and maximum values of ⁓1,500,000 MP km-2. The composition of MPs was dominated by fragments (>50% of the total count) and over 80% of all MPs were ≥1 mm. The combined effect of the various sources, spatially concentrated in urban areas, makes it difficult to distinguish their relative contributions, but the MP composition suggested that rivers are more important sources, followed by submarine wastewater outfalls and then harbors. A significant and steep negative relationship with the "distance to source" explained 15.2% of the variance of "MP abundance", suggesting rapid offshore displacement within the HCS. This is the first study to report this pattern along the edges of the South Pacific Subtropical Gyre (SPSG), revealing that continuous offshore transport of microplastic from land-based sources is occurring over large scales and contributing to the accumulation of microplastics in the center of the SPSG. However, the findings additionally suggested that processes at meso- and submeso-spatial scales (driven by geographic and seasonal variables) are disrupting the general pattern.
Collapse
Affiliation(s)
- María Amenábar
- Facultad Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile
| | - Moisés A Aguilera
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Diagonal Las Torres, 2640, Peñalolén, Santiago, Chile
| | - Camila Gallardo
- Facultad Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile; Center of Ecology and Sustainable Management of Oceanic Islands (ESMOI), Coquimbo, Chile
| | - Charles Moore
- Moore Institute for Plastic Pollution Research, Long Beach, CA, USA; Algalita Marine Research and Education, Long Beach, CA, USA
| | - Raquelle De Vine
- Moore Institute for Plastic Pollution Research, Long Beach, CA, USA; Algalita Marine Research and Education, Long Beach, CA, USA
| | - Gwen Lattin
- Moore Institute for Plastic Pollution Research, Long Beach, CA, USA; Algalita Marine Research and Education, Long Beach, CA, USA
| | - Angela Gamba
- Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrea Luna-Acosta
- Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Martin Thiel
- Facultad Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, 1781421, Chile; Center of Ecology and Sustainable Management of Oceanic Islands (ESMOI), Coquimbo, Chile; MarineGEO Program, Smithsonian Environmental Research Center, Edgewater, MD, USA.
| |
Collapse
|
21
|
Jin Z, Ren Y, Tao W, Chen Z, Xu G. Study on the release of microplastic particles with different particle sizes in sediments caused by wave-induced liquefaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168788. [PMID: 38007140 DOI: 10.1016/j.scitotenv.2023.168788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Every year, almost 1.15-2.41 million tons of plastic from terrestrial rivers undergo fragmentation under certain conditions and settle in the estuarine delta and shallow marine shelf areas, making this region a "sink" for land-based microplastics. Owing to its fast deposition rate, relatively soft sediment bed, and shallow water depth, the estuarine delta region is prone to liquefaction under high wind and wave conditions. This could potentially release deeply buried microplastic particles during the liquefaction process, posing further threats to marine ecology and human health. To investigate this phenomenon, laboratory experiments were conducted using a water tank to simulate wave-induced liquefaction of sediment beds. The results showed that under the influence of wave-induced liquefaction, 56.2 % of microplastic particles were released back into the sediment surface, with larger particles being released to a greater extent. Based on these experimental results, this study also analyzed and discussed the release rate and mechanisms of microplastic particles from sediment during wave-induced liquefaction, estimating that the maximum release rate of microplastic particles under the experimental conditions could reach 0.34 mm/min.
Collapse
Affiliation(s)
- Zikun Jin
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yupeng Ren
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao 066000, China; Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Wei Tao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhiyuan Chen
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Guohui Xu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
22
|
Marcus L, Mardones JI, Rioseco JT, Pinochet J, Montes C, Corredor-Acosta A, Moreno-Meynard P, Garcés-Vargas J, Jorquera E, Iriarte JL, Urbina MA. Evidence of plastic pollution from offshore oceanic sources in southern Chilean Patagonian fjords. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168706. [PMID: 37992835 DOI: 10.1016/j.scitotenv.2023.168706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Chilean Patagonian fjords are globally renowned as one of the few remaining pristine environments on Earth; however, their ecosystems are under significant threat from climatic and anthropogenic pressures. Of particular concern is the lack of research into the impact of plastic pollution on the waters and biodiversity of these fjords. In this study, the marine environment of a secluded and sparsely populated fjord system in southern Patagonia was sampled to assess microplastics in seawater, beaches, bottom sediment, and zooplankton. Microplastics were found to be widespread across the water surface of the fjord, but with low abundances of 0.01 ± 0.01 particles m-3 (mean ± SD). The presence of microplastics in sedimentary environments (e.g., beaches and bottom sediments, 15.6 ± 15.3 and 9.8 ± 24 particles kg of dry sediment-1, respectively) provided additional evidence of plastic debris accumulation within the fjord system. Furthermore, microplastics were already bioavailable to key zooplankton species of the Patagonian food web (0.01 ± 0.02 particles individual-1), suggesting bioaccumulation. A comprehensive examination of potential microplastic inputs originating from coastal runoff, coupled with distribution of water masses, suggested minimal local contribution of microplastics to the fjord, strongly indicating that plastic litter is likely entering the area through oceanic currents. The composition and type of microplastics, primarily consisting of polyester fibers (approx. 60 %), provided further support for the proposed distant origin and transportation into the fjord by oceanographic drivers. These results raise significant concern as reveal that despite a lack of nearby population, industrial or agricultural activity, remote Patagonian fjords are still impacted by plastic pollution originating from distant sources. Prioritizing monitoring efforts is crucial for effectively assessing the future trends and ecological impact of plastic pollution in these once so-called pristine ecosystems.
Collapse
Affiliation(s)
- Lara Marcus
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, 5501842 Puerto Montt, Chile.
| | - Jorge I Mardones
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt, Chile; Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Jazmin Toledo Rioseco
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile
| | - Javier Pinochet
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile.; Facultad de Ciencias, Universidad Católica de La Santísima Concepción, Concepción, Chile
| | - Caroline Montes
- Laboratory of Ecotoxicology and Laboratory of Marine Environmental Monitoring Research (LAPMAR), Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Andrea Corredor-Acosta
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia 5090000, Chile
| | | | - José Garcés-Vargas
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia 5090000, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Erika Jorquera
- Facultad de Ciencias, Universidad Católica de La Santísima Concepción, Concepción, Chile
| | - José Luis Iriarte
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia 5090000, Chile; Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile.; Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, PO Box 1313, Concepción, Chile
| |
Collapse
|
23
|
L E, Wilfred N, S K, Halder G, Haldar D, Patel AK, Singhania RR, Pandey A. Biodegradation of microplastics: Advancement in the strategic approaches towards prevention of its accumulation and harmful effects. CHEMOSPHERE 2024; 346:140661. [PMID: 37951399 DOI: 10.1016/j.chemosphere.2023.140661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Microplastics (MPs) are plastic particles in a size ranging from 1 mm to 5 mm in diameter, and are formed by the breakdown of plastics from different sources. They are emerging environmental pollutants, and pose a great threat to living organisms. Improper disposal, inadequate recycling, and excessive use of plastic led to the accumulation of MP in the environment. The degradation of MP can be done either biotically or abiotically. In view of that, this article discusses the molecular mechanisms that involve bacteria, fungi, and enzymes to degrade the MP polymers as the primary objective. As per as abiotic degradation is concerned, two different modes of MP degradation were discussed in order to justify the effectiveness of biotic degradation. Finally, this review is concluded with the challenges and future perspectives of MP biodegradation based on the existing research gaps. The main objective of this article is to provide the readers with clear insight, and ideas about the recent advancements in MP biodegradation.
Collapse
Affiliation(s)
- Emisha L
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Nishitha Wilfred
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Kavitha S
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India.
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226029, India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, 226029, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Kyung Hee University, Kyung Hee Dae Ro 26, Seoul, 02447, Republic of Korea; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, Uttarakhand, India
| |
Collapse
|
24
|
Lefebvre C, Le Bihanic F, Jalón-Rojas I, Dusacre E, Chassaigne-Viscaïno L, Bichon J, Clérandeau C, Morin B, Lecomte S, Cachot J. Spatial distribution of anthropogenic particles and microplastics in a meso-tidal lagoon (Arcachon Bay, France): A multi-compartment approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165460. [PMID: 37454851 DOI: 10.1016/j.scitotenv.2023.165460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Assessment of microplastic (MP) contamination is still needed to evaluate this threat correctly and tackle this issue. Here, MP contamination was assessed for a meso-tidal lagoon of the Atlantic coast (Arcachon Bay, France). Sea surface, water column, intertidal sediments and wild oysters were sampled. Five different stations were studied to assess the spatial distribution of the contamination. Two were outside of the bay and three were inside the bay (from the inlet to the back). A distinction was made between all anthropogenic particles (AP, i.e. visually sorted) and MP (i.e. plastic polymer confirmed by ATR-FTIR spectroscopy). The length of particles recovered in this study ranged between 17 μm and 5 mm. Concentration and composition in sea surface and water column samples showed spatial variations while sediment and oyster samples did not. At outside stations, the sea surface and the water column presented a blended composition regarding shapes and polymers and low to high concentrations (e.g. 0.16 ± 0.08 MP.m-3 and 561.7 ± 68.5 MP.m-3, respectively for sea surface and water column), which can be due to coastal processes and nearby input sources. The inlet station displayed a well-marked pattern only at the sea surface. High AP and MP concentrations were recorded, and fragments along with polyethylene overwhelmed (respectively 76.0 % and 73.2 %). Higher surface currents could explain this pattern. At the bay back, AP and MP concentrations were lower and fibers were mainly recorded. Weaker hydrodynamics in this area was suspected to drive this contamination profile. Overall, fragments and buoyant particles were mainly detected at the sea surface while fibers and negatively buoyant particles prevailed in other compartments. Most of the studied samples presented an important contribution of fiber-shaped particles (from 31.5 % to 94.2 %). Finally, contamination was ubiquitous as AP and MP were found at all stations in all sample types.
Collapse
Affiliation(s)
- Charlotte Lefebvre
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Florane Le Bihanic
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Isabel Jalón-Rojas
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Edgar Dusacre
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | | | - Jeyan Bichon
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | | | - Bénédicte Morin
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Sophie Lecomte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Jérôme Cachot
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| |
Collapse
|
25
|
Miao C, Zhang J, Jin R, Li T, Zhao Y, Shen M. Microplastics in aquaculture systems: Occurrence, ecological threats and control strategies. CHEMOSPHERE 2023; 340:139924. [PMID: 37625491 DOI: 10.1016/j.chemosphere.2023.139924] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
With the intensification of microplastic pollution globally, aquaculture environments also face risks of microplastic contamination through various pathways such as plastic fishing gear. Compared to wild aquatic products, cultured aquatic products are more susceptible to microplastic exposure through fishing tackle, thus assessing the impacts of microplastics on farmed species and human health. However, current research on microplastic pollution and its ecological effects in aquaculture environments still remains insufficient. This article comprehensively summarizes the pollution characteristics and interrelationships of microplastics in aquaculture environments. We analyzed the influence of microplastics on the sustainable development of the aquaculture industry. Then, the potential hazards of microplastics on pond ecosystems and consumer health were elucidated. The strategies for removing microplastics in aquaculture environments are also discussed. Finally, an outlook on the current challenge and the promising opportunities in this area was proposed. This review aims to evaluate the value of assessing microplastic pollution in aquaculture environments and provide guidance for the sustainable development of the aquaculture industry.
Collapse
Affiliation(s)
- Chunheng Miao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Jiahao Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Ruixin Jin
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Tianhao Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| |
Collapse
|
26
|
Yi Y, Kong L, Wang X, Li Y, Cheng J, Han J, Chen H, Zhang N. Distribution and characteristics of microplastics in sediment at representative dredged material ocean dumping sites, China. MARINE POLLUTION BULLETIN 2023; 193:115201. [PMID: 37385180 DOI: 10.1016/j.marpolbul.2023.115201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
Dredged material ocean dumping activities are likely an important source of microplastics (MPs) in coastal areas but have received little attention globally. In this study, we investigated the spatiotemporal distribution and characteristics of MPs in sediments at eight dredged material dumping sites of China. MPs were separated from sediment through density flotation, and polymer types were identified using μ-FTIR. The results showed that the average MP abundance was 112.82 ± 109.68 items/kg d.w. The MPs were more abundant at nearshore dumping sites than at distant dumping sites. Dumping activities may be the main contributor of MPs to Site BD1, the farthest dumping site from shore, but only a minor source of MPs at the other dumping sites. The characteristics of MPs were dominated by transparent PET fibers <1 mm. Overall, sediments at the dumping sites exhibited relatively low to moderate concentrations of MPs in comparison to most other coastal sediments.
Collapse
Affiliation(s)
- Yuying Yi
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Lingna Kong
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xiaomeng Wang
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Yuxia Li
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jiayi Cheng
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jianbo Han
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Hong Chen
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Naidong Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
27
|
Nawab J, Khan H, Ghani J, Zafar MI, Khan S, Toller S, Fatima L, Hamza A. New insights into the migration, distribution and accumulation of micro-plastic in marine environment: A critical mechanism review. CHEMOSPHERE 2023; 330:138572. [PMID: 37088212 DOI: 10.1016/j.chemosphere.2023.138572] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs) are widely distributed in the marine environment, posing a significant threat to marine biota. The contribution of anthropogenic and terrestrial sources to the aquatic ecosystem has led to an increase in MPs findings, and their abundance in aquatic biota has been reported to be of concern. MPs are formed mainly via photo degradation of macroplastics (large plastic debris), and their release into the environment is a result of the degradation of additives. Eco-toxicological risks are increasing for marine organisms, due to the ingestion of MPs, which cause damage to gastrointestinal (GI) tracts and stomach. Plastics with a size <5 mm are considered MPs, and they are commonly identified by Raman spectroscopy, Fourier transfer infrared (FTIR) spectroscopy, and Laser direct infrared (LDIR). The size, density and additives are the main factors influencing the abundance and bioavailability of MPs. The most abundant type of MPs found in fishes are fiber, polystyrenes, and fragments. These microscale pellets cause physiological stress and growth deformities by targeting the GI tracts of fishes and other biota. Approximately 80% MPs come from terrestrial sources, either primary, generated during different products such as skin care products, tires production and the use of MPs as carrier for pharmaceutical products, or secondary plastics, disposed of near coastal areas and water bodies. The issue of MPs and their potential effects on the marine ecosystem require proper attention. Therefore, this study conducted an extensive literature review on assessing MPs levels in fishes, sediments, seawater, their sources, and effects on marine biota (especially on fishes), chemo-physical behavior and the techniques used for their identification.
Collapse
Affiliation(s)
- Javed Nawab
- Department of Environmental Sciences, Kohat University of Science & Technology, Kohat, Pakistan.
| | - Haris Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Junaid Ghani
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, 40126, Bologna, Italy
| | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sardar Khan
- Department of Environmental Sciences, Kohat University of Science & Technology, Kohat, Pakistan; Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Simone Toller
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, 40126, Bologna, Italy
| | - Laraib Fatima
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, 2300, Pakistan
| | - Amir Hamza
- Department of Soil & Environmental Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| |
Collapse
|
28
|
Wu H, Hou J, Wang X. A review of microplastic pollution in aquaculture: Sources, effects, removal strategies and prospects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114567. [PMID: 36706522 DOI: 10.1016/j.ecoenv.2023.114567] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
As microplastic pollution has become an emerging environmental issue of global concern, microplastics in aquaculture have become a research hotspot. For environmental safety, economic efficiency and food safety considerations, a comprehensive understanding of microplastic pollution in aquaculture is necessary. This review outlines an overview of sources and effects of microplastics in aquaculture. External environmental inputs and aquaculture processes are sources of microplastics in aquaculture. Microplastics may release harmful additives and adsorb pollutants in aquaculture environment, cause deterioration of aquaculture environment, as well as cause toxicological effects, affect the behavior, growth and reproduction of aquaculture products, ultimately reducing the economic benefits of aquaculture. Microplastics entering the human body through aquaculture products also pose potential health risks at multiple levels. Microplastic pollution removal strategies used in aquaculture in various countries are also reviewed. Ecological interception and purification are considered to be effective methods. In addition, strengthening aquaculture management and improving fishing gear and packaging are also currently feasible solutions. As proactive measures, new portable microplastic monitoring system and remote sensing technology are considered to have broad application prospects. And it was encouraged to comprehensively strengthen the supervision of microplastic pollution in aquaculture through talent exchange and strengthening the construction of laws and regulations.
Collapse
Affiliation(s)
- Haodi Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
29
|
Nayeri D, Mousavi SA, Almasi A, Asadi A. Microplastic abundance, distribution, and characterization in freshwater sediments in Iran: a case study in Kermanshah city. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49817-49828. [PMID: 36781678 DOI: 10.1007/s11356-023-25620-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023]
Abstract
This paper focuses on abundance, distribution, and characteristics of microplastics (MPs) in freshwater sediments of Sarab Niloofar Lake, Kermanshah, Iran. After selecting an appropriate method for extraction of MPs, the characterization such as polymer types, surface morphology, and trace elements has been determined using Fourier transform infrared spectroscopy, scanning electron microscopic, and energy-dispersive X-ray spectroscopic analysis, respectively. The results highlighted that all sampling locations were contaminated by MP abundance ranged from 1733.33 to 4400 items kg-1 d.w with an average of 2483.59 ± 805.30 items kg-1 d.w. MPs with a size range of 0.025 to 1 mm (25-1000 μm) were the most frequently detected MPs in size (62%). Furthermore, the MPs found in this area mainly contain fiber (61%), fragment (19%), film (9%), foam (6%), and pallet (5%). The main color for detected MPs in sampling stations was black (51%) and followed by white/transparent (27%), red (11%), blue (7%), and yellow (4%). The results of polymer identification revealed that the polyethylene, polystyrene, polyurethane, and polypropylene were the principal polymers. This research work emphasized that various types of MPs have been distributed in freshwater sediments of Sarab Niloofar Lake, which is a first useful data for MPs in one the most important Kermanshah's tourist area.
Collapse
Affiliation(s)
- Danial Nayeri
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyyed Alireza Mousavi
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Almasi
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Anvar Asadi
- Environmental Health Research Center, Research Institute for Health Department, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
30
|
Urbina MA, da Silva Montes C, Schäfer A, Castillo N, Urzúa Á, Lagos ME. Slow and steady hurts the crab: Effects of chronic and acute microplastic exposures on a filter feeder crab. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159135. [PMID: 36191714 DOI: 10.1016/j.scitotenv.2022.159135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Microplastics are a widespread environmental contaminant. Although detrimental effects on aquatic organisms are well documented, little is known about the long-term effects of microplastic exposure to filter-feeding organisms at ecologically realistic levels. This study investigates the effects of environmentally relevant concentrations of polyethylene micro beads ranging in size from 3 to 30 μm, on the physiology and energetics of a coastal filter-feeding crab Petrolisthes laevigatus. We evaluated the impact of microplastics by exposing P. laevigatus to two different concentrations and exposure times: i) a chronic exposure for five months at 250 particles L-1, and ii) an acute exposure for 48 h at 20,800 particles L-1, ~80 times higher than the chronic exposure. The results showed that only chronic exposures elicited negative effects on the coastal crab in both, metabolic and physiological parameters. Our findings demonstrate a strong correlation between the ingestion rate and weight loss, even at low concentrations, the crabs exhibited severe nutritional damage as a result of long-term microplastic exposure. By contrast, acute exposure revealed no significant effects to the crabs, a possible explanation for this being short-term compensatory responses. These results suggest that environmentally relevant concentrations of microplastics are harmful to marine organisms, and they should be evaluated during realistic temporal scales, as their effects strongly dependent on the exposure time. Our results also suggest that the effects of microplastics have been likely underestimated to date, due to the dominance of short-term exposures (acute) reported in the current literature.
Collapse
Affiliation(s)
- Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile; Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile.
| | - Caroline da Silva Montes
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Angela Schäfer
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Nicole Castillo
- Coastal Socio-Ecological Millennium Institute (SECOS), Universidad de Concepción & P. Universidad Católica de Chile, Chile; Coastal Ecosystems & Global Environmental Change Lab (ECCALab), Department of Aquatic System, Faculty of Environmental Sciences, Universidad de Concepción, Concepcion, Chile
| | - Ángel Urzúa
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Marcelo E Lagos
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile; SWIRE Institute of Marine Sciences & School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
31
|
Markic A, Bridson JH, Morton P, Hersey L, Budiša A, Maes T, Bowen M. Microplastic pollution in the intertidal and subtidal sediments of Vava'u, Tonga. MARINE POLLUTION BULLETIN 2023; 186:114451. [PMID: 36529018 DOI: 10.1016/j.marpolbul.2022.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Plastic pollution research on a global scale intensified considerably in the current decade; however, research efforts in the South Pacific are still lagging. Here, we report on microplastic contamination of intertidal and subtidal sediments in the Vava'u archipelago, Tonga. While providing the first baseline data of its type in Tonga, the study also advances methods and adjusts them for low-budget research. The methods were based on density separation of microplastics from the sediment using CaCl2, a high-density salt which due to its high solubility, low cost and availability. Once separated, microplastics were quantified by microscopic analysis and polymers characterized via FTIR spectroscopy. Microplastics in intertidal and subtidal sediments were found in concentrations of 23.5 ± 1.9 and 15.0 ± 1.9 particles L-1 of sediment, respectively. The dominant type of microplastics in both intertidal (85 %) and subtidal sediments (62 %) were fibres.
Collapse
Affiliation(s)
- Ana Markic
- Blue Spark, Put za Marleru 20, 52204 Ližnjan, Croatia.
| | - James H Bridson
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Peta Morton
- University of Sydney, Camperdown, NSW 2006, Australia
| | - Lucy Hersey
- Monash University, Wellington Road, Clayton 3800, Victoria, Australia
| | - Andrea Budiša
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Thomas Maes
- Grid-Arendal, Teaterplassen 3, 4836 Arendal, Norway
| | - Melissa Bowen
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
32
|
Ding R, Ouyang F, Peng D, You J, Ding L, Ouyang Z, Liu P, Guo X. A case study of distribution and characteristics of microplastics in surface water and sediments of the seas around Shenzhen, southern coastal area of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156063. [PMID: 35597363 DOI: 10.1016/j.scitotenv.2022.156063] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs), known to cause environmental pollution, is attracting a growing attention worldwide owing to their extensive existence and potential risks to biota. The marginal sea areas are suspected to be especially susceptible to MPs pollution. Unfortunately, data on MPs in the surface water and sediments ecosystems are still limited, particularly in the southern coastal areas of China. The study was successfully utilized to explore the distribution and characteristics of MPs below 5 mm collected from 14 sites in the seas around Shenzhen, a typical special economic zone of China. MPs were detected in both surface water and sediments with concentrations ranging from 3.8 to 7.8 items per liter and 2.6 × 103 to 10.0 × 103 items per kilogram, respectively. The highest abundance of MPs appeared in S5/S9 and S14 in surface water and sediments, respectively. Fiber and film with small particle size (<0.5 mm) were identified as typical and abundant MPs type among all samples. In addition, polyethylene (PE) was considered as dominant forms of MPs in surface water and sediment samples. Results from this study indicated a positive correlation with abundance of MPs and urbanization rate, which also showed an evident difference of MPs in different urban functional areas. Based on the types and quantity of detected MPs, we assessed the risk of MPs pollution in this study area, and the ecological risk category of MPs was at a high level. Importantly, our work might be employed as a potential information so as to better understand MPs pollution, source tracing and ecological risk assessment, which enhances the possibility of achieving effective control and supervision of MPs pollution in southern coastal aera of China.
Collapse
Affiliation(s)
- Rui Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Fan Ouyang
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, China
| | - Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, China.
| | - Jia You
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
33
|
Di Mauro R, Castillo S, Pérez A, Iachetti CM, Silva L, Tomba JP, Chiesa IL. Anthropogenic microfibers are highly abundant at the Burdwood Bank seamount, a protected sub-Antarctic environment in the Southwestern Atlantic Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119364. [PMID: 35489539 DOI: 10.1016/j.envpol.2022.119364] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Microplastics debris in the marine environment have been widely studied across the globe. Within these particles, the most abundant and prevalent type in the oceans are anthropogenic microfibers (MFs), although they have been historically overlooked mostly due to methodological constraints. MFs are currently considered omnipresent in natural environments, however, contrary to the Northern Hemisphere, data on their abundance and distribution in Southern Oceans ecosystems are still scarce, in particular for sub-Antarctic regions. Using Niskin bottles we've explored microfibers abundance and distribution in the water column (3-2450 m depth) at the Burdwood Bank (BB), a seamount located at the southern extreme of the Patagonian shelf, in the Southwestern Atlantic Ocean. The MFs detected from filtered water samples were photographed and measured using ImageJ software, to estimate length, width, and the projected surface area of each particle. Our results indicate that small pieces of fibers are widespread in the water column at the BB (mean of 17.4 ± 12.6 MFs.L-1), from which, 10.6 ± 5.3 MFs.L-1 were at the surface (3-10 m depth), 20 ± 9 MFs.L-1 in intermediate waters (41-97 m), 24.6 ± 17.3 MFs.L-1 in deeper waters (102-164 m), and 9.2 ± 5.3 MFs.L-1 within the slope break of the seamount. Approximately 76.1% of the MFs were composed of Polyethylene terephthalate, and the abundance was dominated by the size fraction from 0.1 to 0.3 mm of length. Given the high relative abundance of small and aged MFs, and the oceanographic complexity of the study area, we postulate that MFs are most likely transported to the BB via the Antarctic Circumpolar Current. Our findings imply that this sub-Antarctic protected ecosystem is highly exposed to microplastic pollution, and this threat could be spreading towards the highly productive waters, north of the study area.
Collapse
Affiliation(s)
- Rosana Di Mauro
- Gabinete de Zooplancton, Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago Castillo
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Analía Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Invertebrados Marinos, CCNA, Universidad Maimónides-CONICET, CABA, Argentina
| | - Clara M Iachetti
- Universidad Nacional de Tierra del Fuego (UNTdF), Ushuaia, Argentina
| | - Leonel Silva
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA-CONICET), Mar del Plata, Argentina
| | - Juan P Tomba
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA-CONICET), Mar del Plata, Argentina
| | - Ignacio L Chiesa
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Crustáceos y Ecosistemas Costeros (CADIC-CONICET), Ushuaia, Argentina. Bernardo Houssay 200, Ushuaia, V9410CAB, Argentina.
| |
Collapse
|
34
|
Klein JR, Beaman J, Kirkbride KP, Patten C, Burke da Silva K. Microplastics in intertidal water of South Australia and the mussel Mytilus spp.; the contrasting effect of population on concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154875. [PMID: 35364164 DOI: 10.1016/j.scitotenv.2022.154875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Microplastics, plastic particles <5 mm in size, are of global concern as human-caused pollutants in marine and fresh waters, and yet little is known of their distribution, behaviour and ecological impact in the intertidal environment of South Australia. This study confirms for the first time, the presence of microplastic in the South Australian intertidal ecosystem by quantifying the abundance of particles in intertidal water and in the keystone species, the blue mussel, Mytilus spp., an important fisheries species, at ten and six locations respectively, along the South Australian coastline. For a remote region known for its pristine environment, microplastic concentration in intertidal water was found to be low to moderate (mean = 8.21 particles l-1 ± 4.91) relative to global levels and microplastic abundance in mussels (mean = 3.58 ± 8.18 particles individual-1) was within the range also reported globally. Microplastic particles were ubiquitous across sites and bioavailable by size in water (mean = 906.36 μm) and in mussel (mean = 983.29 μm) raising concerns for the health of South Australia's unique coastal ecosystems and for the human food chain. Furthermore, a positive correlation was found between human coastal population size and microplastic concentration in intertidal water, irrespective of influences from industry - tourism, fishing and shipping ports. FTIR analysis determined plastic type to include polyamide (PA), polyethylene (PE), polypropylene (PP), acrylic resin, polyethyleneterephthalate (PET) and cellulose, suggesting synthetic and semi-synthetic particles from single-use, short-life cycle products, fabrics, ropes and cordage. Our findings shed light on the urgent need to establish the local sources of microplastic pollution in order to assist the community, industry and government to reduce the impact of microplastic on the fragile marine systems within South Australian intertidal waters and on the organisms associated with the human food chain.
Collapse
Affiliation(s)
- Janet R Klein
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| | - Julian Beaman
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| | - K Paul Kirkbride
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| | - Corey Patten
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Karen Burke da Silva
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.
| |
Collapse
|
35
|
Ranjani M, Veerasingam S, Venkatachalapathy R, Jinoj TPS, Guganathan L, Mugilarasan M, Vethamony P. Seasonal variation, polymer hazard risk and controlling factors of microplastics in beach sediments along the southeast coast of India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119315. [PMID: 35439596 DOI: 10.1016/j.envpol.2022.119315] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 05/26/2023]
Abstract
Microplastics (MPs) and its associated organic and inorganic contaminants are one among the significant health hazards to almost all biota, including human. We investigated the polymer hazard risk and its adsorbed contaminants in MPs at six prominent beaches of Chennai on the southeast coast of India. The spatial variation of MPs during the northeast (NE) monsoon (range: 76-720 items/kg, mean: 247.4 items/kg) was higher than that during southwest (SW) monsoon (range: 84-498 items/kg, mean: 302.7 items/kg). In both the seasons, polyethylene (PE) and polypropylene (PP) were the dominant polymers and fibre was the predominant shape of MPs, likely to be derived from fishing, textile and urban activities in this region. Scanning electron microscope (SEM) images exhibited various surface weathering features including grooves, cracks, fractures, adhering particles, pits, vermiculate textures and fibre reinforcements. Energy dispersive X-ray spectrometer (EDS) results showed that MPs have adsorbed major (Si, Al, Na, Mg, Ca, Fe and Ti) and trace (Cu, Cr, Ni, Pb and Zn) metals. Though pollution load index (PLI) presented low degree of MP contamination in the beach sediments, hazardous polymers such as polyvinyl chloride (PVC), polyamide (PA) and polystyrene (PS) contributed to high polymer hazard index (PHI) and potential ecological risk index (PERI), posing very high risk to the biota. The trajectories obtained from particle-tracking coupled with hydrodynamic simulation clearly showed that 20% of MPs settled along the coast and the remaining moved towards north, alongshore and offshore (∼50 km) within 30 days, and in NE monsoon due to current reversal, the floating debris and MPs have drifted towards south, ∼40 km in 30 days, indicating the role of circulation in the fate and transport pathways of plastic debris.
Collapse
Affiliation(s)
- M Ranjani
- Department of Physics, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - S Veerasingam
- Environmental Science Center, Qatar University, P.O. Box: 2713, Qatar.
| | - R Venkatachalapathy
- Department of Physics, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - T P S Jinoj
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, Chennai, 600 100, Tamil Nadu, India
| | - L Guganathan
- Department of Physics, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - M Mugilarasan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, Tamil Nadu, India
| | - P Vethamony
- Environmental Science Center, Qatar University, P.O. Box: 2713, Qatar
| |
Collapse
|
36
|
Correa-Araneda F, Pérez J, Tonin AM, Esse C, Boyero L, Díaz ME, Figueroa R, Santander-Massa R, Cornejo A, Link O, Jorquera E, Urbina MA. Microplastic concentration, distribution and dynamics along one of the largest Mediterranean-climate rivers: A whole watershed approach. ENVIRONMENTAL RESEARCH 2022; 209:112808. [PMID: 35085565 DOI: 10.1016/j.envres.2022.112808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) have been recognized as one of the most ubiquitous environmental pollutants globally. They have been found in all ecosystems studied to date, threatening biological diversity, ecosystem functioning and human health. The present study aimed to elucidate the environmental and anthropogenic drivers of MP dynamics in the whole catchment of the Biobío river, one of the largest rivers in South America. MP concentration and characteristics were analysed in 18 sites subjected to different sources of pollution and other human-related impacts. The sampling sites were classified in relation to altitudinal zones (highland, midland and lowland) and ecosystem types (fluvial and reservoir), and different water and territorial environmental variables were further collated and considered for analysis. Seven types of microplastic polymers were identified in the samples analysed, with a catchment mean (±SE) MP concentration of 22 ± 0.4 particles m-3, and MP presence being significantly higher in lowlands (26 ± 2 particle m-3) and in reservoirs (42 ± 14 particle m-3). The most abundant type of MP was fragments (84%), with a mean concentration of 37 ± 6 particles m-3. Overall, MP concentrations were low compared to those found in other studies, with a strong influence of human population size.
Collapse
Affiliation(s)
- Francisco Correa-Araneda
- Unidad de Cambio Climático y Medio Ambiente, Instituto Iberoamericano de Desarrollo Sostenible, Universidad Autónoma de Chile, Temuco, Chile
| | - Javier Pérez
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Alan M Tonin
- Aquariparia/Limnology Lab, Department of Ecology, IB, University of Brasília, Brasília, Brazil
| | - Carlos Esse
- Unidad de Cambio Climático y Medio Ambiente, Instituto Iberoamericano de Desarrollo Sostenible, Universidad Autónoma de Chile, Temuco, Chile
| | - Luz Boyero
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - María Elisa Díaz
- Departamento de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco, Chile
| | - Ricardo Figueroa
- Department of Aquatic Systems, Faculty of Environmental Sciences, University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Rodrigo Santander-Massa
- Unidad de Cambio Climático y Medio Ambiente, Instituto Iberoamericano de Desarrollo Sostenible, Universidad Autónoma de Chile, Temuco, Chile; Universidad Austral de Chile, Facultad de Ciencias Forestales y Recursos Naturales, Escuela de Graduados, Valdivia, Chile
| | - Aydeé Cornejo
- Freshwater Macroinvertebrate Laboratory. Zoological Collection Dr. Eustorgio Mendez, Gorgas Memorial Institute for Health Studies (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593, Panama City, Panama
| | - Oscar Link
- Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile
| | - Erika Jorquera
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile; Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, PO Box 1313, Concepción, Chile.
| |
Collapse
|