1
|
Zuo B, Wang F, Li Z, Yu B, Zhang J, Xu W, Ai S, Chu H. Heat shock protein 70 mitigates black carbon particles-induced cardiac damage. J Environ Sci (China) 2025; 156:871-881. [PMID: 40412983 DOI: 10.1016/j.jes.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 05/27/2025]
Abstract
Studies have demonstrated the association between black carbon (BC) particles and elevated risk of cardiovascular disease. However, the mechanisms underlying this relationship remain unclear. This study aims to investigate the effects of BC exposure on gene expressions in mice myocardium. Mice were divided into 3 groups (phosphate buffer saline (PBS) group, C50 group (50 µg BC) and C100 group (100 µg BC)). RNA sequencing was employed to conduct transcriptome analysis on myocardium samples. The expression levels of candidate genes were verified by qRT-PCR. Western Blot and Immunohistochemistry techniques were utilized to evaluate the expression of heat shock protein 70 (Hsp70). BC exposure can cause an increase in the level of cardiac I-1β and IL-6. Transcriptome analysis revealed 1027 differentially expressed genes (DEGs) in the C100 group compared with the PBS group. Gene Ontology (GO) enrichment analysis demonstrated that these DEGs were primarily enriched in misfolded protein binding, respiratory chain and ATP metabolic process. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated significant enrichment of DEGs in pathways mainly related to prion disease, oxidative phosphorylation and reactive oxygen species. HSPA1A and HSPA1B, as Hsp70 family genes, were enriched in GO term of misfolded protein binding and prion disease pathway. Moreover, the expression of cardiac Hsp70 was significantly decreased in both BC groups and showed a negative association with pro-inflammatory factors expression. BC exposure has been shown to cause inflammatory injury and may induce protein misfolding. Notably, Hsp70 was a potential cardioprotective factor and target for BC pollution-related effects.
Collapse
Affiliation(s)
- Bo Zuo
- Department of Cardiology, Cardiovascular Centre, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China; Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Zhengpeng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Binhe Yu
- Department of Cardiology, Heart Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China
| | - Jiayi Zhang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China; Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Weizhe Xu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China; Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Sizhi Ai
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 511436, China; Department of Cardiology, Heart Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, China.
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China; Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
| |
Collapse
|
2
|
Kim GD, Shin DU, Song HJ, Lim KM, Eom JE, Lim EY, Kim YI, Song JH, Kim HJ, Lee SY, Shin HS. Analysis of particulate matter-induced alteration of genes and related signaling pathways in the respiratory system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116637. [PMID: 38941663 DOI: 10.1016/j.ecoenv.2024.116637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Airborne particulate matter (PM) is a global environmental risk factor threatening human health and is a major cause of cardiovascular and respiratory disease-associated death. Current studies on PM exposure have been limited to large-scale cohort and epidemiological investigations, emphasizing the need for detailed individual-level studies to uncover specific differentially expressed genes and their associated signaling mechanisms. Herein, we revealed that PM exposure significantly upregulated inflammatory and immune responses, such as cytokine-mediated signaling pathways, complement system, and the activation and migration of immune cells in gene set enrichment analysis of our RNA sequencing (RNAseq) data. Remarkably, we discovered that the broad gene expression and signaling pathways mediated by macrophages were predominantly expressed in the respiratory system following PM exposure. Consistent with these observations, individual PMs, classified by aerodynamic size and origin, significantly promoted macrophage recruitment to the lungs in the mouse lung inflammation model. Additionally, we confirmed that RNAseq observations from the respiratory system were reproduced in murine bone marrow-derived macrophages and the alveolar macrophage cell line MH-S after individual PM exposure. Our findings demonstrated that PM exposure augmented broad inflammatory and immune responses in the respiratory system and suggested the reinforcement of global strategies for reducing particulate air pollution to prevent respiratory diseases and their exacerbation.
Collapse
Affiliation(s)
- Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Dong-Uk Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hyeon-Ji Song
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Kyung Min Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ji-Eun Eom
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Eun Yeong Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Young In Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Ju Hye Song
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ha-Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - So-Young Lee
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Wang J, He W, Yue H, Zhao P, Li J. Effective-components combination alleviates PM2.5-induced inflammation by evoking macrophage autophagy in COPD. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117537. [PMID: 38043756 DOI: 10.1016/j.jep.2023.117537] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bufei Yishen formula (BYF) is clinically used to treat chronic obstructive pulmonary disease (COPD). Effective-component compatibility (ECC) is a combination of five active components derived from BYF, which has an equal effect on COPD to BYF. Our previous study has also demonstrated that ECC can protect COPD rats against PM2.5 exposure. However, the precise mechanisms remain to be elucidated. AIM OF THE STUDY To explore the mechanism underlying the anti-inflammatory effects of ECC-BYF against PM2.5-accelerated COPD. MATERIALS AND METHODS MH-S macrophages were stimulated by PM2.5 suspension to establish an in vitro model. Western blotting and immunofluorescent staining were used to measure the protein levels of autophagy markers. ELISA and quantitative PCR were used to detect the levels of inflammatory cytokines. In vivo, an established PM2.5-accelerated COPD rat model was used to determine the protective effect of ECC-BYF. Lung function, pathology, autophagy, and inflammatory mediators were detected. RESULTS Firstly, we observed a significantly increased number of macrophages in the lungs upon PM2.5 exposure. Then, decreased autophagy flux while elevated inflammation was detected in PM2.5-exposed rats and MH-S cells. In MH-S cells, ECC-BYF significantly suppressed the PM2.5-increased inflammatory cytokines production, which was accompanied by the enhancement of autophagy flux. An autophagy inhibitor counteracted the anti-inflammatory effect elicited by ECC-BYF. In addition, ECC-BYF stimulated Foxo3 nuclear translocation and upregulated Foxo3 expression, whereas Foxo3 knockdown abrogated the inhibitory effect of ECC-BYF on inflammation. In PM2.5-accelerated COPD rats, ECC-BYF also attenuated the autophagy disruption and increased Foxo3 in the lungs, finally resulting in a suppression of pulmonary inflammation and an enhancement of lung function. CONCLUSION ECC-BYF can ameliorate PM2.5-aggravated inflammation in COPD, which might be associated with the enhancement of autophagy flux in alveolar macrophages through the activation of Foxo3 signals.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, Henan Province, 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| | - Weijing He
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, Henan Province, 450046, China
| | - Huiyu Yue
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, Henan Province, 450046, China
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, Henan Province, 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450046, China; Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of PR China, Zhengzhou, Henan Province, 450046, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| |
Collapse
|
4
|
Yuan Y, Zhuang Y, Cui Y, Liu Y, Zhang Q, Xiao Q, Meng Q, Jiang J, Hao W, Wei X. IL-10-TG/TPO-T4 axis, the target of bis (2-ethylhexyl) tetrabromophthalate on thyroid function imbalance. Toxicology 2024; 501:153713. [PMID: 38135142 DOI: 10.1016/j.tox.2023.153713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Bis (2-ethylhexyl) tetrabromophthalate (TBPH) is a new type of brominated flame retardant. Some studies suggest that TBPH exposure may be associated with thyroid damage. However, there is a paucity of research on the authentic exposure-related effects and molecular mechanisms in animals or cells. In this study, we used male Sprague-Dawley (SD) rats and the Nthy ori3-1 cell line (the human thyroid follicular epithelial cell) to explore the potential effects of TBPH (5, 50, 500 mg/kg and 1, 10, 100 nM) on the thyroid. The genes and their proteins of cytokines and thyroid-specific proteins, thyroglobulin (TG), thyroid peroxidase (TPO), and sodium iodide cotransporter (NIS) were examined to investigate the possible mechanisms. At the end of the experiment, it was found that 50 and 500 mg/kg TBPH could increase the levels of total thyroxine (TT4) and free thyroxine (FT4) significantly. The messenger RNAs (mRNAs) of Tg, Tpo, Interleukin-6 (Il6), and Interleukin-10 (Il10) in the thyroid tissues from the rats treated with 500 mg/kg were enhanced clearly. Meanwhile, the mRNAs of TG, TPO, IL6, and IL10 were elevated in Nthy ori3-1 cells treated with 100 nM TBPH as well. The mRNAs of TG and TPO were elevated after the knockdown of IL6. To our surprise, after the knockdown of IL10 or the treatment of anti-IL-10-receptor (anti-IL-10-R) antibody, the mRNAs of TG and TPO were significantly reduced, and the effects of TBPH were diminished. In conclusion, our results suggested that the IL-10-IL-10R-TG/TPO-T4 axis is one important target of TBPH in the thyroid.
Collapse
Affiliation(s)
- Yuese Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yimeng Zhuang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yuan Cui
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yuetong Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
5
|
Yang D, Yang H, Shi M, Jia X, Sui H, Liu Z, Wu Y. Advancing food safety risk assessment in China: development of new approach methodologies (NAMs). FRONTIERS IN TOXICOLOGY 2023; 5:1292373. [PMID: 38046399 PMCID: PMC10690935 DOI: 10.3389/ftox.2023.1292373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Novel techniques and methodologies are being developed to advance food safety risk assessment into the next-generation. Considering the shortcomings of traditional animal testing, new approach methodologies (NAMs) will be the main tools for the next-generation risk assessment (NGRA), using non-animal methodologies such as in vitro and in silico approaches. The United States Environmental Protection Agency and the European Food Safety Authority have established work plans to encourage the development and application of NAMs in NGRA. Currently, NAMs are more commonly used in research than in regulatory risk assessment. China is also developing NAMs for NGRA but without a comprehensive review of the current work. This review summarizes major NAM-related research articles from China and highlights the China National Center for Food Safety Risk Assessment (CFSA) as the primary institution leading the implementation of NAMs in NGRA in China. The projects of CFSA on NAMs such as the Food Toxicology Program and the strategies for implementing NAMs in NGRA are outlined. Key issues and recommendations, such as discipline development and team building, are also presented to promote NAMs development in China and worldwide.
Collapse
Affiliation(s)
| | | | | | | | - Haixia Sui
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhaoping Liu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | | |
Collapse
|
6
|
Jiang S, Chen L, Shen J, Zhang D, Wu H, Wang R, Zhang S, Jiang N, Li W. Adverse Effects of Prenatal Exposure to Oxidized Black Carbon Particles on the Reproductive System of Male Mice. TOXICS 2023; 11:556. [PMID: 37505521 PMCID: PMC10385084 DOI: 10.3390/toxics11070556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Ambient black carbon (BC), a main constituent of atmospheric particulate matter (PM), is a primary particle that is mainly generated by the incomplete combustion of fossil fuel and biomass burning. BC has been identified as a potential health risk via exposure. However, the adverse effects of exposure to BC on the male reproductive system remain unclear. In the present study, we explored the effects of maternal exposure to oxidized black carbon (OBC) during pregnancy on testicular development and steroid synthesis in male offspring. Pregnant mice were exposed to OBC (467 μg/kg BW) or nanopure water (as control) by intratracheal instillation from gestation day (GD) 4 to GD 16.5 (every other day). We examined the testicular histology, daily sperm production, serum testosterone, and mRNA expression of hormone synthesis process-related factors of male offspring at postnatal day (PND) 35 and PND 84. Histological examinations exhibited abnormal seminiferous tubules with degenerative changes and low cellular adhesion in testes of OBC-exposed mice at PND 35 and PND 84. Consistent with the decrease in daily sperm production, the serum testosterone level of male offspring of OBC-exposed mice also decreased significantly. Correspondingly, mRNA expression levels of hormone-synthesis-related genes (i.e., StAR, P450scc, P450c17, and 17β-HSD) were markedly down-regulated in male offspring of PND 35 and PND 84, respectively. In brief, these results suggest that prenatal exposure has detrimental effects on mouse spermatogenesis in adult offspring.
Collapse
Affiliation(s)
- Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Li Chen
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Jianyun Shen
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Di Zhang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Hai Wu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Rong Wang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Shangrong Zhang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| |
Collapse
|
7
|
Ogbunuzor C, Fransen LFH, Talibi M, Khan Z, Dalzell A, Laycock A, Southern D, Eveleigh A, Ladommatos N, Hellier P, Leonard MO. Biodiesel exhaust particle airway toxicity and the role of polycyclic aromatic hydrocarbons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115013. [PMID: 37182301 DOI: 10.1016/j.ecoenv.2023.115013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Renewable alternatives to fossil diesel (FD) including fatty acid methyl ester (FAME) biodiesel have become more prevalent. However, toxicity of exhaust material from their combustion, relative to the fuels they are displacing has not been fully characterised. This study was carried out to examine particle toxicity within the lung epithelium and the role for polycyclic aromatic hydrocarbons (PAHs). Exhaust particles from a 20% (v/v) blend of FAME biodiesel had little impact on primary airway epithelial toxicity compared to FD derived particles but did result in an altered profile of PAHs, including an increase in particle bound carcinogenic B[a]P. Higher blends of biodiesel had significantly increased levels of more carcinogenic PAHs, which was associated with a higher level of stress response gene expression including CYP1A1, NQO1 and IL1B. Removal of semi-volatile material from particulates abolished effects on airway cells. Particle size difference and toxic metals were discounted as causative for biological effects. Finally, combustion of a single component fuel (Methyl decanoate) containing the methyl ester molecular structure found in FAME mixtures, also produced more carcinogenic PAHs at the higher fuel blend levels. These results indicate the use of FAME biodiesel at higher blends may be associated with an increased particle associated carcinogenic and toxicity risk.
Collapse
Affiliation(s)
- Christopher Ogbunuzor
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | | | - Midhat Talibi
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Zuhaib Khan
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Abigail Dalzell
- Toxicology Department, UK Health Security Agency, Harwell Campus, OX11 0RQ, UK
| | - Adam Laycock
- Toxicology Department, UK Health Security Agency, Harwell Campus, OX11 0RQ, UK
| | - Daniel Southern
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Aaron Eveleigh
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Nicos Ladommatos
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | - Paul Hellier
- Department of Mechanical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, UK
| | | |
Collapse
|
8
|
An G, Park J, Lim W, Song G. Thiobencarb induces phenotypic abnormalities, apoptosis, and cardiovascular toxicity in zebrafish embryos through oxidative stress and inflammation. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109440. [PMID: 35961533 DOI: 10.1016/j.cbpc.2022.109440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022]
Abstract
Thiobencarb is a representative herbicide used on rice paddies. Because thiobencarb is used extensively on agricultural lands, especially on paddy fields, there is a high risk of unintended leaks into aquatic ecosystems. For this reason, several studies have investigated and reported on the toxicity of thiobencarb to aquatic species. In European eels, thiobencarb affected acetylcholinesterase levels in plasma and impaired adenosine triphosphatase activity in their gills. In medaka, thiobencarb-exposed embryos showed lower viability. However, molecular mechanisms underlying thiobencarb-mediated embryotoxicity have yet to be clarified. Therefore, the objective of our study was to investigate its mechanism of toxicity using zebrafish embryos. The viability of zebrafish embryos decreased upon exposure to thiobencarb and various phenotypic abnormalities were observed at concentrations lower than the lethal dose. The developmental toxicity of thiobencarb was mediated by pro-inflammatory cytokines (il1b, cxcl8, cxcl18b, and cox2a) and excessive generation of reactive oxygen species due to the downregulation of genes such as catalase, sod1, and sod2, which encode antioxidant enzymes. In addition, severe defects of the cardiovascular system were identified in response to thiobencarb exposure. Specifically, deformed cardiac looping, delayed common cardinal vein (CCV) regression, and interrupted dorsal aorta (DA)-posterior cardinal vein (PCV) segregation were observed. Our results provide an essential resource that demonstrates molecular mechanisms underlying the toxicity of thiobencarb on non-target organisms, which may contribute to the establishment of a mitigation strategy.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|