1
|
Huo X, He M, Qiao J, Zhao J, Yang B. Regulatory effects of nano-carbon on poplar growth and rhizosphere soil organic carbon accumulation. ENVIRONMENTAL RESEARCH 2025:121628. [PMID: 40274091 DOI: 10.1016/j.envres.2025.121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
The positive effects of nano-carbon on plant growth and soil C sequestration within the rhizosphere have been widely recognized. Nevertheless, information is seriously deficient in understanding the underlying mechanisms based on microbial communities and carbon cycle functional genes. Here, metagenomic sequencing was employed to explore different responses of poplar seedling growth and organic carbon fractions to nano-carbon fertilizers at concentrations of 0 ml/kg (CK), 5 ml/kg (NC-5), 10 ml/kg (NC-10) and 20 ml/kg (NC-20). We observed that, after 120 days of nano-carbon fertilizers treatments, the growth indexes (height and biomass) of poplar were significantly increased by 53-173 %, and C fractions in the rhizosphere soil were significantly increased by 1.6-8.2 % with the NC-5 treatment having a greater impact on organic carbon components than the NC-10 and NC-20 treatments. Compared to CK, the additions of nano-carbon fertilizers significantly increased the content of total nitrogen (TN), nitrate nitrogen (NN), and available potassium (AK) in the rhizosphere soil and decreased the pH, and improved stochastic processes in microbial communities, which elevates the abundance of microbes involved in carbon fixation (e.g., Proteobacteria, Actinobacteria) and carbon-cycling genes. In addition, network complexity and stability of microbes were significantly enhanced by nano-carbon treatments. Structural equation model indicated that microbial community assembly processes directly alter rhizosphere SOC accumulation. Carbon functional genes influenced by microbial structure have positive effects on biomass of poplar and SOC contents. Our observations provide key evidence for evaluating how nano-carbon fertilizers may influence functional changes in C cycle that are mediated by microbial synergy.
Collapse
Affiliation(s)
- Xiaomei Huo
- College of Forestry, Shanxi Agriculture University, Taigu 030801, China
| | - Mengjie He
- College of Forestry, Shanxi Agriculture University, Taigu 030801, China
| | - Jun Qiao
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong 037009, China
| | - Jianguo Zhao
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong 037009, China
| | - Bin Yang
- College of Forestry, Shanxi Agriculture University, Taigu 030801, China.
| |
Collapse
|
2
|
Zhang X, Huang J, Chen D, Yue Y, Wang L, Yang X. A new strategy for sustainable agricultural development: Meta-analysis of the efficient interaction of plant growth-promoting rhizobacteria with nanoparticles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109845. [PMID: 40186912 DOI: 10.1016/j.plaphy.2025.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/07/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Nanoparticles (NPs) and plant growth-promoting rhizobacteria (PGPR) are two kinds of additives that have obvious promotion effect on plant growth and development, but the effectiveness and influencing factors of their cooperation remain incompletely understood. Here, we conducted a global meta-analysis of 68 published studies to explore the potential effects of simultaneous exposure to NPs and PGPR on plants and the factors influencing the benefits of their cooperation. The results indicated that either individual or combined applications of PGPR and NPs were effective at promoting plant growth and development, but the advantages of cooperation were more obvious, especially for plants under stress conditions. Our results also illustrated that PGPRs species affected the efficiency of cooperation with NPs, with the Bacillus spp. and Pseudomonas spp. having the most significant positive effects. Exposure to NPs of 7-15 d and foliar application had the most significant effects on plant biomass, photosynthetic capacity and nutrient accumulation. Effects on plant antioxidant systems were associated with NPs type, size, application dose and exposure way, but were not significantly related to exposure duration. Our results emphasize the effectiveness of cooperation between PGPR and NPs, which provides a theoretical basis for the development of nano-biofertilizers (NBFs), and also provides support for the application and promotion of NBFs in agricultural production.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiurong Huang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Dingyi Chen
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuanzheng Yue
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Lianggui Wang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiulian Yang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China; State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
3
|
Wang J, Zhai R, Ma Y, Chen H, Jing D, Yang H, Wang Y. Development of morphology-dependent nanoselenium carriers for enhancing biological activity and reducing plant stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117804. [PMID: 39884017 DOI: 10.1016/j.ecoenv.2025.117804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Owing to their small size, morphology and release modification properties, nanopesticides are considered promising alternative strategies for enhancing biological activity and minimizing pesticide losses. In this study, we used a colloidal self-assembly method to develop a morphology-stable, regularly rod-shaped nanoselenium pesticide carrier (NSer), which was further modified with chitosan. After loading penthiopyrad (PEN), the biological activity of NSer@PEN and its impact on the physiological and biochemical processes of plants were further compared with those of spherical nanoselenium pesticides (NSes@PEN) and commercial materials (20 % PEN SC). The biological activities were quantified through the EC50 values, which revealed that NSer@PEN (0.71 mg/L) and NSes@PEN (1.09 mg/L) exhibited significantly greater activity against Colletotrichum orbiculare Arx compared to 20 % PEN SC (2.70 mg/L). Moreover, through further investigation into the impact of nanopesticides on plant root exudates, Fourier transform infrared spectroscopy (FTIR) and two-dimensional correlation spectroscopy (2D-COS) analysis revealed that the ketone CO bond exhibited the strongest binding affinity, and the CO bond of phenols contributed significantly to the binding of cucumber root exudates induced by NSer@PEN, resulting in a mild response of the plant. The morphology-dependent nanoselenium carriers developed in this work are expected to enhance biological activity and reduce plant stress caused by pesticides, tackling one of the application challenges of pesticides.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Plant and Environmental Health, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Ronggang Zhai
- College of Electronics and Information Engineering, Anhui Post and Telecommunication College, Hefei 230031, China
| | - Yifan Ma
- Department of Plant and Environmental Health, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Haoyu Chen
- Department of Plant and Environmental Health, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Danyang Jing
- Department of Plant and Environmental Health, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Huaiyu Yang
- Department of Plant and Environmental Health, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Yi Wang
- Department of Plant and Environmental Health, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
4
|
Yang H, Li B, Huang P, Zhang B, Abbas A, Xu Z, Yin H, Du D. Adaptive Benefits of Antioxidant and Hormone Fluctuations in Wedelia trilobata Under Simulated Salt Stress with Nutrient Conditions. PLANTS (BASEL, SWITZERLAND) 2025; 14:303. [PMID: 39942865 PMCID: PMC11819728 DOI: 10.3390/plants14030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025]
Abstract
Salinity is one of the most significant environmental factors limiting plant development and productivity. Invasive plants could quickly respond to environmental changes, thus successfully achieving invasion. However, there is limited research on the mechanism of salt responses in invasive plants under different nutritional conditions. This study evaluated and compared the impact of salinity stress and nutrient application on physiological responses in the invasive plant Wedelia trilobata and native plant Wedelia chinensis. Mild salinity stress disrupted the growth of these two plants, significantly reducing their leaf and stem node number under a low nutrient condition. W. trilobata showed notable decreases in height and leaf number with high salinity stress regardless of nutrient levels, whereas it was observed only in the low nutrient state in W. chinensis. The negative effects of high salinity on both species were most evident in nutrient-poor environments. Under low salinity and nutrient stress, W. trilobata's leaves exhibited increased levels of proline, MDA, CAT, and ABA, with decreased GA and IAA content. A low-salt environment favored W. trilobata's competitive advantage, and nutrient enrichment appeared to enhance its invasive potential, in which process the plant antioxidant system and endogenous hormones contribute greatly. This study provides a theoretical foundation for predicting suitable growth areas for W. trilobata referring to the salt condition, guiding future strategies for preventing and controlling its invasive spread.
Collapse
Affiliation(s)
- Hong Yang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Bin Li
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Ping Huang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zhang
- Water Conservancy and Lake Bureau of Daye City, Huangshi 435100, China
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Zhiwei Xu
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Huilei Yin
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Sodhi GK, Wijesekara T, Kumawat KC, Adhikari P, Joshi K, Singh S, Farda B, Djebaili R, Sabbi E, Ramila F, Sillu D, Santoyo G, de los Santos-Villalobos S, Kumar A, Pellegrini M, Mitra D. Nanomaterials-plants-microbes interaction: plant growth promotion and stress mitigation. Front Microbiol 2025; 15:1516794. [PMID: 39881995 PMCID: PMC11774922 DOI: 10.3389/fmicb.2024.1516794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Soil salinization, extreme climate conditions, and phytopathogens are abiotic and biotic stressors that remarkably reduce agricultural productivity. Recently, nanomaterials have gained attention as effective agents for agricultural applications to mitigate such stresses. This review aims to critically appraise the available literature on interactions involving nanomaterials, plants, and microorganisms. This review explores the role of nanomaterials in enhancing plant growth and mitigating biotic and abiotic stresses. These materials can be synthesized by microbes, plants, and algae, and they can be applied as fertilizers and stress amelioration agents. Nanomaterials facilitate nutrient uptake, improve water retention, and enhance the efficiency of active ingredient delivery. Nanomaterials strengthen plant antioxidant systems, regulate photosynthesis, and stabilize hormonal pathways. Concurrently, their antimicrobial and protective properties provide resilience against biotic stressors, including pathogens and pests, by promoting plant immune responses and optimizing microbial-plant symbiosis. The synergistic interactions of nanomaterials with beneficial microorganisms optimize plant growth under stress conditions. These materials also serve as carriers of nutrients, growth regulators, and pesticides, thus acting like "smart fertilizers. While nanotechnology offers great promise, addressing potential environmental and ecotoxicological risks associated with their use is necessary. This review outlines pathways for leveraging nanotechnology to achieve resilient, sustainable, and climate-smart agricultural systems by integrating molecular insights and practical applications.
Collapse
Affiliation(s)
- Gurleen Kaur Sodhi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Tharuka Wijesekara
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Kailash Chand Kumawat
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh, India
| | | | - Kuldeep Joshi
- Centre for GMP Extraction Facility, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Smriti Singh
- Department of Anaesthesia and Operation Theatre Technology, College of Pharmacy, Chandigarh Group of Colleges Jhanjeri (Mohali), Sahibzada Ajit Singh Nagar, Punjab, India
| | - Beatrice Farda
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Enrico Sabbi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Fares Ramila
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Laboratory Biotechnology, Water, Environment and Health, Abbes Laghrour University of Khenchela, Khenchela, Algeria
- Laboratory of Mycology, Biotechnology and Microbial Activity, Brothers Mentouri University of Constantine 1, Constantine, Algeria
| | - Devendra Sillu
- Department of Environmental Science and Engineering, Guangdong-Technion Israel Institute of Technology, Shantou, China
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | | | - Ajay Kumar
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh, India
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| |
Collapse
|
6
|
SeyedHajizadeh H, FarajiChelanolya A, Zahedi SM, Moghadam A, Mahdavinia G, Kaya O. Nanochitosan-encapsulated melatonin: an eco-friendly strategy to delay petal senescence in cut gerbera flowers. BMC PLANT BIOLOGY 2024; 24:1024. [PMID: 39472814 PMCID: PMC11520382 DOI: 10.1186/s12870-024-05725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND The preservation of cut flowers, particularly Gerbera jamesonii, is crucial for maintaining their aesthetic value and extending vase life in the floriculture industry. To address this challenge, this study investigated the effects of melatonin (Mel) and encapsulated melatonin with nanochitosan (nCS-Mel) as preservative solutions on cut Gerbera jamesonii cv. 'Terra kalina' flowers. In research, we examined various physiological and biochemical parameters, including relative water content, membrane stability index, carbohydrate content, and antioxidant enzyme activities, to evaluate the efficacy of these treatments in prolonging the vase life and quality of cut gerbera flowers under controlled environmental conditions. RESULTS Our results demonstrated that cut Gerbera jamesonii flowers maintained in vase solutions containing 0.1 and 0.5 mM nCS-Mel exhibited enhanced preservation of cell membrane integrity and anthocyanin content, while also maintaining higher levels of carbohydrates and total flavonoids in petals at the conclusion of their vase life. A decline in petal relative water content and protein levels was observed concomitantly with petal senescence, whereas total phenolic compounds showed an increase. The hydrogen peroxide (H2O2) content in petals exhibited an upward trend during vase life in control specimens, but this effect was mitigated in treatments containing melatonin. Although malondialdehyde (MDA) content generally increased throughout the vase life period, flowers subjected to either Mel or nCS-Mel treatments displayed reduced MDA accumulation. The activity of catalase (CAT) demonstrated an increasing trend during vase life, with the maximum activity observed in Gerbera flowers treated with 0.1 mM nCS-Mel. A similar upward trend was noted for superoxide dismutase (SOD) activity, with flowers in 0.5 mM nCS-Mel treatment exhibiting peak SOD values on day 12 relative to control and other treatments. Peroxidase (POD) activity also increased across all treatments, with particularly pronounced effects in vase solutions containing 0.1 mM Mel and nCS-Mel. Notably, flowers placed in vase solutions containing 0.1 mM nCS-Mel, followed by 0.5 mM nCS-Mel and 0.1 mM Mel, exhibited the most prolonged vase life, extending up to 12, 10.66, and 10.33 days, respectively, under room temperature conditions. CONCLUSIONS The application of nanoencapsulated melatonin as a vase solution for cut Gerbera jamesonii flowers demonstrates significant potential in extending vase life and maintaining flower quality through enhanced preservation of cellular integrity, antioxidant activity, and biochemical parameters. This innovative approach not only outperforms conventional treatments but also presents a more environmentally friendly alternative to traditional antimicrobial preservatives and sugars, offering a promising solution for the floriculture industry to improve cut flower longevity and reduce ecological impact.
Collapse
Affiliation(s)
- Hanifeh SeyedHajizadeh
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran.
| | - Ali FarajiChelanolya
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran
| | - Seyed Morteza Zahedi
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran
| | - Ali Moghadam
- Department of Horticultural Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gholamreza Mahdavinia
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, 55181-83111, Iran
| | - Ozkan Kaya
- Republic of Turkey Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan, 24060, Turkey.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| |
Collapse
|
7
|
Kushwaha J, Singh Y, Yadav SK, Sheth PN, Mahesh MS, Dhoble AS. Deciphering cleaner and sustainable frontiers in scientific cow waste valorization: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:988. [PMID: 39349837 DOI: 10.1007/s10661-024-13120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
The forecasted global population growth is poised to create a greater exigency for livestock-derived food production, leading to a significant waste generation from the industrial-scale livestock operations, which necessitates to develop sustainable waste management solutions. The heightened demand for livestock and dairy products has driven a surge in cow waste (CW) production. While CW is typically used as organic fertilizer or solid fuel, improper disposal poses potential environmental hazards. Anaerobic digestion and composting transform CW into valuable products, such as biofuels and organic fertilizers, with the potential for electricity and heat generation, biochar production, and advanced friction materials. The CW contains essential inorganic and organic compounds vital for plant functions, including lignin, cellulose, hemicellulose, nitrogen, and minerals such as potassium, sulfur, iron, magnesium, copper, cobalt, and manganese. Additionally, the rich microbial diversity in cow dung drives the production of bioenergy carriers like biomethane and biohydrogen, promoting cost-effective energy generation and environmental sustainability. This review employs bibliometric analysis to explore the latest trends in CW applications, with a particular focus on innovative applications such as cellulose extraction, biochar production, microbial fuel cells, and nanoparticle synthesis. It further evaluates the environmental impacts of these technologies and assesses their potential to advance sustainable and cleaner frontiers in the valorization of CW.
Collapse
Affiliation(s)
- Jeetesh Kushwaha
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Yashpal Singh
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Sushil Kumar Yadav
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - Pratik N Sheth
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - M S Mahesh
- Livestock Farm Complex, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Uttar Pradesh, Mirzapur, 231001, India
| | - Abhishek S Dhoble
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Uttar Pradesh, Varanasi, 221005, India.
| |
Collapse
|
8
|
Duan Z, Wang Q, Wang T, Kong X, Zhu G, Qiu G, Yu H. Application of microbial agents in organic solid waste composting: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5647-5659. [PMID: 38318758 DOI: 10.1002/jsfa.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The rapid growth of organic solid waste has recently exacerbated environmental pollution problems, and its improper treatment has led to the loss of a large number of biomass resources. Here, we expound the advantages of microbial agents composting compared with conventional organic solid waste treatment technology, and review the important role of microbial agents composting in organic solid waste composting from the aspects of screening and identification, optimization of conditions, mechanism of action, combination with other technologies and ultra-high-temperature and ultra-low-temperature microbial composting. We discuss the value of microorganisms with different growth conditions in organic solid waste composting, and put forward a seasonal multi-temperature composite microbial composting technology. Provide new ideas for the all-round treatment of microbial agents in organic solid waste in the future. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhongxu Duan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Quanying Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Tianye Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiangfen Kong
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guopeng Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guankai Qiu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
9
|
Shukla K, Mishra V, Singh J, Varshney V, Verma R, Srivastava S. Nanotechnology in sustainable agriculture: A double-edged sword. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5675-5688. [PMID: 38285130 DOI: 10.1002/jsfa.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/16/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Nanotechnology is a rapidly developing discipline that has the potential to transform the way we approach problems in a variety of fields, including agriculture. The use of nanotechnology in sustainable agriculture has gained popularity in recent years. It has various applications in agriculture, such as the development of nanoscale materials and devices to boost agricultural productivity, enhance food quality and safety, improve the efficiency of water and nutrient usage, and reduce environmental pollution. Nanotechnology has proven to be very beneficial in this field, particularly in the development of nanoscale delivery systems for agrochemicals such as pesticides, fertilizers, and growth regulators. These nanoscale delivery technologies offer various benefits over conventional delivery systems, including better penetration and distribution, enhanced efficacy, and lower environmental impact. Encapsulating agrochemicals in nanoscale particles enables direct delivery to the targeted site in the plant, thereby reducing waste and minimizing off-target effects. Plants are fundamental building blocks of all ecosystems and evaluating the interaction between nanoparticles (NPs) and plants is a crucial aspect of risk assessment. This critical review therefore aims to provide an overview of the latest advances regarding the positive and negative effects of nanotechnology in agriculture. It also explores potential future research directions focused on ensuring the safe utilization of NPs in this field, which could lead to sustainable development. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kavita Shukla
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Vishnu Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jawahar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, UK
| | - Vishal Varshney
- Department of Botany, Govt. Shaheed GendSingh College, Charama, Chattisgarh, India
| | - Rajnandini Verma
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| |
Collapse
|
10
|
Prokisch J, Ferroudj A, Labidi S, El-Ramady H, Brevik EC. Biological Nano-Agrochemicals for Crop Production as an Emerging Way to Address Heat and Associated Stresses. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1253. [PMID: 39120358 PMCID: PMC11314061 DOI: 10.3390/nano14151253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Climate change is a global problem facing all aspects of the agricultural sector. Heat stress due to increasing atmospheric temperature is one of the most common climate change impacts on agriculture. Heat stress has direct effects on crop production, along with indirect effects through associated problems such as drought, salinity, and pathogenic stresses. Approaches reported to be effective to mitigate heat stress include nano-management. Nano-agrochemicals such as nanofertilizers and nanopesticides are emerging approaches that have shown promise against heat stress, particularly biogenic nano-sources. Nanomaterials are favorable for crop production due to their low toxicity and eco-friendly action. This review focuses on the different stresses associated with heat stress and their impacts on crop production. Nano-management of crops under heat stress, including the application of biogenic nanofertilizers and nanopesticides, are discussed. The potential and limitations of these biogenic nano-agrochemicals are reviewed. Potential nanotoxicity problems need more investigation at the local, national, and global levels, as well as additional studies into biogenic nano-agrochemicals and their effects on soil, plant, and microbial properties and processes.
Collapse
Affiliation(s)
- József Prokisch
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Aya Ferroudj
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Safa Labidi
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Hassan El-Ramady
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Eric C. Brevik
- College of Agricultural, Life, and Physical Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
11
|
Ren Y, Wang G, Su Y, Li J, Zhang H, Ma G, Han J. Effect of CeO 2, TiO 2 and SiO 2 nanoparticles on the growth and quality of model medicinal plant Salvia miltiorrhiza by acting on soil microenvironment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116552. [PMID: 38850694 DOI: 10.1016/j.ecoenv.2024.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
In this study, a six-month pot experiment was conducted to explore the effects of nanoparticles (NPs), including CeO2, TiO2 and SiO2 NPs at 200 and 800 mg/kg, on the growth and quality of model medicinal plant Salvia miltiorrhiza. A control group was implemented without the application of NPs. Results showed that NPs had no significant effect on root biomass. Treatment with 200 mg/kg of SiO2 NPs significantly increased the total tanshinone content by 44.07 %, while 200 mg/kg of CeO2 NPs were conducive to a 22.34 % increase in salvianolic acid B content. Exposure to CeO2 NPs induced a substantial rise in the MDA content in leaves (176.25 % and 329.15 % under low and high concentration exposure, respectively), resulting in pronounced oxidative stress. However, TiO2 and SiO2 NPs did not evoke a robust response from the antioxidant system. Besides, high doses of CeO2 NP-amended soil led to reduced nitrogen, phosphorus and potassium contents. Furthermore, the NP amendment disturbed the carbon and nitrogen metabolism in the plant rhizosphere and reshaped the rhizosphere microbial community structure. The application of CeO2 and TiO2 NPs promoted the accumulation of metabolites with antioxidant functions, such as D-altrose, trehalose, arachidonic acid and ergosterol. NPs displayed a notable suppressive effect on pathogenic fungi (Fusarium and Gibberella) in the rhizosphere, while enriching beneficial taxa with disease resistance, heavy metal antagonism and plant growth promotion ability (Lysobacter, Streptomycetaceae, Bacillaceae and Hannaella). Correlation analysis indicated the involvement of rhizosphere microorganisms in plant adaptation to NP amendments. NPs regulate plant growth and quality by altering soil properties, rhizosphere microbial community structure, and influencing plant and rhizosphere microbe metabolism. These findings were beneficial to deepening the understanding of the mechanism by which NPs affect medicinal plants.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jinfeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
12
|
Easwaran C, Christopher SR, Moorthy G, Mohan P, Marimuthu R, Koothan V, Nallusamy S. Nano hybrid fertilizers: A review on the state of the art in sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172533. [PMID: 38649050 DOI: 10.1016/j.scitotenv.2024.172533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
The advent of Nanohybrid (NH) fertilizers represents a groundbreaking advancement in the pursuit of precision and sustainable agriculture. This review abstract encapsulates the transformative potential of these innovative formulations in addressing key challenges faced by modern farming practices. By incorporating nanotechnology into traditional fertilizer matrices, nanohybrid formulations enable precise control over nutrient release, facilitating optimal nutrient uptake by crops. This enhanced precision not only fosters improved crop yields but also mitigates issues of over-fertilization, aligning with the principles of sustainable agriculture. Furthermore, nanohybrid fertilizers exhibit the promise of minimizing environmental impact. Their controlled release mechanisms significantly reduce nutrient runoff, thereby curbing water pollution and safeguarding ecosystems. This dual benefit of precision nutrient delivery and environmental sustainability positions nanohybrid fertilizers as a crucial tool in the arsenal of precision agriculture practices. The intricate processes of uptake, translocation, and biodistribution of nutrients within plants are examined in the context of nanohybrid fertilizers. The nanoscale features of these formulations play a pivotal role in governing the efficiency of nutrient absorption, internal transport, and distribution within plant tissues. Factors affecting the performance of nanohybrid fertilizers are scrutinized, encompassing aspects such as soil type, crop variety, and environmental conditions. Understanding these variables is crucial for tailoring nanohybrid formulations to specific agricultural contexts, and optimizing their impact on crop productivity and resource efficiency. Environmental considerations are integral to the review, assessing the broader implications of nanohybrid fertilizer application. This review offers a holistic overview of nanohybrid fertilizers in precision and sustainable agriculture. Exploring delivery mechanisms, synthesis methods, uptake dynamics, biodistribution patterns, influencing factors, and environmental implications, it provides a comprehensive understanding of the multifaceted role and implications of nanohybrid fertilizers in advancing modern agricultural practices.
Collapse
Affiliation(s)
- Cheran Easwaran
- Centre for Agricultural Nanotechnology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, 641003, India
| | - Sharmila Rahale Christopher
- Centre for Agricultural Nanotechnology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, 641003, India
| | - Gokulakrishnan Moorthy
- Indian Council of Agricultural Research - Indian Institute of Agricultural Biotechnology, Ranchi 834003, India
| | - Prasanthrajan Mohan
- Centre for Agricultural Nanotechnology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, 641003, India
| | - Raju Marimuthu
- Centre for Water and Geospatial Studies, Tamil Nadu Agricultural University, 641003, India
| | - Vanitha Koothan
- Department of Fruit Science, HC& RI, Tamil Nadu Agricultural University, 641003, India
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, 641003, India
| |
Collapse
|
13
|
Hamed R, Jodeh S, Alkowni R. Nano bio fertilizer capsules for sustainable agriculture. Sci Rep 2024; 14:13646. [PMID: 38871758 DOI: 10.1038/s41598-024-62973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
A novel nano bio-fertilizer encapsulation method was developed to crosslink chitosan and alginate with humic acid. These nanocapsules, referred to as (Ch./Alg.HA.NPK) or (Ch./Alg.HA.NPK.PGPRs), were loaded with nanoscale essential agro-nutrients (NPK) and beneficial microorganisms Pseudomonas Fluorescence abbreviated as (P.Fluorescence). Structural and morphological analyses were conducted using FourierTransform Infrared, Thermogravimetric Analysis, Scanning Electron Microscopy, Malvern Zeta NanoSizer, and Zeta potential. Encapsulation efficiency and water retention were also determined compared to control non-crosslinked nanocapsules. The sustained cumulative release of NPK over 30 days was also investigated to 33.2%, 47.8%, and 68.3%, alternatively. The release mechanism, also assessed through the kinetic module of the Korsemeyer- Peppas Mathematical model, demonstrated superior performance compared to non-crosslinked nanocapsules (chitosan/alginate). These results show the potential of the synthesized nanocapsules for environmentally conscious controlled release of NPK and PGPRs, thereby mitigating environmental impact, enhancing plant growth, and reducing reliance on conventional agrochemical fertilizers.
Collapse
Affiliation(s)
- Rinad Hamed
- Department of Chemistry, An-Najah National University, P. O. Box 7, Nablus, Palestine.
| | - Shehdeh Jodeh
- Department of Chemistry, An-Najah National University, P. O. Box 7, Nablus, Palestine.
| | - Raed Alkowni
- Department of Biology and Biotechnology, An-Najah National University, P. O. Box 7, Nablus, Palestine
| |
Collapse
|
14
|
Elzein B. Nano Revolution: "Tiny tech, big impact: How nanotechnology is driving SDGs progress". Heliyon 2024; 10:e31393. [PMID: 38818162 PMCID: PMC11137564 DOI: 10.1016/j.heliyon.2024.e31393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Nanotechnology has emerged as a powerful tool in addressing global challenges and advancing sustainable development. By manipulating materials at the nanoscale, researchers have unlocked new possibilities in various fields, including energy, healthcare, agriculture, construction, transportation, and environmental conservation. This paper explores the potential of nanotechnology and nanostructures in contributing to the achievement of the United Nations (UN) Sustainable Development Goals (SDGs) by improving energy efficiency and energy conversion, leading to a more sustainable and clean energy future, improving water purification processes, enabling access to clean drinking water for communities, enabling targeted drug delivery systems, early disease detection, and personalized medicine, thus revolutionizing healthcare, improving crop yields, efficient nutrient delivery systems, pest control mechanisms, and many other areas, therefore addressing food security issues. It also highlights the potential of nanomaterials in environmental remediation and pollution control. Therefore, by understanding and harnessing nanotechnology's potential, policymakers, researchers, and stakeholders can work together toward a more sustainable future by achieving the 17 UN SDGs.
Collapse
Affiliation(s)
- Basma Elzein
- Electrical Engineering Department, College of Engineering, University of Business and Technology, Jeddah, 21451, Saudi Arabia
- Sustainable Development Department, Global Council for Tolerance and Peace, Valetta, Malta
| |
Collapse
|
15
|
Wahab A, Muhammad M, Ullah S, Abdi G, Shah GM, Zaman W, Ayaz A. Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171862. [PMID: 38527538 DOI: 10.1016/j.scitotenv.2024.171862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Through the advancement of nanotechnology, agricultural and food systems are undergoing strategic enhancements, offering innovative solutions to complex problems. This scholarly essay thoroughly examines nanotechnological innovations and their implications within these critical industries. Traditional practices are undergoing radical transformation as nanomaterials emerge as novel agents in roles traditionally filled by fertilizers, pesticides, and biosensors. Micronutrient management and preservation techniques are further enhanced, indicating a shift towards more nutrient-dense and longevity-oriented food production. Nanoparticles (NPs), with their unique physicochemical properties, such as an extraordinary surface-to-volume ratio, find applications in healthcare, diagnostics, agriculture, and other fields. However, concerns about their potential overuse and bioaccumulation raise unanswered questions about their health effects. Molecule-to-molecule interactions and physicochemical dynamics create pathways through which nanoparticles cause toxicity. The combination of nanotechnology and environmental sustainability principles leads to the examination of green nanoparticle synthesis. The discourse extends to how nanomaterials penetrate biological systems, their applications, toxicological effects, and dissemination routes. Additionally, this examination delves into the ecological consequences of nanomaterial contamination in natural ecosystems. Employing robust risk assessment methodologies, including the risk allocation framework, is recommended to address potential dangers associated with nanotechnology integration. Establishing standardized, universally accepted guidelines for evaluating nanomaterial toxicity and protocols for nano-waste disposal is urged to ensure responsible stewardship of this transformative technology. In conclusion, the article summarizes global trends, persistent challenges, and emerging regulatory strategies shaping nanotechnology in agriculture and food science. Sustained, in-depth research is crucial to fully benefit from nanotechnology prospects for sustainable agriculture and food systems.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, China
| | - Shahid Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | | | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
16
|
Panthri M, Saini H, Banerjee G, Bhatia P, Verma N, Sinha AK, Gupta M. Deciphering the regulation of transporters and mitogen-activated protein kinase in arsenic and iron exposed rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133687. [PMID: 38325101 DOI: 10.1016/j.jhazmat.2024.133687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
This study investigates the influence of arsenic (As) and iron (Fe) on the molecular aspects of rice plants. The mRNA-abundance of As (OsLsi, OsPHT, OsNRAMP1, OsABCC1) and Fe (OsIRT, OsNRAMP1, OsYSL, OsFRDL1, OsVIT2, OsSAMS1, OsNAS, OsNAAT1, OsDMAS1, OsTOM1, OsFER) related genes has been observed in 12-d old As and Fe impacted rice varieties. Analyses of phytosiderophores synthesis and Fe-uptake genes affirm the existence of specialized Fe-uptake strategies in rice with varieties PB-1 and Varsha favouring strategy I and II, respectively. Expression of OsNAS3, OsVIT2, OsFER and OsABCC1 indicated PB-1's tolerance towards Fe and As. Analysis of mitogen-activated protein kinase cascade members (OsMKK3, OsMKK4, OsMKK6, OsMPK3, OsMPK4, OsMPK7, and OsMPK14) revealed their importance in the fine adjustment of As/Fe in the rice system. A conditional network map was generated based on the gene expression pattern that unfolded the differential dynamics of both rice varieties. The mating based split ubiquitin system determined the interaction of OsIRT1 with OsMPK3, and OsLsi1 with both OsMPK3 and OsMPK4. In-silico tools also confirmed the binding affinities of OsARM1 with OsLsi1, OsMPK3 and OsMPK4, and of OsIDEF1/OsIRO2 with OsIRT1 and OsMPK3, supporting our hypothesis that OsARM1, OsIDEF1, OsIRO2 were active in the connections discovered by mbSUS.
Collapse
Affiliation(s)
- Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Himanshu Saini
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Priyanka Bhatia
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
17
|
Vaidya S, Deng C, Wang Y, Zuverza-Mena N, Dimkpa C, White JC. Nanotechnology in agriculture: A solution to global food insecurity in a changing climate? NANOIMPACT 2024; 34:100502. [PMID: 38508516 DOI: 10.1016/j.impact.2024.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Although the Green Revolution dramatically increased food production, it led to non- sustainable conventional agricultural practices, with productivity in general declining over the last few decades. Maintaining food security with a world population exceeding 9 billion in 2050, a changing climate, and declining arable land will be exceptionally challenging. In fact, nothing short of a revolution in how we grow, distribute, store, and consume food is needed. In the last ten years, the field of nanotoxicology in plant systems has largely transitioned to one of sustainable nano-enabled applications, with recent discoveries on the use of this advanced technology in agriculture showing tremendous promise. The range of applications is quite extensive, including direct application of nanoscale nutrients for improved plant health, nutrient biofortification, increased photosynthetic output, and greater rates of nitrogen fixation. Other applications include nano-facilitated delivery of both fertilizers and pesticides; nano-enabled delivery of genetic material for gene silencing against viral pathogens and insect pests; and nanoscale sensors to support precision agriculture. Recent efforts have demonstrated that nanoscale strategies increase tolerance to both abiotic and biotic stressors, offering realistic potential to generate climate resilient crops. Considering the efficiency of nanoscale materials, there is a need to make their production more economical, alongside efficient use of incumbent resources such as water and energy. The hallmark of many of these approaches involves much greater impact with far less input of material. However, demonstrations of efficacy at field scale are still insufficient in the literature, and a thorough understanding of mechanisms of action is both necessary and often not evident. Although nanotechnology holds great promise for combating global food insecurity, there are far more ways to do this poorly than safely and effectively. This review summarizes recent work in this space, calling out existing knowledge gaps and suggesting strategies to alleviate those concerns to advance the field of sustainable nano-enabled agriculture.
Collapse
Affiliation(s)
- Shital Vaidya
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Chaoyi Deng
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Yi Wang
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Nubia Zuverza-Mena
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Christian Dimkpa
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Jason C White
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States.
| |
Collapse
|
18
|
Yan G, Huang Q, Zhao S, Xu Y, He Y, Nikolic M, Nikolic N, Liang Y, Zhu Z. Silicon nanoparticles in sustainable agriculture: synthesis, absorption, and plant stress alleviation. FRONTIERS IN PLANT SCIENCE 2024; 15:1393458. [PMID: 38606077 PMCID: PMC11006995 DOI: 10.3389/fpls.2024.1393458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Silicon (Si) is a widely recognized beneficial element in plants. With the emergence of nanotechnology in agriculture, silicon nanoparticles (SiNPs) demonstrate promising applicability in sustainable agriculture. Particularly, the application of SiNPs has proven to be a high-efficiency and cost-effective strategy for protecting plant against various biotic and abiotic stresses such as insect pests, pathogen diseases, metal stress, drought stress, and salt stress. To date, rapid progress has been made in unveiling the multiple functions and related mechanisms of SiNPs in promoting the sustainability of agricultural production in the recent decade, while a comprehensive summary is still lacking. Here, the review provides an up-to-date overview of the synthesis, uptake and translocation, and application of SiNPs in alleviating stresses aiming for the reasonable usage of SiNPs in nano-enabled agriculture. The major points are listed as following: (1) SiNPs can be synthesized by using physical, chemical, and biological (green synthesis) approaches, while green synthesis using agricultural wastes as raw materials is more suitable for large-scale production and recycling agriculture. (2) The uptake and translocation of SiNPs in plants differs significantly from that of Si, which is determined by plant factors and the properties of SiNPs. (3) Under stressful conditions, SiNPs can regulate plant stress acclimation at morphological, physiological, and molecular levels as growth stimulator; as well as deliver pesticides and plant growth regulating chemicals as nanocarrier, thereby enhancing plant growth and yield. (4) Several key issues deserve further investigation including effective approaches of SiNPs synthesis and modification, molecular basis of SiNPs-induced plant stress resistance, and systematic effects of SiNPs on agricultural ecosystem.
Collapse
Affiliation(s)
- Guochao Yan
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Qingying Huang
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shuaijing Zhao
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yunmin Xu
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yong He
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Nina Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhujun Zhu
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
19
|
Miranda AM, Hernandez-Tenorio F, Villalta F, Vargas GJ, Sáez AA. Advances in the Development of Biofertilizers and Biostimulants from Microalgae. BIOLOGY 2024; 13:199. [PMID: 38534468 DOI: 10.3390/biology13030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Microalgae have commercial potential in different sectors of the industry. Specifically in modern agriculture, they can be used because they have the ability to supply nutrients to the soil and produce plant growth hormones, polysaccharides, antimicrobial compounds, and other metabolites that improve agricultural productivity. Therefore, products formulated from microalgae as biofertilizers and biostimulants turn out to be beneficial for agriculture and are positioned as a novel and environmentally friendly strategy. However, these bioproducts present challenges in preparation that affect their shelf life due to the rapid degradation of bioformulated products. Therefore, this work aimed to provide a comprehensive review of biofertilizers and biostimulants from microalgae, for which a bibliometric analysis was carried out to establish trends using scientometric indicators, technological advances were identified in terms of formulation methods, and the global market for these bioproducts was analyzed.
Collapse
Affiliation(s)
- Alejandra M Miranda
- Biological Sciences and Bioprocesses Group (CIBIOP), Environmental and Biotechnological Processes Group (GIPAB), School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| | - Fabian Hernandez-Tenorio
- Environmental Processes Research Group (GIPAB), School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| | - Fabian Villalta
- Centro de Investigación de Biotecnología, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Gabriel J Vargas
- I&D Cementos Argos S.A, Centro de Argos para la Innovación, Medellín 050022, Colombia
| | - Alex A Sáez
- Biological Sciences and Bioprocesses Group (CIBIOP), Environmental and Biotechnological Processes Group (GIPAB), School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| |
Collapse
|
20
|
Hou D, Cui X, Liu M, Qie H, Tang Y, Xu R, Zhao P, Leng W, Luo N, Luo H, Lin A, Wei W, Yang W, Zheng T. The effects of iron-based nanomaterials (Fe NMs) on plants under stressful environments: Machine learning-assisted meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120406. [PMID: 38373376 DOI: 10.1016/j.jenvman.2024.120406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/28/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mitigating the adverse effects of stressful environments on crops and promoting plant recovery in contaminated sites are critical to agricultural development and environmental remediation. Iron-based nanomaterials (Fe NMs) can be used as environmentally friendly nano-fertilizer and as a means of ecological remediation. A meta-analysis was conducted on 58 independent studies from around the world to evaluate the effects of Fe NMs on plant development and antioxidant defense systems in stressful environments. The application of Fe NMs significantly enhanced plant biomass (mean = 25%, CI = 20%-30%), while promoting antioxidant enzyme activity (mean = 14%, CI = 10%-18%) and increasing antioxidant metabolite content (mean = 10%, CI = 6%-14%), reducing plant oxidative stress (mean = -15%, CI = -20%∼-10%), and alleviating the toxic effects of stressful environments. The observed response was dependent on a number of factors, which were ranked in terms of a Random Forest Importance Analysis. Plant species was the most significant factor, followed by Fe NM particle size, duration of application, dose level, and Fe NM type. The meta-analysis has demonstrated the potential of Fe NMs in achieving sustainable agriculture and the future development of phytoremediation.
Collapse
Affiliation(s)
- Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yiming Tang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Ruiqing Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenpeng Leng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Nan Luo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Huilong Luo
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wenxia Wei
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China.
| | - Wenjie Yang
- Chinese Academy of Environmental Planning, Beijing, 100012, PR China.
| | - Tianwen Zheng
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100095, PR China.
| |
Collapse
|
21
|
Beula Isabel J, Balamurugan A, Renuka Devi P, Periyasamy S. Chitosan-encapsulated microbial biofertilizer: A breakthrough for enhanced tomato crop productivity. Int J Biol Macromol 2024; 260:129462. [PMID: 38237830 DOI: 10.1016/j.ijbiomac.2024.129462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Encapsulation technology protects the beneficial microorganisms, which are the sources of Nitrogen (N), Phosphorus (P), and Potassium (K), with a carrier material and improves the nutrient uptake from the soil. Pseudomonas fluorescens, gram-negative bacteria, was selected as the microorganism for encapsulation. A chitosan carrier (3 %), a polysaccharide, was chosen for the encapsulation of the bacterial strain to use as biofertilizers by standardization with two carriers, sodium alginate and chitosan. P. fluorescens encapsulated with chitosan showed a higher shelf life than sodium alginate. The shelf life of the encapsulated culture (7 × 1010 CFU/mL) was maintained for ten months. Studies were performed with the encapsulated P. fluorescens to analyze its nature and characteristics. The pot and field studies were conducted with the encapsulated P. fluorescens for the tomato crop. The difference between the treated and control plants was observed based on biometric parameters like shoot length and root length, fruit weight, and number of branches and fruits per plant. This study reveals that encapsulated P. fluorescens improved the yield of the crops. In addition, soil health and fertility were also enhanced. Thus, encapsulated P. fluorescens could be a superior solution for promoting soil health and crop productivity for sustainable agriculture.
Collapse
Affiliation(s)
- J Beula Isabel
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli 620015, India.
| | - A Balamurugan
- Department of Botany, The American College, Madurai 625002, India
| | - P Renuka Devi
- Department of Biotechnology, Anna University Regional Campus, Coimbatore 641046, India
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India.
| |
Collapse
|
22
|
Chakraborty M, Sharma B, Ghosh A, Sah D, Rai JPN. Elicitation of E-waste (acrylonitrile-butadiene styrene) enriched soil bioremediation and detoxification using Priestia aryabhattai MGP1. ENVIRONMENTAL RESEARCH 2023; 238:117126. [PMID: 37716383 DOI: 10.1016/j.envres.2023.117126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Given the rise in both usage and disposal of dangerous electronics, there is a catastrophic rise in assemblage of electronic waste (e-waste). E-waste including various plastic resins are among the most frequently discarded materials in electronic gadgets. In current digital era, managing e-waste has become universal concern. From the viewpoint of persisting lacuna of e-waste managing methods, the current study is designed to fabricate an eco-friendly e-waste treatment with native soil bacteria employing an enrichment culture method. In the presence of e-waste, indigenous soil microbes were stimulated to degrade e-waste. Microbial cultures were isolated using enrichment medium containing acrylonitrile-butadiene styrene (ABS) as the primary carbon source. Priestia aryabhattai MGP1 was found to be the most dominant e-polymer degrading bacterial isolate, as it was reported to degrade ABS plastic in disposed-off television casings. Furthermore, to increase degradation potential of MGP1, Response Surface Methodology (RSM) was adopted which resulted in optimized conditions (pH 7, shaking-speed 120 rpm, and temperature 30 °C), for maximum degradation (18.88%) after 2 months. The structural changes induced by microbial treatment were demonstrated by comparing the findings of Field emission scanning electron microscopy (FESEM) images and Fourier Transform Infrared (FTIR) spectra confirming the disappearance of ≡ C─H peaks along with C-H, C=C and C ≡N bond destabilization following degradation. Energy-dispersive X-ray (EDX) analyzers of the native and decomposed e-polymer samples revealed a considerable loss in elemental weight % of oxygen by 8.4% and silica by 0.5%. Magnesium, aluminium and chlorine which were previously present in the untreated sample, were also removed after treatment by the bacterial action. When seeds of Vigna radiata were screened using treated soil in the presence of both e-waste and the chosen potent bacterial strain, it was also discovered that there was reduced toxicity in terms of improved germination and growth metrics as a phytotoxicity criterion.
Collapse
Affiliation(s)
- Moumita Chakraborty
- Department of Environmental Sciences, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Barkha Sharma
- Department of Microbiology, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Ankita Ghosh
- Department of Environmental Sciences, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Diksha Sah
- Department of Environmental Sciences, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - J P N Rai
- Department of Environmental Sciences, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India.
| |
Collapse
|
23
|
Karnwal A, Dohroo A, Malik T. Unveiling the Potential of Bioinoculants and Nanoparticles in Sustainable Agriculture for Enhanced Plant Growth and Food Security. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6911851. [PMID: 38075309 PMCID: PMC10699995 DOI: 10.1155/2023/6911851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The increasing public concern over the negative impacts of chemical fertilizers and pesticides on food security and sustainability has led to exploring innovative methods that offer both environmental and agricultural benefits. One such innovative approach is using plant-growth-promoting bioinoculants that involve bacteria, fungi, and algae. These living microorganisms are applied to soil, seeds, or plant surfaces and can enhance plant development by increasing nutrient availability and defense against plant pathogens. However, the application of biofertilizers in the field faced many challenges and required conjunction with innovative delivering approaches. Nanotechnology has gained significant attention in recent years due to its numerous applications in various fields, such as medicine, drug development, catalysis, energy, and materials. Nanoparticles with small sizes and large surface areas (1-100 nm) have numerous potential functions. In sustainable agriculture, the development of nanochemicals has shown promise as agents for plant growth, fertilizers, and pesticides. The use of nanomaterials is being considered as a solution to control plant pests, including insects, fungi, and weeds. In the food industry, nanoparticles are used as antimicrobial agents in food packaging, with silver nanomaterials being particularly interesting. However, many nanoparticles (Ag, Fe, Cu, Si, Al, Zn, ZnO, TiO2, CeO2, Al2O3, and carbon nanotubes) have been reported to negatively affect plant growth. This review focuses on the effects of nanoparticles on beneficial plant bacteria and their ability to promote plant growth. Implementing novel sustainable strategies in agriculture, biofertilizers, and nanoparticles could be a promising solution to achieve sustainable food production while reducing the negative environmental impacts.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aradhana Dohroo
- Baddi University of Emerging Sciences and Technologies, Baddi, Himachal Pradesh 173405, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia
| |
Collapse
|
24
|
Taoumi H, Lahrech K. Economic, environmental and social efficiency and effectiveness development in the sustainable crop agricultural sector: A systematic in-depth analysis review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165761. [PMID: 37517726 DOI: 10.1016/j.scitotenv.2023.165761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/16/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Multi-dimensional inclusion of economic, environmental, and social sustainability spheres together are the most global concerns of the agricultural crop sector. Therefore, optimizing waste and natural resources guides researchers and policymakers to structure actions and strategies to attain sustainability. Several studies have been published around the world to choose between focusing on eco-efficiency or eco-effectiveness in different aspects. This work aims to systematically apply an updated review to critically assess the agricultural research articles' contributions among the assessment of those methods, models or tools, as well as a quantitative and qualitative in-depth analysis review to classify them, according to their mapping, functions, strengths, weaknesses, and logical relationships for the evaluation in the crop agricultural sector, which is expected to be needed in future to better understand the research gaps and select the appropriate methods for sustainability evaluation from different spheres (ecology, economy, and sociology). Of 242 peer-reviewed records from 2018 to the beginning of 2023, 135 reviews and articles gathered from Web of Science and Scopus meet the criteria to be examined. Our analysis revealed that the number of reviews is limited to approximately 4.5 %; most of the case studies were carried out in countries, such as China (36 %) and Brazil (6 %), and continents such as Europe (16 %). Depending on considered aspects, most studies evaluate the efficiency, effectiveness and derivatives using a set of tools, varying between the managerial tools applied for the macro-level structuration (DPSIR, EMA, and LCA) and mathematical tools applied for the micro-level quantification, subdivided into the visualization methods (GIS), and the optimization methods (DEA, SFA, MILP, FO). Thanks to their multifunctionality in considering different aspects of input, output and influence factors variables, the in-depth analysis study suggests the application of data envelopment and stochastic analysis to carry out a multidisciplinary evaluation for the socio-eco-efficiency or the socio-eco-effectiveness.
Collapse
Affiliation(s)
- Hamza Taoumi
- SidiMohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco.
| | - Khadija Lahrech
- SidiMohamed Ben Abdellah University (USMBA), ENSA, Fez, Morocco.
| |
Collapse
|
25
|
Cui X, Hou D, Tang Y, Liu M, Qie H, Qian T, Xu R, Lin A, Xu X. Effects of the application of nanoscale zero-valent iron on plants: Meta analysis, mechanism, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165873. [PMID: 37517727 DOI: 10.1016/j.scitotenv.2023.165873] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
In order to determine the ideal conditions for the application of nanoscale zero-valent iron (nZVI) in agricultural production, this review studies the effects of nZVI application on plant physiological parameters, presents its mechanism and prospective outcomes. In this research, it was observed that the application of nZVI had both favorable and unfavorable effects on plant growth, photosynthesis, oxidative stress, and nutrient absorption levels. Specifically, the application of nZVI significantly increased the biomass and length of plants, and greatly reduced the germination rate of seeds. In terms of photosynthesis, there was no significant effect for the application of nZVI on the synthesis of photosynthetic pigments (chlorophyll and carotenoids). In terms of oxidative stress, plants respond by increasing the activity of antioxidant enzyme under mild nZVI stress and trigger oxidative burst under severe stress. In addition, the application of nZVI significantly increased the absorption of nutrients (B, K, P, S, Mg, Zn, and Fe). In summary, the application of nZVI can affect the plant physiological parameters, and the degree of influence varies depending on the concentration, preparation method, application method, particle size, and action time of nZVI. These findings are important for evaluating nZVI-related risks and enhancing nZVI safety in agricultural production.
Collapse
Affiliation(s)
- Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yiming Tang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tuzheng Qian
- Wellington college, Duke's Ride, Berkshire, Crowthorne RG45 7PU, England, United Kingdom
| | - Ruiqing Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xin Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
26
|
Wu H, Wan X, Niu J, Xu H, Zhang Y, Xue X, Li Y, Li Q, Lu T, Yu H, Jiang W. Enhancing lettuce yield via Cu/Fe-layered double hydroxide nanoparticles spraying. J Nanobiotechnology 2023; 21:417. [PMID: 37950234 PMCID: PMC10638715 DOI: 10.1186/s12951-023-02178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Layered double hydroxides (LDHs) have been widely used in the field of plant engineering, such as DNA/RNA transformation and enhancing plant disease resistance. However, few studies have examined the direct effects of LDHs on plants and their potential utility as nanofertilizers. In this study, the retention capacity of Cu/Fe-layered double hydroxide nanoparticles (CuFe-LDHs) was assessed by comparative experiments on vegetables. The results showed that the retention of CuFe-LDHs in leafy vegetables was high, such as lettuce. Phenotypic analysis revealed that the fresh and dry weights of lettuce leaves were both increased by spraying 10-100 μg/mL CuFe-LDHs. Using the optimal concentration of 10 μg/mL, we conducted further experiments to elucidate the mechanism of CuFe-LDHs promoting lettuce growth. It was found that the application of CuFe-LDHs had a significant effect on growth and induced physiological, transcriptomic, and metabolomic changes, including an increase in the chlorophyll b content, net photosynthetic rate, and intercellular carbon dioxide concentration, as well as modifications in gene expression patterns and metabolite profiles. This work provides compelling evidence that CuFe-LDHs can efficiently adsorb on the surface of lettuce leaves through hydrogen bonding, promote lettuce growth, mitigate the toxicity of heavy metal ions compared to their raw materials at the same concentration and offer a molecular-scale insight into the response of leafy vegetables to CuFe-LDHs.
Collapse
Affiliation(s)
- Hongyang Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoyang Wan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiefei Niu
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xian Xue
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjun Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Weijie Jiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
27
|
Jha A, Pathania D, Sonu, Damathia B, Raizada P, Rustagi S, Singh P, Rani GM, Chaudhary V. Panorama of biogenic nano-fertilizers: A road to sustainable agriculture. ENVIRONMENTAL RESEARCH 2023; 235:116456. [PMID: 37343760 DOI: 10.1016/j.envres.2023.116456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
The ever-increasing demand for food from the growing population has augmented the consumption of fertilizers in global agricultural practices. However, the excessive usage of chemical fertilizers with poor efficacy is drastically deteriorating ecosystem health through the degradation of soil fertility by diminishing soil microflora, environment contamination, and human health by inducing chemical remnants to the food chain. These challenges have been addressed by the integration of nanotechnological and biotechnological approaches resulting in nano-enabled biogenic fertilizers (NBF), which have revolutionized agriculture sector and food production. This review critically details the state-of-the-art NBF production, types, and mechanism involved in cultivating crop productivity/quality with insights into genetic, physiological, morphological, microbiological, and physiochemical attributes. Besides, it explores the associated challenges and future routes to promote the adoption of NBF for intelligent and sustainable agriculture. Furthermore, diverse applications of nanotechnology in precision agriculture including plant biosensors and its impact on agribusiness and environmental management are discussed.
Collapse
Affiliation(s)
- Ayush Jha
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Diksha Pathania
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Bhavna Damathia
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei, 10607, Taiwan, ROC
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India.
| |
Collapse
|
28
|
Sharma A, Kumar S, Singh R. Formulation of Zinc oxide/Gum acacia nanocomposite as a novel slow-release fertilizer for enhancing Zn uptake and growth performance of Spinacia oleracea L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107884. [PMID: 37451005 DOI: 10.1016/j.plaphy.2023.107884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Zinc (Zn) deficiency has caused nutritional disorders in 17% of the world's population; thus, producing Zn-enriched plants as a dietary source is necessary. Recently, nanofertilizers have gained much attention as a substitute for conventional fertilizers; however, soil application of polymer-coated Zn-based nanofertilizer has not been explored much. The present study depicts the green synthesis of ZnO nanoparticles using Melia azedarach L. leaf extract, whose phytoconstituents have reducing abilities. The synthesized nanoparticles were combined with gum acacia (GA) to form a ZnOGA nanocomposite. The structural and morphological properties of ZnOGA were studied using XRD, FTIR, FESEM, and EDX. A pot experiment study was carried out with Spinacia oleracea L. at various doses (3, 5, and 10 mg/kg) of the synthesized ZnOGA to evaluate its effectiveness as a slow-release fertilizer and was compared with a commercial Zn fertilizer. The plant growth studies revealed a significant increase in the phyto-morphological traits of the plants fertilized with ZnOGA compared to commercial fertilizer. The plants also displayed significantly higher contents of protein (17-47%), phenols (25-60%), proline (82-94%), total soluble sugar (20-31%), DPPH activity (70-72%), and Zn uptake (91-106%). The doses of ZnOGA played an imperative role in determining the growth and productivity of the plant. Soil column studies showed that ZnOGA reduces Zn leaching by 52% compared to commercial Zn fertilizer. This study signifies the potential of ZnOGA to be applied as an eco-friendly and sustainable substitute for conventional Zn fertilizer minimizing Zn losses and Zn deficiency-related health problems in human populations.
Collapse
Affiliation(s)
- Avimanu Sharma
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Sanjeev Kumar
- Department of Geology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
29
|
Yadav A, Yadav K, Abd-Elsalam KA. Nanofertilizers: Types, Delivery and Advantages in Agricultural Sustainability. AGROCHEMICALS 2023; 2:296-336. [DOI: 10.3390/agrochemicals2020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In an alarming tale of agricultural excess, the relentless overuse of chemical fertilizers in modern farming methods have wreaked havoc on the once-fertile soil, mercilessly depleting its vital nutrients while inflicting irreparable harm on the delicate balance of the surrounding ecosystem. The excessive use of such fertilizers leaves residue on agricultural products, pollutes the environment, upsets agrarian ecosystems, and lowers soil quality. Furthermore, a significant proportion of the nutrient content, including nitrogen, phosphorus, and potassium, is lost from the soil (50–70%) before being utilized. Nanofertilizers, on the other hand, use nanoparticles to control the release of nutrients, making them more efficient and cost-effective than traditional fertilizers. Nanofertilizers comprise one or more plant nutrients within nanoparticles where at least 50% of the particles are smaller than 100 nanometers. Carbon nanotubes, graphene, and quantum dots are some examples of the types of nanomaterials used in the production of nanofertilizers. Nanofertilizers are a new generation of fertilizers that utilize advanced nanotechnology to provide an efficient and sustainable method of fertilizing crops. They are designed to deliver plant nutrients in a controlled manner, ensuring that the nutrients are gradually released over an extended period, thus providing a steady supply of essential elements to the plants. The controlled-release system is more efficient than traditional fertilizers, as it reduces the need for frequent application and the amount of fertilizer. These nanomaterials have a high surface area-to-volume ratio, making them ideal for holding and releasing nutrients. Naturally occurring nanoparticles are found in various sources, including volcanic ash, ocean, and biological matter such as viruses and dust. However, regarding large-scale production, relying solely on naturally occurring nanoparticles may not be sufficient or practical. In agriculture, nanotechnology has been primarily used to increase crop production while minimizing losses and activating plant defense mechanisms against pests, insects, and other environmental challenges. Furthermore, nanofertilizers can reduce runoff and nutrient leaching into the environment, improving environmental sustainability. They can also improve fertilizer use efficiency, leading to higher crop yields and reducing the overall cost of fertilizer application. Nanofertilizers are especially beneficial in areas where traditional fertilizers are inefficient or ineffective. Nanofertilizers can provide a more efficient and cost-effective way to fertilize crops while reducing the environmental impact of fertilizer application. They are the product of promising new technology that can help to meet the increasing demand for food and improve agricultural sustainability. Currently, nanofertilizers face limitations, including higher costs of production and potential environmental and safety concerns due to the use of nanomaterials, while further research is needed to fully understand their long-term effects on soil health, crop growth, and the environment.
Collapse
Affiliation(s)
- Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, District Banaskantha, Gujarat 385506, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
30
|
Amani Machiani M, Javanmard A, Ostadi A, Alizadeh K. Improvement in Essential Oil Quantity and Quality of Thyme ( Thymus vulgaris L.) by Integrative Application of Chitosan Nanoparticles and Arbuscular Mycorrhizal Fungi under Water Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1422. [PMID: 37050048 PMCID: PMC10097372 DOI: 10.3390/plants12071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Water stress is one of the critical abiotic stresses and limiting factors in the productivity of plants, especially in arid and semi-arid regions. In recent years, the application of bio-fertilizer and stress-modulating nanoparticles (NPs) is known as one of the eco-friendly strategies for improving plants quantity and quality under stressful conditions. In order to achieve the desirable essential oil (EO) quality and quantity of thyme in water deficit conditions, a 2-year field experiment was carried out as a split plot based on the randomized complete block design (RCBD), with 12 treatments and three replications. The treatments included different irrigation levels, containing irrigation at 80% field capacity (FC80) as no stress, 60% FC as moderate water stress (FC60) and 40% FC as severe water stress (FC40), as well as four different fertilizer sources, including non-application of fertilizer (control), application of arbuscular mycorrhizal fungi (AMF), chitosan NPs (CHT) and co-application of AMF+CHT NPs. The results demonstrated that the dry yield of thyme decreased by 13% and 40.3% under FC60 and FC40 water stress conditions. However, co-application of AMF+CHT NPs enhanced the dry yield of thyme by 21.7% in comparison to the control (non-application of fertilizer). The maximum EO content (2.03%) and EO yield (10.04 g 7 g m-2) of thyme were obtained under moderate water stress (FC60) fertilized with AMF+CHT NPs. Co-application of AMF+CHT NPs enhanced the EO content and EO yield of thyme by 17.1% and 42.7%, respectively. Based on the GC-MS and GC-FID analysis, 38 constituents were identified in the thyme EO, with the major constituents being thymol (35.64-41.31%), p-cymene (16.35-19.38%), γ-terpinene (12.61-13.98%) and carvacrol (2.78-3.93%) respectively. The highest content of thymol and γ-terpinene was obtained under moderate water stress (FC60) fertilized with AMF+CHT NPs. In addition, the highest content of p-cymene and carvacrol was observed in the severe water stress (FC40) fertilized with AMF+CHT NPs. The present research suggests that the co-application of AMF+CHT NPs represents a sustainable and eco-friendly strategy for improving the EO quantity and quality of thyme under water stress conditions.
Collapse
Affiliation(s)
- Mostafa Amani Machiani
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh 55181-83111, Iran
| | - Abdollah Javanmard
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh 55181-83111, Iran
| | - Ali Ostadi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh 55181-83111, Iran
| | - Khoshnood Alizadeh
- Dryland Agricultural Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Maragheh 55176-43511, Iran
| |
Collapse
|