1
|
Dar OI, Vinothkanna A, Ke X, Chen L, Gao Y, Wang P, Jia AQ. Triclosan-mediated metabolic oxidative stress-triggered cytoskeletal alterations in zebrafish gills and intestine: An integrated biomolecular and NMR-based metabolomics study. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138251. [PMID: 40239525 DOI: 10.1016/j.jhazmat.2025.138251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Triclosan (TCS) is a common disinfectant in consumer products, raising concerns about its effects on aquatic life. This study assessed the accumulation and impact of TCS on zebrafish (Danio rerio) by examining histological, biochemical, and NMR-based metabolomic changes in gill and intestinal tissue after 30 d of exposure to environmental concentrations (30, 50, and 70 µg/L). Both tissues showed TCS accumulation, which resulted in histopathological damage. The activity of catalase, lactate dehydrogenase, and acetylcholinesterase increased, while superoxide dismutase and glutathione S-transferase declined. Conversely, the content of malondialdehyde rose, but soluble protein decreased. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis displayed a varied spectrum of protein profiles, demonstrating alterations in the cytoskeletal proteins. Fourier-transform infrared spectroscopy indicated concentration-dependent alterations in the cytoskeletal protein secondary structures. Gene expression studies revealed alterations in the mRNA expression of genes associated with oxidative stress (sod-Cu/Zn, cat and mgst3b), metabolism (ldha), neural activity (ache), and cytoskeletal dynamics (actn4, myl9a, tpma, tuba1b and desmb). Nuclear magnetic resonance spectroscopy revealed significant changes in metabolic pathway profiles, validated by amino acid analysis. These results suggest that TCS can disrupt aquatic ecosystems by inducing oxidative stress, affecting cytoskeletal dynamics, and modifying metabolic processes.
Collapse
Affiliation(s)
- Owias Iqbal Dar
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China; Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Annadurai Vinothkanna
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Xiaosu Ke
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Ligang Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Peng Wang
- Hainan Key Laboratory of Marine Geological Resources and Environment; Hainan Geological Survey Institute, Haikou 570206, China.
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
2
|
Chand N, Krause S, Prajapati SK. The potential of microplastics acting as vector for triclosan in aquatic environments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107381. [PMID: 40311399 DOI: 10.1016/j.aquatox.2025.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
There is increased evidence of the co-occurrence of microplastics (MPs) with other co-pollutants in surface water globally, leading to ecological and environmental concerns. The risks and toxicity of co-occurring pollutants largely depend on the mechanisms controlling the activation of their various sources, their fate and transport in different environmental media. Due to their size-specific surface area, MPs in the environment can have a strong affinity for interactions with hydrophobic compounds and have a high sorption capacity for various emerging contaminants (ECs). ECs like the antibacterial and antifungal agent such as Triclosan (TCS) are persistent in the environment. Moreover, TCS in aquatic environments has a low solubility, and high octanol-water partitioning co-efficient which raises the possibility of TCS to interact with other environmental pollutants such as MPs. The interactions of TCS with MPs in the environment are controlled by a range of mechanism such as hydrogen bonding, hydrophobic interactions, π-π interactions as well as electrostatic interactions. The interacting behaviour of these driving forces needs to be fully understood to determine how the co-occurrence of TCS and MPs may lead to adverse effects on the biological functioning of aquatic ecosystems. Hence, here we conduct a systematic review of the current state-of-the-art and synthesize the available knowledge of how MPs can act as vectors for TCS in aquatic environments. This review reveals MP and TCS interactions in aquatic ecosystems, their individual and collective fate, and toxicological impacts on aquatic organisms, evidencing that MPs can act as potential vectors for transporting TCS across different trophic levels. This review also reveals critical limitations in the research of the combined toxicity and interactions of co-occurring MPs and TCS. Based on the rigorous review of the current knowledge base, we propose that multifactorious investigations along with long-terms monitoring are crucial to fully understand the impacts of co-occurring MPs and TCS in aquatic systems to underline future mitigation policies and management plans.
Collapse
Affiliation(s)
- Naveen Chand
- Environment and Biofuel Research Lab (EBRL), Hydro and Renewable Energy Department, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand - 247667 India.
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK; LEHNA- Laboratoire d'ecologie des hydrosystemes naturels et anthropises, University of Lyon, Darwin C & Forel, 3-6 Rue Raphaël Dubois, 69622 Villeurbanne, France; BISCA - Birmingham Institute of Sustainability and Climate Action, Birmingham, UK.
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Hydro and Renewable Energy Department, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand - 247667 India.
| |
Collapse
|
3
|
Yang Y, Leung CT, Yang J, Wang Q, Shao Y, Kang B, Wong AST, Wu RSS, Lai KP. Epigenetic Responses Induced by Transgenerational and Multigenerational Exposure Alter the Plasticity of Fish to Neurotoxic Effects of Triclosan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40492829 DOI: 10.1021/acs.est.4c14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
Triclosan (TCS), a common antimicrobial agent, is widely detected in the global environments nowadays globally. Using marine medaka as a model, this study investigated and compared the transgenerational and multigenerational neurotoxic effects on fish. The environmentally realistic concentration of TCS can induce hyperlocomotor activities and increase heart rate, while higher concentrations (>500 μg/L) can inhibit hatching and cause cardiovascular malformations and neurotransmitter imbalances. Parental (F0) exposure to TCS resulted in transgenerational effects on locomotor activities manifested in F2, alongside with alterations in phototransduction and cell adhesion pathways. Global DNA methylation analyses indicated that the observed transgenerational effects are mediated through relevant epigenetic changes. Multigenerational exposure to TCS increased locomotor activities from F1 to F3, which is associated with changes in the expression of genes related to eye structure, phototransduction, and lipid and retinol metabolisms, thereby affecting energy metabolism and visual function. Results of this study highlight the difference between transgenerational and multigenerational effects of TCS exposure, and potential biases incurred in current risk assessment based exclusively on data derived from F0, which presents challenges for environmental management and regulatory standards.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
| | - Chi Tim Leung
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China
| | - Jing Yang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
| | - Qi Wang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
| | - Yetong Shao
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
| | - Bin Kang
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Alice Sze-Tsai Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, PR China
| | - Rudolf Shiu Sun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, PR China
| | - Keng Po Lai
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, PR China
| |
Collapse
|
4
|
Ding P, Zhang J, Li X, Ma P, Hu G, Zhang L, Yu Y. Transgenerational thyroid hormone disruption in zebrafish induced by environmentally relevant concentrations of triclosan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126242. [PMID: 40222611 DOI: 10.1016/j.envpol.2025.126242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
The use of triclosan (TCS)-containing disinfectants has become increasingly prevalent in response to the COVID-19 pandemic, leading to a heightened presence of TCS in aquatic ecosystems. Thyroid hormones (THs), which are essential for numerous developmental and metabolic processes, are structurally similar to TCS, rendering it prone to exert endocrine-disrupting effects. In this study, we demonstrate that TCS can induce thyroid hormone disruption in zebrafish, with transgenerational consequences. Zebrafish embryos were exposed to environmentally relevant concentrations of TCS (0, 1, 3, and 10 μg/L) for 30, 60, and 180 days. TCS accumulated in zebrafish over an extended period, causing significant, dose-dependent alterations in TH levels. Furthermore, TCS significantly thereby interfered with the expression of thyroid axis-related genes in the P0-F1 generations. Molecular docking further confirmed that TCS induces transgenerational thyroid effects through potentially strong interactions with thyroglobulin (TG), interfering with the normal physiological function of THs. These findings suggest that TCS at environmentally relevant concentrations can exert ecologically harmful effects by disrupting THs. A rigorous ecological assessment of TCS is recommended before promoting or substituting antimicrobial agents in future disinfection products.
Collapse
Affiliation(s)
- Ping Ding
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jiayi Zhang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Xin Li
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Pengcheng Ma
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Guocheng Hu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Lijuan Zhang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Yunjiang Yu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
5
|
Nie Y, Yu S, Zhang L, Wang Z, Liu R, Liu Y, Zhu W, Zhou Z, Diao J. The Opposite Effects of Atrazine and Warming on the Reproductive Processes in Female Lizards ( Eremias argus): Potential Roles of Hypothalamic-Pituitary-Gonadal Axis Regulation and Energy Metabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9412-9425. [PMID: 40335436 DOI: 10.1021/acs.est.4c13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Declines in reptile populations due to climate warming and environmental pollution have been documented. Although recent ecotoxicological studies of reptiles have increased, little is known about how these two stressors interact to affect reptile reproductive processes. This study investigated the single and combined effects of atrazine and warming on reproduction in female lizards (Eremias argus) following 10 weeks of exposure to environmentally relevant concentrations of atrazine (0-10 mg·kg-1) at two temperature treatments (control or warming). Reproductive traits, clutch characteristics, and endpoints related to endocrine disruption (HPG axis gene expression) and energy metabolism (enzyme activity, hepatic metabolomics) were assessed. Atrazine inhibits female reproduction by disrupting HPG axis-related gene expression and energy metabolism, resulting in delayed spawning time and reduced fecundity. In contrast, warming promoted female reproduction and partly alleviated the inhibitory effects of atrazine, which is related to the upregulation of HPG axis-related gene expression and an additional energy metabolism compensatory response. Additionally, atrazine and/or warming altered the direction and intensity of the trade-off between egg number and size and affected maternal nutritional investment in eggs. These findings highlight the complex interplay of environmental stressors on lizard reproduction and add to a better understanding of reptile reproductive strategies and ecological consequences under environmental stress.
Collapse
Affiliation(s)
- Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Luyao Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Rui Liu
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Ramamurthy K, Shiny M, Madesh S, Dharshan SS, Vedula GS, Gatasheh MK, Kumaradoss KM, Arockiaraj J. Isatin-linked pyrazole K1 derivative alter the phosphatidylinositol-3-kinase pathway by enhancing the metabolic function and folliculogenesis in the triclosan-induced PCOS-like condition in zebrafish model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104695. [PMID: 40216343 DOI: 10.1016/j.etap.2025.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/22/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Polycystic ovarian syndrome (PCOS), which causes hormonal imbalance, inflammation, and metabolic disorders, requires several treatments. This study aimed to examine the Isatin-linked pyrazole K1 derivative's effectiveness in PCOS induced by environmental contaminants such as triclosan, specifically assessing its biochemical, metabolic, and reproductive impacts. Isatin-linked pyrazole K1 derivative was synthesised in the lab and tested in vitro and in vivo, including cytotoxicity testing in CHO cells, apoptosis analysis in AO/PI staining, and developmental toxicity in zebrafish embryos. In addition, for network pharmacology analysis, BindingDB, GeneCard, and other databases were used to characterise the interaction of K1 derivative with PCOS-related genes and pathways, followed by examining the apoptosis in CHO cells, estimation of total cholesterol and triglycerides in adipose tissue of zebrafish. Furthermore, GSI%, follicular stage examination, collagen accumulation, nucleic acid staining by toluidine blue, and gene expression of cyp19a1a, dennd1a, tox3, pik3ca, and pik3cd were examined. The research found that K1 reduces various PCOS pathologies, improving folliculogenesis, overall ovarian function, and follicular growth. K1 treatment at 25 µM significantly enhanced SOD (1.470 ± 0.01533 U/ml), CAT (1.174 ± 0.008687 U/ml), and GSH (1.375 ± 0.006409 U/ml) levels while reducing LDH activity (0.9815 ± 0.01273 nmol/mg), demonstrating its ability to mitigate oxidative stress and cellular damage. In particular, K1 modulates insulin sensitivity by reducing the blood glucose level in PCOS-induced fish and lowering lipid levels, which is essential for treating PCOS metabolic symptoms. K1 derivative also significantly reduced collagen deposition in ovarian tissues, indicating K1 may reduce PCOS-related fibrosis, which suggests that the derivative may be a novel therapeutic agent for PCOS. The comprehensive approach of K1 addresses metabolic and reproductive concerns; however, clinical studies must be conducted to test these findings' efficacy and safety and understand its therapeutic molecular processes.
Collapse
Affiliation(s)
- Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Marapatla Shiny
- Department of Pharmaceutical Chemistry, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh 530003, India
| | - S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Santhanam Sanjai Dharshan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Girija Sastry Vedula
- Department of Pharmaceutical Chemistry, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh 530003, India
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India.
| |
Collapse
|
7
|
Kumar S, D'Souza LC, Shaikh FH, Rathor P, Ratnasekhar CH, Sharma A. Multigenerational immunotoxicity assessment: A three-generation study in Drosophila melanogaster upon developmental exposure to triclosan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125860. [PMID: 39954761 DOI: 10.1016/j.envpol.2025.125860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Triclosan (TCS) is widely used as an antibacterial agent, nevertheless, its presence in different environmental matrices and its persistent environmental nature pose a significant threat to the organism, including humans. Numerous studies showed that TCS exposure could lead to multiple toxicities, including immune dysfunction. However, whether parental TCS exposure could impair the offspring's immune response remains limited. Maintaining the immune homeostasis is imperative to neutralize the pathogen and crucial for tissue repair and the organism's survival. Thus, this study aimed to assess the multigenerational immune response of TCS using Drosophila melanogaster. TCS was administered to organisms (1.0, 10, and 100.0 μg/mL) over three generations during their developing phases, and its effect on the immunological response of the unexposed progeny was evaluated. Total circulatory hemocyte (immune cells) count, crystal cell count, phagocytic activity, clotting time, gene expression related to immune response and epigenetics, ROS generation, and cell death were assessed in the offspring. A concentration-dependent decline in total hemocytes, crystal cells, phagocytic activity, and increased clotting time in the subsequent generations was observed. Furthermore, parental TCS exposure enhanced the ROS levels, induced cell death, and altered the expression of antimicrobial peptides drosomycin, diptericin, and inflammatory genes upd1, upd2, and upd3, in the offspring's hemocytes across successive generations. The upregulation of reaper hid, and grim suggests that TCS promotes apoptotic death in the offspring's hemocytes. Notably, the increased mRNA expression of epigenetic regulators dnmt2 and g9a in the hemocytes of the offspring indicates epigenetic modifications. Further, we also observed that the antioxidant N-acetylcysteine (NAC) supplementation to the parents alleviated TCS toxicity and improved immunological functions in the progeny, indicating the role of ROS in the TCS-induced multigenerational immune toxicity. This finding provides valuable insights into the potential immune risk of prenatal TCS exposure to their offspring in the higher organism.
Collapse
Affiliation(s)
- Sandeep Kumar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Faiz Hanif Shaikh
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Priya Rathor
- Metabolomics Lab, Council of Scientific and Industrial Research (CSIR)-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, India
| | - C H Ratnasekhar
- Metabolomics Lab, Council of Scientific and Industrial Research (CSIR)-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, India
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
8
|
Zhao N, Xu A, Yang J, Zhao J, Xie J, Li B, Duan J, Cao G. Triclosan Caused Oocyte Meiotic Arrest by Modulating Oxidative Stress, Organelle Dysfunctions, Autophagy, and Apoptosis in Pigs. Animals (Basel) 2025; 15:802. [PMID: 40150331 PMCID: PMC11939393 DOI: 10.3390/ani15060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Triclosan (TCS) is a highly effective broad-spectrum antibacterial agent; however, the specific roles of TCS in oocyte maturation remain poorly understood. This research investigated the influence of TCS on biologically active processes during the in vitro maturation of porcine oocytes. Our results demonstrated that TCS significantly decreased the maturation rate of porcine oocytes in a concentration-dependent manner and impaired cumulus expansion. These detrimental effects were mediated by the disruption of mitochondrial function and distribution, leading to oxidative stress characterized by an accumulation of reactive oxygen species (ROS), a decrease in the expression of the antioxidant enzymes SOD2 and GSH, reduced ATP production, and a loss of mitochondrial membrane potential (ΔΨm). We also observed interference with endoplasmic reticulum (ER) distribution, disturbances in Ca2+ homeostasis, and fluctuations in ER stress, as evidenced by reduced expression of ER stress-related proteins. Furthermore, TCS exposure induced autophagy, as indicated by the levels of SQSTM1 (P62) and LC3-II. Additionally, TCS increased apoptosis rates, corresponding with a downregulation of Bcl-2 expression. Collectively, our findings suggest that exposure to TCS can impair cytoplasmic function, thereby affecting oocyte quality.
Collapse
Affiliation(s)
- Ning Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (N.Z.); (A.X.); (J.Y.); (J.Z.); (J.X.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Anli Xu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (N.Z.); (A.X.); (J.Y.); (J.Z.); (J.X.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Jingxian Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (N.Z.); (A.X.); (J.Y.); (J.Z.); (J.X.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Jianan Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (N.Z.); (A.X.); (J.Y.); (J.Z.); (J.X.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Junhao Xie
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (N.Z.); (A.X.); (J.Y.); (J.Z.); (J.X.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (N.Z.); (A.X.); (J.Y.); (J.Z.); (J.X.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Jiaxin Duan
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (N.Z.); (A.X.); (J.Y.); (J.Z.); (J.X.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (N.Z.); (A.X.); (J.Y.); (J.Z.); (J.X.); (B.L.)
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong 030801, China
| |
Collapse
|
9
|
Santhi JJ, Issac PK, Velayutham M, Hussain SA, Shaik MR, Shaik B, Guru A. Reproductive toxicity of perfluorobutane sulfonate in zebrafish (Danio rerio): Impacts on oxidative stress, hormone disruption and HPGL axis dysregulation. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110122. [PMID: 39788358 DOI: 10.1016/j.cbpc.2025.110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Per and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals extensively used in consumer products. Perfluorobutane sulfonate (PFBS), a short-chain PFAS, has been introduced as an alternative to long-chain PFAS, but limited studies have investigated its reproductive toxicity in fish. In this study, adult zebrafish were exposed to PFBS at concentrations of 0.14, 1.4, and 14 μM for 28 days. PFBS accumulation in male and female gonads was confirmed by specific mass spectrum peaks detected in exposed samples. PFBS exposure at 14 μM significantly reduced egg production and hatching rates. The gonadosomatic index (GSI) was decreased by 73 % in males and 50 % in females compared to the control. PFBS impaired antioxidant enzyme activity, with superoxide dismutase (SOD) 4.73 U/mg protein in testes and 3.46 U/mg protein in ovaries, leading to elevated lipid peroxidation and nitric oxide levels in males (0.053 μmol/mg/ml and 5.65 μM) and females (0.047 μmol/mg/ml and 4.01 μM), respectively. PFBS exposure induced endocrine disruption through the hypothalamic-pituitary-gonadal-liver (HPGL) axis, showing increased estrogen (50 pg/g) in males and testosterone (181.6 pg/g) in females. Gene expression analysis revealed significant alteration in the HPGL axis, including cyp19b, er2b, fshb, lhb, 17βhsd, lhr, cyp19a, and vtg, indicating PFBS influence on sex hormone synthesis. Histopathological analysis of PFBS exposure groups revealed a reduction of spermatozoa in the testes and late vitellogenic oocytes in the ovaries. Overall, the result of the present study indicates that PFBS exposure induces oxidative stress, disrupts hormone synthesis, dysregulates HPGL axis gene expression, and causes reproductive toxicity in both male and female zebrafish.
Collapse
Affiliation(s)
- Jenila John Santhi
- Institute of Biotechnology, Department of Medical Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India.
| | - Manikandan Velayutham
- Institute of Biotechnology, Department of Medical Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box-2454, Riyadh 11451, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Baji Shaik
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
10
|
Liang H, Pan CG, Peng FJ, Hu JJ, Zhu RG, Zhou CY, Liu ZZ, Yu K. Integrative transcriptomic analysis reveals a broad range of toxic effects of triclosan on coral Porites lutea. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136033. [PMID: 39368358 DOI: 10.1016/j.jhazmat.2024.136033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Triclosan (TCS) is an antimicrobial agent commonly used in personal care products. However, little is known about its toxicity to corals. Here, we examined the acute toxic effects (96 h) of TCS at different levels to the coral Porites lutea. Results showed that the bioaccumulation factors (BAFs) of TCS in Porites lutea decreased with increasing TCS exposure levels. Exposure to TCS at the level up to 100 μg/L did not induce bleaching of Porites lutea. However, by the end of the experiment, both the density and chlorophyll a content of the symbiotic zooxanthellae were 19-52 % and 19.9-45.6 % lower in the TCS treatment groups than in the control, respectively. For the coral host, its total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and catalase (CAT) activities were all significantly lower in the TCS treatment groups than the control. Transcriptome analysis showed that 942 and 1077 differentially expressed genes (DEGs) were identified in the coral host in the 0.5 and 100 μg/L TCS treatment groups, respectively. Meanwhile, TCS can interfere with pathways related to immune system and reproductive system in coral host. Overall, our results suggest that environmentally relevant concentrations of TCS can impact both the coral host and the symbiotic zooxanthellae.
Collapse
Affiliation(s)
- Hao Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Feng-Jiao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jun-Jie Hu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Rong-Gui Zhu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chao-Yang Zhou
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhen-Zhu Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
11
|
Kim J, Choi J. Histone Methylation-Mediated Reproductive Toxicity to Consumer Product Chemicals in Caenorhabditis elegans: An Epigenetic Adverse Outcome Pathway (AOP). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19604-19616. [PMID: 39445662 PMCID: PMC11542887 DOI: 10.1021/acs.est.4c04061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The significance of histone methylation in epigenetic inheritance underscores its relevance to disease and the chronic effects of environmental chemicals. However, limited evidence of the causal relationships between chemically induced epigenetic changes and organismal-level effects hinders the application of epigenetic markers in ecotoxicological assessments. This study explored the contribution of repressive histone marks to reproductive toxicity induced by chemicals in consumer products in Caenorhabditis elegans, applying the adverse outcome pathway (AOP) framework. Triclosan (TCS) and tetrabromobisphenol A (TBBPA) exposures caused reproductive toxicity and altered histone methyltransferase (HMT) and histone demethylase (HDM) activities, increasing the level of trimethylation of H3K9 and H3K27. Notably, treatment with an H3K27-specific HMT inhibitor alleviated reproductive defects and the transcriptional response of genes related to vitellogenin, xenobiotic metabolism, and oxidative stress. Comparison of points of departure (PODs) based on calculated benchmark concentrations (BMCs) revealed the sensitivity of histone-modifying enzyme activities to these chemicals. Our findings suggest that the 'disturbance of HMT and HDM' can serve as the molecular initiating event (MIE) leading to reproductive toxicity in the epigenetic AOP for TCS and TBBPA. The study extended the biological applicability of these enzymes by identifying model species with analogous protein sequences and functions. This combined approach enhances the essentiality, empirical support, and taxonomic domain of applicability (tDOA), which are crucial considerations for ecotoxicological AOPs. Given the widespread use and environmental distribution of chemicals in consumer products, this study proposes histone-modifying enzyme activity as an effective screening tool for reproductive toxicants and emphasizes the integration of epigenetic mechanisms into a prospective ERA.
Collapse
Affiliation(s)
- Jiwan Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic
of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic
of Korea
| |
Collapse
|
12
|
Li R, Qu J, Hu X, Song T, Hu J, Fan X, Zhang Y, Xia W, Yu T. Anxiety caused by chronic exposure to methylisothiazolinone in zebrafish: Behavioral analysis, brain histology and gene responses. CHEMOSPHERE 2024; 368:143767. [PMID: 39557093 DOI: 10.1016/j.chemosphere.2024.143767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Methylisothiazolinones (MIT) are a class of preservatives and biocides extensively utilized in everyday products, industrial processes, and medical and healthcare applications. However, reports have indicated that MIT may cause skin irritation and neurotoxicity. Given its pervasive use, the neurotoxic potential of MIT has garnered increasing attention. Recent in vitro cellular experiments have demonstrated that MIT inhibits synaptic growth, although the neurotoxic effects and underlying mechanisms at the organismal level remain largely unexplored. In this study, it was found for the first time that long-term exposure to MIT resulted in anxiety, brain tissue inflammation, and a reduction in the number of Nissl bodies in the brain. Additionally, transcriptomic analysis indicated that exposure to 300 μg/L MIT induced a greater number of differentially expressed genes compared to 30 μg/L MIT, relative to the control group. Enrichment analysis, trend analysis, and GSEA analysis collectively identified the involvement of Steroid hormone metabolism, oxidative metabolism, and the Hedgehog pathway in MIT-induced neurotoxicity. Furthermore, a subsequent reduction in green fluorescence was observed in the MLS-EGFP zebrafish strain larvae of the HD group, suggesting that high dosage of MIT exerts an inhibitory effect on mitochondrial activity. This study confirmed the neurotoxic effects of MIT and investigated the potential genetic networks behind anxiety behavior. These findings contributed to the identification of key brain genes involved in the detection and monitoring of MIT, offering new insights into the neuroendocrine toxicity of other imidazolidinone compounds.
Collapse
Affiliation(s)
- Rui Li
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China.
| | - Jiangbo Qu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Xinyuan Hu
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Tianjia Song
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Junxia Hu
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Xuesong Fan
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Yuanqing Zhang
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Weili Xia
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Tiangui Yu
- Shandong Provincial Key Medical and Health Laboratory of Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| |
Collapse
|
13
|
Liu J, Xu F, Guo M, Song Y. Triclosan exposure causes abnormal bile acid metabolism through IL-1β-NF-κB-Fxr signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116989. [PMID: 39260212 DOI: 10.1016/j.ecoenv.2024.116989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Triclosan (TCS) is an eminent antibacterial agent. However, extensive usage causes potential health risks like hepatotoxicity, intestinal damage, kidney injury, etc. Existing studies suggested that TCS would disrupt bile acid (BA) enterohepatic circulation, but its toxic mechanism remains unclear. Hence, the current study established an 8-week TCS exposure model to explore its potential toxic mechanism. The results discovered 8 weeks consecutive administration of TCS induced distinct programmed cell death, inflammatory cell activation and recruitment, and excessive BA accumulation in liver. Furthermore, the expression of BA synthesis and transport associated genes were significantly dysregulated upon TCS treatment. Additional mechanism exploration revealed that Fxr inhibition induced by TCS would be the leading cause for unusual BA biosynthesis and transport. Subsequent Fxr up-stream investigation uncovered TCS exposure caused pyroptosis and its associated IL-1β would be the reason for Fxr reduction mediated by NF-κB. NF-κB blocking by dimethylaminoparthenolide ameliorated TCS induced BA disorder which confirmed the contribution of NF-κB in Fxr repression. To sum up, our findings conclud TCS-caused BA disorder is attributed to Fxr inhibition, which is regulated by the IL-1β-NF-κB signaling pathway. Hence, we suggest Fxr would be a potential target for abnormal BA stimulated by TCS and its analogs.
Collapse
Affiliation(s)
- Jing Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fang Xu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Mingzhu Guo
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
14
|
Wang Z, Han X, Su X, Yang X, Wang X, Yan J, Qian Q, Wang H. Analysis of key circRNA events in the AOP framework of TCS acting on zebrafish based on the data-driven. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116507. [PMID: 38838465 DOI: 10.1016/j.ecoenv.2024.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Triclosan (TCS) is a broad-spectrum antibiotic widely used in various personal care products. Research has found that exposure to TCS can cause toxic effects on organisms including neurotoxicity, cardiotoxicity, disorders of lipid metabolism, and abnormal vascular development, and the corresponding toxic mechanisms are gradually delving into the level of abnormal expression of miRNA regulating gene expression. Although the downstream mechanism of TCS targeting miRNA abnormal expression to induce toxicity is gradually improving, its upstream mechanism is still in a fog. Starting from the abnormal expression data of circRNA in zebrafish larvae induced by TCS, this study conducted a hierarchical analysis of the expression levels of all circRNAs, differential circRNAs, and trend circRNAs, and identified 29 key circRNA events regulating miRNA abnormal expression. In combination with GO and KEGG, the effects of TCS exposure were analyzed from the function and signaling pathway of the corresponding circRNA host gene. Furthermore, based on existing literature evidence about the biological toxicity induced by TCS targeting miRNA as data support, a competing endogenous RNAs (ceRNA) network characterizing the regulatory relationship between circRNA and miRNA was constructed and optimized. Finally, a comprehensive Adverse Outcome Pathway (AOP) framework of multiple levels of events including circRNA, miRNA, mRNA, pathway, and toxicity endpoints was established to systematically elucidate the toxic mechanism of TCS. Moreover, the rationality of the AOP framework was verified from the expression level of miRNA and adverse outcomes such as neurotoxicity, cardiotoxicity, oxidative stress, and inflammatory response by knockdown of circRNA48. This paper not only provides the key circRNA events for exploring the upstream mechanism of miRNA regulating gene expression but also provides an AOP framework for comprehensively demonstrating the toxicity mechanism of TCS on zebrafish, which is a theoretical basis for subsequent hazard assessment and prevention and control of TCS.
Collapse
Affiliation(s)
- Zejun Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaowen Han
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xincong Su
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao Yang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
15
|
Li Z, Xian H, Ye R, Zhong Y, Liang B, Huang Y, Dai M, Guo J, Tang S, Ren X, Bai R, Feng Y, Deng Y, Yang X, Chen D, Yang Z, Huang Z. Gender-specific effects of polystyrene nanoplastic exposure on triclosan-induced reproductive toxicity in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172876. [PMID: 38692326 DOI: 10.1016/j.scitotenv.2024.172876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Nanoplastics (NPs) and triclosan (TCS) are ubiquitous emerging environmental contaminants detected in human samples. While the reproductive toxicity of TCS alone has been studied, its combined effects with NPs remain unclear. Herein, we employed Fourier transform infrared spectroscopy and dynamic light scattering to characterize the coexposure of polystyrene nanoplastics (PS-NPs, 50 nm) with TCS. Then, adult zebrafish were exposed to TCS at environmentally relevant concentrations (0.361-48.2 μg/L), with or without PS-NPs (1.0 mg/L) for 21 days. TCS biodistribution in zebrafish tissues was investigated using ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Reproductive toxicity was assessed through gonadal histopathology, fertility tests, changes in steroid hormone synthesis and gene expression within the hypothalamus-pituitary-gonad-liver (HPGL) axis. Transcriptomics and proteomics were applied to explore the underlying mechanisms. The results showed that PS-NPs could adsorb TCS, thus altering the PS-NPs' physical characteristics. Our observations revealed that coexposure with PS-NPs reduced TCS levels in the ovaries, livers, and brains of female zebrafish. Conversely, in males, coexposure with PS-NPs increased TCS levels in the testes and livers, while decreasing them in the brain. We found that co-exposure mitigated TCS-induced ovary development inhibition while exacerbated TCS-induced spermatogenesis suppression, resulting in increased embryonic mortality and larval malformations. This co-exposure influenced the expression of genes linked to steroid hormone synthesis (cyp11a1, hsd17β, cyp19a1) and attenuated the TCS-decreased estradiol (E2) in females. Conversely, testosterone levels were suppressed, and E2 levels were elevated due to the upregulation of specific genes (cyp11a1, hsd3β, cyp19a1) in males. Finally, the integrated analysis of transcriptomics and proteomics suggested that the aqp12-dctn2 pathway was involved in PS-NPs' attenuation of TCS-induced reproductive toxicity in females, while the pck2-katnal1 pathway played a role in PS-NPs' exacerbation of TCS-induced reproductive toxicity in males. Collectively, PS-NPs altered TCS-induced reproductive toxicity by disrupting the HPGL axis, with gender-specific effects.
Collapse
Affiliation(s)
- Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Mingzhu Dai
- Hunter Biotechnology, Inc., Hangzhou 310051, China
| | - Jie Guo
- Hunter Biotechnology, Inc., Hangzhou 310051, China
| | - Shuqin Tang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ruobing Bai
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Deng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Da Chen
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Department of Biology, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
16
|
Lombó M, Giommi C, Zarantoniello M, Chemello G. A Pretty Kettle of Fish: A Review on the Current Challenges in Mediterranean Teleost Reproduction. Animals (Basel) 2024; 14:1597. [PMID: 38891644 PMCID: PMC11171123 DOI: 10.3390/ani14111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The Mediterranean region is facing several environmental changes and pollution issues. Teleosts are particularly sensitive to these challenges due to their intricate reproductive biology and reliance on specific environmental cues for successful reproduction. Wild populations struggle with the triad of climate change, environmental contamination, and overfishing, which can deeply affect reproductive success and population dynamics. In farmed species, abiotic factors affecting reproduction are easier to control, whereas finding alternatives to conventional diets for farmed teleosts is crucial for enhancing broodstock health, reproductive success, and the sustainability of the aquaculture sector. Addressing these challenges involves ongoing research into formulating specialized diets, optimizing feeding strategies, and developing alternative and sustainable feed ingredients. To achieve a deeper comprehension of these challenges, studies employing model species have emerged as pivotal tools. These models offer advantages in understanding reproductive mechanisms due to their well-defined physiology, genetic tractability, and ease of manipulation. Yet, while providing invaluable insights, their applicability to diverse species remains constrained by inherent variations across taxa and oversimplification of complex environmental interactions, thus limiting the extrapolation of the scientific findings. Bridging these gaps necessitates multidisciplinary approaches, emphasizing conservation efforts for wild species and tailored nutritional strategies for aquaculture, thereby fostering sustainable teleost reproduction in the Mediterranean.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, 24071 León, Spain
| | - Christian Giommi
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
| | - Giulia Chemello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| |
Collapse
|
17
|
Wang F. Reproductive endocrine disruption effect and mechanism in male zebrafish after life cycle exposure to environmental relevant triclosan. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106899. [PMID: 38492288 DOI: 10.1016/j.aquatox.2024.106899] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Triclosan (TCS) is a wide-spectrum antibacterial agent that is found in various water environments. It has been reported to have estrogenic effects. However, the impact of TCS exposure on the reproductive system of zebrafish (Danio rerio) throughout their life cycle is not well understood. In this study, zebrafish fertilized eggs were exposed to 0, 10, and 50 μg/L TCS for 120 days. The study investigated the effects of TCS exposure on brain and testis coefficients, the expression of genes related to the hypothalamus-pituitary-gonadal (HPG) axis, hormone levels, vitellogenin (VTG) content, histopathological sections, and performed RNA sequencing of male zebrafish. The results revealed that life cycle TCS exposure had significant effects on zebrafish reproductive parameters. It increased the testis coefficient, while decreasing the brain coefficient. TCS exposure also led to a decrease in mature spermatozoa and altered the expression of genes related to the HPG axis. Furthermore, TCS disrupted the balance of sex hormone levels and increased VTG content of male zebrafish. Transcriptome sequencing analysis indicated that TCS affected reproductive endocrine related pathways, including PPAR signaling pathway, cell cycle, GnRH signaling pathway, steroid biosynthesis, cytokine-cytokine receptor interaction, and steroid hormone biosynthesis. Protein-protein interaction (PPI) network analysis confirmed the enrichment of hub genes in these pathways, including bub1bb, ccnb1, cdc20, cdk1, mcm2, mcm5, mcm6, plk1, and ttk in the brain, as well as fabp1b.1, fabp2, fabp6, ccr7, cxcl11.8, hsd11b2, and hsd3b1 in the testis. This study sheds light on the reproductive endocrine-disrupting mechanisms of life cycle exposure to TCS.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, No. 6 Jiqing Road, Yibin District, Luoyang 471022, China.
| |
Collapse
|
18
|
Lee JS, Lee JS, Kim HS. Toxic effects of triclosan in aquatic organisms: A review focusing on single and combined exposure of environmental conditions and pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170902. [PMID: 38354791 DOI: 10.1016/j.scitotenv.2024.170902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Triclosan (TCS) is an antibacterial agent commonly used in personal care products. Due to its widespread use and improper disposal, it is also a pervasive contaminant, particularly in aquatic environments. When released into water bodies, TCS can induce deleterious effects on developmental and physiological aspects of aquatic organisms and also interact with environmental stressors such as weather, metals, pharmaceuticals, and microplastics. Multiple studies have described the adverse effects of TCS on aquatic organisms, but few have reported on the interactions between TCS and other environmental conditions and pollutants. Because aquatic environments include a mix of contaminants and natural factors can correlate with contaminants, it is important to understand the toxicological outcomes of combinations of substances. Due to its lipophilic characteristics, TCS can interact with a wide range of substances and environmental stressors in aquatic environments. Here, we identify a need for caution when using TCS by describing not only the effects of exposure to TCS alone on aquatic organisms but also how toxicity changes when it acts in combination with multiple environmental stressors.
Collapse
Affiliation(s)
- Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
19
|
Shao X, Xiao D, Yang Z, Jiang L, Li Y, Wang Y, Ding Y. Frontier of toxicology studies in zebrafish model. J Appl Toxicol 2024; 44:488-500. [PMID: 37697940 DOI: 10.1002/jat.4543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Based on the 87 original publications only from quartiles 1 and 2 of Journal Citation Report (JCR) collected by the major academic databases (Science Direct, Web of Science, PubMed, and Wiley) in 2022, the frontier of toxicology studies in zebrafish model is summarized. Herewith, a total of six aspects is covered such as developmental, neurological, cardiovascular, hepatic, reproductive, and immunizing toxicities. The tested samples involve chemicals, drugs, new environmental pollutants, nanomaterials, and its derivatives, along with those related mechanisms. This report may provide a frontier focus benefit to researchers engaging in a zebrafish model for environment, medicine, food, and other fields.
Collapse
Affiliation(s)
- Xinting Shao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Xiao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoyi Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
20
|
Wang J, Zhao C, Feng J, Sun P, Zhang Y, Han A, Zhang Y, Ma H. Advances in understanding the reproductive toxicity of endocrine-disrupting chemicals in women. Front Cell Dev Biol 2024; 12:1390247. [PMID: 38606320 PMCID: PMC11007058 DOI: 10.3389/fcell.2024.1390247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Recently, there has been a noticeable increase in disorders of the female reproductive system, accompanied by a rise in adverse pregnancy outcomes. This trend is increasingly being linked to environmental pollution, particularly through the lens of Endocrine Disrupting Chemicals (EDCs). These external agents disrupt natural processes of hormones, including synthesis, metabolism, secretion, transport, binding, as well as elimination. These disruptions can significantly impair human reproductive functions. A wealth of animal studies and epidemiological research indicates that exposure to toxic environmental factors can interfere with the endocrine system's normal functioning, resulting in negative reproductive outcomes. However, the mechanisms of these adverse effects are largely unknown. This work reviews the reproductive toxicity of five major environmental EDCs-Bisphenol A (BPA), Phthalates (PAEs), Triclocarban Triclosan and Disinfection Byproducts (DBPs)-to lay a foundational theoretical basis for further toxicological study of EDCs. Additionally, it aims to spark advancements in the prevention and treatment of female reproductive toxicity caused by these chemicals.
Collapse
Affiliation(s)
- Jinguang Wang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Chunwu Zhao
- Gastrointestinal Surgery Center of Weifang People’s Hospital, Weifang, China
| | - Jie Feng
- Gynecology and Obstetrics Department, Fangzi District People’s Hospital, Weifang, China
| | - Pingping Sun
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuhua Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Ailing Han
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuemin Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Huagang Ma
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| |
Collapse
|
21
|
Qian Q, Pu Q, Li X, Liu X, Ni A, Han X, Wang Z, Wang X, Yan J, Wang H. Acute/chronic triclosan exposure induces downregulation of m 6A-RNA methylation modification via mettl3 suppression and elicits developmental and immune toxicity to zebrafish. CHEMOSPHERE 2024; 352:141395. [PMID: 38342143 DOI: 10.1016/j.chemosphere.2024.141395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Triclosan (TCS), a prevalent contaminant in aquatic ecosystems, has been identified as a potential threat to both aquatic biota and human health. Despite its widespread presence, research into the immunotoxic effects of TCS on aquatic organisms is limited, and the underlying mechanisms driving these effects remain largely unexplored. Herein, we investigated the developmental and immune toxicities of environmentally relevant concentrations of TCS in zebrafish, characterized by morphological anomalies, histopathological impairments, and fluctuations in cytological differentiation and biomarkers following both acute (from 6 to 72/120 hpf) and chronic exposure periods (from 30 to 100 dpf). Specifically, acute exposure to TCS resulted in a significant increase in innate immune cells, contrasted by a marked decrease in T cells. Furthermore, we observed that TCS exposure elicited oxidative stress and a reduction in global m6A levels, alongside abnormal expressions within the m6A modification enzyme system in zebrafish larvae. Molecular docking studies suggested that mettl3 might be a target molecule for TCS interaction. Intriguingly, the knock-down of mettl3 mirrored the effects of TCS exposure, adversely impacting the growth and development of zebrafish, as well as the differentiation of innate immune cells. These results provide insights into the molecular basis of TCS-induced immunotoxicity through m6A-RNA epigenetic modification and aid in assessing its ecological risks, informing strategies for disease prevention linked to environmental contaminants.
Collapse
Affiliation(s)
- Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qian Pu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xin Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - XingCheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaowen Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Huili Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
22
|
Liu B, Li P, Du RY, Wang CL, Ma YQ, Feng JX, Liu L, Li ZH. Long-term tralopyril exposure results in endocrinological and transgenerational toxicity: A two-generation study of marine medaka (Oryzias melastigma). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169344. [PMID: 38097088 DOI: 10.1016/j.scitotenv.2023.169344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/12/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
This study aims to investigate the impact of tralopyril, a newly developed marine antifouling agent, on the reproductive endocrine system and developmental toxicity of offspring in marine medaka. The results revealed that exposure to tralopyril (0, 1, 20 μg/L) for 42 days resulted in decreased reproductive capacity in marine medaka. Moreover, it disrupted the levels of sex hormones E2 and T, as well as the transcription levels of genes related to the HPG axis, such as cyp19b and star. Sex-dependent differences were observed, with females experiencing more pronounced effects. Furthermore, intergenerational toxicity was observed in F1 offspring, including increased heart rate, changes in retinal morphology and cartilage structure, decreased swimming activity, and downregulation of transcription levels of relevant genes (HPT axis, GH/IGF axis, cox, bmp4, bmp2, runx2, etc.). Notably, the disruption of the F1 endocrine system by tralopyril persisted into adulthood, indicating a transgenerational effect. Molecular docking analysis suggested that tralopyril's RA receptor activity might be one of the key factors contributing to the developmental toxicity observed in offspring. Overall, our study highlights the potential threat posed by tralopyril to the sustainability of fish populations, as it can disrupt the endocrine system and negatively impact aquatic organisms for multiple generations.
Collapse
Affiliation(s)
- Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ren-Yan Du
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cun-Long Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yu-Qing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jian-Xue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
23
|
Gan H, Lan H, Hu Z, Zhu B, Sun L, Jiang Y, Wu L, Liu J, Ding Z, Ye X. Triclosan induces earlier puberty onset in female mice via interfering with L-type calcium channels and activating Pik3cd. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115772. [PMID: 38043413 DOI: 10.1016/j.ecoenv.2023.115772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Triclosan (TCS) is a broad-spectrum antibacterial chemical widely presents in people's daily lives. Epidemiological studies have revealed that TCS exposure may affect female puberty development. However, the developmental toxicity after low-dose TCS continuous exposure remains to be confirmed. In our study, 8-week-old ICR female mice were continuously exposed to TCS (30, 300, 3000 μg/kg/day) or vehicle (corn oil) from 2 weeks before mating to postnatal day 21 (PND 21) of F1 female mice, while F1 female mice were treated with TCS intragastric administration from PND 22 until PND 56. Vaginal opening (VO) observation, hypothalamic-pituitary-ovarian (HPO) axis related hormones and genes detection, and ovarian transcriptome analysis were carried out to investigate the effects of TCS exposure on puberty onset. Meanwhile, human granulosa-like tumor cell lines (KGN cells) were exposed to TCS to further explore the biological mechanism of the ovary in vitro. The results showed that long-term exposure to low-dose TCS led to approximately a 3-day earlier puberty onset in F1 female mice. Moreover, TCS up-regulated the secretion of estradiol (E2) and the expression of ovarian steroidogenesis genes. Notably, ovarian transcriptomes analysis as well as bidirectional validation in KGN cells suggested that L-type calcium channels and Pik3cd were involved in TCS-induced up-regulation of ovarian-related hormones and genes. In conclusion, our study demonstrated that TCS interfered with L-type calcium channels and activated Pik3cd to up-regulate the expression of ovarian steroidogenesis and related genes, thereby inducing the earlier puberty onset in F1 female mice.
Collapse
Affiliation(s)
- Hongya Gan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Huili Lan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zhiqin Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Ling Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Yan Jiang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Lixiang Wu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
24
|
Samarakoon T, Fujino T. Toxicity of triclosan, an antimicrobial agent, to a nontarget freshwater zooplankton species, Moina macrocopa. ENVIRONMENTAL TOXICOLOGY 2024; 39:314-328. [PMID: 37705231 DOI: 10.1002/tox.23950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 09/15/2023]
Abstract
The toxicity of triclosan (TCS) on the freshwater cladoceran Moina macrocopa was investigated by acute and chronic toxicity assessments followed by genotoxicity and oxidative stress response analyses. The 48-h LC50 of TCS for ≤24-h-old M. macrocopa was determined as 539 μg L-1 . Chronic exposure to TCS at concentrations ranging from 5 to 100 μg L-1 showed a stimulatory effect at low concentrations (≤10 μg L-1 ) and an inhibitory effect at high concentrations (≥50 μg L-1 ) on growth, reproduction, and population-growth-related parameters of M. macrocopa. The genotoxicity test results indicated that TCS concentrations ranging from 50 to 100 μg L-1 can alter individuals' DNA. Analysis of the antioxidant enzymes catalase (CAT) and glutathione s-transferase (GST) demonstrated increased levels of these enzymes at high TCS concentrations. Our results indicated that TCS concentrations found in the natural environment have minimal acute toxicity to M. macrocopa. However, TCS at even low concentrations can significantly affect its growth, reproduction, and population-growth-related characteristics. The observed responses suggest a hormetic dose-response pattern and imply a potential endocrine-disrupting effect of TCS. Our molecular and biochemical findings indicated that high concentrations of TCS have the potential to induce oxidative stress that may lead to DNA alterations in M. macrocopa.
Collapse
Affiliation(s)
- Thilomi Samarakoon
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | - Takeshi Fujino
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
25
|
Deng S, Li C, Chen J, Cui Z, Lei T, Yang H, Chen P. Effects of triclosan exposure on stem cells from human exfoliated deciduous teeth (SHED) fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167053. [PMID: 37709070 DOI: 10.1016/j.scitotenv.2023.167053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Triclosan (TCS), a widely used broad-spectrum antibacterial agent and preservative, is commonly found in products and environments. Widespread human exposure to TCS has drawn increasing attention from researchers concerning its toxicological effect. However, minimal studies have focused on the impact of TCS exposure on human stem cells. Therefore, the aim of the present study was to evaluate the effects of TCS exposure on stem cells from human exfoliated deciduous teeth (SHED) and its molecular mechanisms. A series of experimental methods were conducted to assess cell viability, morphology, proliferation, differentiation, senescence, apoptosis, mitochondrial function, and oxidative stress after SHED exposure to TCS. Furthermore, transcriptome analysis was applied to investigate the response of SHED to different concentrations of TCS exposure and to explore the molecular mechanisms. We demonstrated that TCS has a dose-dependent proliferation and differentiation inhibition of SHED, while promoting cellular senescence, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and oxidative stress, as well as significantly induces apoptosis and autophagy flux inhibition at high concentrations. Interestingly, no significant morphological changes in SHED were observed after TCS exposure. Transcriptome analysis of normal and TCS-induced SHED suggested that SHED may use different strategies to counteract stress from different concentrations of TCS and showed significant differences. We discovered that TCS mediates cellular injury of SHED by enhancing the expression of PTEN, thereby inhibiting the phosphorylation levels of PI3K and AKT as well as mTOR expression. Collectively, our findings provide a new understanding of the toxic effects of TCS on human stem cell fate, which is important for determining the risk posed by TCS to human health.
Collapse
Affiliation(s)
- Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junqi Chen
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Shandong 250117, China
| | - Zhao Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province 425199, China.
| |
Collapse
|
26
|
Ma J, Zhu P, Wang W, Zhang X, Wang P, Sultan Y, Li Y, Ding W, Li X. Environmental impacts of chlorpyrifos: Transgenerational toxic effects on aquatic organisms cannot be ignored. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167311. [PMID: 37742960 DOI: 10.1016/j.scitotenv.2023.167311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Chlorpyrifos (CPF) has been extensively used in the world and frequently found in natural environments, might cause a range of environmental issues and pose a health risk to aquatic species. However, investigation of its toxic effects on offspring after parental exposure has been neglected, especially for aquatic organisms such as fish. In the current study, the effects of chronic CPF exposure (3 and 60 μg/L) on adult zebrafish (F0) was investigated to determine its influence on adult reproductive capacity and offspring (F1 and F2). The results showed the existence of CPF both in F0 ovaries and F1 embryos and larvae, indicating that CPF could be transferred directly from the F0 adult fish to F1 offspring. After 90 d exposure, we observed that F0 female fish showed increased proportion of perinucleolar oocyte in the ovaries, decreased proportion of mature oocyte, and decreased egg production, but not in F1 adult. The transcriptomic analysis revealed that the disruption of metabolism during oocyte maturation in the CPF treatment zebrafish might interfere with F0 oocytes development and quality and ultimately influence offspring survival. For the larvae, the parental CPF exposure distinctly inhibited heart rate at 72 and 120 hpf and increased the mortality of F1 but not F2 larvae. The changes of biochemical indicators confirmed a disturbance in the oxidative balance, induced inflammatory reaction and apoptosis in F1 larvae. Furthermore, the changing profiles of mRNA revealed by RNA-seq confirmed an increased susceptibility in F1 larvae and figured out potential disruptions of ROS metabolism, immune system, apoptosis, and metabolism pathways. Taken together, these results show that chronic CPF treatment can induce reproductive toxicity, and parental transfer of CPF occurs in fish, resulting in transgenerational alters in F1 generation survival and transcription that raising concerns on the ecological risk of CPF in the natural environment.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Penglin Zhu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenhua Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaodan Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Panliang Wang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
27
|
Xian H, Li Z, Ye R, Dai M, Feng Y, Bai R, Guo J, Yan X, Yang X, Chen D, Huang Z. 4-Methylbenzylidene camphor triggers estrogenic effects via the brain-liver-gonad axis in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122260. [PMID: 37506809 DOI: 10.1016/j.envpol.2023.122260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
4-Methylbenzylidene camphor (4-MBC), an emerging contaminant, is a widely-used ultraviolet (UV) filter incorporated into cosmetics because it protects the skin from UV rays and counters photo-oxidation. Despite the well-established estrogenic activity of 4-MBC, the link between this activity and its effects on neurobehavior and the liver remains unknown. Thus, we exposed zebrafish larvae to environmentally relevant concentrations of 4-MBC with 1.39, 4.17, 12.5 and 15.4 μg/mL from 3 to 5 days postfertilization. We found that 4-MBC produced an estrogenic effect by intensifying fluorescence in the transgenic zebrafish, which was counteracted by co-exposure with estrogen receptor antagonist. 4-MBC-upregulated estrogen receptor alpha (erα) mRNA, and an interaction between 4-MBC and ERα suggested ERα's involvement in the 4-MBC-induced estrogenic activity. RNA sequencing unearthed 4-MBC-triggered responses in estrogen stimulus and lipid metabolism. Additionally, 4-MBC-induced hypoactivity and behavioral phenotypes were dependent on the estrogen receptor (ER) pathway. This may have been associated with the disruption of acetylcholinesterase and acetylcholine activities. As a result, 4-MBC increased vitellogenin expression and caused lipid accumulation in the liver of zebrafish larvae. Collectively, this is the first study to report 4-MBC-caused estrogenic effects through the brain-liver-gonad axis. It provides novel insight into how 4-MBC perturbs the brain and liver development.
Collapse
Affiliation(s)
- Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Mingzhu Dai
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Yu Feng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Ruobing Bai
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jie Guo
- Hunter Biotechnology, Inc., Hangzhou, 310051, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Da Chen
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Guan M, Cao Y, Wang X, Xu X, Ning C, Qian J, Ma F, Zhang X. Characterizing temporal variability and repeatability of dose-dependent functional genomics approach for evaluating triclosan toxification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165209. [PMID: 37391155 DOI: 10.1016/j.scitotenv.2023.165209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Dose-dependent functional genomics approach has shown great advantage in identifying the molecular initiating event (MIE) of chemical toxification and yielding point of departure (POD) at genome-wide scale. However, POD variability and repeatability derived from experimental design (settings of dose, replicate number, and exposure time) has not been fully determined. In this work, we evaluated POD profiles perturbed by triclosan (TCS) using dose-dependent functional genomics approach in Saccharomyces cerevisiae at multiple time points (9 h, 24 h and 48 h). The full dataset (total 9 concentrations with 6 replicates per treatment) at 9 h was subsampled 484 times to generate subsets of 4 dose groups (Dose A - Dose D with varied concentration range and spacing) and 5 replicate numbers (2 reps - 6 reps). Firstly, given the accuracy of POD and the experimental cost, the POD profiles from 484 subsampled datasets demonstrated that the Dose C group (space narrow at high concentrations and wide dose range) with three replicates was best choice at both gene and pathway levels. Secondly, the variability of POD was found to be relatively robustness and stability across different experimental designs, but POD was more dependent on the dose range and interval than the number of replicates. Thirdly, MIE of TCS toxification was identified to be the glycerophospholipid metabolism pathway at all-time points, supporting the ability of our approach to accurately recognize MIE of chemical toxification at both short- and long-term exposure. Finally, we identified and validated 13 key mutant strains involved in MIE of TCS toxification, which could serve as biomarkers for TCS exposure. Taken together, our work evaluated the repeatability of dose-dependent functional genomics approach and the variability of POD and MIE of TCS toxification, which will benefit the experimental design for future dose-dependent functional genomics study.
Collapse
Affiliation(s)
- Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Yuqi Cao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Xiaoyang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Xinyuan Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Can Ning
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Ave., Nanjing, Jiangsu 210023, China.
| | - Fei Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China.
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China
| |
Collapse
|
29
|
Wu G, Gao L, Zhang S, Du D, Xue Y. Effects of copper oxide nanoparticles on reproductive system of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115252. [PMID: 37467561 DOI: 10.1016/j.ecoenv.2023.115252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) were regarded as the versatile materials in daily life and the in-depth evaluation of their biological effects is of great concern. Herein the female and male zebrafishes were chosen as the model animals to analyze the reproductive toxicity caused by CuO NPs at low concentration (10, 50 and 100 μg/L) After 20-days exposure, the structure of zebrafish ovary and testis were impaired. Moreover, the contents of 17β-estradiol (E2) in both females and males were increased, while the contents of testosterone (T) were decreased, indicating the imbalanced sex hormones caused by CuO NPs. The expression of genes along the hypothalamic pituitary-gonad (HPG) axis, were examined with quantitative real-time PCR to further evaluate the toxic mechanisms. Meanwhile, the levels of erα/er2β and cyp19a in female zebrafishes and erα/er2β, lhr, hmgra/hmgrb, 3βhsd and 17βhsd in male zebrafishes were obviously up-regulated. While, the level of αr was obviously down-regulated in female and male zebrafishes. Thus, the obtained data uncovered that long-term exposure of CuO NPs with low dose could trigger the endocrine disorder, resulting in the disturbance of E2 and T level, inhibition of gonad development, and alteration of HPG axis genes. In brief, this study enriched the toxicological data of NPs on aquatic vertebrates and provided the theoretical support for assessing the environmental safety of NPs.
Collapse
Affiliation(s)
- Guizhu Wu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Pollutants, Zhenjiang 212013, China
| | - Lu Gao
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Pollutants, Zhenjiang 212013, China
| | - Shaoming Zhang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Pollutants, Zhenjiang 212013, China.
| | - Yonglai Xue
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Pollutants, Zhenjiang 212013, China.
| |
Collapse
|
30
|
Wang F, Liu F. Mechanism-based understanding of the potential cellular targets of triclosan in zebrafish larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104255. [PMID: 37657728 DOI: 10.1016/j.etap.2023.104255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Triclosan (TCS) has become widely distributed due to its widespread use. In this study, we investigated the mechanisms of TCS's potential effects on cellular targets in zebrafish (Danio rerio) larvae using transcriptome sequencing. The expressions of 772, 368, and 1039 genes were significantly altered in zebrafish after embryos were exposed to 2, 10, and 50 μg/L TCS for consecutive 50 d, respectively, and 33 differentially expressed genes (DEGs) were found. DEGs were significantly enriched in the biological processes, including inflammatory response and purine ribonucleoside bisphosphate biosynthetic process by Go analysis, and in processes such as egg coat formation, binding of sperm to zona pellucida, positive regulation of acrosome reaction, and immune response by Gene set enrichment analysis (GSEA). Both KEGG pathway analysis and GSEA showed that NOD-like receptor signaling pathway and Steroid biosynthesis were significantly affected. Results showed that TCS potentially affected reproduction, immune, and metabolism of zebrafish larvae.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China.
| | - Fei Liu
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China
| |
Collapse
|
31
|
Chen X, Mou L, Qu J, Wu L, Liu C. Adverse effects of triclosan exposure on health and potential molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163068. [PMID: 36965724 PMCID: PMC10035793 DOI: 10.1016/j.scitotenv.2023.163068] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/28/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
With the COVID-19 pandemic, the use of disinfectants has grown significantly around the world. Triclosan (TCS), namely 5-chloro-2-(2,4-dichlorophenoxy) phenol or 2,4,4'-trichloro-2'-hydroxydiphenyl ether, is a broad-spectrum, lipophilic, antibacterial agent that is extensively used in multifarious consumer products. Due to the widespread use and bioaccumulation, TCS is frequently detected in the environment and human biological samples. Accumulating evidence suggests that TCS is considered as a novel endocrine disruptor and may have potential unfavorable effects on human health, but studies on the toxic effect mediated by TCS exposure as well as its underlying mechanisms of action are relatively sparse. Therefore, in this review, we attempted to summarize the potential detrimental effects of TCS exposure on human reproductive health, liver function, intestinal homeostasis, kidney function, thyroid endocrine, and other tissue health, and further explore its mechanisms of action, thereby contributing to the better understanding of TCS characteristics and safety. Moreover, our work suggested the need to further investigate the biological effects of TCS exposure at the metabolic level in vivo.
Collapse
Affiliation(s)
- Xuhui Chen
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Li Mou
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Jiayuan Qu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Liling Wu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Changjiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China.
| |
Collapse
|
32
|
Marques AC, Mariana M, Cairrao E. Triclosan and Its Consequences on the Reproductive, Cardiovascular and Thyroid Levels. Int J Mol Sci 2022; 23:ijms231911427. [PMID: 36232730 PMCID: PMC9570035 DOI: 10.3390/ijms231911427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Hygiene is essential to avoid diseases, and this is thanks to daily cleaning and disinfection habits. Currently, there are numerous commercial products containing antimicrobial agents, and although they are efficient in disinfecting, it is still not known the effect of the constant use of these products on human health. In fact, a massive use of disinfectants has been observed due to COVID-19, but the possible adverse effects are not yet known. Triclosan is one of the antimicrobial agents used in cosmetic products, toothpaste, and disinfectants. This compound is an endocrine disruptor, which means it can interfere with hormonal function, with its estrogenic and androgenic activity having already been stated. Even if the use of triclosan is well-regulated, with the maximum allowed concentration in the European Union of 0.3% (m/m), its effects on human health are still uncertain. Studies in animals and humans suggest the possibility of harmful health outcomes, particularly for the reproductive system, and in a less extent for the cardiovascular and thyroid functions. Thus, the purpose of this review was to analyse the possible implications of the massive use of triclosan, mainly on the reproductive and cardiovascular systems and on the thyroid function, both in animals and humans.
Collapse
Affiliation(s)
- Ana C. Marques
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Melissa Mariana
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, 6200-506 Covilhã, Portugal
- Correspondence: ; Tel.: +351-275-329-049
| |
Collapse
|