1
|
Cui Y, Zhou R, Yin Y, Liu Y, Zhao N, Li H, Zhang A, Li X, Fu J. Occurrence of Organophosphate Esters in Food and Food Contact Materials and Related Human Exposure Risks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4455-4465. [PMID: 39935401 DOI: 10.1021/acs.jafc.4c11439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Organophosphate esters (OPEs) are a class of anthropogenic chemicals that have long been used as plasticizers and flame retardants. Dietary intake is an important OPE exposure pathway for humans. Since OPEs are usually used as industrial additives in food contact materials (FCMs), OPEs can enter foods through contact to FCMs. This paper focused on FCM-related exposure risks in foods, summarizing the presence of OPEs in FCMs and foods, analyzing the migration of the OPEs from FCMs to food, and assessing the dietary exposure risk of the OPEs to humans. Overall, the levels of the OPE in FCMs were at higher levels than those in foods. Processed and packaged foods contained higher levels of OPEs than nonprocessed/fresh foods. The migration investigations revealed that OPEs can be more likely transferred from FCMs to foods under the conditions of higher temperature and longer exposure time. We hope that this work will extend our current knowledge of the apportionment of OPE sources in foods and highlight the existing research gaps.
Collapse
Affiliation(s)
- Yajing Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoxian Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhan Yin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yuxin Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Nannan Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Hongting Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Fang T, Liu Q, Huangfu X, Zhu H, Sun H, Chen L. New insights into the mechanism of triphenyl phosphate and its metabolite diphenyl phosphate in diabetic kidney disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117877. [PMID: 39933236 DOI: 10.1016/j.ecoenv.2025.117877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Diabetic kidney disease is a significant complication of diabetes mellitus, and exposure to certain chemicals may play a role in its development. Triphenyl phosphate (TPHP) is commonly used in plastics and flame retardants. This study aims to investigate the potential impact of TPHP and its metabolite diphenyl phosphate (DPHP) on diabetic kidney disease using various methods, including network toxicology, molecular docking, and cell experiments like CCK8 assay and real-time-PCR. The research examined the relationship between urinary DPHP levels and kidney function in American adults using data from the National Health and Nutrition Examination Survey (NHANES) from 2017 to March 2020. Additionally, the study explored the targets of action for TPHP and DPHP using network toxicity analysis, conducted protein interaction analysis, and explored the functional aspects of action through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Furthermore, the study identified key proteins involved in the action and conducted experimental verification by treating cells with TPHP and DPHP. Toxicity analysis showed that TPHP could cause dose-dependent toxicity in mouse podocyte clone 5 (MPC5) and mouse mesangial cells (MES13). The study also detected mRNA expression of core targets molecularly docked with TPHP and DPHP using real-time-PCR. The results indicated statistically significant regulation of most core targets by TPHP and DPHP in MPC5, MES13, and human kidney-2 cells.
Collapse
Affiliation(s)
- Ting Fang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Qiaoyan Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xinxin Huangfu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
3
|
Lu L, Zhang Y, Shi W, Zhou Q, Lai Z, Pu Y, Yin L. The Role of Autophagy in Copper-Induced Apoptosis and Developmental Neurotoxicity in SH-SY5Y Cells. TOXICS 2025; 13:63. [PMID: 39853061 PMCID: PMC11769067 DOI: 10.3390/toxics13010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Copper (Cu) is a global environmental pollutant that poses a serious threat to humans and ecosystems. Copper induces developmental neurotoxicity, but the underlying molecular mechanisms are unknown. Neurons are nonrenewable, and they are unable to mitigate the excessive accumulation of pathological proteins and organelles in cells, which can be ameliorated by autophagic degradation. In this study, we established an in vitro model of Cu2+-exposed (0, 15, 30, 60 and 120 μM) SH-SY5Y cells to explore the role of autophagy in copper-induced developmental neurotoxicity. The results showed that copper resulted in the reduction and shortening of neural synapses in differentiated cultured SH-SY5Y cells, a downregulated Wnt signaling pathway, and nuclear translocation of β-catenin. Exposure to Cu2+ increased autophagosome accumulation and autophagic flux blockage in terms of increased sequestosome 1 (p62/SQSTM1) and microtubule-associated protein 1 light chain 3B (LC3B) II/LC3BI expressions and inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway. Furthermore, copper induced apoptosis, characterized by increased expressions of Bcl2 X protein (Bax), caspase 3, and Poly (ADP-ribose) polymerase (PARP) and decreased expression of B-cell lymphoma 2 (Bcl2). Compared with the 120 μM Cu2+ exposure group alone, autophagy activator rapamycin pretreatment increased expression of Wnt and β-catenin nuclear translocation, decreased expression of LC3BII/LC3BI and p62, as well as upregulated expression of Bcl2 and downregulated expressions of caspase 3 and PARP. In contrast, after autophagy inhibitor chloroquine pretreatment, expressions of Wnt and β-catenin nuclear translocation were decreased, expression levels of LC3BII/LC3BI and p62 were upregulated, expression of Bcl2 was decreased, while expression levels of caspase 3, Bax, and PARP were increased. In conclusion, the study demonstrated that autophagosome accumulation and autophagic flux blockage were associated with copper-induced developmental neurotoxicity via the Wnt signaling pathway, which might deepen the understanding of the developmental neurotoxicity mechanism of environmental copper exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (L.L.); (Y.Z.); (W.S.); (Q.Z.); (Z.L.); (Y.P.)
| |
Collapse
|
4
|
Fan W, Zhu Z, Liu X, Zhang H, Qiu Y, Yin D. Effect of nitrogen oxides and sulfur oxides to triphenyl phosphate degradation and cytotoxicity on surface of different transition metal salts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174422. [PMID: 38964400 DOI: 10.1016/j.scitotenv.2024.174422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Nitrogen oxides and sulfur oxides, as the dominant toxic gases in the atmosphere, can induce severe human health problems under the composite pollutant conditions. Currently the effect of nitrogen or sulfur oxides in atmospheric environment to the degradation and cytotoxicity of triphenyl phosphate (TPhP) on atmospheric particle surfaces still remain poorly understood. Hence, laboratory simulation methods were used in this study to investigate the effect and related mechanism. First, particle samples were prepared with the TPhP coated on MnSO4, CuSO4, FeSO4 and Fe2(SO4)3 surface. The results showed that, when nitrogen or sulfur oxides were present, more significant TPhP degradation on all samples can be observed under both light and dark conditions. The results proved nitrogen oxides and sulfur oxides were the vital influence factors to the degradation of TPhP, which mainly promoted the OH generation in the polluted atmosphere. The mechanism study indicated that diphenyl hydrogen phosphate (DPhP) and OH-DPhP were two main stable degradation products. These degradation products originated from the phenoxy bond cleavage and hydroxylation of TPhP caused by hydroxyl radicals. In addition, no TPhP related organosulfates (OSs) or organic nitrates (ON) formation were observed. Regarding the cytotoxicity, all the particles can induce more significant cellular injury and apoptosis of A549 cells, which may be relevant to the adsorbed nitrogen oxides or sulfur oxides on particles surfaces. The superfluous reactive oxygen species (ROS) generation was the possible reason of cytotoxicity. This research can supply a comprehensive understanding of the promoting effect of nitrogen and sulfur oxides to TPhP degradation and the composite cytotoxicity of atmospheric particles.
Collapse
Affiliation(s)
- Wulve Fan
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China.
| | - Xiaochang Liu
- School of Urban and Regional Science, Shanghai University of Finance and Economics, 777 Guoding Road, Shanghai, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Yu D, Hales BF, Robaire B. Organophosphate ester flame retardants and plasticizers affect the phenotype and function of HepG2 liver cells. Toxicol Sci 2024; 199:261-275. [PMID: 38518089 PMCID: PMC11131028 DOI: 10.1093/toxsci/kfae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Exposure to the organophosphate esters (OPEs), used as flame retardants and plasticizers, is associated with a variety of adverse health effects including an increase in the incidence of fatty liver diseases. The goal of this study was to investigate the effects of six OPEs, all detected in Canadian house dust, on the phenotype and function of HepG2 liver cells. We used high-content imaging to investigate the effects of these OPEs on cell survival, mitochondria, oxidative stress, lipid droplets, and lysosomes. Effects on the autophagy/lipophagy pathway were evaluated using confocal microscopy. The triaryl OPEs (isopropylated triphenylphosphate [IPPP], tris(methylphenyl) phosphate [TMPP], and triphenyl phosphate [TPHP]) were more cytotoxic than non-triaryl OPEs (tris(2-butoxyethyl) phosphate [TBOEP], tris(1-chloro-2-propyl) phosphate [TCIPP], and tris(1,3-dichloro-2-propyl) phosphate [TDCIPP]). Exposure to most OPEs increased total mitochondria, reduced reactive oxygen species, and increased total lipid droplet areas and lysosomal intensity. Potency ranking was done using the lowest benchmark concentration/administered equivalent dose method and toxicological prioritization index analyses to integrate all phenotypic endpoints. IPPP, TBOEP, and TPHP ranked as the most potent OPEs, whereas TMPP, TCIPP, and TDCIPP were relatively less bioactive. Confocal microscopic analysis demonstrated that IPPP reduced the colocalization of lipid droplets (PLIN2), lysosomes (LAMP1), and autophagosomes (p62), disrupting autophagy. In contrast, TBOEP rescued cells from bafilomycin A1-induced inhibition of autophagy and/or increased autophagic flux. Together, these data demonstrate that OPEs have adverse effects on HepG2 cells. Further, OPE-induced dysregulation of autophagy may contribute to the association between OPE exposure and adverse effects on liver lipid homeostasis.
Collapse
Affiliation(s)
- Dongwei Yu
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
6
|
Chen C, Cui D, Li J, Ren C, Yang D, Xiang P, Liu J. Organophosphorus Flame Retardant TPP-Induced Human Corneal Epithelial Cell Apoptosis through Caspase-Dependent Mitochondrial Pathway. Int J Mol Sci 2024; 25:4155. [PMID: 38673741 PMCID: PMC11050068 DOI: 10.3390/ijms25084155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
A widely used organophosphate flame retardant (OPFR), triphenyl phosphate (TPP), is frequently detected in various environmental media and humans. However, there is little known on the human corneal epithelium of health risk when exposed to TPP. In this study, human normal corneal epithelial cells (HCECs) were used to investigate the cell viability, morphology, apoptosis, and mitochondrial membrane potential after they were exposed to TPP, as well as their underlying molecular mechanisms. We found that TPP decreased cell viability in a concentration-dependent manner, with a half maximal inhibitory concentration (IC50) of 220 μM. Furthermore, TPP significantly induced HCEC apoptosis, decreased mitochondrial membrane potential in a dose-dependent manner, and changed the mRNA levels of the apoptosis biomarker genes (Cyt c, Caspase-9, Caspase-3, Bcl-2, and Bax). The results showed that TPP induced cytotoxicity in HCECs, eventually leading to apoptosis and changes in mitochondrial membrane potential. In addition, the caspase-dependent mitochondrial pathways may be involved in TPP-induced HCEC apoptosis. This study provides a reference for the human corneal toxicity of TPP, indicating that the risks of OPFR to human health cannot be ignored.
Collapse
Affiliation(s)
| | | | | | | | | | - Ping Xiang
- Yunnan Province Innovative Research Team of Environmental Pollution, Food Safety and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (C.C.); (D.C.); (J.L.); (C.R.); (D.Y.)
| | - Jianxiang Liu
- Yunnan Province Innovative Research Team of Environmental Pollution, Food Safety and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; (C.C.); (D.C.); (J.L.); (C.R.); (D.Y.)
| |
Collapse
|
7
|
Ou J, Song Y, Zhong X, Dai L, Chen J, Zhang W, Yang C, Wang J, Zhang W. Perfluorooctanoic acid induces Leydig cell injury via inhibition of autophagosomes formation and activation of endoplasmic reticulum stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:169861. [PMID: 38185161 DOI: 10.1016/j.scitotenv.2023.169861] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a man-made chemical broadly distributed in various ecological environment and human bodies, which poses potential health risks. Its toxicity, especially the male reproduction toxicity has drawn increasing attention due to declining birth rates in recent years. However, how PFOA induces male reproductive toxicity remains unclear. Here, we characterize PFOA-induced cell injury and reveal the underlying mechanism in mouse Leydig cells, which are critical to spermatogenesis in the testes. We show that PFOA induces cell injury as evidenced by reduced cell viability, cell morphology changes and apoptosis induction. RNA-sequencing analysis reveals that PFOA-induced cell injury is correlated with compromised autophagy and activated endoplasmic reticulum (ER) stress, two conserved biological processes required for regulating cellular homeostasis. Mechanistic analysis shows that PFOA inhibits autophagosomes formation, and activation of autophagy rescues PFOA-induced apoptosis. Additionally, PFOA activates ER stress, and pharmacological inhibition of ER stress attenuates PFOA-induced cell injury. Taken together, these results demonstrate that PFOA induces cell injury through inhibition of autophagosomes formation and induction of ER stress in Leydig cells. Thus, our study sheds light on the cellular mechanisms of PFOA-induced Leydig cell injury, which may be suggestive to human male reproductive health risk assessment and prevention from PFOA exposure-induced reproductive toxicity.
Collapse
Affiliation(s)
- Jinhuan Ou
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital; the First Affiliated Hospital of South University of Science and Technology of China; the Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Yali Song
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China
| | - Xiaoru Zhong
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital; the First Affiliated Hospital of South University of Science and Technology of China; the Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Lingyun Dai
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital; the First Affiliated Hospital of South University of Science and Technology of China; the Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Junhui Chen
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital; the First Affiliated Hospital of South University of Science and Technology of China; the Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Wenqiao Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, China
| | - Chuanbin Yang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital; the First Affiliated Hospital of South University of Science and Technology of China; the Second Affiliated Hospital of Jinan University, Shenzhen, China.
| | - Jigang Wang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital; the First Affiliated Hospital of South University of Science and Technology of China; the Second Affiliated Hospital of Jinan University, Shenzhen, China; Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China; Department of Oncology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wei Zhang
- Shenzhen Institute of Respiratory Disease, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital; the First Affiliated Hospital of South University of Science and Technology of China; the Second Affiliated Hospital of Jinan University, Shenzhen, China.
| |
Collapse
|
8
|
Zhang J, Guo J, Yang N, Huang Y, Wen J, Xiang Q, Liu Q, Chen Y, Hu T, Rao C. Zanthoxylum armatum DC fruit ethyl acetate extract site induced hepatotoxicity by activating endoplasmic reticulum stress and inhibiting autophagy in BRL-3A models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117245. [PMID: 37802376 DOI: 10.1016/j.jep.2023.117245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum armatum DC (Z. armatum) is renowned not only as a culinary spice but also as a staple in traditional ethnic medicine, predominantly in Southeast Asia and various other regions. Recent research has unveiled its multifaceted pharmacological properties, including anti-inflammatory, antibacterial, and toothache relief effects. Nonetheless, some studies have reported the potential toxicity of Z. armatum, emphasizing the need to further explore its toxicity mechanisms for safer application. AIM OF THE STUDY This study investigated the effect and mechanism of hepatotoxicity in BRL-3A cells induced by Z. armatum. MATERIALS AND METHODS The compounds of the ethyl acetate extract of Z. armatum (ZADC-EA) were identified by ultrahigh performance liquid chromatography coupled with quadrupole-orbitrap high resolution mass spectrometry (UPLC-Q-Orbitrap HRMS). The hepatotoxicity of the extract was evaluated by detecting cell viability, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) activity, and apoptosis. Endoplasmic reticulum stress, autophagy, and apoptosis were detected by Ad-mCherry-GFP-LC3B, flow cytometry, and Western blot to explore the mechanism of hepatotoxicity induced by ZADC-EA. RESULTS UPLC-Q-Orbitrap HRMS analysis revealed the presence of compounds belonging to flavonoids, terpenoids, and alkaloids. The IC50 value of ZADC-EA was 62.43 μg/mL, the cell viability of BRL-3A decreased in a time-dose dependent manner, and the levels of AST, ALT, and LDH were upregulated. In addition, ZADC-EA-induced increased expression of eIF2α-ATF4-CHOP pathway proteins, inhibited autophagy, and promoted apoptosis. CONCLUSIONS This study provides insights into the hepatotoxicity mechanisms of ZADC-EA on BRL-3A cells. It was found that ZADC-EA could induce endoplasmic reticulum stress and inhibit autophagy, then intensify apoptosis, and endoplasmic reticulum stress could exacerbate autophagy inhibition.
Collapse
Affiliation(s)
- Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
9
|
Wang C, Wang X, Xie Y, Peng T, Wang Y, Li N, Huang X, Hu X, Xie N. ATF5 Attenuates Low-magnesium-induced Apoptosis by Inhibiting Endoplasmic Reticulum Stress Via the Regulation of Mitochondrial Reactive Oxygen Species. Neuroscience 2023; 535:13-22. [PMID: 37913858 DOI: 10.1016/j.neuroscience.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Mitochondrial stress and endoplasmic reticulum stress (ERS) are known to be closely linked. ATF5 is a key regulator of mitochondrial stress and is involved in ERS regulation. Previously, we used a seizure model to demonstrate that ATF5 regulates mitochondrial stress. However, whether ATF5 affects ERS in epilepsy models has yet to be elucidated. In the present study, we investigated the effects of ATF5 on low-magnesium-induced ERS and the potential mechanisms that underlie these effects. We found that lentiviral overexpression of ATF5 significantly improved low-magnesium-induced ERS, as confirmed by the reduced expression levels of GRP78, PERK, ATF4, and CHOP. In addition, ATF5 overexpression reduced reactive oxygen species (ROS) production and elevated superoxide dismutase (SOD) activity, thus demonstrating that ATF5 plays a key role in maintaining redox homeostasis. Furthermore, ATF5 overexpression rescued low-magnesium-induced neuronal apoptosis, as evidenced by the reduced expression levels of Cleaved-caspase-3 and Bax, and the restored levels of Bcl2. However, these effects were significantly eliminated by lentiviral transduction with ATF5 interference. In addition, treatment of neurons with the mitochondrial antioxidant mitoquinone attenuated the onset of oxidative stress caused by ATF5 interference, partially restored the effect on ERS, and rescued cells from apoptosis. Collectively, these data show that ATF5 attenuates low-magnesium-induced neuronal apoptosis by inhibiting ERS through preventing the accumulation of mitochondrial ROS.
Collapse
Affiliation(s)
- Cui Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University; Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Xiaoyi Wang
- Institutes of Biological and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Yinyin Xie
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingting Peng
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongfeng Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University; Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Nan Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University; Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Xiangbo Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University; Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Xiaomei Hu
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University; Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Nanchang Xie
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Khani L, Martin L, Pułaski Ł. Cellular and physiological mechanisms of halogenated and organophosphorus flame retardant toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165272. [PMID: 37406685 DOI: 10.1016/j.scitotenv.2023.165272] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Flame retardants (FRs) are chemical substances used to inhibit the spread of fire in numerous industrial applications, and their abundance in modern manufactured products in the indoor and outdoor environment leads to extensive direct and food chain exposure of humans. Although once considered relatively non-toxic, FRs are demonstrated by recent literature to have disruptive effects on many biological processes, including signaling pathways, genome stability, reproduction, and immune system function. This review provides a summary of research investigating the impact of major groups of FRs, including halogenated and organophosphorus FRs, on animals and humans in vitro and/or in vivo. We put in focus those studies that explained or referenced the modes of FR action at the level of cells, tissues and organs. Since FRs are highly hydrophobic chemicals, their biophysical and biochemical modes of action usually involve lipophilic interactions, e.g. with biological membranes or elements of signaling pathways. We present selected toxicological information about these molecular actions to show how they can lead to damaging membrane integrity, damaging DNA and compromising its repair, changing gene expression, and cell cycle as well as accelerating cell death. Moreover, we indicate how this translates to deleterious bioactivity of FRs at the physiological level, with disruption of hormonal action, dysregulation of metabolism, adverse effects on male and female reproduction as well as alteration of normal pattern of immunity. Concentrating on these subjects, we make clear both the advances in knowledge in recent years and the remaining gaps in our understanding, especially at the mechanistic level.
Collapse
Affiliation(s)
- Leila Khani
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Leonardo Martin
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland; Department of Biochemistry and Molecular Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.
| |
Collapse
|
11
|
Sokolov S, Zyrina A, Akimov S, Knorre D, Severin F. Toxic Effects of Penetrating Cations. MEMBRANES 2023; 13:841. [PMID: 37888013 PMCID: PMC10608470 DOI: 10.3390/membranes13100841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
As mitochondria are negatively charged organelles, penetrating cations are used as parts of chimeric molecules to deliver specific compounds into mitochondria. In other words, they are used as electrophilic carriers for such chemical moieties as antioxidants, dyes, etc., to transfer them inside mitochondria. However, unmodified penetrating cations affect different aspects of cellular physiology as well. In this review, we have attempted to summarise the data about the side effects of commonly used natural (e.g., berberine) and artificial (e.g., tetraphenylphosphonium, rhodamine, methylene blue) penetrating cations on cellular physiology. For instance, it was shown that such types of molecules can (1) facilitate proton transport across membranes; (2) react with redox groups of the respiratory chain; (3) induce DNA damage; (4) interfere with pleiotropic drug resistance; (5) disturb membrane integrity; and (6) inhibit enzymes. Also, the products of the biodegradation of penetrating cations can be toxic. As penetrating cations accumulate in mitochondria, their toxicity is mostly due to mitochondrial damage. Mitochondria from certain types of cancer cells appear to be especially sensitive to penetrating cations. Here, we discuss the molecular mechanisms of the toxic effects and the anti-cancer activity of penetrating cations.
Collapse
Affiliation(s)
- Svyatoslav Sokolov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| | - Anna Zyrina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Premises 8, Bldg. 1, Village of Institute of Poliomyelitis, Settlement “Moskovskiy”, 108819 Moscow, Russia;
| | - Sergey Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 LeninskiyProspekt, 119071 Moscow, Russia;
| | - Dmitry Knorre
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| | - Fedor Severin
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40 Leninskie Gory, 119991 Moscow, Russia; (S.S.); (D.K.)
| |
Collapse
|
12
|
Zhang X, Huang W, Huang T, Zhang J, Xu A, Cheng Y, Qin C, Lu Q, Wang Z. Integrative analysis of triphenyl phosphate: contextual interpretation of bladder cancer cohort. Front Oncol 2023; 13:1260114. [PMID: 37869074 PMCID: PMC10586792 DOI: 10.3389/fonc.2023.1260114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023] Open
Abstract
In recent years, organophosphate ester flame retardants (OPFRs) have emerged as preferred alternatives to brominated flame retardants (BFRs) in materials such as building supplies, textiles, and furnishings. Simultaneously, a notable surge in bladder cancer incidences has been observed globally, particularly in developed nations, placing it as the 10th most prevalent cancer type. Among the extensive OPFRs, the linkage between triphenyl phosphate (TPP) and bladder cancer remains inadequately investigated. Hence, our study endeavors to elucidate this potential association. We sourced transcriptome profiles and TPP-related data from The Cancer Genome Atlas and Comparative Toxicogenomics databases. Using the ssGSEA algorithm, we established TPP-correlated scores within the bladder cancer cohort. Differentially expressed analysis enabled us to identify key genes in bladder cancer patients. We utilized the LASSO regression analysis, along with univariate and multivariate COX regression analyses to construct a prognostic prediction model. To uncover critical pathways involving key genes, we employed GSEA and GSVA enrichment analyses. Molecular docking analysis was performed to determine the binding capability between TPP and proteins. Our findings reveal that the TPP-centric risk model offers valuable prediction for bladder cancer cohorts. Furthermore, the reliability of this TPP-influenced risk model was verified through ROC curve analysis and survival studies. Intriguingly, TPP exposure appears to bolster the proliferation and invasiveness of bladder cancer cells. This study furnishes new insights into the possible benefits of minimizing TPP exposure for hindering bladder cancer progression.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Huang
- Department of Good Clinical Practice (GCP) Office, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Huang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayi Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aiming Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yidong Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Chen P, Chen J, Zhang W, Tang L, Cheng G, Li H, Fan T, Wang J, Zhong W, Song Y. Biochemical mechanisms of tributyltin chloride-induced cell toxicity in Sertoli cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114725. [PMID: 36924558 DOI: 10.1016/j.ecoenv.2023.114725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Tributyltin chloride (TBTCL) is a widely used fungicide and heat stabilizer in compositions of PVC. TBTCL has been detected in human bodies and potentially causes harmful effects on humans' thyroid, cardiovascular and other organs. As one of the first examples of endocrine disruptors, the toxicity effects of TBTCL on the male reproduction system have aroused concerns. However, the potential cellular mechanisms are not fully explored. In the current study, by using Sertoli cells, a critical regulator of spermatogenesis as a cell model, we showed that with 200 nM exposure for 24 h, TBTCL causes apoptosis and cell cycle arrest. RNA sequencing analyses suggested that TBTCL probably activates endoplasmic reticulum (ER) stress, and disrupts autophagy. Biochemical analysis showed that TBTCL indeed induces ER stress and the dysregulation of autophagy. Interestingly, activation of ER stress and inhibition of autophagy is responsible for TBTCL-induced apoptosis and cell cycle arrest. Our results thus uncovered a novel insight into the cellular mechanisms for TBTCL-induced toxicology in Sertoli cells.
Collapse
Affiliation(s)
- Pengchen Chen
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China; Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Junhui Chen
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Wei Zhang
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Li Tang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China
| | - Guangqing Cheng
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huiying Li
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China
| | - Tianyun Fan
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China
| | - Jigang Wang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China; Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenbin Zhong
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China.
| | - Yali Song
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China.
| |
Collapse
|
14
|
Kim SH, Oh SH. Sodium arsenite-induced cytotoxicity is regulated by BNIP3L/Nix-mediated endoplasmic reticulum stress responses and CCPG1-mediated endoplasmic reticulum-phagy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104111. [PMID: 36925093 DOI: 10.1016/j.etap.2023.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
We elucidated the BNIP3L/Nix and SQSTM1/p62 molecular mechanisms in sodium arsenite (NaAR)-induced cytotoxicity. Considerable changes in the morphology and adhesion of H460 cells were observed in response to varying NaAR concentrations. NaAR exposure induced DNA damage-mediated apoptosis and Nix accumulation via proteasome inhibition. Nix targets the endoplasmic reticulum (ER), inducing ER stress responses. p62 and Nix were colocalized and their expressions were inversely correlated. Autophagy inhibition upregulated Nix, p62, cell cycle progression gene 1 (CCPG1), heme oxygenase (HO)- 1, and calnexin expression. Nix knockdown decreased the NaAR-induced ER stress and microtubule-associated protein 1 A/1B light-chain 3 (LC3) B-II levels and increased the CCPG1 and calnexin levels. p62 knockdown upregulated Nix, LC3-II, and CCPG1 expressions and the ER stress responses, indicating that p62 regulates Nix levels. Nix downstream pathways were mitigated by Ca2+ chelators. We demonstrate the critical roles of Nix and p62 in ER stress and ER-phagy in response to NaAR.
Collapse
Affiliation(s)
- Sang-Hun Kim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju 501-759, South Korea
| | - Seon-Hee Oh
- School of Medicine, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju 501-759, South Korea.
| |
Collapse
|
15
|
Wang YF, Ma RX, Zou B, Li J, Yao Y, Li J. Endoplasmic reticulum stress regulates autophagic response that is involved in Saikosaponin a-induced liver cell damage. Toxicol In Vitro 2023; 88:105534. [PMID: 36539104 DOI: 10.1016/j.tiv.2022.105534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Saikosaponin a (Ssa) is an active ingredient of the Chinese herbal plant Radix Bupleuri (RB) and has severe hepatotoxicity. However, biomolecular mechanisms involved in Ssa-induced hepatotoxicity are not yet entirely clear. Previous studies reported that Ssd (an isomer of Ssa) as a sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) inhibitor can induce autophagy in apoptotic defective cells, leading to autophagy-dependent cell death. Therefore, we speculate that endoplasmic reticulum (ER) stress and autophagy may also play an important role in Ssa-induced hepatocyte death. This study aimed to explore the connection between ER stress and autophagy and Ssa-induced hepatotoxicity. Experiments in vitro showed that the cell viability of L-02 cells in the Ssa treatment group decreased, the level of autophagy marker LC3-II/LC3-I and Beclin1 increased, the level of p62 decreased, the colocalization of autophagosome and lysosome increased, and the cell viability was significantly increased after the application of autophagy inhibitors 3-MA. In addition, SSa can induce ER stress in L-02 cells in vitro. Further studies demonstrated that SSa activated the PERK/eIF2α/ATF4/CHOP pathway, IRE1-TRAF2 pathway, ATF6 pathway, and AMPK/mTOR pathway associated with ER stress. Application of ER stress inhibitors 4-PBA can significantly down-regulate the level of autophagy and improve cell viability. Results of in vivo experiments showed that treatment with 150 and 300 mg/kg Ssa significantly elevated the liver/body weight ratio and caused histological injury in mice liver. Furthermore, Ssa treatment induced significantly downregulated p62 expression but upregulated LC3-II, CHOP, and GRP78 expression in mice livers. Taken together, our results showed that SSa can activate endoplasmic reticulum stress, promote toxic autophagy, and then induce cell death. We revealed an alternative mechanism involving autophagy and ERs, by which Ssa induced hepatotoxicity.
Collapse
Affiliation(s)
- Ye-Feng Wang
- School of Public Health & Management, Ningxia Medical University, Yinchuan 750004, China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China.
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Modernization of Traditional Chinese Medicine, Ministry of Education, Yinchuan 750004, China.
| |
Collapse
|
16
|
Zhang J, Guo J, Yang N, Huang Y, Hu T, Rao C. Endoplasmic reticulum stress-mediated cell death in liver injury. Cell Death Dis 2022; 13:1051. [PMID: 36535923 PMCID: PMC9763476 DOI: 10.1038/s41419-022-05444-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum is an important intracellular organelle that plays an important role in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) are induced when the body is exposed to adverse external stimuli. It has been established that ERS can induce different cell death modes, including autophagy, apoptosis, ferroptosis, and pyroptosis, through three major transmembrane receptors on the ER membrane, including inositol requirement enzyme 1α, protein kinase-like endoplasmic reticulum kinase and activating transcription factor 6. These different modes of cell death play an important role in the occurrence and development of various diseases, such as neurodegenerative diseases, inflammation, metabolic diseases, and liver injury. As the largest metabolic organ, the liver is rich in enzymes, carries out different functions such as metabolism and secretion, and is the body's main site of protein synthesis. Accordingly, a well-developed endoplasmic reticulum system is present in hepatocytes to help the liver perform its physiological functions. Current evidence suggests that ERS is closely related to different stages of liver injury, and the death of hepatocytes caused by ERS may be key in liver injury. In addition, an increasing body of evidence suggests that modulating ERS has great potential for treating the liver injury. This article provided a comprehensive overview of the relationship between ERS and four types of cell death. Moreover, we discussed the mechanism of ERS and UPR in different liver injuries and their potential therapeutic strategies.
Collapse
Affiliation(s)
- Jian Zhang
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Jiafu Guo
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Nannan Yang
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Yan Huang
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Tingting Hu
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Chaolong Rao
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XState Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| |
Collapse
|