1
|
Marchant DJ, Perkins DM, Jones JI, Kratina P. Physiological and behavioural responses of aquatic organisms to microplastics and experimental warming. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126182. [PMID: 40189086 DOI: 10.1016/j.envpol.2025.126182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/30/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
Microplastics are an emerging contaminant of concern because of their potential to cause harm to aquatic biota, such as reproduction, growth, and survival, and there is a lack of knowledge about how microplastics can affect other sub-lethal responses, such as movement behaviour and respiration rates, which may have consequences for species interactions. Additionally, there is little evidence for the effects of microplastics under different climate warming scenarios. To address this knowledge gap, the effects of high-density polyethylene (HDPE) microplastics, in combination with different constant temperature regimes (10 °C, 15 °C, and 20 °C) and a fluctuating regime (10-20 °C over a 24h diel cycle) on the respiration rates, feeding rates, and movement speeds of Gammarus pulex and Asellus aquaticus were assessed. Respiration rates of G. pulex increased with temperature according to metabolic theory, but there was no evidence for increased respiration rates of A. aquaticus at higher temperatures. Overall, the respiration rates and movement speeds of G. pulex were higher than A. aquaticus but there was no evidence that microplastics independently, or in combination with experimental warming, influenced any of the responses tested. There is increasing evidence that some microplastic particles may not be harmful to aquatic biota, and the findings presented in this study indicated that further evidence about the effects of different microplastic types, in combination with other human-induced pressures, is required to better understand the hazards and risks associated with microplastic particles in the environment.
Collapse
Affiliation(s)
- Danielle J Marchant
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Daniel M Perkins
- School of Life and Health Sciences, Whitelands College, University of Roehampton, London, SW15 4JD, United Kingdom; Centre for Pollution Research and Policy, Brunel University London, Uxbridge, United Kingdom
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.
| |
Collapse
|
2
|
Ilyas M, Duarte CM, Xu EG, Xu G, Yang J. Ecological effects of micro/nanoplastics on plant-associated food webs. TRENDS IN PLANT SCIENCE 2025; 30:526-538. [PMID: 39732531 DOI: 10.1016/j.tplants.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/30/2024]
Abstract
Micro/nanoplastics (MNPs) contamination is a potential threat to global biodiversity and ecosystem functions, with unclear ecological impacts on aboveground (AG) and belowground (BG) food webs in terrestrial ecosystems. Here, we discuss the uptake, ingestion, bioaccumulation, and ecotoxicological effects of MNPs in plants and associated AG-BG biota at various trophic levels. We propose key pathways for MNPs transfer between the AG-BG food webs and elaborate their impact on terrestrial ecosystem multifunctionality. We conclude that MNPs are bioaccumulated in most studied plants and associated AG-BG biota and can be transferred along AG-BG food webs, which may profoundly impact ecosystem functioning. However, most pathways are still untested. Future research on MNPs should focus on the interactions within AG-BG food webs in terrestrial ecosystems.
Collapse
Affiliation(s)
- Muhammad Ilyas
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Carlos M Duarte
- Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Guorui Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China.
| | - Jie Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China.
| |
Collapse
|
3
|
Sebteoui K, Csabai Z, Stanković J, Baranov V, Jovanović B, Milošević D. Downsizing plastics, upsizing impact: How microplastic particle size affects Chironomus riparius bioturbation activity. ENVIRONMENTAL RESEARCH 2025; 270:121055. [PMID: 39920972 DOI: 10.1016/j.envres.2025.121055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Microplastic contamination in freshwater systems poses serious ecological risks, yet the role of particle size in shaping these impacts remains underexplored. This study investigates the influence of microplastic size on bioturbation activities of Chironomus riparius larvae, a process essential for sediment dynamics and nutrient cycling. Employing luminophore sediment profile imaging (LSPI), we tracked the vertical distribution of polyethylene particles within sediment layers, focusing on two distinct size ranges: small (53-63 μm) and large (250-300 μm) spherical particles. Microplastics (MPs) were introduced at a 0.076% sediment ratio to reflect natural exposure scenarios. Initial findings reveal that both particle sizes undergo downward transport, though with different patterns. Notably, smaller particles demonstrated a more pronounced effect on larval behaviour, appearing frequently in digestive tracts and suggesting increased bioavailability. Temporal analysis showed distinct reworking dynamics for each particle size, with larger particles exhibiting a delayed reworking time compared to the smaller particles. This highlights the critical influence of particle size on the fate and behaviour of MPs in freshwater systems, with smaller particles potentially posing a greater ecological risk due to their quicker and more active incorporation into sedimentary processes. This study provides critical insights into size-specific interactions between MPs and freshwater organisms, enhancing our understanding of their impacts on ecosystem health and sedimentary processes.
Collapse
Affiliation(s)
- Khouloud Sebteoui
- Department of Hydrobiology, Faculty of Sciences, University of Pécs, Hungary.
| | - Zoltán Csabai
- Department of Hydrobiology, Faculty of Sciences, University of Pécs, Hungary; HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Jelena Stanković
- Department of Hydrobiology and Water Protection, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Viktor Baranov
- Estación Biológica de Doñana-CSIC/Doñana Biological Station-CSIC, Spain
| | - Boris Jovanović
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Djuradj Milošević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Serbia
| |
Collapse
|
4
|
Ghiglione JF, Ter Halle A. Plastic debris exposure and effects in rivers: Boundaries for efficient ecological risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10023-10031. [PMID: 39367216 DOI: 10.1007/s11356-024-35201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Until recently, plastic pollution research was focused on the marine environments, and attention was given to terrestrial and freshwater environments latter. This discussion paper aims to put forward crucial questions on issues that limit our ability to conduct reliable plastic ecological risk assessments in rivers. Previous studies highlighted the widespread presence of plastics in rivers, but the sources and levels of exposure remained matters of debate. Field measurements have been carried out on the concentration and composition of plastics in rivers, but greater homogeneity in the choice of plastic sizes, particularly for microplastics by following the recent ISO international standard nomenclature, is needed for better comparison between studies. The development of additional relevant sampling strategies that are suited to the specific characteristics of riverine environments is also needed. Similarly, we encourage the systematic real-time monitoring of environmental conditions (e.g., topology of the sampling section of the river, hydrology, volumetric flux and velocity, suspended matters concentration) to better understand the origin of variability in plastic concentrations in rivers. Furthermore, ingestion of microplastics by freshwater organisms has been demonstrated under laboratory conditions, but the long-term effects of continuous microplastic exposure in organisms are less well understood. This discussion paper encourages an integrative view of the issues involved in assessing plastic exposure and its effects on biota, in order to improve our ability to carry out relevant ecological risk assessments in river environments.
Collapse
Affiliation(s)
- Jean François Ghiglione
- CNRS, Sorbonne Université, Laboratoire d'Océanographie Microbienne (LOMIC)/UMR 7621, Observatoire Océanologique de Banyuls, Banyuls Sur Mer, France.
| | - Alexandra Ter Halle
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| |
Collapse
|
5
|
Amos P, Crumpton WG, Wilkinson G, Milošević D, Eads D, Jovanović B. Microplastics in 132 Iowa lakes and variability in relation to abiotic, biotic, and anthropogenic factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125839. [PMID: 39938587 DOI: 10.1016/j.envpol.2025.125839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
The global annual plastic production rate is approaching 400 million metric tons, with substantial amounts invading aquatic environments yearly. Numerous studies have been conducted monitoring marine plastic litter. An understanding of plastic litter's magnitude in freshwater ecosystems is lagging, particularly for microplastics (MP(s) 100 nm to 5 mm in length/diameter). Their ubiquitous presence and small sizes are concerning since MP effects remain inadequately understood. Our objective was to identify MP, measure concentration in lake surface waters and investigate how abiotic, biotic, and anthropogenic elements explain MP concentration variability among lakes. We sampled MPs in 132 Iowa lakes, collected throughout the water column using a Wisconsin net (53 μm mesh size). A fully automated custom-built Bruker LUMOS-II Fourier-transform infrared (FTIR) spectro-microscope was employed to identify MPs. Average MP concentration across all lakes was 5 particles/L, with dimensions averaging 145 μm in length and 80 μm in width. Predominant MP polymers collected were polyvinyl chloride (46% of all MPs), polyester (30%), and polyethylene (11%). Two variance partitioning analysis models were created to explore variability in MP concentration. The first classical model explained 7.5% of data variability based on roads, developed medium and high-intensity land cover, sewage plants, and thermocline. The second model, built according to Louvain Groups, explained 8.3% of data variability based on lake area, maximum lake depth, zooplankton tow depth, Secchi depth, lake perimeter, lake shoreline development factor, evergreen forest cover, and thermocline. Roads and developed intensity cover were positively correlated with MP concentrations, alongside household visits standardized to the lake area. Maximum lake depth, zooplankton tow depth, and Secchi depth were negatively correlated with MP concentration. MP concentration was significantly lower if the thermocline was present at the time of sample collection. In seven lakes, MP concentrations exceeded half-value of the modeled hazardous concentration, affecting 5% of aquatic species.
Collapse
Affiliation(s)
- Psalm Amos
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - William G Crumpton
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Grace Wilkinson
- Center for Limnology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Djuradj Milošević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
| | - Danielle Eads
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Boris Jovanović
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
6
|
de Ruijter VN, Redondo-Hasselerharm PE, Koelmans AA. A brief history of microplastics effect testing: Guidance and prospect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125711. [PMID: 39828198 DOI: 10.1016/j.envpol.2025.125711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Numerous reviews have consistently highlighted the shortcomings of studies evaluating the effects of microplastics (MP), with many of the issues identified in 2016 still relevant in 2024. Here, we summarize the current knowledge on MP effect testing, compare guidelines, and provide an overview of risk assessments conducted at both single species and community levels. We discuss standard test materials, MP characteristics, and mechanisms explaining effects. We have observed that the quality of MP effect studies is gradually improving, and knowledge on enhancing these studies is available. Recommendations include data rescaling and alignment for ecological risk assessment, with preference for using environmentally relevant MPs. A step-by-step protocol for creating polydisperse test materials is provided. Most risk assessments indicate that concentrations observed in ecosystems globally exceed the effect thresholds measured in the laboratory. However, using a higher-tier approach, no risks are expected for freshwater benthic communities at current MP exposure concentrations. Evidence on the mechanisms behind adverse effects is growing; however, more well-designed experiments are needed. A potential solution might involve comparing natural particles with MPs that are as similar in dimensions as possible, providing insight into the mechanisms of food dilution where volume is a critical determinant of toxicity.
Collapse
Affiliation(s)
- Vera N de Ruijter
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands
| | | | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands.
| |
Collapse
|
7
|
Traylor SD, Granek EF, Duncan M, Brander SM. From the ocean to our kitchen table: anthropogenic particles in the edible tissue of U.S. West Coast seafood species. FRONTIERS IN TOXICOLOGY 2024; 6:1469995. [PMID: 39776763 PMCID: PMC11703854 DOI: 10.3389/ftox.2024.1469995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Microplastics (MPs) and other anthropogenic particles (APs) are pervasive environmental contaminants found throughout marine and aquatic environments. We quantified APs in the edible tissue of black rockfish, lingcod, Chinook salmon, Pacific herring, Pacific lamprey, and pink shrimp, comparing AP burdens across trophic levels and between vessel-retrieved and retail-purchased individuals. Edible tissue was digested and analyzed under a microscope, and a subset of suspected APs was identified using spectroscopy (μFTIR). Anthropogenic particles were found in 180 of 182 individuals. Finfish contained 0.02-1.08 AP/g of muscle tissue. In pink shrimp (Pandalus jordani), the average AP/g was 10.68 for vessel-retrieved and 7.63 for retail-purchased samples; however, APs/g of tissue were higher in retail-purchased lingcod than vessel-retrieved lingcod, signaling possible added contamination during processing from ocean to market. Riverine young adult Pacific lamprey contained higher concentrations of APs (1 AP/g ±0.59) than ocean phase adults (0.60 AP/g ±0.80 and p = 0.08). Particle types identified were 82% fibers, 17% fragments, and 0.66% films. These findings suggest a need for further research into technologies and strategies to reduce microfiber pollution entering the environment.
Collapse
Affiliation(s)
- Summer D. Traylor
- Environmental Science and Management, Portland State University, Portland, OR, United States
| | - Elise F. Granek
- Environmental Science and Management, Portland State University, Portland, OR, United States
| | - Marilyn Duncan
- Environmental Science and Management, Portland State University, Portland, OR, United States
| | - Susanne M. Brander
- Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
8
|
Sultan M, Cai ZX, Bao L, Duan JJ, Liu YY, Yang G, Pei DS. Trophic transfer induced gut inflammation, dysbiosis, and inflammatory pathways in zebrafish via Artemia franciscana: A differential analysis of nanoplastic toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136030. [PMID: 39362123 DOI: 10.1016/j.jhazmat.2024.136030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Rising glbal population and plastic consumption have caused a dramatic increase in plastic waste, leading to micro- and nanoplastic ingestion by aquatic organisms and subsequent bioaccumulation in their tissues. This transfer to higher trophic levels raises nanoplastic concentrations and bioavailability, potentially harming organisms' health and development. This poses a risk to human health via seafood. To address these issues, this study assesses the toxicological impacts of nanoplastics (NPs) on brine shrimp (Artemia franciscana) and their trophic transfer to zebrafish. The research unveiled concentration-dependent bioaccumulation of NPs in zebrafish and Artemia franciscana (A. franciscana). Polystyrene nanoplastics (PS-NPs) exhibited higher accumulation in A. franciscana whereas PP-NPs showed greater accumulation in zebrafish gut. Histopathological analysis under PS-NPs exposure revealed significant tissue alterations, indicative of inflammatory responses and impaired mucosal barrier integrity. Gene expression analyses confirmed these findings, showing activation of the P38-MAPK pathway by PS-NPs, which correlated with increased inflammatory cytokines. Additionally, PE-NPs activated the JNK-MAPK pathway, while PP-NPs exposure triggered the NOD-like receptor signaling pathway. Moreover, the composition of gut microbiota shifted to a dysbiotic state, characterized by an increase in pathogenic bacteria in the PS-NPs and PP-NPs groups, elevating the risk of developing Inflammatory Bowel Disease (IBD). PS-NPs were regarded as the most toxic due to their lower stability and higher aggregation tendencies, followed by PP-NPs and PE-NPs. Taken together, the overall study highlighted the complex interactions between NPs, gut microbiota, and host health, emphasizing the importance of thoroughly assessing the ecological and physiological impacts of nanoplastic pollution.
Collapse
Affiliation(s)
- Marriya Sultan
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Xin Cai
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Li Bao
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jin-Jing Duan
- Chongqing Miankai Biotechnology Research Institute Co., Ltd., Chongqing 400025, China
| | - Yi-Yun Liu
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Guan Yang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; Chongqing Miankai Biotechnology Research Institute Co., Ltd., Chongqing 400025, China.
| |
Collapse
|
9
|
Martínez-Pérez S, Schell T, Franco D, Rosal R, Redondo-Hasselerharm PE, Martínez-Hernández V, Rico A. Fate and effects of an environmentally relevant mixture of microplastics in simple freshwater microcosms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107104. [PMID: 39306962 DOI: 10.1016/j.aquatox.2024.107104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 11/12/2024]
Abstract
Most studies assessing the effects of microplastics (MPs) on freshwater ecosystems use reference materials of a certain size, shape, and polymer type. However, in the environment, aquatic organisms are exposed to a mixture of different polymers with different sizes and shapes, resulting in different bioaccessible fractions and effects. This study assesses the fate and effects of an environmentally relevant mixture of high-density polyethylene (HDPE) fragments, polypropylene (PP) fragments, and polyester (PES) fibres in indoor freshwater microcosms over 28 days. The MP mixture contained common polymers found in freshwater ecosystems, had a size range between 50 and 3887 µm, and was artificially aged using a mercury lamp. The invertebrate species included in the microcosms, Lymnea stagnalis (snail) and Lumbriculus variegatus (worm), were exposed to four MP concentrations: 0.01, 0.05, 0.1 and 1 % of sediment dry weight. MPs fate was assessed by performing a balance of the MPs in the surface water, water column, and sediment after a stabilization period and at the end of the experiment. Sedimentation rates per day were calculated (2.13 % for PES, 1.46 % for HDPE, 1.87 % for PP). The maximum size of MPs taken up by the two species was determined and compared to the added mixture and their mouth size. The size range taken up by L. variegatus was smaller than L. stagnalis and significantly different from the size range in the added mixture. The No Observed Effect Concentrations (NOECs) for the reproduction factor of L. variegatus and the number of egg clutches produced by L. stagnalis were 0.01 % and 0.1 % sediment dry weight, respectively. The EC10 and EC50 for the same endpoint for L. stagnalis were 0.25 % and 0.52 %, respectively. This study shows that current MP exposure levels in freshwater sediments can result in sub-lethal effects on aquatic organisms, highlighting the importance of testing MP mixtures.
Collapse
Affiliation(s)
- Sara Martínez-Pérez
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain; Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering E-28871 Madrid, Spain
| | - Theresa Schell
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain
| | - Daniel Franco
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain
| | - Roberto Rosal
- Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering E-28871 Madrid, Spain
| | - Paula E Redondo-Hasselerharm
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain
| | - Virtudes Martínez-Hernández
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, 9 Av. Punto Com 2, Alcalá de Henares 28805, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2 46980, Paterna, Valencia, Spain.
| |
Collapse
|
10
|
Norhayati AM, Matthaei CD, Ingram T. The impact of microplastics on lake communities: A mesocosm study. CHEMOSPHERE 2024; 367:143600. [PMID: 39490757 DOI: 10.1016/j.chemosphere.2024.143600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Plastics are pervasive pollutants that are being produced at an increasing rate to meet consumer demands. After entering the environment, plastics can break down, creating smaller fragments, including secondary microplastics. Microplastic contamination in lakes has been recorded worldwide, and the ingestion of microplastics has been documented in zooplankton, macroinvertebrates, and fish. Microplastic ingestion and exposure can cause varying deleterious effects on these organism groups, but the impact of realistic microplastic concentrations on whole freshwater food webs requires further study. We addressed these knowledge gaps by conducting an 8-week experiment factorially crossing microplastic addition at a concentration of 1.5 particles/L with a fish predator (perch, Perca fluviatilis) presence in 1200-L outdoor mesocosms. Microplastic exposure had time-varying effects on zooplankton abundance, with a lower abundance of zooplankton in plastic treatments at the end of the experiment. Although microplastics had no impact on total macroinvertebrate abundance, there were effects on individual taxa. In the presence of microplastics, the cased caddisfly Triplectides spp. had a significantly lower abundance, which may have led to an increase in the snail Gyraulus spp. in week eight. Across the benthic and pelagic invertebrate communities, there were near-significant compositional differences between control and plastic treatments. These findings indicate that microplastic exposure may negatively impact freshwater invertebrate communities, even at low, field-realistic concentrations representative of the densities currently found in lakes.
Collapse
Affiliation(s)
- Amirah M Norhayati
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| | - Christoph D Matthaei
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Travis Ingram
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
11
|
Langenfeld D, Bucci K, Veneruzzo C, McNamee R, Gao G, Rochman CM, Rennie MD, Hoffman MJ, Orihel DM, Provencher JF, Higgins SN, Paterson MJ. Microplastics at Environmentally Relevant Concentrations Had Minimal Impacts on Pelagic Zooplankton Communities in a Large In-Lake Mesocosm Experiment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19419-19428. [PMID: 39418533 PMCID: PMC11526364 DOI: 10.1021/acs.est.4c05327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
To assess the potential risks of contemporary levels of plastic pollution in freshwater ecosystems, a large-scale experiment was conducted over 10 weeks in a boreal lake at the IISD-Experimental Lakes Area (Ontario, Canada). Fragments of common polymers (polyethylene, polystyrene, and polyethylene terephthalate), each with distinct colors and buoyancies, were added as a single pulse to seven in-lake mesocosms in equal contributions in a range of environmentally relevant nominal concentrations (6-29,240 particles/L). Two additional mesocosms with no added microplastics were used as controls. Zooplankton ingested low levels of microplastics (mean of 0.06 particles/individual ± SD 0.07) and generally their total abundance and community composition were not negatively impacted. Temporary changes were however observed; total zooplankton abundance and abundance of calanoid copepods were temporarily stimulated by increasing nominal microplastic concentrations, and modest, short-term reductions in egg production of the cyclopoid copepod Tropocyclops extensus and abundance of copepod nauplii occurred. Collectively, these results suggest that microplastics could have complex impacts on zooplankton communities, stimulating some species while negatively impacting others.
Collapse
Affiliation(s)
- Desiree Langenfeld
- International
Institute for Sustainable Development Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
- Department
of Entomology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Kennedy Bucci
- Department
of Ecology and Evolutionary Biology, University
of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Cody Veneruzzo
- Department
of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Rachel McNamee
- Department
of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gloria Gao
- Department
of Ecology and Evolutionary Biology, University
of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Chelsea M. Rochman
- Department
of Ecology and Evolutionary Biology, University
of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Michael D. Rennie
- Department
of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Matthew J. Hoffman
- School
of
Mathematics and Statistics, Rochester Institute
of Technology, Rochester, New York 14623, United States
| | - Diane M. Orihel
- Department
of Biology and School of Environmental Studies, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Jennifer F. Provencher
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, Ottawa K1S 5B6, Canada
| | - Scott N. Higgins
- International
Institute for Sustainable Development Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
| | - Michael J. Paterson
- International
Institute for Sustainable Development Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
- Department
of Entomology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
12
|
Martínez Rodríguez A, Kratina P, Jones JI. Microplastic pollution and nutrient enrichment shift the diet of freshwater macroinvertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124540. [PMID: 39004208 DOI: 10.1016/j.envpol.2024.124540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Microplastic pollution poses a global threat to freshwater ecosystems, with laboratory experiments indicating potential toxic impacts through chemical toxicity, physical abrasion, and false satiation. Bioplastics have emerged as a potential greener alternative to traditional oil-based plastics. Yet, their environmental effects remain unclear, particularly at scales relevant to the natural environment. Additionally, the interactive impacts of microplastics with other environmental stressors, such as nutrient enrichment, are poorly understood and rarely studied. Under natural conditions organisms might be able to mitigate the toxic effects of microplastics by shifting their diet, but this ability may be compromised by other stressors. This study combines an outdoor mesocosm experiment and stable isotope analysis to determine changes in the trophic niches of three freshwater invertebrate species exposed to conventional (HDPE) and bio-based biodegradable (PLA) microplastics at two concentrations, both independently and combined with nutrient enrichment. Exposure to microplastics altered the isotopic niches of two of the invertebrate species, with nutrient enrichment mediating this effect. Moreover, the effects of microplastics were consistent regardless of their type or concentration. Under enriched conditions, two of the species exposed to microplastics shifted to a specialised diet compared with controls, whereas little difference was observed between the isotopic niches of those exposed to microplastic and controls under ambient nutrient conditions. Additionally, PLA was estimated to support 24 % of the diet of one species, highlighting the potential assimilation of bioplastics by biota and possible implications. Overall, these findings suggest that the toxic effects of microplastics suggested from laboratory studies might not manifest under real-world conditions. However, this study does demonstrate that subtle sublethal effects occur even at environmentally realistic microplastic concentrations. The crucial role of nutrient enrichment in mediating microplastic effects underscores the importance of considering microplastic pollution in the context of other environmental stressors.
Collapse
Affiliation(s)
- Ana Martínez Rodríguez
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
13
|
Jiménez-Contreras J, Fernández-Medina RI, Fernández-Araiza MA. Microplastics pollution in tropical lakes: water, zooplankton, and fish in Central Mexico. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:813. [PMID: 39145782 PMCID: PMC11327201 DOI: 10.1007/s10661-024-12978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
The presence of microplastics in freshwater systems can have harmful effects on the food chain. Zooplankton, especially suspension and filter feeders, can ingest microplastics, which can cause adverse effects and transfer them to higher trophic levels. Here, we analyze the presence, abundance, and distribution of microplastics in surface water, zooplankton, and fish in two tropical lakes in central Mexico. We collected water samples in triplicate at three sites in each lake and 120 fish of the genus Chirostoma. From each water sample, 300 rotifers and 150 microcrustaceans were randomly isolated and processed independently. Of the particles found in the water, zooplankton, and fish from both lakes, the fragments were the predominant ones. The total abundance of microplastics in the water column of both lakes varied between 1.2 and 17.0 items L-1. In zooplankton, fragments were found predominantly with up to 0.1 items ind-1, while in fish, up to 4.5 items ind-1 was recorded. Our results confirm the presence of microplastics in different compartments of the food webs of freshwater bodies, water column, zooplankton, and fish. Further work is required on the possible effects of these stressors at the different trophic levels.
Collapse
Affiliation(s)
- Jorge Jiménez-Contreras
- Laboratorio de Producción Acuícola, Universidad Nacional Autónoma de México, Campus IztacalaLos Reyes Iztacala, CP 54090, Tlalnepantla, Estado de México, México.
| | - Raquel I Fernández-Medina
- Laboratorio de Producción Acuícola, Universidad Nacional Autónoma de México, Campus IztacalaLos Reyes Iztacala, CP 54090, Tlalnepantla, Estado de México, México
| | - Mario A Fernández-Araiza
- Laboratorio de Producción Acuícola, Universidad Nacional Autónoma de México, Campus IztacalaLos Reyes Iztacala, CP 54090, Tlalnepantla, Estado de México, México
| |
Collapse
|
14
|
Ebbesen LG, Strange MV, Gunaalan K, Paulsen ML, Herrera A, Nielsen TG, Shashoua Y, Lindegren M, Almeda R. Do weathered microplastics impact the planktonic community? A mesocosm approach in the Baltic Sea. WATER RESEARCH 2024; 255:121500. [PMID: 38554636 DOI: 10.1016/j.watres.2024.121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Microplastics (MPs) are ubiquitous pollutants of increasing concern in aquatic systems. However, little is still known about the impacts of weathered MPs on plankton at the community level after long-term exposure. In this study, we investigated the effects of weathered MPs on the structure and dynamics of a Baltic Sea planktonic community during ca. 5 weeks of exposure using a mesocosm approach (2 m3) mimicking natural conditions. MPs were obtained from micronized commercial materials of polyvinyl chloride, polypropylene, polystyrene, and polyamide (nylon) previously weathered by thermal ageing and sunlight exposure. The planktonic community was exposed to 2 μg L-1 and 2 mg L-1 of MPs corresponding to measured particle concentrations (10-120 μm) of 680 MPs L-1 and 680 MPs mL-1, respectively. The abundance and composition of all size classes and groups of plankton and chlorophyll concentrations were periodically analyzed throughout the experiment. The population dynamics of the studied groups showed some variations between treatments, with negative and positive effects of MPs exhibited depending on the group and exposure time. The abundance of heterotrophic bacteria, pico- and nanophytoplankton, cryptophytes, and ciliates was lower in the treatment with the higher MP concentration than in the control at the last weeks of the exposure. The chlorophyll concentration and the abundances of heterotrophic nanoflagellates, Astromoeba, dinoflagellate, diatom, and metazooplankton were not negatively affected by the exposure to MPs and, in some cases, some groups showed even higher abundances in the MP treatments. Despite these tendencies, statistical analyses indicate that in most cases there were no statistically significant differences between treatments over the exposure period, even at very high exposure concentrations. Our results show that weathered MPs of the studied conventional plastic materials have minimal or negligible impact on planktonic communities after long-term exposure to environmentally relevant concentrations.
Collapse
Affiliation(s)
- Linea Gry Ebbesen
- Department of Environmental Engineering, Technical University of Denmark, Denmark; National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Markus Varlund Strange
- Department of Environmental Engineering, Technical University of Denmark, Denmark; National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Kuddithamby Gunaalan
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | | | - Alicia Herrera
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain
| | - Torkel Gissel Nielsen
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Yvonne Shashoua
- Environmental Archaeology and Materials Science, National Museum of Denmark, Denmark
| | - Martin Lindegren
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Rodrigo Almeda
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark; EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
15
|
Rahman MM, Kim ES, Sung HC. Microplastics as an emerging threat to amphibians: Current status and future perspectives. Heliyon 2024; 10:e28220. [PMID: 38560268 PMCID: PMC10979166 DOI: 10.1016/j.heliyon.2024.e28220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Given their pervasiveness in the environment, particularly in aquatic ecosystems, plastics are posing a growing concern worldwide. Many vertebrates and invertebrates in marine, freshwater, and terrestrial ecosystems exhibit microplastic (MP) uptake and accumulation. Some studies have indicated the fatal impacts of MPs on animals and their possible transfer through food chains. Thus, it is crucial to study MP pollution and its impacts on environment-sensitive and globally threatened animal groups, such as amphibians, which also play an important role in the energy transfer between ecosystems. Unfortunately, research in this field is lacking and sources of organized information are also scarce. Hence, we systematically reviewed published literature on MPs in amphibians to fill the existing knowledge gap. Our review revealed that most of the previous studies have focused on MP bioaccumulation in amphibians, whereas, only a few research highlighted its impacts. We found that more than 80% of the studied species exhibited MP accumulation. MPs were reported to persist in different organs for a long time and get transferred to other trophic levels. They can also exhibit cytotoxic and mutagenic effects and may have fatal impacts. Moreover, they can increase the disease susceptibility of amphibians. Our study concludes the MPs as a potential threat to amphibians and urges increasing the scope and frequency of research on MP pollution and its impacts on this vulnerable animal group. We also provide a generalized method for studying MPs in amphibians with future perspectives and research directions. Our study is significant for extending the knowledge of MPs and their impacts on amphibians and guiding prospective research.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Biological Sciences, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, 61186, Gwangju, Republic of Korea
- Research Center of Ecomimetics, Chonnam National University, Gwangju, 61186, Republic of Korea
- Center for Next Generation Sensor Research and Development, Chonnam National University, Gwangju, 61186, Republic of Korea
- Institute of Sustainable Ecological Environment, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ha-Cheol Sung
- Department of Biological Sciences, Chonnam National University, 61186, Gwangju, Republic of Korea
- Research Center of Ecomimetics, Chonnam National University, Gwangju, 61186, Republic of Korea
- Institute of Sustainable Ecological Environment, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
16
|
Sebteoui K, Milošević D, Stanković J, Baranov V, Jovanović B, Krause S, Csabai Z. Beneath the surface: Decoding the impact of Chironomus riparius bioturbation on microplastic dispersion in sedimentary matrix. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170844. [PMID: 38342470 DOI: 10.1016/j.scitotenv.2024.170844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
A detailed understanding of microplastics (MPs) behaviour in freshwater ecosystems is crucial for a proper ecological assessment. This includes the identification of significant transport pathways and net accumulation zones, considering their inherent, and already proven influence on aquatic ecosystems. Bioavailability of toxic agents is significantly influenced by macroinvertebrates' behaviour, such as bioturbation and burrowing, and their prior exposure history. This study investigates the effect of bioturbation activity of Chironomus riparius Meigen, 1804 on the vertical transfer of polyethylene MPs ex-situ. The experimental setup exposes larvae to a scenario of 10× the environmentally relevant high concentration of MPs (80 g m-2). Bioturbation activity was estimated using sediment profile imaging with luminophore tracers. This study demonstrated that spherical MPs are vertically transferred in the sediment due to the bioturbation activity of C. riparius larvae and that their presence influences the intensity of the bioturbation activity over time. The present findings provide a noteworthy contribution to the understanding of the relationship between ecosystem engineers and the dispersion and accumulation of MPs within freshwater ecosystems.
Collapse
Affiliation(s)
- Khouloud Sebteoui
- Department of Hydrobiology, Faculty of Sciences, University of Pécs, Hungary.
| | - Djuradj Milošević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Serbia
| | - Jelena Stanković
- Department of Hydrobiology and Water Protection, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Viktor Baranov
- Estación Biológica de Doñana-CSIC / Doñana Biological Station-CSIC, Spain
| | - Boris Jovanović
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom; LEHNA- Laboratoire d'ecologie des hydrosystemes naturels et anthropises, University of Lyon, Darwin C & Forel, 3-6 Rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Zoltán Csabai
- Department of Hydrobiology, Faculty of Sciences, University of Pécs, Hungary; Balaton Limnological Research Institute, Tihany, Hungary
| |
Collapse
|
17
|
Ahmadi P, Dichgans F, Jagau L, Schmidt C, Aizinger V, Gilfedder BS, Fleckenstein JH. Systematic CFD-based evaluation of physical factors influencing the spatiotemporal distribution patterns of microplastic particles in lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170218. [PMID: 38280578 DOI: 10.1016/j.scitotenv.2024.170218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Spatiotemporal distribution patterns of microplastic (MP) particles in lakes hinge on both the physical conditions in the lake and particle properties. Using numerical simulations, we systematically investigated the influence of lake depth and bathymetry, wind and temperature conditions, MP particle release location and timing, as well as particle diameter (10, 20, and 50 μm). Our results indicate that maximum lake depth had the greatest effect on the residence time in the water column, as it determines the settling timescale and occurrence of hydrodynamic complexity such as density-driven flows in the lake. Increasing particle size from 10 to 20 and 50 μm also significantly reduced the residence time making particle size the factor with the second strongest effect on the residence time and, in turn, on the availability of MP particles for uptake by organisms. Changing bathymetry from a uniform to a non-uniform had a less pronounced effect on particle residence time compared to maximum depth and particle size. Release location, wind conditions, and release time had comparably little effect on particle behavior but became more important as MP particle size decreased. The release of the 10 μm MP particles in the deeper lakes with uniform bathymetry during summer with stable thermal stratification, resulted in a nearly month-long turnover phase in the fall in which both settling and rising of particles occurred simultaneously. This was caused by convective heat and water transport during this period. In these scenarios about 2.6 to 5.4 % of the released MP particles were held in or returned to the water layers near the lake surface. While acknowledging the dominant role of lake depth and MP particle size on the particle residence time, this study further emphasizes that it is ultimately a particular combination of different factors and their interactions that shape MP distribution patterns in lakes.
Collapse
Affiliation(s)
- Pouyan Ahmadi
- Department of Hydrogeology, Helmholtz-Centre for Environmental Research, UFZ, 04318 Leipzig, Germany.
| | - Franz Dichgans
- Department of Hydrogeology, Helmholtz-Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Lisa Jagau
- Chair of Scientific Computing, University of Bayreuth, 95440 Bayreuth, Germany
| | - Christian Schmidt
- Department of Hydrogeology, Helmholtz-Centre for Environmental Research, UFZ, 04318 Leipzig, Germany
| | - Vadym Aizinger
- Chair of Scientific Computing, University of Bayreuth, 95440 Bayreuth, Germany
| | - Benjamin S Gilfedder
- Limnological Research Station, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, 95440 Bayreuth, Germany; Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Jan H Fleckenstein
- Department of Hydrogeology, Helmholtz-Centre for Environmental Research, UFZ, 04318 Leipzig, Germany; Hydrologic Modelling Unit, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
18
|
Yalçın G, Yıldız D, Calderó-Pascual M, Yetim S, Şahin Y, Parakatselaki ME, Avcı F, Karakaya N, Ladoukakis ED, Berger SA, Ger KA, Jeppesen E, Beklioğlu M. Quality matters: Response of bacteria and ciliates to different allochthonous dissolved organic matter sources as a pulsed disturbance in shallow lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170140. [PMID: 38244618 DOI: 10.1016/j.scitotenv.2024.170140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/11/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Shallow lake ecosystems are particularly prone to disturbances such as pulsed dissolved organic matter (allochthonous-DOM; hereafter allo-DOM) loadings from catchments. However, the effects of allo-DOM with contrasting quality (in addition to quantity) on the planktonic communities of microbial loop are poorly understood. To determine the impact of different qualities of pulsed allo-DOM disturbance on the coupling between bacteria and ciliates, we conducted a mesocosm experiment with two different allo-DOM sources added to mesocosms in a single-pulse disturbance event: Alder tree leaf extract, a more labile (L) source and HuminFeed® (HF), a more recalcitrant source. Allo-DOM sources were used as separate treatments and in combination (HFL) relative to the control without allo-DOM additions (C). Our results indicate that the quality of allo-DOM was a major regulator of planktonic microbial community biomass and/or composition through which both bottom-up and top-down forces were involved. Bacteria biomass showed significant nonlinear responses in L and HFL with initial increases followed by decreases to pre-pulse conditions. Ciliate biomass was significantly higher in L compared to all other treatments. In terms of composition, bacterivore ciliate abundance was significantly higher in both L and HFL treatments, mainly driven by the bacterial biomass increase in the same treatments. GAMM models showed negative interaction between metazoan zooplankton biomass and ciliates, but only in the L treatment, indicating top-down control on ciliates. Ecosystem stability analyses revealed overperformance, high resilience and full recovery of bacteria in the HFL and L treatments, while ciliates showed significant shift in compositional stability in HFL and L with incomplete taxonomic recovery. Our study highlights the importance of allo-DOM quality shaping the response within the microbial loop not only through triggering different scenarios in biomass, but also the community composition, stability, and species interactions (top-down and bottom-up) in bacteria and plankton.
Collapse
Affiliation(s)
- Gülce Yalçın
- Limnology Laboratory, Biological Sciences Department, Middle East Technical University, 06800 Ankara, Turkey; Ecosystem Research and Implementation Center, Middle East Technical University, 06800 Ankara, Turkey.
| | - Dilvin Yıldız
- Limnology Laboratory, Biological Sciences Department, Middle East Technical University, 06800 Ankara, Turkey; Earth System Sciences, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara, Turkey.
| | - Maria Calderó-Pascual
- Centre for Freshwater and Environmental Studies, Dundalk Institute of Technology, Dundalk, Marshes Upper, Co. Louth A91 K584, Ireland..
| | - Sinem Yetim
- Limnology Laboratory, Biological Sciences Department, Middle East Technical University, 06800 Ankara, Turkey
| | - Yiğit Şahin
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Turkey; Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | | | - Feride Avcı
- Limnology Laboratory, Biological Sciences Department, Middle East Technical University, 06800 Ankara, Turkey.
| | | | - Emmanuel D Ladoukakis
- Department of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Greece.
| | - Stella A Berger
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Plankton and Microbial Ecology, Zur alten Fischerhuette 2, 16775 Stechlin, Germany.
| | - Kemal Ali Ger
- Department of Ecology (DECOL), Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil..
| | - Erik Jeppesen
- Limnology Laboratory, Biological Sciences Department, Middle East Technical University, 06800 Ankara, Turkey; Ecosystem Research and Implementation Center, Middle East Technical University, 06800 Ankara, Turkey; Department of Ecoscience, Aarhus University, 8000C Aarhus, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China.
| | - Meryem Beklioğlu
- Limnology Laboratory, Biological Sciences Department, Middle East Technical University, 06800 Ankara, Turkey; Ecosystem Research and Implementation Center, Middle East Technical University, 06800 Ankara, Turkey.
| |
Collapse
|
19
|
Klasios N, Kim JO, Tseng M. No Effect of Realistic Concentrations of Polyester Microplastic Fibers on Freshwater Zooplankton Communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:418-428. [PMID: 38018737 DOI: 10.1002/etc.5797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Zooplankton are a conduit of energy from autotrophic phytoplankton to higher trophic levels, and they can be a primary point of entry of microplastics into the aquatic food chain. Investigating how zooplankton communities are affected by microplastic pollution is thus a key step toward understanding ecosystem-level effects of these global and ubiquitous contaminants. Although the number of studies investigating the biological effects of microplastics has grown exponentially in the last decade, the majority have used controlled laboratory experiments to quantify the impacts of microplastics on individual species. Given that all organisms live in multispecies communities in nature, we used an outdoor 1130-L mesocosm experiment to investigate the effects of microplastic exposure on natural assemblages of zooplankton. We endeavored to simulate an environmentally relevant exposure scenario by manually creating approximately 270 000 0.015 × 1- to 1.5-mm polyester fibers and inoculating mesocosms with zero, low (10 particles/L), and high (50 particles/L) concentrations. We recorded zooplankton abundance and community composition three times throughout the 12-week study. We found no effect of microplastics on zooplankton abundance, Shannon diversity, or Pielou's evenness. Nonmetric multidimensional scaling plots also revealed no effects of microplastics on zooplankton community composition. Our study provides a necessary and realistic baseline on which future studies can build. Because numerous other stressors faced by zooplankton (e.g., food limitation, eutrophication, warming temperatures, pesticides) are likely to exacerbate the effects of microplastics, we caution against concluding that polyester microfibers will always have no effect on zooplankton communities. Instead, we encourage future studies to investigate the triple threats of habitat degradation, climate warming, and microplastic pollution on zooplankton community health. Environ Toxicol Chem 2024;43:418-428. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Natasha Klasios
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jihyun O Kim
- Department of Botany, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Tseng
- Departments of Botany and Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Qian G, Zhang L, Chen Y, Xu C. Fish microplastic ingestion may induce tipping points of aquatic ecosystems. J Anim Ecol 2024; 93:45-56. [PMID: 37970633 DOI: 10.1111/1365-2656.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Microplastics can be ingested by a wide range of aquatic animals. Extensive studies have demonstrated that microplastic ingestion-albeit often not lethal-can affect a range of species life-history traits. However, it remains unclear how the sublethal effects of microplastics on individual levels scale up to influence ecosystem-level dynamics through cascading trophic interactions. Here we employ a well-studied, empirically fed three-species trophic chain model, which was parameterized to mimic a common type of aquatic ecosystems to examine how microplastic ingestion by fish on an intermediate trophic level can produce cascading effects on the species at both upper and lower trophic levels. We show that gradually increasing microplastics in the ingested substances of planktivorous fish may cause population structure effects such as skewed size distributions (i.e. reduced average body length vs. increased maximal body size), and induce abrupt declines in fish biomass and reproduction. Our model analysis demonstrates that these abrupt changes correspond to an ecosystem-level tipping point, crossing which difficult-to-reverse ecosystem degradation can happen. Importantly, microplastic pollution may interact with other anthropogenic stressors to reduce safe operating space of aquatic ecosystems. Our work contributes to better understanding complex effects of microplastic pollution and anticipating tipping points of aquatic ecosystems in a changing world. It also calls attention to an emerging threat that novel microplastic contaminants may lead to unexpected and abrupt degradation of aquatic ecosystems, and invites systematic studies on the ecosystem-level consequences of microplastic exposure.
Collapse
Affiliation(s)
- Guangjing Qian
- School of Mathematical Science, Yangzhou University, Yangzhou, China
| | - Lai Zhang
- School of Mathematical Science, Yangzhou University, Yangzhou, China
| | - Yuxin Chen
- School of Mathematical Science, Yangzhou University, Yangzhou, China
| | - Chi Xu
- School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Lawrence J, Santolini C, Binda G, Carnati S, Boldrocchi G, Pozzi A, Bettinetti R. Freshwater Lacustrine Zooplankton and Microplastic: An Issue to Be Still Explored. TOXICS 2023; 11:1017. [PMID: 38133418 PMCID: PMC10748375 DOI: 10.3390/toxics11121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Lakes are essentially interlinked to humans as they provide water for drinking, agriculture, industrial and domestic purposes. The upsurge of plastic usage, its persistence, and potential detrimental effects on organisms cause impacts on the trophic food web of freshwater ecosystems; this issue, however, still needs to be explored. Zooplankton worldwide is commonly studied as an indicator of environmental risk in aquatic ecosystems for several pollutants. The aim of the review is to link the existing knowledge of microplastic pollution in zooplankton to assess the potential risks linked to these organisms which are at the first level of the lacustrine trophic web. A database search was conducted through the main databases to gather the relevant literature over the course of time. The sensitivity of zooplankton organisms is evident from laboratory studies, whereas several knowledge gaps exist in the understanding of mechanisms causing toxicity. This review also highlights insufficient data on field studies hampering the understanding of the pollution extent in lakes, as well as unclear trends on ecosystem-level cascading effects of microplastics (MPs) and mechanisms of toxicity (especially in combination with other pollutants). Therefore, this review provides insight into understanding the overlooked issues of microplastic in lake ecosystems to gain an accurate ecological risk assessment.
Collapse
Affiliation(s)
- Jassica Lawrence
- DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (J.L.); (C.S.); (S.C.); (A.P.)
| | - Carlotta Santolini
- DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (J.L.); (C.S.); (S.C.); (A.P.)
- University School for Advanced Studies IUSS, 27100 Pavia, Italy
| | - Gilberto Binda
- DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (J.L.); (C.S.); (S.C.); (A.P.)
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Stefano Carnati
- DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (J.L.); (C.S.); (S.C.); (A.P.)
| | - Ginevra Boldrocchi
- DiSUIT Department of Human Science and Innovation for the Territory, University of Insubria, Via Valleggio 11, 22100 Como, Italy;
| | - Andrea Pozzi
- DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (J.L.); (C.S.); (S.C.); (A.P.)
| | - Roberta Bettinetti
- DiSUIT Department of Human Science and Innovation for the Territory, University of Insubria, Via Valleggio 11, 22100 Como, Italy;
| |
Collapse
|
22
|
Martínez Rodríguez A, Marchant DJ, Francelle P, Kratina P, Jones JI. Nutrient enrichment mediates the effect of biodegradable and conventional microplastics on macroinvertebrate communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122511. [PMID: 37689134 DOI: 10.1016/j.envpol.2023.122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/13/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
There is growing concern regarding the lack of evidence on the effects bioplastics may have on natural ecosystems, whilst their production continues to increase as they are considered as a greener alternative to conventional plastics. Most research is limited to investigations of the response of individual taxa under laboratory conditions, with few experiments undertaken at the community or ecosystem scale, either investigating microplastics independently or in combination with other pollutants, such as nutrient enrichment. The aim of this study is to experimentally compare the effects of oil-based (high density polyethylene - HDPE) with those of bio-based biodegradable (polylactic acid - PLA) microplastics and their interaction with nutrient enrichment on freshwater macroinvertebrate communities under seminatural conditions. There were no significant differences in total abundance, alpha and beta diversities, or community composition attributable to the type of microplastics, their concentration, or nutrient enrichment compared with the control. However, there was a significant difference in macroinvertebrate alpha diversity between high concentrations of both microplastic types under ambient nutrient conditions, with lower diversity in communities exposed to HDPE compared with PLA. Nutrient enrichment mediated the effect of microplastic type, such that the diversity of macroinvertebrate communities exposed to HDPE were similar to those communities exposed to PLA. These findings suggest that the effects of microplastic pollution on macroinvertebrate communities are very weak at large-scale settings under seminatural conditions and that these effects might be mediated by the nutrient status of freshwater ecosystems. More research under large-scale, long-term, seminatural settings are needed in order to elucidate the impact of both conventional plastics and bioplastics on natural environments and their interactive effect with other occurring stressors and pollutants.
Collapse
Affiliation(s)
- Ana Martínez Rodríguez
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Danielle J Marchant
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Pascaline Francelle
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
23
|
Nguyen MK, Lin C, Nguyen HL, Le VG, Haddout S, Um MJ, Chang SW, Nguyen DD. Ecotoxicity of micro- and nanoplastics on aquatic algae: Facts, challenges, and future opportunities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118982. [PMID: 37741192 DOI: 10.1016/j.jenvman.2023.118982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/22/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023]
Abstract
The production of plastic has exponentially increased in recent years, leading to the release of millions of tons of plastic waste into the environment annually. This waste can break down into smaller micro- and nanoplastics (MNPs) that are toxic and reactive to life forms, including humans. MNPs are particularly concerning for marine biologists and environmental scientists due to their toxic impacts on aquatic organisms, including algae, which are the foundation of the food chain. The review provides a comprehensive overview of the (eco)toxicity assessment of MNPs on aquatic algal communities, highlighting the novel insights gained into the ecotoxicity of various MNPs on algae and the associated health risks for aquatic ecosystems, food chains, and humans. This article also discusses current challenges and future research opportunities to address these challenges, making it a valuable contribution to the field of environmental science. Overall, this work is one of the first efforts to comprehensively assess the effects of MNPs on aquatic algae, emphasizing the significant risks that MNPs pose to essential ecosystems and human health.
Collapse
Affiliation(s)
- Minh-Ky Nguyen
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, 111000, Viet Nam
| | - S Haddout
- Department of Physics, Ibn Tofail University, Morocco
| | - Myoung-Jin Um
- Department of Civil & Energy System Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Soon W Chang
- Department of Civil & Energy System Engineering, Kyonggi University, 442-760, Republic of Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, 442-760, Republic of Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Viet Nam.
| |
Collapse
|
24
|
Başaran Kankılıç G, Koraltan İ, Erkmen B, Çağan AS, Çırak T, Özen M, Seyfe M, Altındağ A, Tavşanoğlu ÜN. Size-selective microplastic uptake by freshwater organisms: Fish, mussel, and zooplankton. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122445. [PMID: 37633431 DOI: 10.1016/j.envpol.2023.122445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Microplastics, as an emergent pollutant, have garnered substantial attention within aquatic environments, yet a significant knowledge gap persists regarding the interplay of organism size and pollution impacts on microplastic uptake in freshwater ecosystems. The main aim of the current study is to assess the microplastic ingestion by aquatic organisms across diverse trophic levels. To achieve this objective, zooplankton, mussels (Anodonta anatina), and fish (Carassius gibelio) were collected from the highly polluted Susurluk River Basin in Türkiye. The size distribution encompassed 160.8 ± 56.9 μm for the prevailing zooplankton, 6.9 ± 2.2 cm for mussel, and 20.4 ± 3.1 cm for fish, respectively. While no microplastic ingestion was observed among zooplankton, the finding highlights the influence of body-size and pollution on microplastic ingestion. In contrast, A. anatina and C. gibelio contained 617 and 792 microplastic particles, respectively. Predominantly, fibers emerged as the most prevalent microplastic type across trophic levels (except zooplankton) followed by films. Notably, only fish exhibited fragments within their gastrointestinal tract. A substantial correlation emerged between microplastic abundance and mussel size and weight, but no such correlation manifested for fish. The study also revealed a positive link between microplastic count and turbidity (phosphate and high Chl a level), impacting mussel ingestion capacity due to the variability in the food availability and potential shifts in feeding preferences. Conversely, no distinct pattern emerged for fish concerning water quality parameters and ingested microplastics. Consequently, our study underscores diverse microplastic uptake patterns in freshwater ecosystems, with a predominant frequency of microplastics falling with the 0.3 mm-3.0 mm range, emphasizing the significance of size-selective uptake by organisms.
Collapse
Affiliation(s)
| | - İdris Koraltan
- Akdeniz University, Institute of Natural and Applied Sciences, Antalya, Türkiye
| | - Belda Erkmen
- Aksaray University, Faculty of Sciences, Biology Department, Ankara, Türkiye
| | - Ali Serhan Çağan
- Kastamonu University, Araç Rafet Vergili Vocational School, Wildlife Programme, Kastamonu, Türkiye; Çankırı Karatekin University, Faculty of Sciences, Biology Department, Çankırı, Türkiye
| | - Tamer Çırak
- Aksaray Technical Sciences Vocational School, Alternative Energy Sources Technology Program, Aksaray University, Aksaray, Türkiye
| | - Mihriban Özen
- Çankırı Karatekin University, Faculty of Sciences, Biology Department, Çankırı, Türkiye
| | - Melike Seyfe
- Çankırı Karatekin University, Faculty of Sciences, Biology Department, Çankırı, Türkiye
| | - Ahmet Altındağ
- Ankara University, Faculty of Sciences, Biology Department, Ankara, Türkiye
| | - Ülkü Nihan Tavşanoğlu
- Çankırı Karatekin University, Faculty of Sciences, Biology Department, Çankırı, Türkiye.
| |
Collapse
|
25
|
Akdemir T, Gedik K. Microplastic emission trends in Turkish primary and secondary municipal wastewater treatment plant effluents discharged into the Sea of Marmara and Black Sea. ENVIRONMENTAL RESEARCH 2023; 231:116188. [PMID: 37230218 DOI: 10.1016/j.envres.2023.116188] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Wastewater Treatment Plants (WWTPs) are recognized as one of the primary sources of microplastics, a class of contaminants that has lately gained attention. The quantity of MP that WWTPs release into the environment depends on several factors, including the treatment type, season, and population serviced. MP abundance and characterization were explored in 15 WWTP effluent waters, 9 discharged to the Black Sea from Türkiye and 6 to the Marmara Sea, with varying population densities and treatment methods. The mean MP abundance in primary treatment WWTPs (76.25 ± 49.20 MP L-1) was found to be substantially greater than that in secondary treatment WWTPs (20.57 ± 21.56 MP L-1) (p<0.05). MPs in WWTP effluent waters showed significant seasonal and spatial differences (Two Way ANOVA, Tukey, p<0.05). However, no positive correlation was detected between the population serviced and MP abundance in effluent waters. While the fiber was the dominant shape (49.5%) among MPs in effluent waters, ≈80% of the length was <1000 μm. MPs are classified into polymer types as follows: polyethylene terephthalate (34.9%) > polypropylene (32.4%) > polyethylene (19.9%) > polyamide (11%) > polystyrene (1.2%) > polyvinyl chloride (0.6%). With effluent waters from the WWTPs tested, we calculated that 1.24x1010 daily MPs are discharged into the Black Sea while 4.95x1010 MPs are into the Marmara Sea, for a combined annual discharge of 2.26x1013 MPs highlighting that WWTPs are key contributors of MP in Turkish coastal waters.
Collapse
Affiliation(s)
- Tolga Akdemir
- Recep Tayyip Erdogan University, Vocational School of Technical Sciences, 53100, Rize, Turkiye
| | - Kenan Gedik
- Recep Tayyip Erdogan University, Vocational School of Technical Sciences, 53100, Rize, Turkiye.
| |
Collapse
|
26
|
Frank YA, Interesova EA, Solovyev MM, Xu J, Vorobiev DS. Effect of Microplastics on the Activity of Digestive and Oxidative-Stress-Related Enzymes in Peled Whitefish ( Coregonus peled Gmelin) Larvae. Int J Mol Sci 2023; 24:10998. [PMID: 37446176 DOI: 10.3390/ijms241310998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Microplastics (MPs) are emergent pollutants in freshwater environments and may impact aquatic organisms, including those of nutritional value. The specific activities of digestive and antioxidant enzymes can be used as good bioindicators of the potential effects of MPs on fish in case of waterborne MP contamination. In this study, we used fluorescent polystyrene microplastics (PS-MPs) to analyze the alterations in enzyme activities in larvae of Coregonus peled Gmelin (peled or Northern whitefish), one of the most valuable commercial fish species of Siberia. Our results indicate that peled larvae can ingest 2 µm PS microspheres in a waterborne exposure model. A positive correlation (rs = 0.956; p < 0.01) was found between MP concentration in water and the number of PS microspheres in fish guts, with no significant differences between 24 h and 6-day exposure groups. The ingestion of MPs caused alterations in digestive enzyme activity and antioxidant responses at the whole-body level. The presence of PS-MPs significantly stimulated (p < 0.05) the specific activity of α-Amylase and non-specific esterases in peled larvae after 24 h. However, a pronounced positive effect (p < 0.05) of MPs on the activity of pancreatic trypsine and bile salt-activated lipase was only found after 6 days of exposure compared to after 24 h. Intestinal membrane enzyme aminopeptidase N was also stimulated in the presence of PS-MPs after 6-day exposure. We also observed a significant increase in the specific activity of catalase in peled larvae after 6 days of exposure, which indicates the MP-induced modulation of oxidative stress. Taken together, these results highlight the potential impact of environmental MPs on northern commercial fish, their importance for estimating fish stocks, and the sustainability of freshwater ecosystems.
Collapse
Affiliation(s)
- Yulia A Frank
- Biological Institute, Tomsk State University, Tomsk 634050, Russia
| | - Elena A Interesova
- Biological Institute, Tomsk State University, Tomsk 634050, Russia
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk 630091, Russia
| | - Mikhail M Solovyev
- Biological Institute, Tomsk State University, Tomsk 634050, Russia
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk 630091, Russia
| | - Jiayi Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Danil S Vorobiev
- Biological Institute, Tomsk State University, Tomsk 634050, Russia
| |
Collapse
|
27
|
Marchant DJ, Martínez Rodríguez A, Francelle P, Jones JI, Kratina P. Contrasting the effects of microplastic types, concentrations and nutrient enrichment on freshwater communities and ecosystem functioning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114834. [PMID: 36989946 DOI: 10.1016/j.ecoenv.2023.114834] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Microplastics are now ubiquitous in freshwater environments. As most previous research has focused on species-specific effects of microplastics under controlled laboratory conditions, little is known about the impact of microplastics at higher levels of ecological organisation, such as freshwater communities and their associated ecosystem functions. To fill this knowledge gap, an outdoor experiment using 40 freshwater mesocosms, each 1.57 m3, was used to determine the effects of (i) microplastic type: traditional oil-based high-density polyethylene versus bio-based biodegradable polylactic acid, (ii) concentration of microplastic particles and (iii) nutrient enrichment. The two concentrations of microplastics used were equivalent to measured environmentally occurring concentrations and concentrations known to cause toxicological effects under laboratory conditions. Freshwater communities are also at increasing risk from nutrient enrichment, which can alter community composition in favour of competitively dominant taxa. The independent and interactive effects of these treatments on pelagic community structure (phytoplankton standing stock, taxonomic richness, and composition) and ecosystem functioning (periphyton productivity and leaf litter decomposition) were assessed. Taxonomic richness and community composition were not affected by exposure to the experimental treatments and there were no significant treatment effects on phytoplankton standing stock, periphyton productivity, total or microbial leaf litter decomposition. Overall, multiple microplastic exposures, crossed with nutrient addition had little impact on the structure and functioning of semi-natural freshwater ecosystems. These findings indicate that the negative impacts of microplastics predicted from species-specific studies may not be readily realised at the ecosystem scale.
Collapse
Affiliation(s)
- Danielle J Marchant
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| | - Ana Martínez Rodríguez
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Pascaline Francelle
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - John Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
28
|
Silva SAM, Rodrigues ACM, Rocha-Santos T, Silva ALP, Gravato C. Effects of Polyurethane Small-Sized Microplastics in the Chironomid, Chironomus riparius: Responses at Organismal and Sub-Organismal Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315610. [PMID: 36497682 PMCID: PMC9741373 DOI: 10.3390/ijerph192315610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 05/06/2023]
Abstract
Freshwater provides valuable services and functions to humankind. However, macroinvertebrates that underpin the delivery of many of those ecosystem services and functions are under an additional threat caused by microplastic pollution. Chironomids are one of the most abundant groups of macroinvertebrates in these environments and the most sensitive to microplastics. This investigation addressed the effects of polyurethane (PU-MPs; 7.0-9.0 µm) on the chironomid Chironomus riparius at the organism and sub-organism levels. For this purpose, two assays were carried out: (i) addressing the effects of PU-MPs on C. riparius partial life cycle traits (larval size and emergence parameters) in a 28 d assay considering concentrations up to 750 mg/Kg, and (ii) larvae behaviour (locomotion) as well as the biochemical responses (oxidative damage, aerobic energy production, and energy reserves) in a 10 d assay considering an environmentally relevant concentration with no observed effects on C. riparius previous life history traits (no observed effect concentration; NOEC = (375 mg/kg). Exposure to PU-MPs did not affect C. riparius larval length nor cumulative and time to emergence. Conversely, when exposed to an environmentally relevant concentration for 10 days, contaminated larvae were revealed to be lighter (but not smaller nor less nutritionally affected in terms of energy reserves) and more active when foraging, which was reflected in the activation of their aerobic metabolism when assessing the electron transport chain as a proxy. Notwithstanding, PU-MPs did not originate observable energy costs, either on protein, lipid, or sugar contents on contaminated larvae, which may justify the absence of effects on larval growth and emergence. Therefore, the increased production of energy used for the locomotion and functioning of larvae was at the expense of the fraction of energy that should have been allocated for the weight of the individuals. A long-term exposure involving a multigenerational assessment would bring intel on the potential (cumulative) sub-lethal effects of PU-MPs on C. riparius fitness.
Collapse
Affiliation(s)
- Sara A. M. Silva
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia C. M. Rodrigues
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L. Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence:
| | - Carlos Gravato
- Faculty of Sciences, CESAM, University of Lisbon, Campos Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
29
|
Kim L, Cui R, Il Kwak J, An YJ. Trophic transfer of nanoplastics through a microalgae-crustacean-small yellow croaker food chain: Inhibition of digestive enzyme activity in fish. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129715. [PMID: 35986943 DOI: 10.1016/j.jhazmat.2022.129715] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effects of nanoplastics on marine organisms via trophic transfer in the food chain. We designed a three-step food chain comprising microalga (Dunaliella salina), small crustaceans (Artemia franciscana), and fish (small yellow croakers; Larimichthys polyactis) and evaluated the effects of trophic transfer in marine organisms, as well as verified the possibility of nanoplastic transfer to humans via trophic transfer. Using amine-modified nanopolystyrene (nPS-NH2) as a pollutant, we conducted both direct-exposure and trophic transfer experiments to determine how pollutants move through the food chain (D. salina → A. franciscana). Exposure of D. salina to nPS-NH2, which was adsorbed on its cell wall, resulted in transfer to A. franciscana with alteration of gut permeability. Additionally, assessment of the adverse effects of nPS-NH2 via a dietary pathway (three-step food chain) on the L. polyactis digestive system revealed that nanoplastics adsorbed to the cell wall of microalgae are gradually transferred to higher trophic level organisms, such as via food resources consumed by humans, inducing the inhibition of digestive enzyme activity (α-amylase). It indicates that human could eventually be exposed to nanoplastics and experience toxicity.
Collapse
Affiliation(s)
- Lia Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Rongxue Cui
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|