1
|
Zhang Z, Liu S, Zeng D, Gu J, Cai T, Chen K, Zhou H, Dang Z, Yang C. Adsorption and desorption of phenanthrene and 1-hydroxyphenanthrene by goethite-coated polyvinyl chloride. J Environ Sci (China) 2025; 154:833-846. [PMID: 40049919 DOI: 10.1016/j.jes.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 05/13/2025]
Abstract
Microplastics loaded with phenanthrene and derivatives are widely detected in aquatic environments, and the coating of natural minerals or organic macromolecules may change the environmental behavior of microplastics. In this study, three kinds of composites with different coverage were prepared by coating goethite on the surface of polyvinyl chloride microplastics to investigate the adsorption and desorption behavior of phenanthrene (PHE) and 1-hydroxyphenanthrene (1-OHPHE), and the effect of mucin on desorption was investigated. The results showed that goethite promoted the adsorption of PHE and 1-OHPHE by increasing the specific surface area of the composites. With the increase of the cover degree, the adsorption of PHE decreased because of the decrease in hydrophobicity; while the adsorption of 1-OHPHE initially increased and then decreased with the contributions of hydrophobic interaction and hydrogen bond. The adsorption of 1-OHPHE could be influenced by the pH and ionic strength primarily through electrostatic interactions and Ca2+ bridging. The goethite significantly increased the desorption hysteresis for two chemicals due to the complicated pore structures and increased adsorption affinity. Mucin promoted the desorption of PHE through competitive adsorption, and inhibit the desorption of 1-OHPHE through hydrophobic interaction, hydrogen bonding and Ca2+ bridging. This study elucidated the effects of natural minerals on the adsorption and desorption behavior of organic pollutants on microplastics, briefly discussed the effects of organic macromolecules on the desorption behavior of pollutants with different properties, and emphasized the different environmental behaviors of pollutants.
Collapse
Affiliation(s)
- Zhiyu Zhang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shuyue Liu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Dehua Zeng
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jingyi Gu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tingting Cai
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ketong Chen
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hong Zhou
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Chen Yang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
2
|
Sánchez-Piñero J, Concha-Graña E, Moreda-Piñeiro J, López-Mahía P, Muniategui-Lorenzo S. Exploring the release of microplastics' additives in the human digestive environment by an in vitro dialysis approach using simulated fluids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179333. [PMID: 40220466 DOI: 10.1016/j.scitotenv.2025.179333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Ingestion of microplastics represents a significant exposure pathway to harmful additives to humans. In the last years, many studies have been focused on assessing the additives' fraction that could be released in gastrointestinal simulated fluids to estimate their potential health risk. In the present study, oral bioaccessibility (i.e., fraction dissolved in gastrointestinal fluids) and bioavailability (i.e., fractions absorbed in simulated blood) of plastic additives were simultaneously assessed by an in vitro method including a dialysis membrane filled with simulated human plasma. To this end, a method consisting of a vortex-assisted liquid-liquid extraction (VALLME) prior to gas chromatography-tandem mass spectrometry (GC-MS/MS) determination was successfully validated for the analysis of 38 multi-class additives in simulated fluids. This methodology was novelty applied to 3 conventional petroleum-based polymers (high-density polyethylene (r-HDPE), polypropylene (r-PP) and polyethylene terephthalate (PET)) and biopolymer (polylactic acid (PLA), polyhydroxy butyrate (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBv)) microplastics, as well as after additional mechanical recycling and marine-ageing processes to explore changes in additives' release. Biopolymers were observed to release 4-fold more additives in bioaccessible fractions than conventional polymers, being tri-n-butyl phosphate (TnBP) the most profuse (101 ng g-1, by average); whereas diethyl phthalate (DEP) was only quantitated in bioavailable fractions (mean of 8.6 ng g-1), with a ratio of 14.1 %. Moreover, different additives were released after marine ageing and additional recycling, observing an increase in bioaccessible additives concentrations for PLA, PET, and r-HDPE, and reduced for PHB and r-PP; while a decrease in bioavailable additives was observed for PLA and r-HDPE.
Collapse
Affiliation(s)
- Joel Sánchez-Piñero
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Environment (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain; LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Estefanía Concha-Graña
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Environment (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Jorge Moreda-Piñeiro
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Environment (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Purificación López-Mahía
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Environment (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Environment (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| |
Collapse
|
3
|
Huizenga JM, Truong L, Semprini L. Rapid determination of chemical losses in a microplate bioassay using fluorescence spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:514-524. [PMID: 39655654 PMCID: PMC11806944 DOI: 10.1039/d4ay01980f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The increase in production and innovation of chemicals that humans interface with has enhanced the need for rapid toxicity testing of new and existing chemicals. This need, along with efforts to reduce animal testing, has led to the development of high-throughput bioassays typically conducted in microplates. These bioassays offer time and resource advantages over traditional animal models; however, significant chemical losses can occur in microplates. Current methods for measuring chemical losses in microplates require extensive sample preparation and highly sensitive instruments. We propose the use of fluorescence spectroscopy to measure chemical losses in high-throughput bioassays as a low resource alternative to the existing methods. A fluorescent plate reader was used to develop methods for quantifying the aqueous concentrations of two chemicals, 2-hydroxynaphthalene and acridine, in microwells of a 96-well microplate. A high-throughput, 5 day embryonic zebrafish bioassay was used as the model bioassay for method development. Chemical losses were attributed to a combination of photodegradation, sorption, and uptake by the zebrafish embryos, kinetics of which were derived from a pseudo-first order model. Chemical uptake amount was calculated to be approximately 50% and 21% of the total chemical amount added for 2-hydroxynaphthalene and acridine, respectively. Unexpected cranial deformities were observed in the embryonic zebrafish, suggesting further investigation of potential additive toxicity of the ultraviolet radiation exposure from fluorescence measurements and chemical exposure is needed. Nonetheless, this novel method provides a rapid, low resource approach to measuring chemical losses in microplates that can be extended to a variety of autofluorescent chemicals and microplate-based bioassays.
Collapse
Affiliation(s)
- Juliana M Huizenga
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, Corvallis, OR, 97331, USA.
- Department of Environmental and Molecular Toxicology, Oregon State University, USA.
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Oregon State University, USA.
| | - Lewis Semprini
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 105 SW 26th St, Corvallis, OR, 97331, USA.
| |
Collapse
|
4
|
Yang M, Qi Z, Gao H, Chen Z, Yu X, An Y, Xiong D. Role of light microplastics in the dispersion process of spilled crude oil in the marine environment. MARINE POLLUTION BULLETIN 2024; 205:116618. [PMID: 38908191 DOI: 10.1016/j.marpolbul.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Oil spill and microplastic (MP) pollution are the main problems in the marine environment. After an oil spill, the oil film may be dispersed into the water column in the form of droplets under the action of ocean waves. In this study, the sea condition was simulated through the batch conical flask oscillation experiment. Merey crude oil was selected as experimental oil, and polyethylene (PE) and polystyrene (PS) were used as experimental MP. The effects of MP properties (type, concentration and size) on the dispersion of spilled oil were investigated. It is found that for each MP, the oil dispersion efficiency (ODE) increased rapidly at first and then tended to be stable, which all reached the maximum at 360 min. When the concentrations of PE and PS increased from 0 to 100 mg/L, the maximum ODE decreased from 32.64 % to 13.72 % and 10.75 %, respectively, indicating that the presence of MP inhibits the oil dispersion. At the same oscillation time, the volumetric mean diameter (VMD) of dispersed oil increased with the MP concentration. When the particle size of PE and PS increased from 13 to 1000 μm, the maximum ODE increased from 24.74 % to 31.49 % and 28.60 %, respectively. However, the VMD decreased with the size of MP. In addition, the time series of the oil adsorption rate by the MP were well fitted by the kinetic models. The results of this research deepen the understanding of the migration law of spilled oil to the marine environment in the presence of MP, and may further improve the ability of marine environmental scientists to predict the fate of oil spill.
Collapse
Affiliation(s)
- Miao Yang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhixin Qi
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Huan Gao
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zexiong Chen
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xinping Yu
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yaya An
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Deqi Xiong
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
5
|
Ali M, Xu D, Yang X, Hu J. Microplastics and PAHs mixed contamination: An in-depth review on the sources, co-occurrence, and fate in marine ecosystems. WATER RESEARCH 2024; 257:121622. [PMID: 38733961 DOI: 10.1016/j.watres.2024.121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024]
Abstract
Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) are toxic contaminants that have been found in marine ecosystems. This review aims to explore the sources and mechanisms of PAHs and MPs mixed contamination in marine environments. Understanding the released sources of PAHs and MPs is crucial for proposing appropriate regulations on the release of these contaminants. Additionally, the mechanisms of co-occurrence and the role of MPs in distributing PAHs in marine ecosystems were investigated in detail. Moreover, the chemical affinity between PAHs and MPs was proposed, highlighting the potential mechanisms that lead to their persistence in marine ecosystems. Moreover, we delve into the various factors influencing the co-occurrence, chemical affinity, and distribution of mixed contaminants in marine ecosystems. These factors, including environmental characteristics, MPs properties, PAHs molecular weight and hydrophobicity, and microbial interactions, were critically examined. The co-contamination raises concerns about the potential synergistic effects on their degradation and toxicity. Interesting, few studies have reported the enhanced photodegradation and biodegradation of contaminants under mixed contamination compared to their individual remediation. However, currently, the remediation strategies reported for PAHs and MPs mixed contamination are scarce and limited. While there have been some initiatives to remove PAHs and MPs individually, there is a lack of research specifically targeting the removal of mixed contaminants. This deficiency highlights the need for further investigation and the development of effective remediation approaches for the efficient remediation of PAHs and MPs from marine ecosystems.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| | - Dong Xu
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China.
| | - Xuan Yang
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| | - Jiangyong Hu
- Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China; Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Block E1A, #07-01, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
6
|
Chen L, Shao H, Ren Y, Mao C, Chen K, Wang H, Jing S, Xu C, Xu G. Investigation of the adsorption behavior and adsorption mechanism of pollutants onto electron beam-aged microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170298. [PMID: 38272098 DOI: 10.1016/j.scitotenv.2024.170298] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Microplastics, as an emerging pollutant, are widely distributed worldwide. Extensive research has been conducted to address the issue of microplastic pollution; however, effective methods for microplastic treatment are still lacking. This study innovatively utilizes electron beam technology to age and degrade microplastics. Compared to other treatment methods, electron beam technology can effectively promote the aging and degradation of microplastics. The Oxygen - carbon ratio of aged microplastics reached 0.071, with a mass loss of 48 % and a carbonyl index value of 0.69, making it the most effective method for short-term aging treatment in current research efforts. Theoretical calculations and experimental results demonstrate that a large number of oxygen-containing functional groups are generated on the surface of microplastics after electron beam irradiation, changing their adsorption performance for pollutants. Theoretical calculations show that an increase in oxygen-containing functional groups on the surface leads to a gradual decrease in hydrophobic pollutant adsorption capacity while increasing hydrophilic pollutant adsorption capacity for aged microplastics. Experimental studies were conducted to investigate the adsorption behavior and process of typical pollutants by aged microplastics which conform to pseudo-second-order kinetics and Henry model during the adsorption process, and the adsorption results are consistent with theoretical calculations. The results show that the degradation of microplastics is mainly due to hydroxyl radicals generated by electron beam irradiation, which can break the carbon chain of microplastics and gradually degrade them into small molecular esters and alcohols. Furthermore, studies have shown that microplastics can desorb pollutants in pure water and simulated gastric fluid. Overall, electron beam irradiation is currently the most effective method for degrading microplastics. These results also clearly elucidate the characteristics and mechanisms of the interaction between aged microplastics and organic pollutants, providing further insights for assessing microplastic pollution in real-world environments.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Yingfei Ren
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Kang Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Hongyong Wang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, PR China.
| | - Shuting Jing
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Chengwei Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, PR China.
| |
Collapse
|
7
|
Li X, Jiang H, Zhu L, Tang J, Liu Z, Dai Y. Adsorption interactions between typical microplastics and enrofloxacin: Relevant contributions to the mechanism. CHEMOSPHERE 2024; 351:141181. [PMID: 38211798 DOI: 10.1016/j.chemosphere.2024.141181] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Microplastics (MPs) are increasingly contaminating the environment and they can combine with antibiotics as carriers to form complex contaminants. In this study, we systematically investigated the interactions between the antibiotic enrofloxacin (ENR) and MPs comprising polyethylene (PE), polyvinyl chloride (PVC), and polystyrene (PS). Characterization was performed by using conventional techniques and the mechanisms involved in interactions were initially explored based on adsorption kinetics, isotherms, and resolution experiments, and the adsorption capacities of the MPs were determined. In addition, the extended Derjaguin-Landau-Verwey-Overbeek theory was used to investigate the interaction mechanisms. The results showed that the interactions were weaker in strong acidic and alkaline environments, and the interactions were also inhibited at higher salt ion concentrations. The saturation adsorption amounts of ENR on PVC, PE, and PS were 74.63 μg/g, 103.09 μg/g, and 142.86 μg/g, respectively. The interactions between MPs and ENR were dominated by hydrophobic interactions, followed by van der Waals forces and acid-base forces. This study provides new insights into the adsorption behavior of ENR by MPs.
Collapse
Affiliation(s)
- Xiang Li
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Huating Jiang
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China; School of Environmental Science and Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Liya Zhu
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Junqian Tang
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Zhihua Liu
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
8
|
Li P, Liu J. Micro(nano)plastics in the Human Body: Sources, Occurrences, Fates, and Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38315819 DOI: 10.1021/acs.est.3c08902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The increasing global attention on micro(nano)plastics (MNPs) is a result of their ubiquity in the water, air, soil, and biosphere, exposing humans to MNPs on a daily basis and threatening human health. However, crucial data on MNPs in the human body, including the sources, occurrences, behaviors, and health risks, are limited, which greatly impedes any systematic assessment of their impact on the human body. To further understand the effects of MNPs on the human body, we must identify existing knowledge gaps that need to be immediately addressed and provide potential solutions to these issues. Herein, we examined the current literature on the sources, occurrences, and behaviors of MNPs in the human body as well as their potential health risks. Furthermore, we identified key knowledge gaps that must be resolved to comprehensively assess the effects of MNPs on human health. Additionally, we addressed that the complexity of MNPs and the lack of efficient analytical methods are the main barriers impeding current investigations on MNPs in the human body, necessitating the development of a standard and unified analytical method. Finally, we highlighted the need for interdisciplinary studies from environmental, biological, medical, chemical, computer, and material scientists to fill these knowledge gaps and drive further research. Considering the inevitability and daily occurrence of human exposure to MNPs, more studies are urgently required to enhance our understanding of their potential negative effects on human health.
Collapse
Affiliation(s)
- Penghui Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingfu Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
9
|
You X, Dai C, Wang Z, Duan Y, Zhang JB, Lai X, Hu J, Li J, Maimaitijiang M, Zhang Y, Liu S, Fu R. Targeted degradation of naphthalene by peroxymonosulfate activation using molecularly imprinted biochar. CHEMOSPHERE 2023; 345:140491. [PMID: 37863207 DOI: 10.1016/j.chemosphere.2023.140491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in aquatic environments are threatening ecosystems and human health. In this work, an effective and environmentally friendly catalyst based on biochar and molecular imprinting technology (MIT) was developed for the targeted degradation of PAHs by activating peroxymonosulfate. The results show that the adsorption amount of naphthalene (NAP) by molecularly imprinted biochar (MIP@BC) can reach 82% of the equilibrium adsorption capacity within 5 min, and it had well targeted adsorption for NAP in the solution mixture of NAP, QL and SMX. According to the comparison between the removal rates of NAP and QL by MIP@BC/PMS or BC/PMS system in respective pure solutions or mixed solutions, the MIP@BC/PMS system can better resist the interference of competing pollutants (i.e., QL) compared to the BC/PMS system; that is, MIP@BC had a good ability to selectively degrade NAP. Besides, the removal rate of NAP by MIP@BC/PMS gradually decreased as pH increased. The addition of Cl- greatly promoted the targeted removal of NAP in the MIP@BC/PMS system, while HCO3- and CO32- both had an inhibitory effect. Furthermore, SO4•-, O2•- and 1O2 produced by BC activating PMS dominated the NAP degradation, and it was inferred that the vacated imprinted cavities after NAP degradation can continue to selectively adsorb NAP and this could facilitate the reusability of the material. This study can promote the research on the targeted degradation of PAHs through the synergism of biochar/PMS advanced oxidation processes and MIT.
Collapse
Affiliation(s)
- Xueji You
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Chaomeng Dai
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Zeyu Wang
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yanping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, China.
| | - Jun Bo Zhang
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoying Lai
- Department of Management and Economics, Tianjin University, Tianjin, 300072, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | | | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Shuguang Liu
- Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Rongbing Fu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
10
|
Zengin H, Toprak G, Zengin G. Investigation of adsorption performance of calcium oxide particles upon various treatments. WATER RESEARCH 2023; 243:120380. [PMID: 37482011 DOI: 10.1016/j.watres.2023.120380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/23/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
This study describes the improvements of adsorption capacities for raw calcium oxide (CaO) particles subjected to ultrasonication, activation with nitric acid and thermal treatments. The influence of acids and bases on CaO particle surface was assessed with respect to several variables including treatment methods, adsorption contact times, particle size and specific surface area characteristics, concentration and temperature along with various thermodynamic parameters. Structural analyses and physical characteristics of CaO particles were evaluated using FT-IR and SEM methods. SEM micrographs of samples revealed uniform distributions of CaO particles of average diameter 0.5-2.0 µm. The CaO surfaces showed CH3COOH as having the greatest amounts of adsorbate and modeling of the experimental adsorption isotherm data agreed well with the Freundlich adsorption isotherm. Enhancements in adsorption performance of untreated CaO particles were noted with the ultrasonication, activation with HNO3 and thermal treatment processes. The Langmuir-type adsorption demonstrated that single layer adsorption capacities of adsorbate CH3COOH at 25 oC on sonicated CaO (386.6 mg/g), with nitric acid and thermal activation (354.9 and 320.8 mg/g, respectively) were greater than that of the unsonicated CaO (296.3 mg/g) particles. Adsorption spontaneities of the processes were confirmed by the decreases in adsorption free energy values, ΔGads0, changing from -16.1 to -17.1 kJ mol-1 with temperature range 283-338 K.
Collapse
Affiliation(s)
- Huseyin Zengin
- Department of Chemistry, Faculty of Science and Literature, Gaziantep University, Gaziantep 27310, Turkey.
| | - Gokmen Toprak
- Department of Chemistry, Faculty of Science and Literature, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100, Turkey
| | - Gulay Zengin
- Department of Chemistry, Faculty of Science and Literature, Gaziantep University, Gaziantep 27310, Turkey
| |
Collapse
|