1
|
Meng Q, Wang Z, Sun K, Wen Z, Xue H. Screening and risk assessment of priority organic micropollutants for control in reclaimed water in China. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137883. [PMID: 40101638 DOI: 10.1016/j.jhazmat.2025.137883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Organic micropollutants (OMPs) in reclaimed water have been frequently detected over the past decades, posing significant risks to ecosystems and human health. Given the complexity of these pollutants and the differences in their risk and toxicity, current assessments remain incomplete. This study conducted a large-scale investigation of OMPs in reclaimed water across China and developed a comprehensive multi-criteria integrated scoring method based on OMP toxicity and exposure potential. This method aims to protect aquatic organisms and human health by screening and prioritizing OMPs in reclaimed water, classifying their priority levels, and creating a prioritized control list. The study quantified OMP exposure potential, environmental persistence, bioaccumulation, and impacts on ecology and human health. The survey detected 369 OMPs from 11 chemical classes, with 325 compounds passing pre-selection. According to the prioritization scheme, 29 OMPs were identified as high priority, 171 as medium priority, and 125 as low priority. The BPs and Other Industrial Chemicals categories had the highest average maximum concentrations, followed by HPCCs and PAEs. High-priority pollutants were dominated by PAHs and PCBs, each comprising 31.03 %. Medium- and low-priority groups were mainly composed of Pesticides. PAHs and PCBs showed higher risk quotients, indicating significant ecological risks, while PCB 126, BaP, and PFOA exhibited high toxicity and potential health risks. This study provides valuable information for controlling priority pollutants in Chinese reclaimed water and establishes a foundation for OMP risk management. Future research should intensify monitoring to ensure the safe and sustainable use of water resources.
Collapse
Affiliation(s)
- Qingling Meng
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China.
| | - Zijian Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Kaicheng Sun
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Zhao Wen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Honghai Xue
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
2
|
Lei L, Sha W, Liu Q, Liu S, Zhou Y, Li R, Duan Y, Fu S, Li H, Liao R, Li L, Zhou R, Zhou C, Liu H. Hepatotoxic effects of exposure to different concentrations of Dibutyl phthalate (DBP) in Schizothorax prenanti: Insights from a multi-omics analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 285:107390. [PMID: 40381407 DOI: 10.1016/j.aquatox.2025.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/19/2025] [Accepted: 04/26/2025] [Indexed: 05/20/2025]
Abstract
Dibutyl phthalate (DBP) is one of the most widely used phthalate esters (PAEs) that raise increasing ecotoxicological concerns due to their harmful effects on living organisms and ecosystems. Recently, while PAEs pollution in the Yangtze River has attracted significant attention, little research has been conducted on the impact of PAEs stress on S. prenanti, an endemic and valuable species in the Yangtze River. In this study, one control group (C-L) and three experimental groups: T1-L (3 µg/L), T2-L (30 µg/L), and T3-L (300 µg/L) were established with reference to the DBP concentration in the environment. For the first time, we investigated the effects of DBP stress on the liver of S. prenanti using histomorphological, physiological, and biochemical indexes, as well as a joint multi-omics analysis. The results revealed that compared to the C-L group, liver structural damage and stress were not significant in the environmental concentration group (T1-L) and the number of differential genes and differential metabolites were lower. However, as DBP stress concentration increased, the liver damage became severe, with significant vacuolation and hemolysis observed in the T2-L and T3-L groups. The TUNEL assay revealed a significant increase in the number of apoptotic cells along with a notable rise in differential genes and metabolites in the T2-L and T3-L groups. Oxidative stress markers (T-AOC, SOD, CAT, and GSH-PX) were also significantly higher in the T2-L and T3-L groups. RNA-Seq analysis showed that the protein processing in the endoplasmic reticulum pathway was most significantly -enriched differential gene pathway shared by both C-L vs T2-L and C-L vs T3-L, with most of the genes in this pathway showing significant up-regulation. This suggests that the protein processing in the endoplasmic reticulum pathway may play a key role in protecting the liver from injuries caused by high DBP stress. Interestingly, C XI, C XII, C XIII, C XIV and C XV in the chemical carcinogenesis - reactive oxygen species pathway were significantly down-regulated in the T2-L and T3-L groups based on combined transcriptomic and metabolomic analyses, suggesting that DBP causes liver injury by disrupting mitochondria. This comprehensive histomorphometric and multi-omics study demonstrated that the current DBP concentration in the habitat of S. prenanti in the upper reaches of the Yangtze River temporarily causes less liver damage. However, with increasing of DBP concentration, DBP could still cause serious liver damage to S. prenanti. This study provides a new mechanistic understanding of the liver response mechanism of S. prenanti under different concentrations of DBP stress and offers basic data for the ecological protection of the Yangtze River.
Collapse
Affiliation(s)
- Luo Lei
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Wuga Sha
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Qing Liu
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Shidong Liu
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yinhua Zhou
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Rundong Li
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yuting Duan
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Suxing Fu
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Hejiao Li
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Rongrong Liao
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Linzhen Li
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Rongzhu Zhou
- National Animal Husbandry Services, Beijing 100125, China.
| | - Chaowei Zhou
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China.
| | - Haiping Liu
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Hao M, Zuo Q, Zhao X, Shi S, Wu J, Gao H, Lu Y. Multimedia contamination characteristics, risk assessment, and source quantification of phthalates in the Shaying River Basin, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:202. [PMID: 40343535 DOI: 10.1007/s10653-025-02518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Phthalates (PAEs), a class of typical endocrine-disrupting chemicals, have been widely detected in the environment due to their prevalent use as plasticizers in plastic products. This study investigates the multimedia contamination characteristics and potential ecological risks of PAEs in water, soil, and sediments of the Shaying River (SYR) Basin. A Geodetector model (GDM) was employed to identify the key drivers influencing the spatial distribution of PAEs, while factor analysis and the Positive Matrix Factorization (PMF) model were utilized to quantitatively apportion the potential sources of PAEs. Results revealed that the concentrations and spatial variation of PAEs were significantly higher in soil and sediments than in water, with distinct compositional profiles. Water samples exhibited a higher proportion of low-molecular-weight PAEs compared to soil and sediment, where high-molecular-weight PAEs prevailed to a lesser extent. Notably, among the 6 target PAEs, di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) were uniformly the primary PAEs in water, soil, and sediment of the SYR Basin, posing higher ecological risks to algae, crustaceans, amphibians, and fish compared to the other 4 PAEs. The spatial distribution of PAEs in the SYR Basin was comprehensively influenced by land use, precipitation, human activities, and soil types. Key factors vary across media, but the interaction between popdensity and other variables significantly enhanced the interpretation degree, jointly shaping the PAEs distribution patterns. Primary sources of PAEs in the basin were sewage and wastewater discharges (37.0%), nonpoint industrial sources (36.4%), and domestic sources (25.6%).
Collapse
Affiliation(s)
- Minghui Hao
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Qiting Zuo
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China.
- Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou, 450001, China.
| | - Xinna Zhao
- Henan Ecological Environmental Monitoring Center, Zhengzhou, 450003, China
| | - Shujuan Shi
- Henan Ecological Environmental Monitoring Center, Zhengzhou, 450003, China
| | - Junfeng Wu
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Hongbin Gao
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yizhen Lu
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
4
|
Cao R, Sun Y, Sun S, Sun X, Meng F, Xia Y, Gao Y, Geng N, Zhang H, Chen J. Organic micropollutants in surface water across China: Occurrence and ecological risk. WATER RESEARCH 2025; 281:123616. [PMID: 40220647 DOI: 10.1016/j.watres.2025.123616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Organic pollutants in surface water present considerable risks to aquatic ecosystems and human health. However, current screening efforts in surface water tend to focus on specific areas. To address this gap, we conducted a nationwide survey to elucidate the prevalence of hydrophobic micropollutants in surface water via gas chromatography Orbitrap mass spectrometry-based suspect screening analysis. The study identified and quantified 91 organic micropollutants across 13 categories. Phthalate ester (PAE) concentrations (median: 1405.33 ng/L) in surface water significantly exceeded those of other pollutants, followed by polycyclic aromatic hydrocarbons (PAHs) and organic chlorinated pesticides (OCPs). Notably, polychlorinated dibenzofuran precursors and Cl-PAHs were newly discovered in water samples across China, for which data were extremely limited. The identified pollutants exhibited distinct north-south disparities and variations across the six major river basins. Toxicological priority index indicated that permethrin demonstrated the highest toxicity, and dibutyl phthalate exerted the greatest risk index. Notably, fifteen compounds had risk quotients exceeding 1, signifying substantial ecological risk, with captafol, a previously unreported OCPs, exhibiting high risk. These findings offer crucial insights for water quality assessment and the management of hydrophobic organic pollutants in surface water across China.
Collapse
Affiliation(s)
- Rong Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ye Sun
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuai Sun
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Xiaoli Sun
- Department of Chemistry, Lishui University, Lishui 323000, China
| | - Fanyu Meng
- Baotou Iron and Steel Group Co., Ltd, Baotou 014010, China
| | - Yueyi Xia
- Department of Chemistry, Lishui University, Lishui 323000, China
| | - Yuan Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Miao Q, Ji W, Dong H, Zhang Y. Occurrence of phthalate esters in the yellow and Yangtze rivers of china: Risk assessment and source apportionment. J Environ Sci (China) 2025; 149:628-637. [PMID: 39181673 DOI: 10.1016/j.jes.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 08/27/2024]
Abstract
Phthalate esters (PAEs), recognized as endocrine disruptors, are released into the environment during usage, thereby exerting adverse ecological effects. This study investigates the occurrence, sources, and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins. The total concentration of PAEs in the Yellow River spans from 124.5 to 836.5 ng/L, with Dimethyl phthalate (DMP) (75.4 ± 102.7 ng/L) and Diisobutyl phthalate (DiBP) (263.4 ± 103.1 ng/L) emerging as the predominant types. Concentrations exhibit a pattern of upstream (512.9 ± 202.1 ng/L) > midstream (344.5 ± 135.3 ng/L) > downstream (177.8 ± 46.7 ng/L). In the Yangtze River, the total concentration ranges from 81.9 to 441.6 ng/L, with DMP (46.1 ± 23.4 ng/L), Diethyl phthalate (DEP) (93.3 ± 45.2 ng/L), and DiBP (174.2 ± 67.6 ng/L) as the primary components. Concentration levels follow a midstream (324.8 ± 107.3 ng/L) > upstream (200.8 ± 51.8 ng/L) > downstream (165.8 ± 71.6 ng/L) pattern. Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH, and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate (DNOP). Conversely, in other regions, the associated risk with PAEs is either low or negligible. The main source of PAEs in Yellow River is attributed to the release of construction land, while in the Yangtze River Basin, it stems from the accumulation of pollutants in lakes and forests discharged into the river. These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers, providing valuable insights for global PAEs research in other major rivers.
Collapse
Affiliation(s)
- Qinkui Miao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenxiang Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ying Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Huang Z, Chen Y, Zou J, Zhou P, Huang X, Zhuang R, Wang X, Liu L. Plant endophytic bacteria reduce phthalates accumulation in soil-crop-body system: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2025:reveh-2024-0040. [PMID: 39899388 DOI: 10.1515/reveh-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
Phthalate esters (PAEs) represent a class of widely utilized plasticizers, resulting in their pervasive presence in soil and agricultural crops, which poses significant risks to human health. This review examines the current state of PAE pollution, the microbial resources available for PAE degradation, and the associated degradation pathways. It highlights the advantages of endophytic bacteria over environmental microorganisms, including the prolonged survival of inoculated strains, in vivo biodegradation of PAEs, and multifunctional capabilities. Furthermore, the mechanisms by which endophytic bacteria mitigate PAE accumulation across the three defense lines (soil, crops, and the human body) are elucidated. The integrated approach of employing both plants and microbial agents for the remediation of PAEs demonstrates considerable potential for ensuring the safety of agricultural products and safeguarding human health. This work offers new insights into addressing the challenges posed by organic pollutant contamination and reducing PAE accumulation in the human body.
Collapse
Affiliation(s)
- Ziyi Huang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Yanli Chen
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Jieying Zou
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Peng Zhou
- Center for New Drug Research and Development, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Xingyu Huang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Ruihao Zhuang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Xinyu Wang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Lihui Liu
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| |
Collapse
|
7
|
An Z, Jian X, Hong W, Zhang X, Ma J, Li M, Zhang B, Guo LH. An ultrasensitive free-of-electronic sacrificial agent photoelectrochemical aptasensor for the detection of dibutyl phthalate based on Z-scheme p-n Bi-doped BiOI/Bi 2S 3 heterojunction. Talanta 2025; 282:126997. [PMID: 39378766 DOI: 10.1016/j.talanta.2024.126997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Dibutyl phthalate (DBP), a common and outstanding plasticizer, exhibits estrogenic, mutagenic, carcinogenic, and teratogenic properties. It is easily liberated from plastic materials and pollutes aquatic ecosystems, endangering human health. Therefore, highly sensitive and selective DBP detection methods are necessary. In this work, a free-of-electronic sacrificial agent photoelectrochemical (PEC) aptasensor for DBP detection was constructed using a novel Z-scheme Bi-doped BiOI/Bi2S3 (Bi-BIS) p-n heterojunction. The Bi-BIS composites had higher visible-light absorption, charge transfer, and separation efficiency. This is attributed to the synergistic effect of the formation of Z-scheme p-n heterojunction between BiOI and Bi2S3, the plasma resonance effect of metallic Bi and photosensitization of Bi2S3, thus exhibiting large and stable photocurrent response in the absence of electron sacrificial agent, that was 10.4 and 6.4 times higher than that of BiOI and Bi2S3, respectively. Then, a DBP PEC aptasensor was constructed by modifying the DBP aptamer on the surface of the ITO/Bi-BIS electrode. The aptasensor demonstrated a broad linear range (2-500 pM) and a low detection limit (0.184 pM). What's more, because there is no interference from electronic sacrificial agent, the aptasensor exhibited excellent selectivity in real water samples. Therefore, the proposed PEC has considerable potential for DBP monitoring.
Collapse
Affiliation(s)
- Zhiquan An
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Xiaoyu Jian
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Wenjun Hong
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Xilong Zhang
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Jiateng Ma
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Minjie Li
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China
| | - Bihong Zhang
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China.
| | - Liang-Hong Guo
- College of Energy Environment and Safety Engineering & College of Carbon Metrology, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, PR China.
| |
Collapse
|
8
|
Yang Y, Liu Y, Wu S, Han L, Sun Y. Multi-omics analysis of the toxic effects on gill tissues of crucian carp (Carassius auratus) from chronic exposure to environmentally relevant concentrations of Di(2-ethylhexyl) phthalate (DEHP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177599. [PMID: 39557172 DOI: 10.1016/j.scitotenv.2024.177599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
The pervasive use of the plasticizer di(2-ethylhexyl) phthalate (DEHP) poses potential risks to global aquatic ecosystems. This study systematically evaluated the adverse effects of chronic exposure to environmentally relevant concentrations of DEHP on gill tissues of crucian carp, utilizing histological examination, metabolomic, and transcriptomic analysis. The results demonstrated that DEHP induced significant histopathological alterations in gill tissues, with significant enrichment observed in multiple pathways associated with amino acid, hormone, lipid, and xenobiotic metabolism. Metabonomics-transcriptomics analyses indicated that DEHP-induced significantly over-activation of cytochrome P450 1B1-like (p < 0.001) and cytochrome P450 3A30-like (p < 0.05) via the nuclear xenobiotic receptors pathway was a key factor contributing to the disruption of tryptophan metabolism and steroid hormone biosynthesis, as well as inducing circadian rhythm disruption. Moreover, circadian rhythm disruption further exacerbated the imbalance of cytochrome P450 (CYP450) enzyme system as well as linoleic acid, arachidonic acid, sphingolipid, and glycerophospholipid metabolism. Overall, the feedback regulation between the CYP450 enzyme system and circadian rhythms emerged as the primary mechanism underlying DEHP-induced metabolic and transcriptional disruptions, ultimately resulting in gill toxicity. This study not only enriched the toxic effects on aquatic organisms of chronic exposure to DEHP, but provided potential biomarkers for the environmental risk assessment of DEHP.
Collapse
Affiliation(s)
- Yang Yang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Yingjie Liu
- Department of Pharmacology, School of medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Song Wu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Lin Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yanchun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China.
| |
Collapse
|
9
|
Dou Y, Hu W, Wang J, Cong J, Nie B, Guo R, Duan Z. Spatial Distribution and Chronic Ecological risk Assessment of Typical Phthalate Esters in the Surface Waters of China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 114:11. [PMID: 39676106 DOI: 10.1007/s00128-024-03988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
The chronic ecological risks posed by residual PAEs in China remain unclear. In this study, we analyzed the spatial distribution of five typical PAEs in the surface waters of China, dibutyl phthalate (DBP), diethylhexyl phthalate (DEHP), butylbenzyl phthalate (BBP), diethyl phthalate (DEP), and dimethyl phthalate (DMP). The highest concentration of PAEs were detected in the Liao River, ranging from 5 to 79.8 µg/L. DBP was of the PAEs type with the highest concentration in the surface waters in China. By fitting the species sensitivity distribution curves base on the collected data over the past decade, the chronically hazardous concentrations affecting 5% of the aquatic species were calculated to be 0.018, 0.022, 0.062, 0.851, and 9.437 mg/L for DBP, DEHP, BBP, DEP, and DMP, respectively. Thus, DBP, DEHP, and BBP pose the greatest threat to aquatic organisms, and PAEs pose high ecological risks in the Liao, Huangpu, and Pearl Rivers.
Collapse
Affiliation(s)
- Yuhang Dou
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Weixuan Hu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Jing Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Jiaoyue Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Boyan Nie
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Ruru Guo
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China
| | - Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui West Rode, Xiqing District, Tianjin, 300384, China.
| |
Collapse
|
10
|
Zhong S, Li R, Tian Y, Wei Z, Zhang L, Chen Y, Zhou R, Zhang Q, Ru X. Integrative models for environmental forecasting of phthalate migration from microplastics in aquaculture environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136194. [PMID: 39447233 DOI: 10.1016/j.jhazmat.2024.136194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The pervasive utilization of plastic tools in aquaculture introduces significant volumes of microplastic fibers, presenting a consequential risk through the leaching of additives such as phthalates. This study scrutinizes the leaching dynamics of six prevalent phthalate esters (PAEs) from thirteen plastic aquaculture tools comprising polyethylene terephthalate (PET), polypropylene (PP), and polyethylene (PE), with ΣPAEs ranging from 0.24 to 4.26 mg g-1. Di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) emerged as predominant, marking significant environmental concern. Over a 30-day period, leaching quantities of Σ6PAEs from PET, PP, and PE fibers reached 36.65 μg g-1, 21.87 μg g-1 and 19.11 μg g-1, respectively, influenced by factors such as time, temperature, turbulence, and salinity. Notably, turbulence exerted the most pronounced effect, followed by temperature, with negligible influence from salinity. The kinetic models aligning with interface diffusion control was developed, predicting PAEs' leaching behavior with activation energies (Ea) indicative of the process's thermodynamic nature. The application of this model to real-world aquaculture waters forecasted significant risks, corroborating with empirical data and underscoring the pressing need for regulatory and mitigation strategies against PAEs contamination from aquaculture practices.
Collapse
Affiliation(s)
- Shan Zhong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ruiyue Li
- Beijing China Sciences Runyu Environmental Technology Co., Ltd, Beijing 100080, China
| | - Yaowen Tian
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zengxian Wei
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Lishan Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Yan Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ruyue Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Qian Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xuan Ru
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
11
|
Guo R, Liang X, Su M, Yao B, Yan S, Han Y, Cui J. Occurrence, migration and health risks of fluorescent whitening agents and phthalates in bottled water. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134631. [PMID: 38901257 DOI: 10.1016/j.jhazmat.2024.134631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
The occurrence and health risks of fluorescent whitening agents (FWAs) in bottled water were reported for the first time. FWA184 and FWA393 were the most frequently detected FWAs, with mean concentrations of 3.99-17.00 ng L-1. Phthalates (PAEs) such as dibutyl phthalate (DBP), di-iso-butyl phthalate (DiBP), and diethylhexyl phthalate (DEHP) were prevalent in bottled water, with mean levels of 40.89-716.66 ng L-1, and their concentrations in bottled water were much higher than those of FWAs. FWAs and PAEs in bottles and caps were extracted using organic solvent, and the correlation analysis showed that FWA393 and DEHP most likely originated from bottles, while bottle caps were the main sources of DBP and DiBP. The calculated risk quotients (RQs) of target substances and all age groups were considerably lower than the threshold of 0.1, indicating that consuming bottled water containing these plastic additives was unlikely to pose health risks for people of all ages. However, RQ values for underage people were several times higher than those for adults and hence cannot be neglected; therefore, special attention should be paid to understand the potential risks posed by the exposure to these plastic additives during early life stages, especially the infant stage.
Collapse
Affiliation(s)
- Ruiyao Guo
- Hebei Key Laboratory of Pollution Prevention Biotechnology, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiaoge Liang
- Hebei Key Laboratory of Pollution Prevention Biotechnology, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Mengfei Su
- Hebei Key Laboratory of Pollution Prevention Biotechnology, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Bo Yao
- Hebei Key Laboratory of Pollution Prevention Biotechnology, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Yonghui Han
- Hebei Key Laboratory of Pollution Prevention Biotechnology, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jiansheng Cui
- Hebei Key Laboratory of Pollution Prevention Biotechnology, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
12
|
Zhang Q, Wang L, Wu Q. Occurrence and combined exposure of phthalate esters in urban soil, surface dust, atmospheric dustfall, and commercial food in the semi-arid industrial city of Lanzhou, Northwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124170. [PMID: 38759748 DOI: 10.1016/j.envpol.2024.124170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
A total of 138 samples including urban soil, surface dust, atmospheric dustfall, and commercial food were collected from the semi-arid industrial city of Lanzhou in Northwest China, and 22 phthalate esters (PAEs) were analyzed in these samples by gas chromatography-mass spectrometry for the pollution characteristics, potential sources, and combined exposure risks of PAEs. The results showed that the total concentration of 22 PAEs (Ʃ22PAEs) presented surface dust (4.94 × 104 ng/g) ≫ dustfall (1.56 × 104 ng/g) ≫ food (2.14 × 103 ng/g) ≫ urban soil (533 ng/g). Di-n-butyl phthalate (DNBP), di-isobutyl phthalate, di(2-ethylhexyl) phthalate (DEHP), and di-isononyl phthalate/di-isodecyl phthalate were predominant in the environmental media and commercial food, being controlled by priority (52.1%-65.5%) and non-priority (62.1%) PAEs, respectively. Elevated Ʃ22PAEs in the urban soil and surface dust was found in the west, middle, and east of Lanzhou. Principal component analysis indicated that PAEs the urban soil and surface dust were related with the emissions of products containing PAEs, atmosphere depositions, and traffic and industrial emissions. PAEs in the foods were associated with the growth and processing environment. The health risk assessment of United States Environmental Protection Agency based on the Chinese population exposure parameters indicated that the total exposure dose of 22 PAEs was from 0.111 to 0.226 mg/kg/day, which were above the reference dose (0.02 mg/kg/day) and tolerable daily intake (TDI, 0.05 mg/kg/day) for DEHP (0.0333-0.0631 mg/kg/day), and TDI (0.01 mg/kg/day) for DNBP (0.0213-0.0405 mg/kg/day), implying that the exposure of PAEs via multi-media should not be ignored; the total non-carcinogenic risk of six priority PAEs was below 1 for the three environmental media (1.21 × 10-5-2.90 × 10-3), while close to 1 for food (4.74 × 10-1-8.76 × 10-1), suggesting a potential non-carcinogenic risk of human exposure to PAEs in food; the total carcinogenic risk of BBP and DEHP was below 1 × 10-6 for the three environmental media (9.13 × 10-10-5.72 × 10-7), while above 1 × 10-4 for DEHP in food (1.02 × 10-4), suggesting a significantly carcinogenic risk of human exposure to DEHP in food. The current research results can provide certain supports for pollution and risk prevention of PAEs.
Collapse
Affiliation(s)
- Qian Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Qianlan Wu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
13
|
Uaciquete D, Sawada A, Chiba T, Pythias EM, Iguchi T, Horie Y. Occurrence and ecological risk assessment of 16 plasticizers in the rivers and estuaries in Japan. CHEMOSPHERE 2024; 362:142605. [PMID: 38876327 DOI: 10.1016/j.chemosphere.2024.142605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Owing to growing concerns about the adverse effects of phthalate plasticizers, non-phthalate plasticizers are being increasingly used as their replacement. However, information on the residual environmental concentrations and ecological risks posed by these plasticizers is limited. In this study, we analyzed the environmental contamination of 11 phthalates and 5 non-phthalate plasticizers in Class A and B rivers in Japan. In the considered river water samples, phthalates and non-phthalates were detected in the following order of detection frequency: phthalates (DEHP > DMP > DMEP > BBP > DNPP > DNP > DEEP > DBEP = DNOP) and non-phthalates (ATBC > DEHS > DEHA > TOTM = DIBA). Phthalate plasticizers were the most abundant and included DEHP (157-859 ng/L), DMP (
Collapse
Affiliation(s)
- Dorcas Uaciquete
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan.
| | - Ayaka Sawada
- Faculty of Maritime Science, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| | - Takashi Chiba
- College of Agriculture, Food and Environment Sciences, Department of Environmental and Symbiotic Science, Rakuno Gakuen University, Japan
| | - Espino Maria Pythias
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| |
Collapse
|
14
|
Mei Y, Yang W, Peng S, Kuang W. Contamination levels and ecological risk assessment of phthalate esters (PAEs) in the aquatic environment of Chaohu Lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45553-45563. [PMID: 38965110 DOI: 10.1007/s11356-024-34175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Phthalate esters (PAEs), widely recognized as synthetic organic compounds with extensive production and utilization, are known to disrupt physiological processes in both animals and humans, even at low environmental concentrations. This study investigated the occurrence, distribution, and potential ecological risk of five representative PAEs (DMP, Dimethyl phthalate; DEP, Diethyl phthalate; DBP, Dibutyl phthalate; DiBP, Diisobutyl phthalate; DEHP, Bis(2-ethylhexyl) phthalate) in a typical lake (Chaohu Lake, China). It was found that PAEs were detected in both the aqueous (1.09-6.402 µg/L) and solid phases (0.827-6.602 µg/g) of Chaohu Lake. Notably, DiBP and DBP were the predominant PAEs in the water, and DiBP and DEHP were the most prevalent in the sediments. The concentrations of PAEs exhibited significant seasonal variations in the aqueous phases, with total PAEs in summer being nearly twice those in winter. Toxicity assessments revealed that DEHP, DBP, and DiBP posed high risks to the survival of three indicator organisms (algae, Daphnia, and fish) in the aqueous phase. In the solid phase, the exceeding rate of DiBP was as high as 92.9%. On the other hand, DBP and DEHP generally presenting moderate risk, although some sites were identified as high-risk. This study's analysis of PAEs concentrations in Chaohu Lake reveals a discernible increasing trend when compared with historical data. These findings underscore the urgent need for interventions to mitigate the ecological threats posed by PAEs in Chaohu Lake.
Collapse
Affiliation(s)
- Yafang Mei
- School of Resource and Environmental Engineering, Hefei University of Technology, Anhui, 230000, China
| | - Wentao Yang
- School of Resource and Environmental Engineering, Hefei University of Technology, Anhui, 230000, China
| | - Shuchuan Peng
- School of Resource and Environmental Engineering, Hefei University of Technology, Anhui, 230000, China
| | - Wu Kuang
- Anhui Institute of Ecological and Environmental Sciences, Anhui, 230000, China.
| |
Collapse
|
15
|
Tao HY, Shi J, Zhang J, Ge H, Liu X, Li XY. Phthalic acid esters: Are they a big concern for rivers flowing into reservoir with ecological facilities? WATER RESEARCH 2024; 258:121785. [PMID: 38761595 DOI: 10.1016/j.watres.2024.121785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The city-river-reservoir system is an important system for safeguarding drinking water. Phthalic acid esters (PAEs) are emerging contaminants in drinking water sources that are gaining attention, and they could pose risks to human health and aquatic organisms. In this study, field studies that lasted four years were conducted to analyze the concentrations, spatial-temporal distribution, and removal effects of six PAEs. The total concentrations of the Σ6PAEs in the water and sediment samples were 0.2-7.4 μg L-1 (mean: 1.3 μg L-1) and 9.2-9594.1 ng g-1 (mean: 847.5 ng g-1), respectively. Di-n-butyl phthalate (DBP) and, bis(2-ethylhexyl) phthalate (DEHP) were the predominant congeners, accounting for 57.2 % in the water samples and 94.1 % in the sediment samples. The urban area contributed 72 % of the PAEs in the system. A significant removal effect of PAEs was observed in the wetland, with a removal rate of 40.2 %. The partitioning of PAEs between the water and sediment was attributed to the removal of dimethyl phthalate and diethyl phthalate that occurred during the water phase, while the removal of DBP and DEHP primarily occurred during the sediment phase. The ecological risk calculation based on the sensitivity distribution model indicated that DBP (HQwater = 0.19, HQsediment = 0.46) and DEHP (HQwater = 0.20, HQsediment = 0.13) possessed moderate risks according to some water and sediment samples. The ecological projects were verified to be effective engineering strategies to reduce ecological risk in the drinking water source.
Collapse
Affiliation(s)
- Huan-Yu Tao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Jianghong Shi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jiawei Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China; Institute of Strategic Planning, Chinese Academy of Environmental Planning, Ministry of Ecology and Environment, Beijing 100041, China
| | - Hui Ge
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaowei Liu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Tian J, Qian Y, He X, Qi R, Lei J, Wang Q, Feng C. Influencing factors and risk assessment of phthalate ester pollution in the agricultural soil on a tropical island. CHEMOSPHERE 2024; 357:142041. [PMID: 38636919 DOI: 10.1016/j.chemosphere.2024.142041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Phthalate esters (PAEs) are widely prevalent in agricultural soil and pose potential risks to crop growth and food safety. However, the current understanding of factors influencing the behavior and fate of PAEs is limited. This study conducted a large-scale investigation (106 sites in 18 counties with 44 crop types) of 16 types of PAEs on a tropical island. Special attention was given to the impacts of land use type, soil environmental conditions, agricultural activity intensity, and urbanization level. The health risks to adults and children from soil PAEs via multiple routes of exposure were also evaluated. The results showed that the mean concentration of PAEs was 451.87 ± 284.08 μg kg-1 in the agricultural soil. Elevated agricultural and urbanization activities contributed to more pronounced contamination by PAEs in the northern and southern regions. Land use type strongly affected the concentration and composition of PAEs in agricultural soils, and the soil PAE concentration decreased in the order of vegetable fields, orchards, paddy fields, and woodlands. In paddy fields, di-isobutyl phthalate and di-n-butyl phthalate made more substantial contributions to the process through which the overlying water inhibited volatilization. Soil microplastic abundance, pesticide usage, crop yield, gross domestic product, and distance to the nearest city were calculated to be the major factors influencing the concentration and distribution of PAEs. Soil pH, organic matter content, microplastic abundance and the fertilizer application rate can affect the adsorption of PAEs by changing the soil environment. A greater risk was detected in the northern region and paddy fields due to the higher soil PAE concentrations and the dietary structure of the population. This study reveals important pathways influencing the sources and fate of PAE pollution in agricultural soils, providing fundamental data for controlling PAE contamination.
Collapse
Affiliation(s)
- Jinfei Tian
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Yibin Qian
- Hainan Research Academy of Environmental Sciences, 571127, Haikou, PR China; National Plot Zone for Ecological Conservation (Hainan) Research Center, 571127, Haikou, PR China
| | - Xiaokang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Ruifang Qi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Jinming Lei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Qixuan Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
17
|
Hong Y, Xiao S, Naraginti S, Liao W, Feng C, Xu D, Guo C, Jin X, Xie F. Freshwater water quality criteria for phthalate esters and recommendations for the revision of the water quality standards. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116517. [PMID: 38805830 DOI: 10.1016/j.ecoenv.2024.116517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
With increasing urbanization and rapid industrialization, more and more environmental problems have arisen. Phthalates (PAEs) are the foremost and most widespread plasticizers and are readily emitted from these manufactured products into the environment. PAEs act as endocrine-disrupting chemicals (EDCs) and can have serious impacts on aquatic organisms as well as human health. In this study, the water quality criteria (WQC) of five PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP)) for freshwater aquatic organisms were developed using a species sensitivity distribution (SSD) and a toxicity percentage ranking (TPR) approach. The results showed that long-term water quality criteria (LWQC) of PAEs using the SSD method could be 13.7, 11.1, 2.8, 7.8, and 0.53 μg/L, respectively. Criteria continuous concentrations (CCC) of PAEs were derived using the TPR method and determined to be 28.4, 13.1, 1.3, 2.5, and 1.6 μg/L, respectively. The five PAEs are commonly measured in China surface waters at concentrations between ng/L and μg/L. DBP, DEHP, and di-n-octyl phthalate (DnOP) were the most frequently detected PAEs, with occurrence rates ranging from 67% to 100%. The ecological risk assessment results of PAEs showed a decreasing order of risk at the national level, DEHP, DBP, DMP, DEP, DnOP. The results of this study will be of great benefit to China and other countries in revising water quality standards for the conservation of aquatic species.
Collapse
Affiliation(s)
- Yajun Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sa Xiao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Saraschandra Naraginti
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Wei Liao
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China.
| | - Chenglian Feng
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Changsheng Guo
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Fazhi Xie
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
18
|
Liang J, Ji X, Feng X, Su P, Xu W, Zhang Q, Ren Z, Li Y, Zhu Q, Qu G, Liu R. Phthalate acid esters: A review of aquatic environmental occurrence and their interactions with plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134187. [PMID: 38574659 DOI: 10.1016/j.jhazmat.2024.134187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
The increasing use of phthalate acid esters (PAEs) in various applications has inevitably led to their widespread presence in the aquatic environment. This presents a considerable threat to plants. However, the interactions between PAEs and plants in the aquatic environment have not yet been comprehensively reviewed. In this review, the properties, occurrence, uptake, transformation, and toxic effects of PAEs on plants in the aquatic environment are summarized. PAEs have been prevalently detected in the aquatic environment, including surface water, groundwater, seawater, and sediment, with concentrations ranging from the ng/L or ng/kg to the mg/L or mg/kg range. PAEs in the aquatic environment can be uptake, translocated, and metabolized by plants. Exposure to PAEs induces multiple adverse effects in aquatic plants, including growth perturbation, structural damage, disruption of photosynthesis, oxidative damage, and potential genotoxicity. High-throughput omics techniques further reveal the underlying toxicity molecular mechanisms of how PAEs disrupt plants on the transcription, protein, and metabolism levels. Finally, this review proposes that future studies should evaluate the interactions between plants and PAEs with a focus on long-term exposure to environmental PAE concentrations, the effects of PAE alternatives, and human health risks via the intake of plant-based foods.
Collapse
Affiliation(s)
- Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Pinjie Su
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wenzhuo Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yiling Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
19
|
Hong Y, Xie H, Jin X, Naraginti S, Xu D, Guo C, Feng C, Wu F, Giesy JP. Prediction of HC 5s for phthalate esters by use of the QSAR-ICE model and ecological risk assessment in Chinese surface waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133642. [PMID: 38330644 DOI: 10.1016/j.jhazmat.2024.133642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/01/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Due to their endocrine-disrupting effects and the risks posed in surface waters, in particular by chronic low-dose exposure to aquatic organisms, phthalate esters (PAEs) have received significant attention. However, most assessments of risks posed by PAEs were performed at a selection level, and thus limited by empirical data on toxic effects and potencies. A quantitative structure activity relationship (QSAR) and interspecies correlation estimation (ICE) model was constructed to estimate hazardous concentrations (HCs) of selected PAEs to aquatic organisms, then they were used to conduct a multiple-level environmental risk assessment for PAEs in surface waters of China. Values of hazardous concentration for 5% of species (HC5s), based on acute lethality, estimated by use of the QSAR-ICE model were within 1.25-fold of HC5 values derived from empirical data on toxic potency, indicating that the QSAR-ICE model predicts the toxicity of these three PAEs with sufficient accuracy. The five selected PAEs may be commonly measured in China surface waters at concentrations between ng/L and μg/L. Risk quotients according to median concentrations of the five PAEs ranged from 3.24 for di(2-ethylhexhyl) phthalate (DEHP) to 4.10 × 10-3 for dimethyl phthalate (DMP). DEHP and dibutyl phthalate (DBP) had risks to the most vulnerable aquatic biota, with the frequency of exceedances of the predicted no-effect concentration (PNECs) of 75.5% and 38.0%, respectively. DEHP and DBP were identified as having "high" or "moderate" risks. Results of the joint probability curves (JPC) method indicated DEHP posed "intermediate" risk to freshwater species with a maximum risk product of 5.98%. The multiple level system introduced in this study can be used to prioritize chemicals and other new pollutant in the aquatic ecological.
Collapse
Affiliation(s)
- Yajun Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huiyu Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Saraschandra Naraginti
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA; Department of Integrative Biology and Centre for Integrative Toxicology, Michigan State University, East Lansing, MI 48895, USA
| |
Collapse
|
20
|
Liang C, Lv H, Liu W, Wang Q, Yao X, Li X, Hu Z, Wang J, Zhu L, Wang J. Mechanism of the adverse outcome of Chlorella vulgaris exposure to diethyl phthalate: Water environmental health reflected by primary producer toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168876. [PMID: 38013100 DOI: 10.1016/j.scitotenv.2023.168876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
As a ubiquitous contaminant in aquatic environments, diethyl phthalate (DEP) is a major threat to ecosystems because of its increasing utilization. However, the ecological responses to and toxicity mechanisms of DEP in aquatic organisms remain poorly understood. To address this environmental concern, we selected Chlorella vulgaris (C. vulgaris) as a model organism and investigated the toxicological effects of environmentally relevant DEP concentrations at the individual, physiological, biochemical, and molecular levels. Results showed that the incorporation of DEP significantly inhibited the growth of C. vulgaris, with inhibition rates ranging from 10.3 % to 83.47 %, and disrupted intracellular chloroplast structure at the individual level, while the decrease in photosynthetic pigments, with inhibition rates ranging from 8.95 % to 73.27 %, and the imbalance of redox homeostasis implied an adverse effect of DEP at the physio-biochemical level. Furthermore, DEP significantly reduced the metabolic activity of algal cells and negatively altered the cell membrane integrity and mitochondrial membrane potential. In addition, the apoptosis rate of algal cells presented a significant dose-effect relationship, which was mainly attributed to the fact that DEP pollutants regulated Ca2+ homeostasis and further increased the expression of Caspase-8, Caspase-9, and Caspase-3, which are associated with internal and external pathways. The gene transcriptional expression profile further revealed that DEP-mediated toxicity in C. vulgaris was mainly related to the destruction of the photosynthetic system, terpenoid backbone biosynthesis, and DNA replication. Overall, this study offers constructive understandings for a comprehensive assessment of the toxicity risks posed by DEP to C. vulgaris.
Collapse
Affiliation(s)
- Chunliu Liang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huijuan Lv
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wenrong Liu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Zhuran Hu
- Shandong Green and Blue Bio-technology Co. Ltd, Tai'an, China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
21
|
Wang X, Wei J, Zhang X, Chen Q, Lakshmikandan M, Li M. Comparing the removal efficiency of diisobutyl phthalate by Bacillariophyta, Cyanophyta and Chlorophyta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169507. [PMID: 38142000 DOI: 10.1016/j.scitotenv.2023.169507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
The utilization of microalgae for both removing phthalate esters (PAEs) from wastewater and producing bioenergy has become a popular research topic. However, there is a lack of studies comparing the effectiveness of different types of microalgae in removing these harmful compounds. Therefore, the present study aimed to evaluate and compare the efficiency of various processes, such as hydrolysis, photolysis, adsorption, and biodegradation, in removing diisobutyl phthalate (DiBP) using six different species of microalgae. The study indicated that the average removal efficiency of DiBP (initial concentrations of 5, 0.5, and 0.05 mg L-1) by all six microalgae (initial cell density of 1 × 106 cells mL-1) was in the order of Scenedesmus obliquus (95.39 %) > Chlorella vulgaris (94.78 %) > Chroococcus sp. (91.16 %) > Cyclotella sp. (89.32 %) > Nitzschia sp. (88.38 %) > Nostoc sp. (84.33 %). The results of both hydrolysis and photolysis experiments revealed that the removal of DiBP had minimal impact, with respective removal efficiencies of only 0.89 % and 1.82 %. The adsorption efficiency of all six microalgae decreased significantly with increasing initial DiBP concentrations, while the biodegradation efficiency was elevated. Chlorella vulgaris and Chroococcus sp. demonstrated the highest adsorption and biodegradation efficiencies among the microalgae tested. Scenedesmus obliquus was chosen for the analysis of the degradation products of DiBP due to its exceptional ability to remove DiBP. The analysis yielded valuable results, identifying monoisobutyl phthalate (MiBP), phthalic acid (PA), and salicylic acid (SA) as the possible degradation products of DiBP. The possible degradation pathways mainly included dealkylation, the addition of hydroxyl groups, and decarboxylation. This study lays a theoretical foundation for the elimination of PAEs in the aquatic environment.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jianan Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyi Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Qiaoshen Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Manogaran Lakshmikandan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
22
|
Wang W, Wang D, Liu Q, Lin L, Xie Y, Du C. Distribution Characteristics and Risk Assessment of 57 Pesticides in Farmland Soil and the Surrounding Water. TOXICS 2024; 12:85. [PMID: 38251040 PMCID: PMC10818738 DOI: 10.3390/toxics12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
To investigate the effect of pesticide use on surface water, the concentration and distribution characteristics of 57 pesticides and 3 degradation products were analyzed in the farmland soil and surface water in the Xingkai Lake area, including water from paddy fields, drainages and the Xingkai Lake, in Heilongjiang Province, China. Forty-three pesticides and three degradation products were detected in farmland soil. In dry field (corn and soybean field) soil, the main detected pesticides were atrazine and acetochlor with mean concentrations of 26.09 ng·g-1 and 49.08 ng·g-1, respectively. In paddy field soil, oxadiazon, mefenacet and chlorpyrifos were the main detected pesticides with mean concentrations of 14.32 ng·g-1, 78.60 ng·g-1 and 20.03 ng·g-1, respectively. In the surrounding water, including water from paddy fields, drainages and Xingkai Lake, the total concentrations of contaminants detected in the water samples ranged from 71.19 ng·L-1 to 10,145.76 ng·L-1. Of the three sampling periods, the mean concentration of contaminants in the water exhibited its peak during the vegetative period. In the analysis of the drainage water, the primary pesticides detected were atrazine, acetochlor and buprofezin with mean concentrations of 354.83 ng·L-1, 109.09 ng·L-1 and 254.56 ng·L-1, respectively. Atrazine, simetryn, buprofezin and isoprothiolane were the main pesticides detected in Xingkai Lake water, with the mean concentrations of 222.35 ng·L-1, 112.76 ng·L-1, 301.87 ng·L-1 and 138.02 ng·L-1, respectively. The concentrations of contaminants could be correlated with drainage, Da Xingkai Lake and Xiao Xingkai Lake water (ρ > 0.8) suggested that the source of these contaminants in drainage and Xingkai Lake water could be the same. The maximum potentially affected fraction (PAF) values of atrazine, chlorpyrifos and prometryn were higher than 5% in Xingkai Lake water, resulting in high ecological risks.
Collapse
Affiliation(s)
- Weiqing Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Donghong Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzhen Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.W.)
| | - Lihua Lin
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.W.)
| | - Yongchang Xie
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Du
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Gong X, Xiong L, Xing J, Deng Y, Qihui S, Sun J, Qin Y, Zhao Z, Zhang L. Implications on freshwater lake-river ecosystem protection suggested by organic micropollutant (OMP) priority list. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132580. [PMID: 37738851 DOI: 10.1016/j.jhazmat.2023.132580] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Lake-river complex systems represent interconnected ecosystems wherein inflow rivers significantly influence the migration of terrigenous contaminants, particularly organic micropollutants (OMPs), into lakes. Given the extensive array of OMPs, screening for those with the highest potential hazard is crucial for safeguarding freshwater lake-river ecosystems. In this study, an optimized multi-criteria scoring method was applied to prioritize OMPs. Flux estimation was then performed to identify the contamination load contributed by the Le'an River to Poyang Lake. Higher concentrations of phthalate esters (PAEs) were detected in the lake-river system, ranging from 1154.5 to 22,732.8 ng/L, followed by antibiotics and polycyclic aromatic hydrocarbons (PAHs), while historical pollutant residues were comparably lower. Based on the prioritization methodology, 27 compounds, encompassing eight PAEs, six organochlorine pesticides (OCPs), six polychlorinated biphenyls (PCBs), five PAHs and two antibiotics, emerged as priority pollutants. Multiple risk assessments revealed that priority PAEs posed relatively high ecological and human health risks; concurrently, the annual fluxes of individual priority PAEs into the lake all exceeded 1000 kg, with DBP, DEHP and BBP fluxes reaching 18,352, 10,429, and 7825 kg, respectively. This research offers valuable insights stemming from OMP prioritization to aid in the conservation of freshwater lake ecosystems, particularly concerning lake-river system integrity.
Collapse
Affiliation(s)
- Xionghu Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Lili Xiong
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Jiusheng Xing
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Yanqing Deng
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Su Qihui
- Xinjiang and Raohe Hydrology and Water Resources Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Jing Sun
- Xinjiang and Raohe Hydrology and Water Resources Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Yu Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
24
|
Dueñas-Moreno J, Vázquez-Tapia I, Mora A, Cervantes-Avilés P, Mahlknecht J, Capparelli MV, Kumar M, Wang C. Occurrence, ecological and health risk assessment of phthalates in a polluted urban river used for agricultural land irrigation in central Mexico. ENVIRONMENTAL RESEARCH 2024; 240:117454. [PMID: 37865321 DOI: 10.1016/j.envres.2023.117454] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The escalating global concern on phthalate esters (PAEs) stems from their status as emerging contaminants, marked by their toxicity and their potential to harm both the environment and human health. Consequently, this study aimed to evaluate the occurrence, spatial distribution, and ecological and health risks associated with PAEs in the Atoyac River, an urban waterway in central Mexico that receives untreated and poorly treated urban and industrial wastewater. Of the 14 PAEs analyzed in surface water samples collected along the river mainstream, nine were detected and quantified by GC-MS. The concentration of each detected PAE ranged from non-detected values to 25.7 μg L-1. Di (2-ethylhexyl) phthalate (DEHP) and di-n-hexyl phthalate (DnHP) were detected in all sampling sites, with concentrations ranging from 8.1 to 19.4 μg L-1 and from 6.3 to 15.6 μg L-1, respectively. The cumulative Σ9PAEs concentrations reached up to 81.1 μg L-1 and 96.0 μg L-1 in sites downstream to high-tech industrial parks, pinpointing industrial wastewater as the primary source of PAEs. Given that the river water is stored in a reservoir and used for cropland irrigation, this study also assessed the ecological and human health risks posed by PAEs. The findings disclosed a high ecological risk to aquatic organisms exposed to di-n-octyl phthalate (DOP), dicyclohexyl phthalate (DCHP), benzyl butyl phthalate (BBP), DEHP, and DnHP. Additionally, a high carcinogenic (CR > 10-4) and noncarcinogenic (HQ > 10) risk for the DEHP exposure through ingestion of crops irrigated with river water was identified for both children and adults. These data on PAEs provide valuable insights for the Mexican government's future strategies in regulating these pollutants in water bodies, thereby minimizing the environmental and human health risks that they pose.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Ivón Vázquez-Tapia
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico.
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real Km 9.5, 24157, Ciudad del Carmen, Campeche, Mexico
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico; Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
25
|
Zhang QQ, Lan MY, Li HR, Qiu SQ, Guo Z, Liu YS, Zhao JL, Ying GG. Plastic pollution from takeaway food industry in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166933. [PMID: 37709096 DOI: 10.1016/j.scitotenv.2023.166933] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
China's takeaway food industry is growing rapidly, and bringing unprecedented demand for plastic packaging, which results in serious plastic pollution and increasing emissions of plasticizers of phthalate esters (PAEs) and greenhouse gases (GHGs). This study assesses the current and future situation of plastic usage for takeaway food packaging in China, and also analyzes the PAEs and GHG emissions brought by these plastics under different scenarios. From 2010 to 2020, the plastic usage grew from 2.92 to 101 × 104 tons, and brought 112-3845 kg PAEs and 43.6-1438 kt CO2e GHG emissions. Their distribution exhibited a clear 'two-line' pattern: higher features mostly located in Beijing-Guangzhou and Beijing-Shanghai railways. The socio-economic factors model performed better than the growth rate model for plastic usage prediction from 2021 to 2060. It is predicted that 40.6 Mt. plastic would be consumed in 2060, and they will bring 155 tons PAEs and 37.0 Mt. CO2e GHGs. At that time, biodegradable plastic replaced or plastic cycling cannot significantly contribute to national carbon reduction, unless using a temperature change of 2 °C scenario. Our work improves the understanding of PAEs and GHG emission from plastic pollution, and provides insight into long-term dynamics in the plastics management of takeaway food industry.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Min-Yi Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hui-Ru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhao Guo
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
26
|
Wang D, Jiang SY, Fan C, Fu L, Ruan HD. Occurrence and correlation of microplastics and dibutyl phthalate in rivers from Pearl River Delta, China. MARINE POLLUTION BULLETIN 2023; 197:115759. [PMID: 37988965 DOI: 10.1016/j.marpolbul.2023.115759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Microplastics have been identified as the novel contaminants in various environments. Phthalates would be released from plasticized microplastics into a riverine environment while transporting to a marine region, but data on their relationship in rivers have been scarce. In this study, the occurrence, distribution and correlation of microplastics and dibutyl phthalate (DBP) in two rivers from the Pearl River Estuary were investigated. The elevated level of DBP in the Qianshan River (2.70 ± 0.20 μg/L) was in alignment with the presence of highest microplastic concentration at the same sampling site (15.8 ± 9.8 items/L). A positive correlation was observed between microplastics and DBP in all sampling sites (p < 0.05). The results showed that UV irradiation from sunlight was a majorly inducing factor of DBP leaching from polyethylene microplastics. The concentrations of chemical additives in some degrees reflect the microplastic pollution, but environmental factors and multidimensionality of microplastics such as residence times and types may cause spatial differences of chemical additives in aquatic systems.
Collapse
Affiliation(s)
- Duojia Wang
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China
| | - Sabrina Yanan Jiang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa 999078, Macao.
| | - Changchang Fan
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China
| | - Longshan Fu
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa 999078, Macao
| | - Huada Daniel Ruan
- Environmental Science Program, Department of Life Science, Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong Province 519087, PR China.
| |
Collapse
|
27
|
Zhang F, Chen H, Liu Y, Wang M. Phthalate acid ester release from microplastics in water environment and their comparison between single and competitive adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118964-118975. [PMID: 37922078 DOI: 10.1007/s11356-023-30720-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2023]
Abstract
The ability of microplastics (MPs) to adsorb environmental pollutants has been extensively studied. However, little is known about the ability of MPs to release inherent additives and the interaction between them. This paper explored the effects of environmental factors on the release of phthalic acid esters (PAEs) from three different types of microplastics (polyethylene microplastics (PE-MPs), polypropylene microplastics (PP-MPs), and polystyrene microplastics (PS-MPs)) by simulating water environments, as well as the differences in the adsorption of one or more PAEs by MPs. The results showed that the types of MPs, single environmental factors, and combined environmental factors had a great influence on the release of di(2-ethylhexyl) phthalate (DEHP). In the influence of a single environmental factor, the releasing amount of DEHP increased significantly. When the pH value increased from 5 to 9, the release of three PAEs from all MPs decreased. Moreover, under the combined influence of three environmental factors, the DEHP release from PP-MPs was most affected by environmental factors, and the order of influence of the three environmental factors was ionic strength > organic matter > pH. The DEHP release of PS-MPs was the highest (0.058 ± 0.023 μg/L), followed by PP-MPs (0.038 ± 0.010 μg/L) and PE-MPs (0.035 ± 0.008 μg/L). Adsorption kinetics and isotherm fitting showed that the adsorption process of the three MPs was suitable for the pseudo-second-order kinetic model, and the Freundlich adsorption isotherm had a higher fitting degree. Compared with single adsorption, the competitive adsorption of three PAEs increased the adsorption capacity of DEHP and decreased the adsorption capacity of dibutyl phthalate (DBP) and diisobutyl phthalate (DIBP). These findings help predict the potential of MPs to release toxic additives under different environmental conditions.
Collapse
Affiliation(s)
- Furong Zhang
- School of Environmental Science and Engineering, Changzhou University, No. 21, Gehu Middle Road, Wujin District, Changzhou, 213164, China
| | - Hui Chen
- School of Environmental Science and Engineering, Changzhou University, No. 21, Gehu Middle Road, Wujin District, Changzhou, 213164, China
| | - Yuxuan Liu
- School of Environmental Science and Engineering, Changzhou University, No. 21, Gehu Middle Road, Wujin District, Changzhou, 213164, China
| | - Mingxin Wang
- School of Environmental Science and Engineering, Changzhou University, No. 21, Gehu Middle Road, Wujin District, Changzhou, 213164, China.
| |
Collapse
|
28
|
Chen Y, Wang Y, Tan Y, Jiang C, Li T, Yang Y, Zhang Z. Phthalate esters in the Largest River of Asia: An exploration as indicators of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166058. [PMID: 37553051 DOI: 10.1016/j.scitotenv.2023.166058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Phthalate esters (PAEs) are the most ubiquitous and highly used plasticizers in plastic products globally, yet studies on the spatial variation, risks, and their correlation with microplastics (MPs) are limited, particularly throughout the Yangtze River (the largest river in China/Asia). Therefore, this study investigated for the first time the PAEs pollution characteristics throughout the Yangtze River sediments, studied the environmental factors linked to the distribution of PAEs, and explored their potential as chemical indicators for interpreting pollution patterns of MPs. Totally 14 out of 16 PAEs were detected in sediments, with total concentrations ranging from 84.67 ng/g to 274.0 ng/g (mean: 163.5 ng/g), dominated by Bis(2-ethylhexyl) phthalate (DEHP), Di-n-butyl phthalate (DBP), and Di-isobutyl phthalate (DIBP), with contributions of 38.9 %, 31.8 %, and 20.8 %, respectively. Spatial distribution of PAEs did not indicate significant differences, which may be related to anthropogenic activities (i.e., emission intensity), runoff, and sediment physicochemical properties (i.e., TOC and TN), with TOC and TN being potential predictors of PAEs. The quantitative relationships (p < 0.001) between DEHP/∑16PAEs ratio and MPs (both individual and total MPs) were found in sediments, which suggested that DEHP could be potentially used as an indicator for MPs. DEHP, DIBP, and DBP posed high risks, accounting for 100 %, 68.4 %, and 10.5 % of the monitoring sites, respectively. Further work is necessary to better understand the relationship between DEHP/∑16PAEs and MPs in the environment and to take corresponding management and control measures for these pollutants.
Collapse
Affiliation(s)
- Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yile Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yang Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chunxia Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tianyi Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
29
|
Zhang W, Yang Y, Mao J, Zhang Q, Fan W, Chai G, Shi Q, Zhu C, Zhang S, Xie J. Quinoline Bridging Hyperconjugated Covalent Organic Framework as Solid-Phase Microextraction Coating for Ultrasensitive Determination of Phthalate Esters in Water Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17999-18009. [PMID: 37904272 DOI: 10.1021/acs.jafc.3c02859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Phthalate esters (PAEs) are widely distributed in the environment, and this has caused serious health and safety concerns. Development of rapid and ultrasensitive identification and analysis methods for phthalate esters is urgent and highly desirable. In this work, a novel nitrogen-rich covalent organic framework (N-TTI) derived quinoline bridging covalent organic framework (N-QTTI) was fabricated and used as a solid-phase microextraction (SPME) coating for the ultrasensitive determination of phthalate esters in water samples. The physical and chemical properties of N-QTTI were investigated sufficiently. The N-QTTI-coated fiber demonstrates a superior enrichment performance than either the N-TTI-coated fiber or commercial fibers under the optimized SPME conditions. For the first time, we propose a semi-immersion strategy for the extraction of PAEs from water samples based on N-QTTI-coated SPME fibers. Combined with gas chromatography-mass spectrometry (GC-MS), the developed method N-QTTI-SPME-GC-MS exhibits a wide linear range with a satisfactory linearity (R2 ≥ 0.995). The limits of detection (LOD, S/N = 3) and the limits of quantification (LOQs, S/N = 10) were 0.17-1.70 and 0.57-5.60 ng L-1, respectively. The repeatability of the new method was examined using relative standard deviations (RSDs) between intraday and interday data, which were 0.38-7.98% and 1.22-6.60%, respectively. The spiked recoveries at three levels of 10, 100, and 1000 ng L-1 were in the range of 90.0-106.2% with RSDs of less than 7.48%. The enrichment factors ranged from 291 to 17180. When compared to previously published works, the LODs of the newly established method were improved 5-5400 times, and the enrichment factors were increased by at least 8 times. The absorption mechanism was investigated by X-ray photoelectron spectroscopy and noncovalent interaction force analysis. The technique was successfully employed for detecting PAEs in water samples.
Collapse
Affiliation(s)
- Wenfen Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuan Yang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Qidong Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Wu Fan
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Guobi Chai
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Qingzhao Shi
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Shusheng Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Jianping Xie
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
30
|
Wang H, Li C, Yan G, Zhang Y, Wang H, Dong W, Chu Z, Chang Y, Ling Y. Seasonal distribution characteristics and ecological risk assessment of phthalate esters in surface sediment of Songhua River basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122567. [PMID: 37717898 DOI: 10.1016/j.envpol.2023.122567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Phthalic acid esters (PAEs) are typical industrial chemicals used in China. PAEs have received considerable attention because of their ubiquity and potential hazard to humans and the ecology. The spatiotemporal distributions of six PAEs in the surface sediments of the Songhua River in the spring (March), summer (July), and autumn (September) are investigated in this study. The total concentration of phthalic acid esters (∑6PAEs) ranges from 1.62 × 102 ng g-1 dry weight (dw) to 3.63 × 104 ng g-1·dw, where the amount in the spring is substantially higher (p < 0.01) than those in the autumn and summer. Seasonal variations in PAEs may be due to rainfall and temperature. The ∑6PAEs in the Songhua River's upper reaches are significantly higher than those in the middle and lower reaches (p < 0.05). Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are the two most abundant PAEs. The ecological hazard of five PAEs is assessed using the hazard quotient method. DBP and DEHP pose moderate or high ecological risks to aquatic organisms at various trophic levels. PAEs originate primarily from industrial, agricultural, and domestic sources. Absolute principal components-multiple linear regression results indicate that agricultural sources are the most dominant contributor to the ∑6PAEs (53.7%). Guidelines for controlling PAEs pollution in the Songhua River are proposed.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| |
Collapse
|
31
|
Lorre E, Bianchi F, Vybernaite-Lubiene I, Mėžinė J, Zilius M. Phthalate esters delivery to the largest European lagoon: Sources, partitioning and seasonal variations. ENVIRONMENTAL RESEARCH 2023; 235:116667. [PMID: 37453508 DOI: 10.1016/j.envres.2023.116667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Phthalate esters (PAEs) due to their ability to leach from plastics, widely used in our daily life, are intensely accumulating in wastewater water treatment plants (WWTP) and rivers, before being exported to downstream situated estuarine systems. This study aimed to investigate the external sources of eight plasticizers to the largest European lagoon (the Curonian Lagoon, south-east Baltic Sea), focusing on their seasonal variation and transport behaviour through the partitioning between dissolved and particulate phases. The obtained results were later combined with hydrological inputs at the inlet and outlet of the lagoon to estimate system role in regulating the transport of pollutants to the sea. Plasticizers were detected during all sampling events with a total concentration ranging from 0.01 to 6.17 μg L-1. Di(2-ethylhexyl) phthalate (DEHP) was the most abundant PAEs and was mainly found attached to particulate matter, highlighting the importance of this matrix in the transport of such contaminant. Dibutyl phthalate (DnBP) and diisobutyl phthalate (DiBP) were the other two dominant PAEs found in the area, mainly detected in dissolved phase. Meteorological conditions appeared to be an important factor regulating the distribution of PAEs in environment. During the river ice-covered season, PAEs concentration showed the highest value suggesting the importance of ice in the retention of PAEs. While heavy rainfall impacts the amount of water delivered to WWTP, there is an increase of PAEs concentration supporting the hypothesis of their transport via soil leaching and infiltration into wastewater networks. Rainfall could also be a direct source of PAEs to the lagoon resulting in net surplus export of PAEs to the Baltic Sea.
Collapse
Affiliation(s)
- Elise Lorre
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania.
| | - Federica Bianchi
- University of Parma, Department of Chemistry, Life Science and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy; University of Parma, Interdepartmental Center for Energy and Environment (CIDEA), Parco Area delle Scienze, 43124, Parma, Italy
| | | | - Jovita Mėžinė
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania
| | - Mindaugas Zilius
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania; University of Parma, Department of Chemistry, Life Science and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
32
|
Yang H, Sun F, Liao H, Guo Y, Pan T, Wu F, Giesy JP. Distribution, abundance, and risks posed by microplastics in surface waters of the Yangtze River Basin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122086. [PMID: 37355005 DOI: 10.1016/j.envpol.2023.122086] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Microplastic (MP) pollution in the Yangtze River Basin, China, has become an environmental issue of great concern. However, most studies on MPs have focused on a part of the Yangtze River Basin, and still lack knowledge on the risk of MPs exposure in surface waters of the whole basin. This study overviews the differences in abundance and spatial distribution of MPs in surface waters basin-wide and comprehensively assesses the ecological risk of MPs exposure in surface waters of the Yangtze River Basin by considering the abundance and toxicity effects. The results showed that the MP abundance at the collected sampling sites ranged from 0 to 44,080 particles/m3, with a mean of 3441 particles/m3. MPs were unevenly distributed throughout the basin, with hotspots such as Three Gorges Reservoir, Yangtze River estuary, and some urban lakes showing relatively higher abundance than the surroundings. Based on the available toxicity data, chronic and acute predicted no-effect concentrations (PNECs) of 12.3 particles/L and 21 particles/L were derived for freshwater MPs exposure using constructed species sensitivity distributions (SSDs). The hazard quotient (HQ) method was used to compare the environmental exposure concentrations of MPs with PNECs, and the results showed that 71.8% of the sampling sites in the Yangtze River Basin had moderate chronic ecological risk, while 43% of the sampling sites had moderate acute ecological risk. Overall, the ecological risk of MPs in lake and reservoir water was higher than that in river water. Joint probability curves (JPCs) showed that the overall risk probability of MPs in the surface water of the Yangtze River Basin was lower than that of other basins in China and other countries. This research provides valuable information for the ecological risk assessment of MPs at the watershed scale.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yiding Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Ting Pan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Integrative Biology, Michigan State University, East Lansing, MI, 48895, USA; Department of Environmental Sciences, Baylor University, Waco, TX, 76798-7266, USA
| |
Collapse
|
33
|
Liu Y, Tang Y, He Y, Liu H, Tao S, Liu W. Riverine inputs, spatiotemporal variations, and potential sources of phthalate esters transported into the Bohai Sea from an urban river in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163253. [PMID: 37011678 DOI: 10.1016/j.scitotenv.2023.163253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
The effects of anthropogenic activities on pollutant transport and inputs to the sea remain unclear. This study aimed to evaluate the impacts of sewage discharge and dam interception on riverine inputs, spatiotemporal variations, and potential sources of phthalate esters (PAEs) throughout the Haihe River, one of the largest rivers in northern China. Based on seasonal observations, the yearly inputs of the total concentrations of 24 PAE species (Σ24PAEs) from the Haihe River to the adjacent Bohai Sea were in the range of 5.28-19.52 tons, a considerable amount compared with those of other large rivers worldwide. The value of Σ24PAEs in the water column ranged from 1.17 to 15.46 μg/L and showed the following overall seasonal pattern: normal season > wet season > dry season, with dibutyl phthalate (DBP) (31.0 ± 11.9 %), di (2-ethylhexyl) phthalate (DEHP) (23.4 ± 14.1 %), and diisobutyl phthalate (DIBP) (17.2 ± 5.4 %) as the dominant components. Σ24PAEs were higher in the surface layer, slightly lower in the intermediate layer, and higher in the bottom layer. Σ24PAEs increased from the suburban section to the urban and industrial sections, which may indicate the effects of runoff, biodegradation, regional urbanization, and industrialization levels. The Erdaozha Dam intercepted 0.29-1.27 tons of Σ24PAEs inputs into the sea, but induced a substantial quantity accumulated behind the dam. The dominant sources of PAEs were the basic residential necessities (18.2-25.5 %) and industrial production (29.1-53.0 %). This study provides insights into the direct effects of sewage discharge and river dams on the inputs and variations in the PAEs entering the sea, which can be leveraged to manage and control PAEs in megacities.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yong He
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Huijuan Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shu Tao
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenxin Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
34
|
Liu K, Li N, Ding J, Chen N, Wang S, Wang Q, Yao X, Li X, Wang J, Yin H. One-step synthesis of Bi 2O 2CO 3/Bi 2S 3 S-scheme heterostructure with enhanced photoactivity towards dibutyl phthalate degradation under visible light. CHEMOSPHERE 2023; 324:138357. [PMID: 36898443 DOI: 10.1016/j.chemosphere.2023.138357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Bi2O2CO3/Bi2S3 heterojunction was prepared by one-step hydrothermal method, where Bi(NO3)3 was employed as Bi source, Na2S was used as a sulfur source, and CO(NH2)2 was adopted as C source. The load of Bi2S3 was adjusted by changing the content of Na2S. The prepared Bi2O2CO3/Bi2S3 illustrated strong photocatalytic activity towards dibutyl phthalate (DBP) degradation. The degradation rate was 73.6% under the irradiation of visible light for 3 h, which were 3.5 and 1.87 times for Bi2O2CO3 and Bi2S3, respectively. In addition, the mechanism for the enhanced photoactivity was investigated. After combined with Bi2S3, the formed heterojunction structure inhibited the recombination of photogenerated electron-hole pair, improved the visible light adsorption, and accelerated the migration rate of the photogenerated electron. As a result, analysis of the radical formation and the energy band structure revealed that Bi2O2CO3/Bi2S3 was consistent with the S-scheme heterojunction model. The S-scheme heterojunction allowed the Bi2O2CO3/Bi2S3 to possess high photocatalytic activity. The prepared photocatalyst presented acceptable cycle application stability. This work not only develops a facile one-step synthesis technique for Bi2O2CO3/Bi2S3, and also provides a good platform for the degradation of DBP.
Collapse
Affiliation(s)
- Kexue Liu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Na Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jia Ding
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Na Chen
- Ningyang Environmental Monitoring Centre, 271400, Ningyang, Tai'an, Shandong, PR China
| | - Suo Wang
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Qian Wang
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China.
| |
Collapse
|
35
|
Chen Y, Zhen Z, Li G, Li H, Wei T, Huang F, Li T, Yang C, Ren L, Liang Y, Lin Z, Zhang D. Di-2-ethylhexyl phthalate (DEHP) degradation and microbial community change in mangrove rhizosphere gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162022. [PMID: 36775151 DOI: 10.1016/j.scitotenv.2023.162022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is a widespread persistent organic pollutant in the environment. As an ultimate barrier preventing pollutant entry into the ocean, mangrove plays an important role in coastal ecosystem. However, little information is known about DEHP degradation in mangrove rhizosphere. In this study, a rhizobox was used to separate four consecutive rhizosphere compartments with distance of 0-2, 2-4, 4-6, and > 6 mm to the rhizoplane of Kandelia obovata and investigate DEHP gradient degradation behavior in rhizosphere. Sediments closer to the rhizoplane exhibited higher DEHP degradation efficiencies (74.4 % in 0-2 mm layer). More precisely, mangrove rhizosphere promoted the benzoic acid pathway and non-selectively accelerated the production of mono(2-ethylhexyl) phthalate, phthalic acid and benzoic acid. Higher sediment organic matter content, lower pH and less humus in rhizosphere benefited DEHP hydrolysis. In addition, rhizosphere significantly increased microbial biomass and activities comparing to bulk sediments. Some bacterial lineages with potential DEHP degradation capability exhibited a distance-dependent pattern that decreased with the distance to the rhizoplane, including Bacillales, Acidothermaceae, Gammaproteobacteria, and Sphingobacteriales. Our findings suggested that mangrove rhizosphere could accelerate DEHP degradation by altering sediment physicochemical properties and microbial composition, showing positive effects on coastal ecosystem services for eliminating phthalate acid ester contamination.
Collapse
Affiliation(s)
- Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Tao Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Changhong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanqiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
36
|
Liu C, Fu L, Du H, Sun Y, Wu Y, Li C, Tong J, Liang S. Distribution, Source Apportionment and Risk Assessment of Phthalate Esters in the Overlying Water of Baiyang Lake, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2918. [PMID: 36833614 PMCID: PMC9957158 DOI: 10.3390/ijerph20042918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
As a kind of endocrine disruptor compounds, the presence of phthalate esters (PAEs) has become a global concern. In this study, the pollution levels and spatial distribution of sixteen PAEs were investigated. Their potential sources and eco-environmental health risk were discussed in Baiyang Lake and its upstream rivers during different periods. PAEs were detected in all of samples, ranging from 1215 to 3014 ng·L-1 in October 2020 and 1384 to 3399 ng·L-1 in May 2021. Dibutyl phthalate (DBP) and di-isobutyl phthalate (DIBP) were the predominant monomers, with a detection rate of 100% and the highest concentrations in the overlying water. Restricted by multiple factors, the spatial distribution difference between Baiyang Lake and its upstream rivers in October was more significant than in May. The source apportionment revealed that agricultural cultivation and disorderly use and disposal of plastic products were the primary factors for the contamination. The human health risk assessment indicated that eight PAE congeners did not pose significant carcinogenic and non-carcinogenic harms to males, females and children. However, the ecological risks of DBP, DIBP and di (2-ethylhexyl) phthalate to algae, crustaceans and fish species were moderate or high-risk levels. This study provides an appropriate dataset for the assessment of the pollution of PEs to the water ecosystem affected by anthropogenic activities.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Hebei Provincial Analytical Science and Technology, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Liguo Fu
- Key Laboratory of Hebei Provincial Analytical Science and Technology, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Hui Du
- Key Laboratory of Hebei Provincial Analytical Science and Technology, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Yaxue Sun
- Key Laboratory of Hebei Provincial Analytical Science and Technology, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Yihong Wu
- Hebei Provincial Academy of Ecological Environmental Science, Shijiazhuang 050037, China
| | - Cheng Li
- Hebei Provincial Academy of Ecological Environmental Science, Shijiazhuang 050037, China
| | - Jikun Tong
- Baiyangdian Watershed Ecological Environmental Monitoring Center, Baoding 071051, China
| | - Shuxuan Liang
- Key Laboratory of Hebei Provincial Analytical Science and Technology, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|