1
|
Mahat S, Almasi B, Kjelsen IS, Marmet DS, Heckel G, Roulin A, Buser AM, Mestrot A. Mercury accumulation and biomagnification in the barn owl (Tyto alba) food chain. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138269. [PMID: 40239524 DOI: 10.1016/j.jhazmat.2025.138269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Mercury (Hg) accumulation and biomagnification in the barn owl (Tyto alba) food chain were investigated using bioindicator samples from three trophic levels: (1) soil and moss (atmospheric deposition indicators), (2) small mammal fur from regurgitated pellets (herbivores and omnivores), and (3) barn owl down feathers (apex predators). Spatial analysis identified regional Hg variation in soil, fur and feathers. Statistical models explored the effects of proximity to water bodies, wetlands and nearby pollution sources. The highest total Hg (THg) concentrations were found in feathers (170 ± 160 µg kg-1, n = 246) and fur in regurgitated pellets (150 ± 200 µg kg-1, n = 150), followed by soil (63 ± 17 µg kg-1, n = 63). Bioaccumulation factors were 2.3 (soil to fur) and 2.7 (soil to feather). Biomagnification factor from fur to feathers was 1.8. Methyl Hg (MeHg), measured in a subset of samples, was 120 ± 130 µg kg-1 in fur (n = 29) and 150 ± 98 µg kg-1 in feathers (n = 42), with 75-97 % of THg in feathers as MeHg. Prey composition significantly influenced fur THg levels, with higher concentrations in diets with omnivorous prey (Apodemus flavicollis) compared to herbivorous prey (Microtus arvalis). These findings highlight the importance of diet in Hg monitoring and biomagnification studies.
Collapse
Affiliation(s)
- Sabnam Mahat
- Institute of Geography, University of Bern, Hallerstrasse 12, Bern 3012, Switzerland
| | - Bettina Almasi
- Swiss Ornithological Institute, Seerose 1, Sempach 6204, Switzerland
| | - Ingrid S Kjelsen
- Institute of Geography, University of Bern, Hallerstrasse 12, Bern 3012, Switzerland
| | - Dan S Marmet
- Institute of Geography, University of Bern, Hallerstrasse 12, Bern 3012, Switzerland
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Andreas M Buser
- Swiss Federal Office for the Environment, Monbijoustrasse 40, Bern 3003, Switzerland
| | - Adrien Mestrot
- Institute of Geography, University of Bern, Hallerstrasse 12, Bern 3012, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Hallerstrasse 12, Bern 3012, Switzerland.
| |
Collapse
|
2
|
Li Z, Tong Y, Wu Z, Liao B, Liu G, Xia L, Liu C, Zhao L. Management strategies to reduce microbial mercury methylation in constructed wetlands: Potential routes and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138009. [PMID: 40132266 DOI: 10.1016/j.jhazmat.2025.138009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Constructed wetlands (CWs) are widely recognized as the potential hotspots for producing highly toxic methylmercury (MeHg). This presents an obstacle to the widespread application of CWs. A comprehensive discussion on strategies to control mercury methylation in CWs is currently lacking. This review highlighted the potential impacts of differences in oxygen supply and consumption in various CWs, the characteristics of influent quality, the interactions between different substrates and mercury (including mercury adsorption, reduction), and plants on microbial mercury methylation in CWs. We also proposed the potential strategies for human intervention in regulating or controlling microbial mercury methylation in CWs, including oxygenation, nitrate inhibition, selection of substrates with high adsorption capacity, weak reducibility and low organic matter release, and plant management. Knowledge summarized in this review would help achieve a comprehensive understanding of various research gaps in previous studies and point out future research directions by focusing on CWs types, influent quality, substrates selection and plants management, to reduce the mercury methylation in CWs.
Collapse
Affiliation(s)
- Zhike Li
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China; Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bing Liao
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Guo Liu
- Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Ministry of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Lei Xia
- Department of Earth and Environmental Sciences, Kasteelpark Arenberg 20, Leuven 3001, Belgium
| | - Chang Liu
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| | - Li Zhao
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, China
| |
Collapse
|
3
|
Sun T, Branfireun BA. Moisture contents regulate peat water-leachable concentrations of methylmercury, inorganic mercury, and dissolved organic matter from boreal peat soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116573. [PMID: 38870737 DOI: 10.1016/j.ecoenv.2024.116573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Boreal peatlands are "hotspots" of net methylmercury (MeHg) production and may become drier in the future due to climate change. This study investigates a critical gap by analyzing the nuanced relationship between soil moisture content and the release of MeHg, inorganic mercury (IHg), sulfate (SO42-), and dissolved organic matter (DOM) in a laboratory incubation of boreal peat soils. Dried peat soils exhibited heightened releases of IHg, MeHg, and SO42- during re-wetting events. Both dried and saturated peat soils released more DOM than moist peat soils during re-wetting events, and DOM released from dried soils had higher bioaccessibility than that from the saturated soils (p<0.05). There was an equilibrium of IHg concentrations between peat soils and pore waters, but long-term severe drought may disrupt this equilibrium and then release more IHg to pore waters during re-wetting events. Contrary to expectations, positive relationships between IHg concentrations and SUVA254 did not exist in all treatments. MeHg and SO42- were depleted quickly because there was no external input of Hg and SO42- to this static system. More bioaccessible DOM than aromatic DOM was released from peat soils with different soil moisture contents after 32 weeks during the re-wetting event (p<0.05). These results imply that re-wetting of peat soils after droughts can increase the release of MeHg from peat soils and may also increase net MeHg production due to the release of SO42- and bioaccessible DOM from peat soils, reshaping our understanding of soil moisture's role in mercury dynamics. This novel insight into soil moisture and MeHg dynamics carries significant implications for mitigating mercury contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Ting Sun
- Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China; Department of Earth Sciences, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada.
| | - Brian A Branfireun
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada
| |
Collapse
|
4
|
Wu D, Chen L, Zong X, Jiang F, Wang X, Xu M, Ai F, Du W, Yin Y, Guo H. Elevated CO 2 exacerbates the risk of methylmercury exposure in consuming aquatic products: Evidence from a complex paddy wetland ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124095. [PMID: 38703984 DOI: 10.1016/j.envpol.2024.124095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Elevated CO2 levels and methylmercury (MeHg) pollution are important environmental issues faced across the globe. However, the impact of elevated CO2 on MeHg production and its biological utilization remains to be fully understood, particularly in realistic complex systems with biotic interactions. Here, a complete paddy wetland microcosm, namely, the rice-fish-snail co-culture system, was constructed to investigate the impacts of elevated CO2 (600 ppm) on MeHg formation, bioaccumulation, and possible health risks, in multiple environmental and biological media. The results revealed that elevated CO2 significantly increased MeHg concentrations in the overlying water, periphyton, snails and fish, by 135.5%, 66.9%, 45.5%, and 52.1%, respectively. A high MeHg concentration in periphyton, the main diet of snails and fish, was the key factor influencing the enhanced MeHg in aquatic products. Furthermore, elevated CO2 alleviated the carbon limitation in the overlying water and proliferated green algae, with subsequent changes in physico-chemical properties and nutrient concentrations in the overlying water. More algal-derived organic matter promoted an enriched abundance of Archaea-hgcA and Deltaproteobacteria-hgcA genes. This consequently increased the MeHg in the overlying water and food chain. However, MeHg concentrations in rice and soil did not increase under elevated CO2, nor did hgcA gene abundance in soil. The results reveal that elevated CO2 exacerbated the risk of MeHg intake from aquatic products in paddy wetland, indicating an intensified MeHg threat under future elevated CO2 levels.
Collapse
Affiliation(s)
- Danni Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Xueying Zong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaojie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China; Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou, 362046, China.
| |
Collapse
|
5
|
Zhang K, Pu Q, Liu J, Hao Z, Zhang L, Zhang L, Fu X, Meng B, Feng X. Using Mercury Stable Isotopes to Quantify Directional Soil-Atmosphere Hg(0) Exchanges in Rice Paddy Ecosystems: Implications for Hg(0) Emissions to the Atmosphere from Land Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11053-11062. [PMID: 38867369 DOI: 10.1021/acs.est.4c02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Gaseous elemental mercury [Hg(0)] emissions from soils constitute a large fraction of global total Hg(0) emissions. Existing studies do not distinguish biotic- and abiotic-mediated emissions and focus only on photoreduction mediated emissions, resulting in an underestimation of soil Hg(0) emissions into the atmosphere. In this study, directional mercury (Hg) reduction pathways in paddy soils were identified using Hg isotopes. Results showed significantly different isotopic compositions of Hg(0) between those produced from photoreduction (δ202Hg = -0.80 ± 0.67‰, Δ199Hg = -0.38 ± 0.18‰), microbial reduction (δ202Hg = -2.18 ± 0.25‰, Δ199Hg = 0.29 ± 0.38‰), and abiotic dark reduction (δ202Hg = -2.31 ± 0.25‰, Δ199Hg = 0.50 ± 0.22‰). Hg(0) exchange fluxes between the atmosphere and the paddy soils were dominated by emissions, with the average flux ranging from 2.2 ± 5.7 to 16.8 ± 21.7 ng m-2 h-1 during different sampling periods. Using an isotopic signature-based ternary mixing model, we revealed that photoreduction is the most important contributor to Hg(0) emissions from paddy soils. Albeit lower, microbial and abiotic dark reduction contributed up to 36 ± 22 and 25 ± 15%, respectively, to Hg(0) emissions on the 110th day. These novel findings can help improve future estimation of soil Hg(0) emissions from rice paddy ecosystems, which involve complex biotic-, abiotic-, and photoreduction processes.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengdong Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Ma Y, Choi CY, Shang L, Klaassen M, Ma Z, Chang Q, Jaspers VLB, Bai Q, He T, Leung KKS, Hassell CJ, Jessop R, Gibson L. Mercury contamination is an invisible threat to declining migratory shorebirds along the East Asian-Australasian Flyway. Commun Biol 2024; 7:585. [PMID: 38755288 PMCID: PMC11098816 DOI: 10.1038/s42003-024-06254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Exposure to pollutants is a potentially crucial but overlooked driver of population declines in shorebirds along the East Asian-Australasian Flyway. We combined knowledge of moult strategy and life history with a standardised sampling protocol to assess mercury (Hg) contamination in 984 individuals across 33 migratory shorebird species on an intercontinental scale. Over one-third of the samples exceeded toxicity benchmarks. Feather Hg was best explained by moulting region, while habitat preference (coastal obligate vs. non-coastal obligate), the proportion of invertebrates in the diet and foraging stratum (foraging mostly on the surface vs. at depth) also contributed, but were less pronounced. Feather Hg was substantially higher in South China (Mai Po and Leizhou), Australia and the Yellow Sea than in temperate and Arctic breeding ranges. Non-coastal obligate species (Tringa genus) frequently encountered in freshwater habitats were at the highest risk. It is important to continue and expand biomonitoring research to assess how other pollutants might impact shorebirds.
Collapse
Affiliation(s)
- Yanju Ma
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, 541006, Guangxi, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Sciences, Guangxi Normal University, Guilin, 541006, Guangxi, China
| | - Chi-Yeung Choi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
- Environmental Research Center, Duke Kunshan University, Kunshan, 215316, Jiangsu, China.
| | - Lihai Shang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou, China
| | - Marcel Klaassen
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Zhijun Ma
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Qing Chang
- Nanjing Normal University, Nanjing, 210024, Jiangsu, China
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Qingquan Bai
- Dandong Forestry and Grassland Development Service Center, Dandong, 118000, Liaoning, China
| | - Tao He
- Zhanjiang Mangrove National Nature Reserve Bureau, Zhangjiang, Guangdong, 524000, China
| | - Katherine K-S Leung
- Hong Kong Waterbirds Ringing Group, Mai Po Nature Reserve, Mai Po, Hong Kong, China
| | - Chris J Hassell
- Australian Wader Studies Group, Curtin, ACT, 2605, Australia
| | - Roz Jessop
- Victorian Wader Study Group, Thornbury, VIC, 3071, Australia
| | - Luke Gibson
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
7
|
Nelson SJ, Willacker J, Eagles-Smith C, Flanagan Pritz C, Chen CY, Klemmer A, Krabbenhoft DP. Habitat and dissolved organic carbon modulate variation in the biogeochemical drivers of mercury bioaccumulation in dragonfly larvae at the national scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169396. [PMID: 38114036 DOI: 10.1016/j.scitotenv.2023.169396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
We paired mercury (Hg) concentrations in dragonfly larvae with water chemistry in 29 U.S. national parks to highlight how ecological and biogeochemical context (habitat, dissolved organic carbon [DOC]) influence drivers of Hg bioaccumulation. Although prior studies have defined influences of biogeochemical variables on Hg production and bioaccumulation, it has been challenging to determine their influence across diverse habitats, regions, or biogeochemical conditions within a single study. We compared global (i.e., all sites), habitat-specific, and DOC-class models to illuminate how these controls on biotic Hg vary. Although the suite of important biogeochemical factors across all sites (e.g., aqueous Hg, DOC, sulfate [SO42-], and pH) was consistent with general findings in the literature, contrasting the restricted models revealed more nuanced controls on biosentinel Hg. Comparing habitats, aqueous (filtered) total mercury (THg) and SO42- were important in lentic systems whereas aqueous (filtered) methylmercury (MeHg), DOC, pH, and SO42- were important in lotic and wetland systems. The ability to identify important variables varied among habitats, with less certainty in lentic (model weight (W) = 0.05) than lotic (W = 0.11) or wetland habitats (W = 0.23), suggesting that biogeochemical drivers of bioaccumulation are more variable, or obscured by other aspects of Hg cycling, in these habitats. Results revealed a contrast in the importance of aqueous MeHg versus aqueous THg between DOC-classes: in low-DOC sites (<8.5 mg/L), availability of upstream inputs of MeHg appeared more important for bioaccumulation; in high-DOC sites (>8.5 mg/L) THg was more important, suggesting a link to in-situ controls on bioavailability of Hg for MeHg production. Mercury bioaccumulation (indicated by bioaccumulation factor) was more efficient in low DOC-class sites, likely due to reduced partitioning of aqueous MeHg to DOC. Together, findings highlight substantial variation in the drivers of Hg bioaccumulation and suggest consideration of these factors in natural resource management and decision-making.
Collapse
Affiliation(s)
- Sarah J Nelson
- Appalachian Mountain Club, Gorham, NH 03581, USA; University of Maine, School of Forest Resources, Orono, ME 04469, USA.
| | - James Willacker
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| | - Collin Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| | - Colleen Flanagan Pritz
- National Park Service, Air Resources Division, Natural Resource, Stewardship and Science Directorate, Lakewood, CO 80228, USA
| | | | - Amanda Klemmer
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469, USA
| | - David P Krabbenhoft
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Dr., Madison, WI 53726, USA
| |
Collapse
|
8
|
Oliveira VH, Fonte BA, Costa F, Sousa AI, Henriques B, Pereira E, Dolbeth M, Díez S, Coelho JP. The effect of Zostera noltei recolonization on the sediment mercury vertical profiles of a recovering coastal lagoon. CHEMOSPHERE 2023; 345:140438. [PMID: 37852379 DOI: 10.1016/j.chemosphere.2023.140438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Mercury's extreme toxicity and persistence in the environment justifies a thorough evaluation of its dynamics in ecosystems. Aveiro Lagoon (Portugal) was for decades subject to mercury effluent discharges. A Nature-based Solution (NbS) involving Zostera noltei re-colonization is being tested as an active ecosystem restoration measure. To study the effect of Zostera noltei on the sediment contaminant biogeochemistry, seasonal (summer/winter) sediment, interstitial water and labile mercury vertical profiles were made in vegetated (Transplanted and Natural seagrass meadows) and non-vegetated sites (Bare-bottom area). While no significant differences (p > 0.05) were observed in the sedimentary phase, Zostera noltei presence reduced the reactive/labile mercury concentrations in the top sediment layers by up to 40% when compared to non-vegetated sediment, regardless of season. No differences were found between vegetated meadows, highlighting the fast recovery of the contaminant regulation ecosystem function provided by the plants after re-colonization and its potential for the rehabilitation of historically contaminated ecosystems.
Collapse
Affiliation(s)
- V H Oliveira
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal.
| | - B A Fonte
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - F Costa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - A I Sousa
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - B Henriques
- LAQV-REQUIMTE- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - E Pereira
- LAQV-REQUIMTE- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Dolbeth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Novo Edifício Do Terminal de Cruzeiros Do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - S Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain
| | - J P Coelho
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| |
Collapse
|
9
|
Liu T, Li Y, Gu J, Zhang L, Qian F, Li B, Wang X. Achieving smartphone-based colorimetric assay for Hg 2+ with a bimetallic site strategy based on Hg 2+-triggered oxidase-like catalytic activity of NSC/Co 6Ni 3S 8 nanocomposite. Anal Chim Acta 2023; 1278:341734. [PMID: 37709431 DOI: 10.1016/j.aca.2023.341734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
Modulation of the nanozyme's catalytic activity is crucial for its real applications in detecting target analytes. Herein, we fabricated the nanocomposite (NSC/Co6Ni3S8) of N, S co-doped carbon and Co6Ni3S8 by a facile sol-gel approach. Compared to NSC/Ni9S8, NSC/Co6Ni3S8 with bimetallic active sites displayed better enzyme-mimetic activity. This nanocomposite could catalyze O2 to form ·O2- and oxidize colorless 3, 3', 5, 5'-tetramethylbenzidine (TMB) into blue oxTMB. The other two free radicals (h+ and ·OH) played minor roles during the catalytic reaction. Hg2+ could integrate with S2- to form HgS and the surface charges of O2 were transferred to Hg2+ to promote O2 adsorption. DFT theoretical calculations highlight that the main reasons for the enhancing effect of Hg2+ on color development results from electron transfer and increased adsorption energy of O2 molecules onto the surface of NSC/Co6Ni3S8. By employing the oxidase-like activity of NSC/Co6Ni3S8 and Hg2+-triggered promoting effect, a colorimetric sensing platform was established for Hg2+ assay with a linear range of 10-200 μg/L and detection limit of 3 μg/L. Through integration with a smartphone-based APP "Thing Identify" software, a visual colorimetric assay for Hg2+ was constructed with a detection limit of 5 μg/L. Compared to the data detected by the mercury vapor meter, the relative recoveries of 92.4-108.1% evidenced the higher accuracy of this smartphone-based visual detection. Overall, the NSC/Co6Ni3S8-based colorimetric assay is convenient, rapid, and visual, and can be applied for routine monitoring of Hg2+ in real-world waters under outdoor conditions.
Collapse
Affiliation(s)
- Tingting Liu
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yuhao Li
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - JingJing Gu
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Lei Zhang
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Feiyue Qian
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - BinRong Li
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|