1
|
Fang LR, Ren JY, Sun K, Zhang W, He W, Dai CC. Sulfate-reducing bacteria block cadmium and lead uptake in rice by regulating sulfur metabolism. J Appl Microbiol 2025; 136:lxaf022. [PMID: 39870375 DOI: 10.1093/jambio/lxaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
AIM This study was dedicated to investigating the role of sulfur metabolic processes in sulfate-reducing bacteria in plant resistance to heavy metal contamination. METHODS AND RESULTS We constructed sulfate-reducing bacterial communities based on the functional properties of sulfate-reducing strains and then screened out the most effective sulfate-reducing bacterial community SYN1, that prevented Cd and Pb uptake in rice through a hydroponic experiment. This community lowered Cd levels in the roots and upper roots by 36.60% and 39.88%, respectively, and Pb levels by 35.96% and 51.54%. We also compared two treatment groups, inoculated with SYN1 and exogenously added GSH, and found that both enhanced the antioxidant response of the plants, increased the lignin and GSH contents and the expression of genes related to the phenylpropane biosynthesis pathway (OsCAD, Os4CL, OsCOMT, OsPOD, OsC3H, and OsPAL), and decreased the expression of heavy metal transporter genes (OsHMA2, OsIRT1) expression. There were no significant differences between the two treatments. CONCLUSIONS Sulfate-reducing bacteria produce GSH through the sulfur assimilation pathway, and GSH can directly chelate heavy metals or enhance plant antioxidant enzyme activities and regulate processes such as the uptake and translocation of heavy metals, thus enhancing plant resistance to heavy metal toxicity.
Collapse
Affiliation(s)
- Li-Rong Fang
- College of Life Sciences, Nanjing Normal University, Wenyuan street, Nanjing 210023, China
| | - Jing-Yu Ren
- College of Life Sciences, Nanjing Normal University, Wenyuan street, Nanjing 210023, China
| | - Kai Sun
- College of Life Sciences, Nanjing Normal University, Wenyuan street, Nanjing 210023, China
| | - Wei Zhang
- College of Life Sciences, Nanjing Normal University, Wenyuan street, Nanjing 210023, China
| | - Wei He
- College of Life Sciences, Nanjing Normal University, Wenyuan street, Nanjing 210023, China
| | - Chuan-Chao Dai
- College of Life Sciences, Nanjing Normal University, Wenyuan street, Nanjing 210023, China
| |
Collapse
|
2
|
Zhu X, Zhou Y, Yan Z, Yan Y, Li S, Yu M, Yan X, Zhang M. Stabilization effect and mechanism of heavy metals by microbial consortium of phosphate-solubilizing bacteria and urease-producing bacteria. Front Microbiol 2025; 16:1525316. [PMID: 39963496 PMCID: PMC11830682 DOI: 10.3389/fmicb.2025.1525316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Stabilization of heavy metals through phosphate-solubilizing bacteria (PSB) induced phosphate precipitation and urease-producing bacteria (UPB) induced carbonate precipitation are promising bioremediation methods. However, little attention has been conducted on the combined action of the above two bioremediations to stabilize heavy metals. Methods PSB and UPB were isolated from the environment and their growth characteristics and antagonistic properties were studied. A simulated solution of acidic leachate was prepared based on heavy metal contaminated soil. Microbial consortium of PSB and UPB were constructed for the stabilization of heavy metals by optimizing carbon and nitrogen sources. The microstructural and compositional changes during the biostabilization process were more deeply analyzed using XRD, FT-IR and SEM-EDS. Results and discussion The precipitation of heavy metals could be promoted effectively when soluble starch (10.2 g/L) was used as carbon source and urea (7.8 g/L) as nitrogen source. The stabilization rates for Cu, Zn, Cd, and Pb were 98.35, 99.78, 99.09, and 92.26%, respectively. The stabilization rates of the combined action of PSB and UPB were significantly higher than that of the two microorganisms alone. An in-depth analysis showed that the composite metals were precipitated as dense precipitate encased in carbonate and phosphate, and additionally could be stabilized in the form of biosorption. Finally, the stabilization mechanism of heavy metals based on biomineralization and biosorption is proposed. These findings provide new theoretical support for sustainable remediation and management strategies for composite heavy metal polluted areas.
Collapse
Affiliation(s)
- Xuezhe Zhu
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, China GRINM Group Corporation Limited, Beijing, China
- School of Metallurgy, Northeastern University, Shenyang, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
- Beijing Engineering Research Center of Strategic Nonferrous Metals Green Manufacturing Technology, Beijing, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Yupin Zhou
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, China GRINM Group Corporation Limited, Beijing, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
- Beijing Engineering Research Center of Strategic Nonferrous Metals Green Manufacturing Technology, Beijing, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
- Guobiao (Beijing) Testing & Certification Co., Ltd., China GRINM Group Co., Ltd., Beijing, China
| | - Zhenghao Yan
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yongfang Yan
- Shougang Group Talent Development Institute, Beijing, China
| | - Shuangquan Li
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, China GRINM Group Corporation Limited, Beijing, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
- Beijing Engineering Research Center of Strategic Nonferrous Metals Green Manufacturing Technology, Beijing, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Mingjiao Yu
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, China GRINM Group Corporation Limited, Beijing, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
- Beijing Engineering Research Center of Strategic Nonferrous Metals Green Manufacturing Technology, Beijing, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Xiao Yan
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, China GRINM Group Corporation Limited, Beijing, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
- Beijing Engineering Research Center of Strategic Nonferrous Metals Green Manufacturing Technology, Beijing, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Mingjiang Zhang
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, China GRINM Group Corporation Limited, Beijing, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
- Beijing Engineering Research Center of Strategic Nonferrous Metals Green Manufacturing Technology, Beijing, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
| |
Collapse
|
3
|
Yang Z, Tian Y, Zhao J, Liu J, Lin X, Xi Y, Wang H, Kong F, Zhang F, Qiu X. Effect of lignin carbon material on phosphorus solubilisation performance of Bacillus megaterium. Int J Biol Macromol 2025; 290:138858. [PMID: 39706426 DOI: 10.1016/j.ijbiomac.2024.138858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/01/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Secondary salinisation significantly compromises soil quality because of the over-application of chemical fertilisers. The combined application of biochar and microorganisms enhanced soil physicochemical properties and improved soil remediation efficiency. However, different types of biochar had varying effects on microbial growth and reproduction. A phosphate-solubilising bacterial agent (BM-LPC) was obtained by low-temperature carbonisation/activation lignin-based porous carbon (LPC) in situ culture/adsorption Bacillus megaterium (BM). The maximum soluble phosphorus capacity of BM-LPC was 744.29 mg/L when 1 % LPC was added. This was a 22 % increase compared with BM alone. The maximum adsorption of BM by LPC was 3.66 × 109 colony-forming units (CFU)/g. At 150 days, the viable bacterial count of BM-LPC was 2.09 × 109 CFU/g. The abundances of -OH, -COOH, -NH2, and CO groups on the surface of LPC provided a stable environment for BM, which in turn, enhanced the solubilisation of phosphorus and extended the viability of BM. The findings of this study can help increase the added value of industrial lignin and provide a theoretical basis for soil remediation research.
Collapse
Affiliation(s)
- Zhiyu Yang
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yihui Tian
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jianzhi Zhao
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiao Liu
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xuliang Lin
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuebin Xi
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Guangrao County, Dongying 257335, China.
| | - Huan Wang
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Fangong Kong
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Guangrao County, Dongying 257335, China.
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Fathy R, Omara AM. Isolation and optimisation of polyphosphate accumulating bacteria for bio-treatment of phosphate from industrial wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:4314-4333. [PMID: 37574764 DOI: 10.1080/09593330.2023.2248558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Phosphorus in wastewater influents is a global issue. Controlling eutrophic water is crucial. Biological phosphorus removal is an economically and environmentally sustainable method for removing phosphorus from wastewater. This study aims to isolate and improve the capacity of aerobic phosphorus-removing bacteria to reduce excessive phosphate concentrations in the environment. Only three out of fourteen bacterial isolates demonstrated the highest phosphate removal efficiency using Toluidine blue-O. Klebsiella pneumoniae 6A, Klebsiella quasipneumoniae 6R, and Enterobacter mori 8R were isolated from activated sludge and identified by 16srRNA. In a single-factor experiment, the effect of incubation periods, phosphate concentrations, carbon sources, sodium acetate concentrations, temperature, pH, and irradiation dosages were studied. Seventy-two hours of incubation, 55 mg/L PO4, sodium acetate as the carbon source, 30°C and pH 7 resulted in maximum phosphorus removal. After optimising the parameters, the removal efficiency of Klebsiella pneumoniae 6A, Klebsiella quasipneumoniae 6R, and Enterobacter mori 8R increased from 73.5% to 85.1%, 79.1% to 98.1%, and 80.6% to 91.9%, respectively. Gamma irradiation showed significant results only in Klebsiella pneumoniae 6A where 100 Gy increased the phosphorous removal efficiency from 85.1% to 100%. Immobilised mixed culture of the three strains adapted better to 100 mg/L Phosphorus than pure cells. Therefore, this technique holds great new promise for phosphorus-contaminated sites bioremediation.
Collapse
Affiliation(s)
- Reham Fathy
- Radiation Microbiology Department at the National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ahmed M Omara
- Radiation Microbiology Department at the National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
5
|
Zhou S, Yang F, Wang W, Yang Z, Song J, Jiang T, Huang Z, Gao Y, Wang Y. Impact of uranium on antibiotic resistance in activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170369. [PMID: 38278272 DOI: 10.1016/j.scitotenv.2024.170369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
The emergence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment is well established as a human health crisis. The impact of radioactive heavy metals on ecosystems and ultimately on human health has become a global issue, especially for the regions suffering various nuclear activities or accidents. However, whether the radionuclides can affect the fate of antibiotic resistance in bacteria remains poorly understood. Here, the dynamics of ARB, three forms of ARGs-intracellular ARGs (iARGs), adsorbed extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs)-and microbial communities were investigated following exposure to uranium (U), a representative radioactive heavy metal. The results showed that 90-d of U exposure at environmentally relevant concentrations of 0.05 mg/L or 5 mg/L significantly increased the ARB concentration in activated sludge (p < 0.05). Furthermore, 90-d of U exposure slightly elevated the absolute abundance of aeARGs (except tetO) and sulfonamide iARGs, but decreased tetracycline iARGs. Regarding feARGs, the abundance of tetC, tetO, and sul1 decreased after 90-d of U stress, whereas sul2 showed the opposite trend. Partial least-squares path model analysis revealed that the abundance of aeARGs and iARGs under U stress was predominantly driven by increased cell membrane permeability/intI1 abundance and cell membrane permeability/reactive oxygen species concentration, respectively. Conversely, the changes in feARGs abundance depended on the composition of the microbial community and the expression of efflux pumps. Our findings shed light on the variations of ARGs and ARB in activated sludge under U exposure, providing a more comprehensive understanding of antibiotic resistance risks aggravated by radioactive heavy metal-containing wastewater.
Collapse
Affiliation(s)
- Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Fengjuan Yang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Zhengqing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jian Song
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Tianyun Jiang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zefeng Huang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China.
| |
Collapse
|
6
|
Ighalo JO, Chen Z, Ohoro CR, Oniye M, Igwegbe CA, Elimhingbovo I, Khongthaw B, Dulta K, Yap PS, Anastopoulos I. A review of remediation technologies for uranium-contaminated water. CHEMOSPHERE 2024; 352:141322. [PMID: 38296212 DOI: 10.1016/j.chemosphere.2024.141322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Uranium is a naturally existing radioactive element present in the Earth's crust. It exhibits lithophilic characteristics, indicating its tendency to be located near the surface of the Earth and tightly bound to oxygen. It is ecotoxic, hence the need for its removal from the aqueous environment. This paper focuses on the variety of water treatment processes for the removal of uranium from water and this includes physical (membrane separation, adsorption and electrocoagulation), chemical (ion exchange, photocatalysis and persulfate reduction), and biological (bio-reduction and biosorption) approaches. It was observed that membrane filtration and ion exchange are the most popular and promising processes for this application. Membrane processes have high throughput but with the challenge of high power requirements and fouling. Besides high pH sensitivity, ion exchange does not have any major challenges related to its application. Several other unique observations were derived from this review. Chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand, hydroxyapatite aerogel and MXene/graphene oxide composite has shown super-adsorbent performance (>1000 mg/g uptake capacity) for uranium. Ultrafiltration (UF) membranes, reverse osmosis (RO) membranes and electrocoagulation have been observed not to go below 97% uranium removal/conversion efficiency for most cases reported in the literature. Heat persulfate reduction has been explored quite recently and shown to achieve as high as 86% uranium reduction efficiency. We anticipate that future studies would explore hybrid processes (which are any combinations of multiple conventional techniques) to solve various aspects of the process design and performance challenges.
Collapse
Affiliation(s)
- Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria; Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA.
| | - Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa
| | - Mutiat Oniye
- Department of Chemical and Material Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000 Kazakhstan
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria; Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Isaiah Elimhingbovo
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | - Banlambhabok Khongthaw
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kanika Dulta
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun-248007, Uttarakhand, India
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostaki Campus, Arta 47100, Greece
| |
Collapse
|
7
|
Yu X, Xiong F, Zhou C, Luo Z, Zhou Z, Chen J, Sun K. Uranium bioprecipitation mediated by a phosphate-solubilizing Enterobacter sp. N1-10 and remediation of uranium-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167688. [PMID: 37820798 DOI: 10.1016/j.scitotenv.2023.167688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Uranium (U) pollution in soils is prevalent worldwide and poses a significant health risk that will require remediation approaches. However, traditional U bioreduction by sulfate reducing bacteria (SRB) are sensitive to oxygen and are not suitable for treating aerobic topsoil. Bioprecipitation of U into uranyl phosphate (UP) mediated by phosphate-solubilizing microorganism (PSM) is not affected by oxygen. In this study, PSM strains were isolated and used for U-contaminated soil remediation. Microbial metabolites and the mechanism of PSM bioprecipitation were revealed. The results showed that strain Enterobacter sp. N1-10 had the highest phosphate-solubilizing capacity (dissolved P was 409.51 ± 8.48 mg/L). Uranium bioprecipitation was investigated by culturing the bacterium in the presence of 50 mg/L U and in the cell-free culture supernatant. The results showed that strain N1-10 had a high U removal rate (99.45 ± 0.43 %) after adding 50 mg/L U to the culture medium. A yellow precipitate was immediately formed when uranyl nitrate solution was added to the cell-free culture supernatant. The analysis indicated that bacterium produced lactic acid (37.58 mg/L), citric acid (4.76 mg/L), succinic acid (2.03 mg/L), and D-glucuronic acid (1.94 mg/L); the four organic acids solubilized Ca3(PO4)2 to form stable uranyl phosphate precipitate. The application of strain N1-10 and Ca3(PO4)2 significantly decreased the bioavailability of soil U (43.54 ± 0.52 %). In addition, pot experiments showed that PSM N1-10 and Ca3(PO4)2 promoted plant growth and markedly reduced U accumulation by pakchoi. These results demonstrate that PSM N1-10 and Ca3(PO4)2 exhibit a great potential for U bioremediation.
Collapse
Affiliation(s)
- Xiaoxia Yu
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, China; State Key Laboratory of Nuclear Resources and Environmental, East China University of Technology, NanChang 330013, Jiangxi, China.
| | - Feng Xiong
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, China
| | - Chenchen Zhou
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, China
| | - Zhijian Luo
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, China; State Key Laboratory of Nuclear Resources and Environmental, East China University of Technology, NanChang 330013, Jiangxi, China
| | - Zhongkui Zhou
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, China; State Key Laboratory of Nuclear Resources and Environmental, East China University of Technology, NanChang 330013, Jiangxi, China
| | - Jinying Chen
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, China; State Key Laboratory of Nuclear Resources and Environmental, East China University of Technology, NanChang 330013, Jiangxi, China
| | - Kaixuan Sun
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, China; State Key Laboratory of Nuclear Resources and Environmental, East China University of Technology, NanChang 330013, Jiangxi, China.
| |
Collapse
|
8
|
Feng G, Mao Y, Xie G, Chen H, Wang J, Mao P, Lv J. Bioremediation of uranium (Ⅵ) using a native strain Halomonas campaniensis ZFSY-04 isolated from uranium mining and milling effluent: Potential and mechanism. CHEMOSPHERE 2024; 346:140646. [PMID: 37944766 DOI: 10.1016/j.chemosphere.2023.140646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
A significant surge in the exploitation of uranium resources has resulted in considerable amounts of radioactive effluents. Thus, efficient and eco-friendly uranium removal strategies need to be explored to ensure ecological safety and resource recovery. In this study, we investigated the resistance of Halomonas campaniensis strain ZFSY-04, isolated from an evaporation pool at a uranium mine site, and its potential mechanism of uranium (Ⅵ) removal. The results showed that the strain exhibited unique uranium tolerance and its growth was not significantly inhibited under a uranium concentration of 700 mg/L. It had a maximum loading capacity of 865.40 mg/g (dry weight), achieved following incubation under uranium concentration of 100 mg/L, pH 6.0, and temperature 30 °C, for 2 h, indicating that the removal of uranium by the strain was efficient and rapid. Combined with kinetic, isothermal, thermodynamic, and microspectral analyses, the mechanism of uranium loading by strain ZFSY-04 was metabolism-dependent and diverse, including, physical and chemical adsorption on the cell surface, extracellular biomineralisation, intracellular bioaccumulation, and biomineralisation. Our results highlight the unique properties of indigenous strains, including high resistance, high efficiency, rapid uranium removal, and various uranium removal strategies, which make it suitable as a new tool for in situ bioremediation and uranium-contaminated environmental resource recovery.
Collapse
Affiliation(s)
- Guangwen Feng
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Yu Mao
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Gen Xie
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Henglei Chen
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Jun Wang
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Peihong Mao
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Jie Lv
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China.
| |
Collapse
|
9
|
Chen X, Wang Y, Xia H, Ren Q, Li Y, Xu L, Xie C, Wang Y. "One-can" strategy for the synthesis of hydrothermal biochar modified with phosphate groups and efficient removal of uranium(VI). JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 263:107182. [PMID: 37094506 DOI: 10.1016/j.jenvrad.2023.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/08/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Significant selectivity, reasonable surface modification and increased structural porosity were three key factors to improve the competitiveness of biochar in the adsorption field. In this study, a hydrothermal bamboo-derived biochar modified with phosphate groups (HPBC) was synthesized using "one-can" strategy. BET showed that this method could effectively increase the specific surface area (137.32 m2 g-1) and simulation of wastewater experiments indicated HPBC had an excellent selectivity for U(VI) (70.35%), which was conducive to removal of U(VI) in real and complex environments. The accurate matchings of pseudo-second-order kinetic model, thermodynamic model and Langmuir isotherm showed that at 298 K, pH = 4.0, the adsorption process dominated by chemical complexation and monolayer adsorption was spontaneous, endothermic and disordered. Saturated adsorption capacity of HPBC could reach 781.02 mg g-1 within 2 h. The introduction of phosphoric acid and citric acid by "one-can" method not only provided abundant -PO4 to assist adsorption, but also activated oxygen-containing groups on the surface of the bamboo matrix. Results showed that adsorption mechanism of U(VI) by HPBC included electrostatic action and chemical complexation involving P-O, PO and ample oxygen-containing functional groups. Therefore, HPBC with high phosphorus content, outstanding adsorption performance, excellent regeneration, remarkable selectivity and green value provided a novel solution for the field of radioactive wastewater treatment.
Collapse
Affiliation(s)
- Xinchen Chen
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Yang Wang
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Hongtao Xia
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Qi Ren
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Yang Li
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Lejin Xu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Chuting Xie
- School of Architecture & Urban Planning, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yun Wang
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
10
|
Chen H, Min F, Hu X, Ma D, Huo Z. Biochar assists phosphate solubilizing bacteria to resist combined Pb and Cd stress by promoting acid secretion and extracellular electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131176. [PMID: 36948118 DOI: 10.1016/j.jhazmat.2023.131176] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms have difficulty surviving and performing remediation functions in mixed systems with high concentrations of Pb and Cd. Biochar has the potential to assist microorganism remediation as an excellent adsorbent for heavy metals. In this study, pig manure biochar (PMB) was used to assist phosphorus solubilizing bacteria (PSB) to explore the mineralization protection and biofeedback mechanism of biochar on PSB under mixed stress of 1000 mg/L Pb2+ and 500 mg/L Cd2+. The adsorption results showed that the removal of Pb2+ and Cd2+ by PMB+PSB was 148.77% and 72.27% higher than that by PSB. Meanwhile, the non-bioavailable fraction of Cd2+ and acid-soluble fraction of Pb2+ in PMB+PSB were increased by 9% and 3%, respectively. Mineralogical and microbial secretion results confirm that showed that the acidic soluble fraction and non-bioavailable fraction were mostly Pb/Cd-carbonate and Pb/Cd-phosphate. The pore adsorption and precipitation (carbonate) of biochar were able to reduce the exposure of PSB to Pb/Cd and the background stress concentration, thus stimulating the biological positive feedback effect of PSB and forming a microenvironment in the cell periphery. The vesicle detoxification and extracellular polymeric substance protection mechanism of PSB were improved under biochar protection, and the individual size and activity of PSB cells were enhanced. Besides, citric acid release from PSB (28.85% increase) accelerated the dissolution of unstable Cd-carbonate, thereby releasing a large amount of Cd2+ to compete with Pb2+ for PO43-. Thus, the protection of biochar and the positive feedback effect of PSB could reduce the biotoxicity of Cd2+ in the stress system by preferentially forming a stable Cd-phosphate. In addition, the excellent electrical conductivity and organic material adsorption of biochar increased the extracellular electron transport rate of microorganisms, which further accelerated the mineralization and immobilization of Pb2+ and Cd2+, so as to ensure the repair effect of PSB on heavy metals.
Collapse
Affiliation(s)
- Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fangfang Min
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xin Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dehua Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No.172 Jiangsu Road, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
11
|
Gan CD, Tang QX, Wang H, Yang JY, Nikitin A. Shewanella oneidensis MR-1 and oxalic acid mediated vanadium reduction and redistribution in vanadium-containing tailings. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131077. [PMID: 36871469 DOI: 10.1016/j.jhazmat.2023.131077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The microbially- and chemically-mediated redox process is critical in controlling the fate of vanadium (V) in tailing environment. Although the microbial reduction of V has been widely studied, the coupled biotic reduction mediated by beneficiation reagents and the underlying mechanism remain unclear. Herein, the reduction and redistribution of V in V-containing tailings and Fe/Mn oxide aggregates mediated by Shewanella oneidensis MR-1 and oxalic acid were explored. The dissolution of Fe-(hydr)oxides by oxalic acid promoted the microbe-mediated V release from solid-phase. After 48-day of reaction, the dissolved V concentrations in the bio-oxalic acid treatment reached maximum values of 1.72 ± 0.36 mg L-1 and 0.42 ± 0.15 mg L-1 in the tailing system and the aggregate system, respectively, significantly higher than those in control (0.63 ± 0.14 mg L-1 and 0.08 ± 0.02 mg L-1). As the electron donor, oxalic acid enhanced the electron transfer process of S. oneidensis MR-1 for V(V) reduction. The mineralogical characterization of final products indicates that S. oneidensis MR-1 and oxalic acid promoted solid-state conversion from V2O5 to NaV6O15. Collectively, this study demonstrates that microbe-mediated V release and redistribution in solid-phase were promoted by oxalic acid, suggesting that the role of organic agents for the V biogeochemical cycle in natural systems deserves greater attention.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Qi-Xuan Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Hao Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Aleksander Nikitin
- Institute of Radiobiology of the National Academy of Sciences of Belarus, Fedjuninskogo str., 4, 246007 Gomel, Belarus
| |
Collapse
|
12
|
Sun X, Feng H, Luo J, Lin L, Zhang H, Duan Y, Liu F, Zhang K, Wang B, Li D, Hu Y, Zhu Z. A novel N-arachidonoyl-l-alanine-catabolizing strain of Serratia marcescens for the bioremediation of Cd and Cr co-contamination. ENVIRONMENTAL RESEARCH 2023; 222:115376. [PMID: 36736755 DOI: 10.1016/j.envres.2023.115376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) and chromium (Cr) are widespread contaminants with a high risk to the environment and humans. Herein we isolated a novel strain of Serratia marcescens, namely strain S27, from soil co-contaminated with Cd and Cr. This strain showed strong resistance to Cd as well as Cr. S27 cells demonstrated Cd adsorption rate of 45.8% and Cr reduction capacity of 84.4% under optimal growth conditions (i.e., 30 °C, 200 rpm, and pH 7.5). Microscopic characterization of S27 cells revealed the importance of the functional groups C-O-C, C-H-O, C-C, C-H, and -OH, and also indicated that Cr reduction occurred on bacterial cell membrane. Cd(II) and Cr(VI) bioaccumulation on S27 cell surface was mainly in the form of Cd(OH)2 and Cr2O3, respectively. Further, metabolomic analyses revealed that N-arachidonoyl-l-alanine was the key metabolite that promoted Cd and Cr complexation by S27; it primarily promotes γ-linolenic acid (GLA) metabolism, producing siderophores and coordinating with organic acids to enhance metal bioavailability. To summarize, our results suggest that S27 is promising for the bioremediation of environments contaminated with Cd and Cr in tropical regions.
Collapse
Affiliation(s)
- Xiaoyan Sun
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Huiping Feng
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Jialiang Luo
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Li Lin
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 53007, China
| | - Haixiang Zhang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yali Duan
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Fan Liu
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Kailu Zhang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Baijie Wang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Dong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological, Regulation of Hainan Province/Center for Eco-Environmental Restoration, Engineering of Hainan Province/School of Ecology & Environment/State Key, Laboratory of Marine Resource Utilization in South China Sea/Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China.
| | - Yueming Hu
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Zhiqiang Zhu
- College of Tropical Crops, Hainan University, Haikou, 570228, China.
| |
Collapse
|
13
|
He N, Ran M, Hu L, Jiang C, Liu Y. Periplasmic space is the key location for Pb(II) biomineralization by Burkholderia cepacia. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130465. [PMID: 36436453 DOI: 10.1016/j.jhazmat.2022.130465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Phosphate solubilizing bacteria (PSB) induced phosphate precipitation is considered as an effective method for Pb(II) removal through the formation of stable Pb(II)-phosphate compound, but the location of end-products is still unclear. Herein, the PSB strain of Burkholderia cepacia (B. cepacia) coupled with the hydroxyapatite (HAP) was used in this study to investigate the Pb(II) removal mechanism and the biomineralization location. The dissolving phosphate of three particle sizes of HAP and Pb(II) resistant capabilities, and the effect factors such as HAP dosage, initial concentrations of Pb(II), pH, temperature, and different treatments were determined. The results indicated that the highest soluble phosphate could reach 224.85 mg/L in a 200 nm HAP medium and the highest removal efficiency of Pb(II) was about 96.32 %. Additionally, it was interesting that Pb(II) was mainly located in the periplasmic space through the cellular distribution experiment, which was further demonstrated by scanning electron microscope (SEM) and transmission electron microscopy (TEM). Besides, the characterization results showed that the functional groups such as amide, hydroxy, carboxy and phosphate played an important role in Pb(II) biomineralization, and the free Pb(II) in aqueous solution could be transformed into pyromorphite through phosphate dissolution, extracellular adsorption/complexation, and intracellular precipitation.
Collapse
Affiliation(s)
- Ni He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Maodi Ran
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Chunyangzi Jiang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yayuan Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
14
|
Dong L, He Z, Wu J, Zhang K, Zhang D, Pan X. Remediation of uranium-contaminated alkaline soil by rational application of phosphorus fertilizers: Effect and mechanism. ENVIRONMENTAL RESEARCH 2023; 220:115172. [PMID: 36584849 DOI: 10.1016/j.envres.2022.115172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In alkaline soil, abundant carbonates will mobilize uranium (U) and increase its ecotoxicity, which is a serious threat to crop growth. However, the knowledge of U remediation in alkaline soils remains very limited. In this study, U-contaminated alkaline soil (tillage layer) was collected from the Ili mining area of Xinjiang, the soil remediation was carried out by using phosphorus (P) fertilizers of different solubility (including KH2PO4, Ca(H2PO4)2, CaHPO4, and Ca3(PO4)2), and the pathways and mechanisms of U passivation in the alkaline soil were revealed. The results showed that water-soluble P fertilizers, KH2PO4 and Ca(H2PO4)2, were highly effective at immobilizing U, and significantly reduced the bioavailability of soil U. The exchangeable U was reduced by 70.5 ± 0.1% (KH2PO4) and 68.2 ± 1.9% (Ca(H2PO4)2), which was converted into the Fe-Mn oxide-bound and residual phases. Pot experiments showed that soil remediation by KH2PO4 significantly promoted crop growth, especially for roots, and reduced U uptake in crops by 94.5 ± 1.0%. The immobilization of U by KH2PO4 could be attributed to the release of phosphate anions, which react with the uranyl ion (UO22+) forming a stable mineral of meta-ankoleite and enhancing the binding of UO22+ to the soil Fe-Mn oxides. In addition, KH2PO4 dissolution produces acidity and P fertilizer, which can reduce soil alkalinity and improve crop growth. The findings in this work demonstrate that a rational application of P fertilizer can effectively, conveniently, and cheaply remediate U contamination and improve crop yield and safety on alkaline farmland.
Collapse
Affiliation(s)
- Lingfeng Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| | - Jingyi Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Keqing Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
15
|
Martínez-Rodríguez P, Sánchez-Castro I, Ojeda JJ, Abad MM, Descostes M, Merroun ML. Effect of different phosphate sources on uranium biomineralization by the Microbacterium sp. Be9 strain: A multidisciplinary approach study. Front Microbiol 2023; 13:1092184. [PMID: 36699588 PMCID: PMC9868770 DOI: 10.3389/fmicb.2022.1092184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Industrial activities related with the uranium industry are known to generate hazardous waste which must be managed adequately. Amongst the remediation activities available, eco-friendly strategies based on microbial activity have been investigated in depth in the last decades and biomineralization-based methods, mediated by microbial enzymes (e.g., phosphatase), have been proposed as a promising approach. However, the presence of different forms of phosphates in these environments plays a complicated role which must be thoroughly unraveled to optimize results when applying this remediation process. Methods In this study, we have looked at the effect of different phosphate sources on the uranium (U) biomineralization process mediated by Microbacterium sp. Be9, a bacterial strain previously isolated from U mill tailings. We applied a multidisciplinary approach (cell surface characterization, phosphatase activity, inorganic phosphate release, cell viability, microscopy, etc.). Results and Discussion It was clear that the U removal ability and related U interaction mechanisms by the strain depend on the type of phosphate substrate. In the absence of exogenous phosphate substrate, the cells interact with U through U phosphate biomineralization with a 98% removal of U within the first 48 h. However, the U solubilization process was the main U interaction mechanism of the cells in the presence of inorganic phosphate, demonstrating the phosphate solubilizing potential of the strain. These findings show the biotechnological use of this strain in the bioremediation of U as a function of phosphate substrate: U biomineralization (in a phosphate free system) and indirectly through the solubilization of orthophosphate from phosphate (P) containing waste products needed for U precipitation.
Collapse
Affiliation(s)
- Pablo Martínez-Rodríguez
- Department of Microbiology, University of Granada, Granada, Spain,*Correspondence: Pablo Martínez-Rodríguez, ✉
| | | | - Jesús J. Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - María M. Abad
- Centro de Instrumentación Científica (CIC), University of Granada, Granada, Spain
| | - Michael Descostes
- Environmental R&D Department, ORANO Mining, Chatillon, France,Centre de Géosciences, MINES Paris, PSL University, Fontainebleau, France
| | | |
Collapse
|
16
|
Yan X, Gao B, Wang J, Zhu X, Zhang M. Insights into remediation effects and bacterial diversity of different remediation measures in rare earth mine soil with SO 4 2- and heavy metals. Front Microbiol 2023; 14:1050635. [PMID: 37032866 PMCID: PMC10079077 DOI: 10.3389/fmicb.2023.1050635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/15/2023] [Indexed: 04/11/2023] Open
Abstract
The increased demand for rare earth resources has led to an increase in the development of rare earth mines (REMs). However, the production of high-concentration leaching agents (SO4 2-) and heavy metals as a result of rare earth mining has increased, necessitating the removal of contaminants. Here, a series of experiments with different remediation measures, including control (CK), sulfate-reducing bacteria (SRB) alone (M), chemicals (Ca(OH)2, 1.5 g/kg) plus SRB (CM-L), chemicals (Ca(OH)2, 3.0 g/kg) plus SRB (CM-M), and chemicals (Ca(OH)2, 4.5 g/kg) plus SRB (CM-H), were conducted to investigate the removal effect of SO4 2-, Pb, Zn, and Mn from the REM soil. Then, a high-throughput sequencing technology was applied to explore the response of bacterial community diversity and functions with different remediation measures. The results indicated that CM-M treatment had a more efficient removal effect for SO4 2-, Pb, Zn, and Mn than the others, up to 94.6, 88.3, 98.7, and 91%, respectively. Soil bacterial abundance and diversity were significantly affected by treatments with the inoculation of SRB in comparison with CK. The relative abundance of Desulfobacterota with the ability to transform SO4 2- into S2- increased significantly in all treatments, except for CK. There was a strong correlation between environmental factors (pH, Eh, SO4 2-, Pb, and Zn) and bacterial community structure. Furthermore, functional prediction analysis revealed that the SRB inoculation treatments significantly increased the abundance of sulfate respiration, sulfite respiration, and nitrogen fixation, while decreasing the abundance of manganese oxidation, dark hydrogen oxidation, and denitrification. This provides good evidence for us to understand the difference in removal efficiency, bacterial community structure, and function by different remediation measures that help select a more efficient and sustainable method to remediate contaminants in the REM soil.
Collapse
Affiliation(s)
- Xiao Yan
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd., Beijing, China
| | - Bowen Gao
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd., Beijing, China
| | - Jianlei Wang
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd., Beijing, China
| | - Xuezhe Zhu
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd., Beijing, China
- School of Metallurgy, Northeastern University, Shenyang, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Mingjiang Zhang
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd., Beijing, China
- *Correspondence: Mingjiang Zhang,
| |
Collapse
|
17
|
He Z, Dong L, Zhang K, Zhang D, Pan X. Lactic acid bacteria induce phosphate recrystallization for the in situ remediation of uranium-contaminated topsoil: Principle and application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120277. [PMID: 36167164 DOI: 10.1016/j.envpol.2022.120277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Uranium (U) contamination often occurs in the topsoil (arable layer), and is a serious threat to crop growth. However, conventional microbial reduction methods are sensitive to oxygen and cannot be used to treat aerobic topsoils. In this study, phosphate-solubilizing microorganisms (PSM) were isolated from U-contaminated topsoil and used for soil remediation. Microbial metabolites and products were analyzed, and the pathways and mechanisms of PSM immobilization were revealed. The results showed that strain PSM8 had the highest phosphate-solubilizing capacity (dissolved P was 208 ± 5 mg/L) and the highest U removal rate (97.3 ± 0.1%). Multi-technical analyses indicated that bacterial surface functional groups adsorbed (UO2)2+ ions on the cell surface, glycolysis produced 3-10 mg/L of lactic acid (pH 4.7-6.0), and lactic acid solubilized Ca3(PO4)2 to form stable chernikovite (a type of uranyl phosphate) on the cell surface. The coupled application of Ca3(PO4)2 and strain PSM8 significantly reduced the bioavailability of soil U (62 ± 11%), converting U from the exchangeable to the residual phase and P from the steady to the available form. In addition, pot experiments showed that soil remediation promoted crop growth and significantly reduced U uptake and toxicity to photosynthetic systems. These findings demonstrate that PSM and Ca3(PO4)2 are good coupled fertilizers for U-contaminated agricultural soil.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lingfeng Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Keqing Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|