1
|
Wen J, Geng S, Mu J, Wang J, Dai Y, Hu L. Pentachlorophenol exposure, plasma metabolomic markers, and gestational diabetes mellitus: Association and potential mediation analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126069. [PMID: 40090288 DOI: 10.1016/j.envpol.2025.126069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Pentachlorophenol (PCP) is a pervasive endocrine-disrupting compound present in the environment. Limited research has explored the effects of PCP exposure on gestational diabetes mellitus (GDM), particularly the metabolites-related mechanism. Our study seeks to characterize the interrelationships between PCP exposure, plasma metabolomic markers, and GDM, aiming to elucidate the metabolomic profile mediating PCP-GDM relationship. From a prospective cohort in Changzhou, China, a nested case-control study was conducted, involving 154 GDM cases and 308 controls. We collected fasting blood samples before 16 weeks of gestation and determined PCP levels by UPLC-MS/MS. Plasma metabolomic markers were identified using untargeted metabolomics. Multivariate logistic regression and mediation analysis were used to examine the relationships among PCP exposure, metabolomic markers, and GDM. Using the Mann-Whitney U test, we found that serum PCP levels were significantly higher in GDM cases (median: 0.43 ng/mL, IQR: 0.28-0.77) compared to controls (median: 0.38 ng/mL, IQR: 0.24-0.64; P = 0.041). In the fully adjusted model, which additionally accounted for dietary patterns, the OR (95 %CI) values for GDM across tertiles of serum PCP were 1 (reference), 1.24 (0.73, 2.11), and 2.17 (1.28, 3.68), respectively, indicating a potential dose-response relationship (P trend = 0.004). Furthermore, 152 differential metabolites were identified between groups (FDR <0.05), implicating 4 metabolic pathways: "Nitrogen metabolism", "Alanine, aspartate and glutamate metabolism", "Glycerophospholipid metabolism", and "Pyrimidine metabolism" (FDR <0.1). Mediation analysis revealed that 5 metabolomic markers (such as N-Acetylalanine and 4-Acetamidobutyric acid) significantly mediated the association between PCP and GDM (FDR <0.05), with mediated proportions ranging from 0.15 to 0.31. Together, pregnant women in Eastern China exhibit widespread PCP exposure, with serum PCP levels positively associated with GDM risk. PCP exposure-related metabolomic changes may partially mediate the link between PCP and GDM.
Collapse
Affiliation(s)
- Juan Wen
- Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, PR China; Department of Nutrition, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Shijie Geng
- Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Juan Mu
- Department of Nutrition, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Junya Wang
- Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Yongmei Dai
- Department of Nutrition, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, 210004, PR China.
| | - Lingmin Hu
- Department of Reproduction, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213003, PR China.
| |
Collapse
|
2
|
Han M, Yin J, Wang X, Yang R, Dong Z, Ning J, Xu Y, Shao B. Pentachlorophenol increases diabetes risk by damaging β-cell secretion and disrupting gut microbial-related amino acids and fatty acids biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136103. [PMID: 39405696 DOI: 10.1016/j.jhazmat.2024.136103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Pentachlorophenol (PCP), a ubiquitous environmental pollutant, has been reported as a possible contributor to diabetes. However, evidence for general population is scarce while related mechanisms are largely unknown. Using a representative population-based case-control study in Beijing (n = 1796), we found a positive association between PCP exposure and diabetes risk with the odds ratio reaching 1.68 (95 % confidence interval: 1.30 to 2.18). A further rat experiment revealed that low-dose PCP mimicking real-world human exposure can significantly impair glycemic homeostasis by inducing pancreatic β-cell dysfunction, with non-linear dose-response relationships. Subsequent multi-omics analysis suggested that low-dose PCP led to notable gut microbiota dysbiosis (especially the species from genus Prevotella, such as intermedia, dentalis, ruminicola, denticola, melaninogenica, and oris), decreased serum amino acids (L-phenylalanine, L-tyrosine, and L-tryptophan) and increased serum fatty acids (oleic and palmitic acid) in rats, while strong correlations were observed among alterations of gut microbes, serum metabolites and glycemic-related biomarkers (e.g., fasting blood glucose and insulin). Collectively, these results imply PCP may increase diabetes risk by disrupting gut microbial-related amino acids and fatty acids biosynthesis. This will help guide future in-depth studies on the roles of PCP in the development of human diabetes.
Collapse
Affiliation(s)
- Muke Han
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China; Peking Univ, Sch Publ Hlth, Dept Nutr & Food Hyg, Beijing 100083, PR China
| | - Jie Yin
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Xinyi Wang
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Runhui Yang
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Zhong Dong
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Junyu Ning
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China
| | - Yajun Xu
- Peking Univ, Sch Publ Hlth, Dept Nutr & Food Hyg, Beijing 100083, PR China; Peking Univ, Beijing Key Lab Toxicol Res & Risk Assessment Food, Beijing 100083, PR China
| | - Bing Shao
- Beijing Ctr Dis Prevent & Control, Beijing Key Lab Diagnost & Traceabil Technol Food, Beijing, PR China; Xihua Univ, Sch Food & Bioengn, Food Microbiol Key Lab Sichuan Prov, Chengdu 610039, PR China.
| |
Collapse
|
3
|
Bouchnak R, El Ayari T, Rabeh I, Salhi O, Aloui F, Maamouri A, Gravato C, Trabelsi M, Mhadhbi L. Polyethylene microplastic modulates the toxicity of pentachlorophenol to the microalgae Isochrysis galbana, clone t-ISO. CHEMOSPHERE 2024; 367:143588. [PMID: 39461439 DOI: 10.1016/j.chemosphere.2024.143588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Pentachlorophenol (PCP) and polyethylene microplastic (PE-MP) have been designated as emerging and persistent pollutants, respectively. The combined effects of those pollutants are still unknown, especially to organisms like phytoplankton that may adsorb to their surface. Therefore, the purpose of this study was to investigate for the first time the effects of PE-MP alone and in combination with PCP on the microalgae Isochrysis galbana, clone t-ISO following 72 h of exposure. Photosynthetic pigments amounts, carotenoid, protein, carbohydrate and fatty acids have been assessed. Acute toxicity test showed that the 72 h median inhibition concentration (72 h-EC50) was 148.2, 0.66 and 087 mg L-1 for PE-MP, PCP and their mixture. The utmost effects in growth inhibition rates were noted with 0.5 and 1.25 mg L-1 PCP (23% and 85%, respectively), and 100 and 300 mg L-1 PE-MP (49% and 64%, respectively). Moreover, it was found that those concentrations had a major impact on the photosynthetic pigments, protein, carbohydrate, and fatty acids amounts in algal cells. Furthermore, levels of H2O2 and Malondialdehyde (MDA), as well as the activities of catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX), indicated the induction of an oxidative stress in algal cells. It appears that adding PE-MP at a no-effect concentration (25 mg L-1) reduces the toxicity caused by PCP due to its adsorption to polyethylene microplastics.
Collapse
Affiliation(s)
- Rahma Bouchnak
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| | - Tahani El Ayari
- Group of Fundamental and Applied Malacology (MAF), Laboratory of Environment Bio-Monitoring (LBE), Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Bizerte, Tunisia.
| | - Imen Rabeh
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| | - Oumaima Salhi
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia; IRDL UMR CNRS 6027, Université Bretagne Sud, 56000 Vannes, France.
| | - Foued Aloui
- Laboratoire des Ressources Sylvo-Pastorales, Université de Jendouba, Institut Sylvo-Pastoral de Tabarka, Tunisia.
| | - Ahmed Maamouri
- Interprofessional Grouping of Fishery Products, Fish Hatchery of Tabarka, Tunisia.
| | - Carlos Gravato
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Monia Trabelsi
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| | - Lazhar Mhadhbi
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and Physiology of Aquatic Organisms Laboratory, Tunis, Tunisia.
| |
Collapse
|
4
|
Balu UR, Vasantharekha R, Paromita C, Ali K, Mudgal G, Kesari KK, Seetharaman B. Linking EDC-laden food consumption and modern lifestyle habits with preeclampsia: A non-animal approach to identifying early diagnostic biomarkers through biochemical alterations. Food Chem Toxicol 2024; 194:115073. [PMID: 39461500 DOI: 10.1016/j.fct.2024.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Preeclampsia (PE), a pregnancy complication characterized by new-onset hypertension with or without proteinuria and/or end-organ damage, and it may be influenced by exposure to endocrine-disrupting chemicals present in processed foods and modern lifestyles. This study explores the potential link using a non-animal approach to identify early diagnostic biomarkers for preeclampsia. Seventy pregnant women aged 21-41 years participated, and completed questionnaires assessing socio-demographic factors, Suboptimal Health Status Questionnaire scores for fatigue, digestive, cardiovascular, immune, and mental health issues, and exposure to endocrine-disrupting chemicals from processed food consumption and daily product use. Peripheral blood samples were analyzed for hormone profiles, complete blood count, and liver function tests (LFT). Statistical analysis revealed that mothers above 27 years old, with a Body Mass Index exceeding 32.59 Kg/m2, and a Mean Arterial Pressure of 108.5 mmHg exhibited a potential obesogenic effect on preeclampsia development. Socio-demographic factors like, lower economic class, housewife status, primiparous pregnancy, non-graduate education, and rural residence were significantly associated with results. Analysis of biochemical parameters revealed that serum creatinine, blood urea, total protein, platelet count, blood urea nitrogen, bilirubin profile, LFT profile, and thyroid profile showed potential detrimental effects on kidney, liver, muscle, and thyroid function in preeclampsia patients. Notably, PC, serum urea, bilirubin, total protein, serum glutamic-oxaloacetic transaminase (SGOT), alkaline phosphatase (ALP), and thyroid stimulating hormone (TSH) levels were significantly associated with preeclampsia in individuals reporting higher exposure to endocrine disrupting chemicals (EDCs). Minor biochemical alterations were also observed with dairy product consumption. SHS-25 analysis indicated a significant increase in fatigue, and digestive, cardiovascular, immune, and mental health-related issues in patients. Probably, biochemical alterations due to EDC exposure from processed foods and modern lifestyle habits contribute to organ dysfunction in preeclampsia. Identifying these potential biomarkers may pave the way for the development of non-invasive, early diagnostic tools for improved preeclampsia management. This research emphasizes the importance of non-animal testing methods for assessing EDC-related health risks in pregnancy and contributes to the advancement of early PE diagnosis strategies.
Collapse
Affiliation(s)
- Usha Rani Balu
- Endocrine Disruption and Reproductive Toxicology Laboratory (EDART Lab), Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ramasamy Vasantharekha
- Endocrine Disruption and Reproductive Toxicology Laboratory (EDART Lab), Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Chakraborty Paromita
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainable Advocacy and Climate Change (REACH), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Khalid Ali
- Department of Biochemistry, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Gaurav Mudgal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India; Center for Waste Management and Renewable Energy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Kavindra Kumar Kesari
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India; Department of Applied Physics, School of Science, Aalto University, Espoo, 02150, Finland.
| | - Barathi Seetharaman
- Endocrine Disruption and Reproductive Toxicology Laboratory (EDART Lab), Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
5
|
Huo Y, Wan Y, Li Y, Lan L, Chen S, Xu S, Xiong C, Xia W. Associations of pentachlorophenol exposure during pregnancy with maternal and infant reproductive hormones based on a birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172723. [PMID: 38670355 DOI: 10.1016/j.scitotenv.2024.172723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Pentachlorophenol (PCP), a typical environmental endocrine disruptor and a new persistent organic pollutant, has been extensively used as a pesticide worldwide. Although its use has been restricted for decades, PCP remains prevalent in both the environment and human bodies. Despite the known endocrine-disrupting and exogenous hormonal effects of PCP, few epidemiological studies examined such impact, especially among sensitive populations and during critical periods. Based on a prospective birth cohort in Wuhan, China, we collected maternal (first trimester; 13.0 ± 1.02 gestational weeks) and infant urine samples (1.16 ± 0.22 months postpartum) from 720 mother-infant pairs. We aimed to examine the association of PCP exposure during early pregnancy with maternal and infant urinary sex steroid hormones, including estrogens (estrone, E1; estradiol, E2; estriol, E3), progestogens (progesterone, P4; pregnenolone, P5; 17α-OH-Progesterone, 17OHP4; 17α-OH-Pregnenolone, 17OHP5), and androgens (testosterone, Testo; dihydrotestosterone, DHT; dehydroepiandrosterone, DHEA; androstenedione, A4). Additionally, gonadotropins [follicle-stimulating hormone (FSH) and luteinizing hormone (LH)] were measured in infant urine. Detection frequencies of all the sex steroid hormones in the maternal urine samples (>99 %) were higher than those in the infants' [most ≥80 %, except for E1 (3.36 %) and E2 (21.4 %)]. Maternal urinary PCP concentration was found to be significantly related with increased maternal sex steroid hormone concentrations; each interquartile increase in PCP concentration was positively related with percent change of the hormones (%Δ) ranging from 26.6 % to 48.5 %. On the other hand, maternal PCP exposure was associated with significantly increased P4 in male infants [%Δ (95 % confidence interval): 10.5 (0.56, 21.4)] but slightly decreased P4 in female infants [-11.9 (-21.8, 0.68)]. In addition, maternal PCP exposure was significantly associated with decreased FSH [%Δ (95 % CI): -9.90 (-17.0, -2.18)] and LH [-8.44 (-16.0, -0.19)] in the female infants, but not in the male infants. Sensitivity analyses, excluding infertility related treatment, pregnancy complications, preterm birth, or low birth weight, showed generally consistent results. Our findings implied that maternal/prenatal PCP exposure might disrupt the homeostasis of maternal and infant reproductive hormones. However, further studies are needed to confirm the findings.
Collapse
Affiliation(s)
- Yitao Huo
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China
| | - Ying Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Liwen Lan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Silan Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shunqing Xu
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Chao Xiong
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, PR China.
| | - Wei Xia
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
6
|
Zhang W, Su M, Lin H, Pan C, Tang Y, Ge RS, Fei Q. The metabolic activation of pentachlorophenol to chloranil as a potent inhibitor of human and rat placental 3β-hydroxysteroid dehydrogenases. Toxicol Lett 2024; 395:40-49. [PMID: 38555059 DOI: 10.1016/j.toxlet.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Pentachlorophenol (PCP) is a widely used pesticide. However, whether PCP and its metabolite chloranil have endocrine-disrupting effects by inhibiting placental 3β-hydroxysteroid dehydrogenase 1 (3β-HSD1) remains unclear. The study used in vitro assays with human and rat placental microsomes to measure 3β-HSD activity as well as human JAr cells to evaluate progesterone production. The results showed that PCP exhibited moderate inhibition of human 3β-HSD1, with an IC50 value of 29.83 μM and displayed mixed inhibition in terms of mode of action. Conversely, chloranil proved to be a potent inhibitor, demonstrating an IC50 value of 147 nM, and displaying a mixed mode of action. PCP significantly decreased progesterone production by JAr cells at 50 μM, while chloranil markedly reduced progesterone production at ≥1 μM. Interestingly, PCP and chloranil moderately inhibited rat placental homolog 3β-HSD4, with IC50 values of 27.94 and 23.42 μM, respectively. Dithiothreitol (DTT) alone significantly increased human 3β-HSD1 activity. Chloranil not PCP mediated inhibition of human 3β-HSD1 activity was completely reversed by DTT and that of rat 3β-HSD4 was partially reversed by DTT. Docking analysis revealed that both PCP and chloranil can bind to the catalytic domain of 3β-HSDs. The difference in the amino acid residue Cys83 in human 3β-HSD1 may explain why chloranil is a potent inhibitor through its interaction with the cysteine residue of human 3β-HSD1. In conclusion, PCP is metabolically activated to chloranil as a potent inhibitor of human 3β-HSD1.
Collapse
Affiliation(s)
- Weibing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ming Su
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hao Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chengshuang Pan
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 32500, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ren-Shan Ge
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Qianjin Fei
- Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 32500, China.
| |
Collapse
|
7
|
Yang F, Wan Y, Wang Y, Li S, Xu S, Xia W. Occurrence of pentachlorophenol in surface water from the upper to lower reaches of the Yangtze River and treated water in Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25589-25599. [PMID: 38478308 DOI: 10.1007/s11356-024-32821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Pentachlorophenol (PCP), a persistent organic pollutant, has been banned in many countries, but it is still used in China as a wood preservative, molluscicide, or reagent for fish-pond cleaning, which may pose risks to the ecosystem and humans. However, data on the occurrence of PCP in the environment are scarce in the recent decade. The Yangtze River was regarded as a priority area of PCP pollution according to previous documents. This study aimed to examine the spatial distribution of PCP in the Yangtze River water, the differences in dry and wet seasons, the ecological risk for aquatic organisms, and its removal efficiency in tap water treatment plants. The river water samples (n = 144) were collected from the upper, middle, and lower reaches across ten provinces (or municipalities) in December 2020 and June 2021, respectively. PCP was detected in 88.9% of all the samples, ranging from
Collapse
Affiliation(s)
- Fengting Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430024, People's Republic of China
| | - Yan Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Shulan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
8
|
Merrill AK, Sobolewski M, Susiarjo M. Exposure to endocrine disrupting chemicals impacts immunological and metabolic status of women during pregnancy. Mol Cell Endocrinol 2023; 577:112031. [PMID: 37506868 PMCID: PMC10592265 DOI: 10.1016/j.mce.2023.112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Alyssa K Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA.
| |
Collapse
|
9
|
Zhang Y, Li W, Zhu J, Qian X, Pei W, Gu Z, Wu Q, Zhang Z, Li L. Pentachlorophenol exposure induced neurotoxicity by disrupting citrulline metabolism in larvae and adult zebrafish. Toxicol Appl Pharmacol 2023; 478:116708. [PMID: 37778480 DOI: 10.1016/j.taap.2023.116708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Pentachlorophenol (PCP) is a ubiquitous environmental toxicant with various adverse effects. Although its neurotoxicity has been reported, the underlying mechanism and subsequent detoxification remain unclear. In this study, embryos and adult zebrafish were exposed to PCP to determine its potential neurotoxic mechanism and protective indicators. The survival rate, heart rate, mobility time, active status and moving distance were significantly decreased in larvae after 30 μg/L PCP exposure. Likewise, the mobile time, latency to the first movement, velocity and moving distance of adult zebrafish were significantly reduced by PCP exposure. Untargeted metabolomics analysis of larvae revealed that arginine and proline metabolism was the primary pathway affected by PCP exposure, reflected by increased proline and decreased citrulline (CIT) contents, which were confirmed by quantitative data. PCP exposure suppressed the conversion from arginine to CIT in larvae by downregulating the expression of nos1 and nos2a. Ornithine content was increased in the brains and intestines of adult zebrafish after PCP exposure, which inhibited ornithine catabolism to CIT by downregulating otc, resulting in reduced CIT. Intriguingly, CIT supplementation significantly restored the neurobehavioral defects induced by PCP in larvae and adult zebrafish. CIT supplementation upregulated the expression of ef1α and tuba1 in larvae and inhibited the downregulation of ef1α in the brains of adult zebrafish. Taken together, these results indicated that CIT supplementation could protect against PCP-induced neurotoxicity by upregulating the expression of genes involved in neuronal development and function.
Collapse
Affiliation(s)
- Yi Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Wenzheng Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jun Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Xin Qian
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Wenlong Pei
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Zhenyang Gu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| |
Collapse
|
10
|
Wei Y, Wang L, Liu J. The diabetogenic effects of pesticides: Evidence based on epidemiological and toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121927. [PMID: 37268216 DOI: 10.1016/j.envpol.2023.121927] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
While the use of pesticides has improved grain productivity and controlled vector-borne diseases, the widespread use of pesticides has resulted in ubiquitous environmental residues that pose health risks to humans. A number of studies have linked pesticide exposure to diabetes and glucose dyshomeostasis. This article reviews the occurrence of pesticides in the environment and human exposure, the associations between pesticide exposures and diabetes based on epidemiological investigations, as well as the diabetogenic effects of pesticides based on the data from in vivo and in vitro studies. The potential mechanisms by which pesticides disrupt glucose homeostasis include induction of lipotoxicity, oxidative stress, inflammation, acetylcholine accumulation, and gut microbiota dysbiosis. The gaps between laboratory toxicology research and epidemiological studies lead to an urgent research need on the diabetogenic effects of herbicides and current-use insecticides, low-dose pesticide exposure research, the diabetogenic effects of pesticides in children, and assessment of toxicity and risks of combined exposure to multiple pesticides with other chemicals.
Collapse
Affiliation(s)
- Yile Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Yao X, Geng S, Zhu L, Jiang H, Wen J. Environmental pollutants exposure and gestational diabetes mellitus: Evidence from epidemiological and experimental studies. CHEMOSPHERE 2023; 332:138866. [PMID: 37164202 DOI: 10.1016/j.chemosphere.2023.138866] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Except for known sociodemographic factors, long-term exposure to environmental pollutants has been shown to contribute to the development of gestational diabetes mellitus (GDM), but the conclusions remain controversial. To provide a comprehensive overview of the association between environmental pollutants and GDM, we performed a systematic review and meta-analysis. Several electronic databases (PubMed, Embase, Web of Science, Medline and Cochrane) were searched for related epidemiological and experimental studies up to September 2022. For epidemiological studies, a meta-analysis was carried out to appraise the effect of environmental pollutants, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), per- and polyfluoroalkyl substances (PFASs), phenols, phthalates (PAEs), polybrominated diphenyl ethers (PBDEs) and parabens exposure on GDM. Moreover, we also summarized possible biological mechanisms linking pollution exposure and GDM based on the included experimental studies. A total of 80 articles were enrolled, including 38 epidemiological studies and 42 experimental studies. Meta-analysis results showed that exposure to PAEs [OR (95%CI) = 1.07 (1.00, 1.14)], PFASs [OR (95%CI) = 1.10 (1.01, 1.19)], as well as PCBs [OR (95%CI) = 1.18 (1.02, 1.36)] and PBDEs [OR (95%CI) = 1.33 (1.17, 1.50)] significantly increased the risk of GDM, but no significant effects were found for phenols, OCPs, and parabens. In addition, experimental studies suggested that the potential biological mechanisms of environmental pollutants contributing to GDM may involve insulin resistance, β-cell dysfunction, neurohormonal dysfunction, inflammation, oxidative stress, epigenetic modification, and alterations in gut microbiome. In conclusion, long-term environmental pollutants exposure may induce the development of GDM, and there may be a synergistic effect between the homologs. However, studies conducted on the direct biological link between environmental pollutants and GDM were few. More prospective studies and high-quality in vivo and in vitro experiments were needed to investigate the specific effects and mechanisms.
Collapse
Affiliation(s)
- Xiaodie Yao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Shijie Geng
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Lijun Zhu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China
| | - Hua Jiang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210004, PR China.
| |
Collapse
|
12
|
Maheshwari N, Khan AA, Mahmood R. Oral administration of curcumin and gallic acid alleviates pentachlorophenol-induced oxidative damage in rat intestine. Food Chem Toxicol 2023; 176:113745. [PMID: 37028744 DOI: 10.1016/j.fct.2023.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023]
Abstract
INTRODUCTION Pentachlorophenol (PCP) is used as pesticide and wood preservative. We have previously shown that PCP causes oxidative damage in rat intestine. AIM This study aimed to delineate the possible therapeutic potential of curcumin (CUR) and gallic acid (GA) against PCP-induced damage in rat intestine. METHODS PCP alone group received 125 mg PCP/kg body weight/day orally for 4 days. Animals in combination groups received CUR or GA (100 mg/kg bw) for 18 days and PCP (125 mg/kg bw) for the last four days. Rats were sacrificed and intestinal preparations were analyzed for various parameters. RESULTS Administration of PCP alone altered the activities of metabolic, antioxidant and brush border membrane enzymes. It also increased DNA-protein crosslinking and DNA-strand scission. Animals in combinations groups showed significant amelioration against PCP-induced oxidative damage. Histological abrasions were seen in PCP alone group which were reduced in the intestines of combination groups. CUR was more effective protectant than GA. CONCLUSIONS CUR and GA protected rat intestine from PCP-mediated changes in the activities of metabolic, antioxidant and brush border membrane enzymes. They also prevented DNA damage and histological abrasions. The antioxidant character of CUR and GA may be responsible for the diminution of PCP-mediated oxidative damage.
Collapse
Affiliation(s)
- Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, U.P, India.
| | - Aijaz Ahmed Khan
- Department of Anatomy, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002, U.P, India.
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, U.P, India.
| |
Collapse
|
13
|
Sun Y, Liu Z, Xia W, He Z, Wan Y. Urinary pentachlorophenol in general population of central China: reproducibility, predictors, and associations with oxidative stress biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37598-37606. [PMID: 36574129 DOI: 10.1007/s11356-022-24802-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Pentachlorophenol (PCP) is a ubiquitous environmental persistent organic pollutant and a Group 1 carcinogen. Human exposure level of PCP was reported to be relatively higher in China than in many other countries, because sodium pentachlorophenate was abused as molluscicide in China. PCP can induce oxidative stress; however, the relationship of PCP exposure with oxidative stress biomarkers (OSBs) in human beings has rarely been documented. In this study, 404 first-morning urine samples (including repeated samples in three days donated by 74 participants) were collected from 128 healthy adults (general population without occupational exposure to PCP) in autumn and winter of 2018, respectively, in Wuhan, central China. Urinary concentrations of PCP and three select OSBs [including 8-OHG (abbreviation of 8-hydroxy-guanosine), 8-OHdG (8-hydroxy-2'-deoxyguanosine), and 4-HNEMA (4-hydroxy-2-nonenal mercapturic acid), which reflect oxidative damage of RNA, DNA, and lipid, respectively] were determined. PCP was detectable in 100% of the urine samples (specific gravity-adjusted median concentration: 0.44 ng/mL; range: 0.02-14.2 ng/mL). Interday reproducibility of urinary PCP concentrations was excellent (intraclass correlation coefficient: 0.88) in three days. Significant differences in PCP concentrations were found among different age groups; the group of participants aged 20-45 y (median: 0.72 ng/mL) had higher concentrations than those in the elders (aged 45-60 y and > 60 y). Spatial disparity was observed in autumn, and urban residents had higher PCP concentrations than rural residents (median: 0.60 vs. 0.31 ng/mL), whereas such disparity was not found in winter. There were no season-, sex-, or BMI-related differences between the corresponding subgroups. The urinary PCP concentrations were found to be associated with increases in 8-OHdG and 8-OHG rather than 4-HNEMA. An interquartile range increase in urinary PCP concentration was associated with a 23.5% (95% CI: 9.18-39.6) increase in 8-OHdG and a 21.3% (95% CI: 9.18-32.4) increase in 8-OHG, implied that PCP exposure at environmental relevant dose might be associated with nucleic acid oxidative damage in the general population. This pilot study reported associations between PCP exposure and OSBs in human beings. Future studies are needed to elucidate the mediating roles of OSBs in the association between PCP exposure and certain adverse health outcomes.
Collapse
Affiliation(s)
- Yanfeng Sun
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China
| | - Zhi Liu
- Jiangxia District Centers for Disease Control and Prevention, Wuhan, Hubei, 430200, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China.
| |
Collapse
|
14
|
Huo Y, Wan Y, Qian X, Mahai G, Wang A, He Z, Xu S, Xia W. Variability, determinants, and associations with oxidative stress biomarkers of pentachlorophenol among Chinese pregnant women: A longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158843. [PMID: 36122716 DOI: 10.1016/j.scitotenv.2022.158843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Pentachlorophenol (PCP) is ubiquitous and moderately persistent in the environment, and it is an identified human carcinogen. Previous animal experiments indicate that toxic mechanisms of PCP include oxidative stress. However, no epidemiological study has reported the association between PCP exposure and oxidative stress; such association in pregnant women, a vulnerable population, is of particular interest. This study aimed to characterize PCP concentrations in 2304 urine samples from 768 pregnant women, explore its determinants, and evaluate the associations between PCP exposure and three oxidative stress biomarkers across three trimesters. The median concentrations of PCP (100% detected) in the first, second, and third trimester were 0.61, 0.59, and 0.48 ng/mL, respectively, with a significant decrease trend. The intraclass correlation coefficient of specific gravity (SG)-adjusted PCP was 0.26, indicating high variability for PCP across the three trimesters. PCP concentrations were significantly higher in older, pre-pregnancy overweight, multiparous, high-income, and employed women during pregnancy. Urinary PCP was markedly lower in samples collected during spring compared to other seasons. Linear mixed effect models for repeated measures revealed that ln-transformed SG-adjusted PCP was significantly associated with increased 8-hydroxy-2'-deoxyguanosine (8-OHdG; percent change [%Δ] caused by each interquartile range increase of PCP: 46.2, 95% confidence interval [CI]: 40.2, 52.5) and 8-hydroxyguanosine (8-OHG;%Δ [95% CI]: 44.8 [40.1, 49.8]), but the positive association with 4-hydroxy2-nonenal-mercapturic acid (HNE-MA) was not significant. PCP was also positively associated with increased 8-OHdG and 8-OHG in each trimester using general linear models, and its associations with HNE-MA were only significant at T1 (%Δ [95% CI]: 19.1 [1.05, 40.3]) and T2 (%Δ [95% CI]: 12.6 [0.32, 26.3]). Our findings provide valuable information about PCP exposure characteristics during pregnancy and the potential effects of PCP exposure on oxidative stress in pregnant women.
Collapse
Affiliation(s)
- Yitao Huo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China.
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
15
|
Markovich ZR, Hartman JH, Ryde IT, Hershberger KA, Joyce AS, Ferguson PL, Meyer JN. Mild pentachlorophenol-mediated uncoupling of mitochondria depletes ATP but does not cause an oxidized redox state or dopaminergic neurodegeneration in Caenorhabditis elegans. Curr Res Toxicol 2022; 3:100084. [PMID: 35957653 PMCID: PMC9361317 DOI: 10.1016/j.crtox.2022.100084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
Aims Mitochondrial dysfunction is implicated in several diseases, including neurological disorders such as Parkinson's disease. However, there is uncertainty about which of the many mechanisms by which mitochondrial function can be disrupted may lead to neurodegeneration. Pentachlorophenol (PCP) is an organic pollutant reported to cause mitochondrial dysfunction including oxidative stress and mitochondrial uncoupling. We investigated the effects of PCP exposure in Caenorhabditis elegans, including effects on mitochondria and dopaminergic neurons. We hypothesized that mild mitochondrial uncoupling by PCP would impair bioenergetics while decreasing oxidative stress, and therefore would not cause dopaminergic neurodegeneration. Results A 48-hour developmental exposure to PCP causing mild growth delay (∼10 % decrease in growth during 48 h, covering all larval stages) reduced whole-organism ATP content > 50 %, and spare respiratory capacity ∼ 30 %. Proton leak was also markedly increased. These findings suggest a main toxic mechanism of mitochondrial uncoupling rather than oxidative stress, which was further supported by a concomitant shift toward a more reduced cellular redox state measured at the whole organism level. However, exposure to PCP did not cause dopaminergic neurodegeneration, nor did it sensitize animals to a neurotoxic challenge with 6-hydroxydopamine. Whole-organism uptake and PCP metabolism measurements revealed low overall uptake of PCP in our experimental conditions (50 μM PCP in the liquid exposure medium resulted in organismal concentrations of < 0.25 μM), and no measurable production of the oxidative metabolites tetra-1,4-benzoquinone and tetrachloro-p-hydroquinone. Innovation This study provides new insights into the mechanistic interplay between mitochondrial uncoupling, oxidative stress, and neurodegeneration in C. elegans. These findings support the premise of mild uncoupling-mediated neuroprotection, but are inconsistent with proposed broad "mitochondrial dysfunction"-mediated neurodegeneration models, and highlight the utility of the C. elegans model for studying mitochondrial and neurotoxicity. Conclusions Developmental exposure to pentachlorophenol causes gross toxicological effects (growth delay and arrest) at high levels. At a lower level of exposure, still causing mild growth delay, we observed mitochondrial dysfunction including uncoupling and decreased ATP levels. However, this was associated with a more-reduced cellular redox tone and did not exacerbate dopaminergic neurotoxicity of 6-hydroxydopamine, instead trending toward protection. These findings may be informative of efforts to define nuanced mitochondrial dysfunction-related adverse outcome pathways that will differ depending on the form of initial mitochondrial toxicity.
Collapse
Affiliation(s)
| | - Jessica H. Hartman
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
| | | | - Abigail S. Joyce
- Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Patrick L. Ferguson
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
- Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
| |
Collapse
|