1
|
Tariq Z, Williams ID, Cundy AB, Zapata-Restrepo LM. A critical review of sampling, extraction and analysis methods for tyre and road wear particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126440. [PMID: 40373858 DOI: 10.1016/j.envpol.2025.126440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Tyre and road wear particles (TRWPs) have become an increasing contamination concern because of their extensive distribution in the environment. A comprehensive overview of the methods for sampling, treatment and analysis of environmental samples for TRWPs (and their benefits and limitations) is lacking. We evaluate and critically assess the sampling, treatment and analysis methods previously reported for water, air, road dust and sediment/soil samples. We suggest research frameworks for studying TRWPs in these media. Microscopy and thermal analysis techniques such as scanning electron microscopy (with energy dispersive X-ray analysis), environmental scanning electron microscopy, 2-dimensional gas chromatography mass spectrometry and liquid chromatography with tandem mass spectrometry in the case of complex samples, are optimal methods for determination of the number and mass of TRWPs. Issues for further investigation and analysis recommendations are provided.
Collapse
Affiliation(s)
- Zainab Tariq
- School of Engineering, University of Southampton, Southampton, SO17 1BJ, United Kingdom.
| | - Ian D Williams
- School of Engineering, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Andrew B Cundy
- GAU-Radioanalytical, School of Ocean and Earth Science, National Oceanography Centre (Southampton), University of Southampton, Southampton, SO14 3ZH, United Kingdom
| | - Lina M Zapata-Restrepo
- Institute of Biology, Faculty of Natural and Exact Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
2
|
Kim M, Pak M, Chung W, Hyun M, Lee SH, Hur J, Kim YM, Oh S, Kim MS, Kwon JT, Lee J, Kim Y. Evaluation of emission factors for resuspended tire-wear particles in urban road dust using empirical model-based methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179322. [PMID: 40185001 DOI: 10.1016/j.scitotenv.2025.179322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Tire and road wear particles, major contributors to non-exhaust particulate matter emissions, are frequently resuspended into the atmosphere from road dust, posing significant environmental and health challenges. Conventional approaches to estimating emission factors (EFs) often rely on variables such as road dust loading, vehicle types, and road classifications; however, these methods typically neglect the critical influence of wind speed on resuspension dynamics. This study introduces a methodology that incorporates wind speed as a fundamental parameter to improve the accuracy of EF estimations for resuspended tire-wear particles (TWPs). Our approach utilizes particle size analysis, pyrolysis-gas chromatography-mass spectrometry for quantifying TWP content, and a wind-speed depended weighting factor (WFTWP) that accounts for the resuspension potential of particles. The average TWP content in road dust was determined to be 23,495 mg/kg (2.4 wt%), aligning with findings from previous urban studies. At a near-ground wind speed of 1.5 m/s, resuspended TWPs accounted for 2.6 % of the total resuspended dust mass, closely reflecting the original TWP proportion in road dust. Using modified EPA and Amato methods, calculated EF values ranged from 2.02 to 7.22 mg/vkm, with the Amato method's EF value (3.35 ± 2.21 mg/vkm) comparable to the EPA-derived EF for passenger cars (2.02 ± 0.55 mg/vkm) but showing significant variation for buses (7.22 ± 1.97 mg/vkm). Furthermore, the study found that as wind speed increased, the WFTWP also increased proportionally, directly impacting EF values. The results indicate the importance of incorporating wind dynamics into EF calculations to more accurately represent real-world resuspension behaviors. This methodology provides a practical tool for estimating the resuspension of TWPs under varying wind conditions and aids in refining emission inventories.
Collapse
Affiliation(s)
- Minseong Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Min Pak
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Woosuk Chung
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Minseung Hyun
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Se Hyun Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jimin Hur
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Young-Min Kim
- Department of Energy System Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Sangmin Oh
- Environmental Measurement & Analysis Center, Environmental Infrastructure Research Department, National Institute of Environmental Research, Incheon 22733, Republic of Korea
| | - Min-Seob Kim
- Environmental Measurement & Analysis Center, Environmental Infrastructure Research Department, National Institute of Environmental Research, Incheon 22733, Republic of Korea
| | - Jung-Taek Kwon
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22733, Republic of Korea
| | - Jaewoong Lee
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22733, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
3
|
Zhang Q, Yin J, Cao Z, Fang T, Peng J, Wu L, Mao H. Size distribution, chemical composition and influencing factors of vehicle tire wear particles based on a novel test cycle. ENVIRONMENTAL RESEARCH 2025; 268:120817. [PMID: 39798651 DOI: 10.1016/j.envres.2025.120817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Tire wear particles (TWPs) are considered the one of most significant non-exhaust particle emission sources from vehicles. However, there is a lack of research on the emission characteristics of TWPs based on typical driving information. In this work, we used a high-dynamic outside wheel test platform to conduct tire wear tests on multiple types of tires based on a novel test cycle and comprehensively analyzed the differences in their emission characteristics while considering various factors, such as front/rear tire and tire type. We conducted a chemical composition analysis of TWPs. There are certain differences in the mass size distributions of TWPs from different types of tires. The emissions of PM2.5 and PM10 from the front TWPs are greater than those from the rear tire. This study provides basic data for urban atmospheric particle inventory research and a scientific basis for the development of emission standards and control strategies for TWPs.
Collapse
Affiliation(s)
- Qijun Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Jiawei Yin
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zeping Cao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lin Wu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Yu B, Lu X, Wang Z, Yang Y, Lei K, Pan H. Comprehensive assessment of potential toxic elements in surface dust of community playgrounds in Xi'an, China. ENVIRONMENTAL RESEARCH 2025; 264:120386. [PMID: 39551370 DOI: 10.1016/j.envres.2024.120386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
To identify the key factors for managing and controlling potential toxic elements (PTEs) in surface dust of urban community playgrounds, this study comprehensively analyzed the content, pollution characteristics, eco-health risks, and sources of commonly concerned PTEs in surface dust of Xi'an community playgrounds. The average levels of Cd, Hg, Cu, Cr, Ba, Zn and Pb in the dust were 2.2, 0.27, 1.4 × 102, 2.1 × 102, 1.7 × 103, 2.9 × 102, 1.5 × 102 mg kg-1, respectively, exceeding the soil background values. The main sources of PTEs in the dust were natural source, mixed source of construction and weathering of entertainment facilities, traffic source, and industrial source, accounting for 24.9%, 45.7%, 18.1%, and 11.3%, respectively. The contamination and ecological risk of PTEs in the dust were elevated, and Cd and industrial source were identified as the primary contributors. The non-carcinogenic risks for different age groups were within a safe range, but the cancer risk was high, especially for toddlers and the elderly. It is worth noting that the cancer risk based on the minimum values of key exposure parameters for toddlers, preschool children, children, and teenagers has exceeded the acceptable level. According to the results of source-oriented health risk assessment, the traffic source was identified as the main contributors of health risk, and Ni was a particularly concerned PTE. These findings can provide the scientific basis for controlling PTEs pollution in urban community playgrounds and the guidance for protecting residents' health.
Collapse
Affiliation(s)
- Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, China.
| | - Huiyun Pan
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| |
Collapse
|
5
|
Saladin S, Boies A, Giorio C. Airborne Tire Wear Particles: A Critical Reanalysis of the Literature Reveals Emission Factors Lower than Expected. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:1296-1307. [PMID: 39678707 PMCID: PMC11636205 DOI: 10.1021/acs.estlett.4c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Tires are a ubiquitous part of on-road transport systems serving as the critical connecting component at the interface of the motive power and road surface. While tires are essential to automobile function, the wear of tires as a source of particulate air pollution is still poorly understood. The variety of reported emissions found in the secondary literature motivated us to summarize all known mass-based tire wear emission factors for light-duty vehicles in primary research. When excluding road wear and resuspension, mean emissions of 1.1 mg/km/vehicle (median 0.2 mg/km/vehicle) were found for tire wear PM10 and mean emissions of 2.7 mg/km/vehicle (median 1.1 mg/km/vehicle) when including studies with resuspended tire wear. Notably, these factors are substantially lower than broadly cited and accepted factors in the secondary literature with mean emissions of 6.5 mg/km/vehicle (median 6.1 mg/km/vehicle). As revealed by our analysis, secondary literature reports emission factors systematically higher than those of the primary sources on which they are based. This divergence is due to misunderstandings and misquotations that have been prevalent since the year 1995. Currently accepted mass-based emission factors for directly emitted airborne tire wear particles need revision, including those from the United States Environmental Protection Agency and the European Environment Agency.
Collapse
Affiliation(s)
- Siriel Saladin
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Adam Boies
- Department
of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Chiara Giorio
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
6
|
Wang Y, Xiao N, Zhao J, Su Y, Guo Z, Wang B, Luo Z, Jia H, Xing B. Combined contamination of tire and road wear microplastics with heavy metals in expressway tunnels: occurrence characteristics and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136278. [PMID: 39461292 DOI: 10.1016/j.jhazmat.2024.136278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Tire and road wear microplastics (TRWMPs), as an important type of microplastics, have attracted increasing attention. However, current studies on their contamination within expressway tunnels remain limited. Therefore, we investigated the occurrence characteristics of TRWMPs in dusts from various tunnels, and combined contamination with heavy metals (HMs). The results showed that the abundance of TRWMPs in expressway tunnel dust (53,778 n/kg) was much higher than that sampled from other land use types (1360-4960 n/kg) in the same region. A large amount of polyamide was released into the environment along with wear particles from the vehicles. Also, the abundance of TRWMPs inside tunnels was greater than outside, and the proportion of large-size TRWMPs was higher inside tunnels. TRWMPs was symmetrically distributed with respect to the center of expressway tunnel. The pollution load index (PLI) and ecological risk index (H) indicated that study area was heavily contaminated with TRWMPs. There was a significant positive correlation between the abundance of TRWMPs and concentration of Cr (p < 0.01) in dust, and their risk assessment and health risk fluctuations were almost identical. Thus, the study is of great significance for elucidating the synergistic contamination and potential risk of TRWMPs and HMs in expressway tunnels.
Collapse
Affiliation(s)
- Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Na Xiao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, PR China.
| | - Yu Su
- School of Energy and Environment, Southeast University, Nanjing 210023, China
| | - Ziyi Guo
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Bo Wang
- Shaanxi Geomatics Center, Ministry of Natural Resources, Xi'an, Shaanxi 710054, China
| | - Zhuanxi Luo
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
7
|
Jeong S, Ryu H, Shin H, Lee MG, Hong J, Kim H, Kwon JT, Lee J, Kim Y. Quantification of tire wear particles in road dust based on synthetic/natural rubber ratio using pyrolysis-gas chromatography-mass spectrometry across diverse tire types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173796. [PMID: 38851327 DOI: 10.1016/j.scitotenv.2024.173796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Increase in road traffic leads to increased concentrations of tire-wear particles (TWPs), a prominent source of microplastics from vehicles, in road dust. These particles can re-enter the atmosphere or move into aquatic ecosystems via runoff, impacting the environment. Consequently, accurately assessing and managing TWP levels in road dust is crucial. However, the ISO method (ISO/TS 20593 and 21396) uses a constant ratio of styrene-butadiene rubber (SBR) to natural rubber (NR) for all tires, disregarding the variability in tire composition across different types and brands. Our study found substantial SBR content (15.7 %) in heavyweight truck tires, traditionally believed to be predominantly NR. We evaluated the SBR/NR content in 15 tire types and proposed a method to more accurately evaluate TWP concentrations in road dust from five different locations. Our findings suggest that the conventional ISO method may underestimate the concentrations of TWP due to its reliance on a static ratio of SBR/NR. This study underscores the necessity for a more flexible approach that can adapt to the variability in SBR and NR content across different tire types. By delineating the limitations inherent in current assessment methods, our research contributes to a more adaptable understanding of TWP concentrations in road dust. This advancement prompts the development of a revised methodology that more accurately reflects the diverse compositions of tire rubber in environmental samples.
Collapse
Affiliation(s)
- Sohee Jeong
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Hyeonjung Ryu
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Hyeokjin Shin
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Min Gyu Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Jaehwan Hong
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Hyunwook Kim
- Department of Environmental Engineering, University of Seoul, Seoul 02504, South Korea
| | - Jung-Taek Kwon
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22733, South Korea
| | - Jaewoong Lee
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22733, South Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
8
|
Xu Z, Li J, Su B, Gao H, Ren M, Lin Y, Shen H. A role of ROS-dependent defects in mitochondrial dynamic and autophagy in carbon black nanoparticle-mediated myocardial cell damage. Free Radic Biol Med 2024; 220:249-261. [PMID: 38697491 DOI: 10.1016/j.freeradbiomed.2024.04.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Carbon black nanoparticles (CBNPs) are widely distributed in the environment and are increasingly recognized as a contributor in the development of cardiovascular disease. A variety of cardiac injuries and diseases result from structural and functional damage to cardiomyocytes. This study explored the mechanisms of CBNPs-mediated myocardial toxicity. CBNPs were given to mice through intra-tracheal instillation and it was demonstrated that the particles can be taken up into the cardiac tissue. Exposure to CBNPs induced cardiomyocyte inflammation and apoptosis. In combination with in vitro experiments, we showed that CBNPs increased the ROS and induced mitochondria fragmentation. Functionally, CBNPs-exposed cardiomyocyte exhibited depolarization of the mitochondrial membrane potential, release of cytochrome c, and activation of pro-apoptotic BAX, thereby initiating programmed cell death. On the other hand, CBNPs impaired autophagy, leading to the inadequate removal of dysfunctional mitochondria. The excess accumulation of damaged mitochondria further stimulated NF-κB activation and triggered the NLRP3 inflammasome pathway. Both the antioxidant N-acetylcysteine and the autophagy activator rapamycin were effective to attenuate the damage of CBNPs on cardiomyocytes. Taken together, this study elucidated the potential mechanism underlying CBNPs-induced myocardial injury and provided a scientific reference for the evaluation and prevention of the CBNPs-related heart risk.
Collapse
Affiliation(s)
- Zehua Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Jing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Bowen Su
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Hongying Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Miaomiao Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Yi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China.
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China; Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, PR China.
| |
Collapse
|
9
|
Ibañez-Del Rivero C, Wheeler CA, Fry KL, Taylor MP. Portable X-ray fluorescence spectrometry: a cost-effective method for analysing trace metals in deposited dust. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5038-5048. [PMID: 38985328 DOI: 10.1039/d4ay00368c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
For projects requiring extensive environmental sampling and rapid decision-making to identify trace metal contamination using dust wipes, the cost and time required for wet chemistry analysis can be prohibitive. Under such circumstances there is a need for a suitable screening method that is cost-effective, efficient, and portable. To address this need, this study investigated the utility of portable X-ray fluorescence (pXRF) for the analysis of trace metals in dust wipes. Here, 316 dust wipe samples from three different geographical settings co-located with mining and smelting operations were investigated for their trace metal loadings (μg m-2) of arsenic (As), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) using pXRF. Results collected using pXRF were compared against inductively coupled plasma mass spectrometry (ICP-MS) concentrations using matched dust wipes (n = 87) to assess reproducibility. A subset of dust wipes (n = 4) were subject to different pXRF analytical scenarios (ranging from 1 to 12 pXRF measurements) using a standardised test duration of 30 seconds to identify the most efficient number of tests for analytical precision. Conducting four pXRF tests on a single wipe (total exposure time of 120 seconds) returned comparable results to ICP-MS and was adopted for analysis of all samples. Results from dust wipes analysed with both ICP-MS and pXRF (n = 87) showed moderate to strong Spearman Rho correlations (rs = 0.489-0.956, p < 0.01) and linear regression coefficients of variation demonstrated good agreement between methods (R2 = 0.432-0.989, p < 0.05). Linear regression equations were used to correct pXRF data to the ICP-MS dust wipe data for samples analysed by both approaches, and applied to pXRF data that were not subject to ICP-MS analysis (n = 229). Application of the correction formula resulted in a substantial improvement of pXRF's accuracy and precision, confirming its effectiveness for assessing trace metals in dust wipes.
Collapse
Affiliation(s)
- Carlos Ibañez-Del Rivero
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Cassandra A Wheeler
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Kara L Fry
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
- Environment Protection Authority Victoria, EPA Science, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia.
| | - Mark Patrick Taylor
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
- Environment Protection Authority Victoria, EPA Science, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria, 3085, Australia.
| |
Collapse
|
10
|
Renzetti S, van Thriel C, Lucchini RG, Smith DR, Peli M, Borgese L, Cirelli P, Bilo F, Patrono A, Cagna G, Rechtman E, Idili S, Ongaro E, Calza S, Rota M, Wright RO, Claus Henn B, Horton MK, Placidi D. A multi-environmental source approach to explore associations between metals exposure and olfactory identification among school-age children residing in northern Italy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:699-708. [PMID: 38802534 DOI: 10.1038/s41370-024-00687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Metal exposures can adversely impact olfactory function. Few studies have examined this association in children. Further, metal exposure occurs as a mixture, yet previous studies of metal-associated olfactory dysfunction only examined individual metals. Preventing olfactory dysfunctions can improve quality of life and prevent neurodegenerative diseases with long-term health implications. OBJECTIVE We aimed to test the association between exposure to a mixture of 12 metals measured in environmental sources and olfactory function among children and adolescents residing in the industrialized province of Brescia, Italy. METHODS We enrolled 130 children between 6 and 13 years old (51.5% females) and used the "Sniffin' Sticks" test to measure olfactory performance in identifying smells. We used a portable X-ray fluorescence instrument to determine concentrations of metals (arsenic (As), calcium, cadmium (Cd), chromium, copper, iron, manganese, lead (Pb), antimony, titanium, vanadium and zinc) in outdoor and indoor deposited dust and soil samples collected from participants' households. We used an extension of weighted quantile sum (WQS) regression to test the association between exposure to metal mixtures in multiple environmental media and olfactory function adjusting for age, sex, socio-economic status, intelligence quotient and parents' smoking status. RESULTS A higher multi-source mixture was significantly associated with a reduced Sniffin' Sticks identification score (β = -0.228; 95% CI -0.433, -0.020). Indoor dust concentrations of Pb, Cd and As provided the strongest contributions to this association (13.8%, 13.3% and 10.1%, respectively). The metal mixture in indoor dust contributed more (for 8 metals out of 12) to the association between metals and olfactory function compared to soil or outdoor dust. IMPACT STATEMENT Among a mixture of 12 metals measured in three different environmental sources (soil, outdoor and indoor dust), we identified Pb, Cd and As measured in indoor dust as the main contributors to reduced olfactory function in children and adolescents residing in an industrialized area. Exposure to indoor pollution can be effectively reduced through individual and public health interventions allowing to prevent the deterioration of olfactory functions. Moreover, the identification of the factors that can deteriorate olfactory functions can be a helpful instrument to improve quality of life and prevent neurodegenerative diseases as long-term health implications.
Collapse
Affiliation(s)
- Stefano Renzetti
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy.
| | - Christoph van Thriel
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Neurotoxicology and Chemosensation, TU Dortmund, Dortmund, Germany
| | - Roberto G Lucchini
- Department of Biochemical, Biomedical and Neurosciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Department of Environmental Health Sciences, School of Public Health, Florida International University, Miami, FL, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Marco Peli
- Department of Civil, Environmental, Architectural Engineering and Mathematics, Università degli Studi di Brescia, Brescia, Italy
| | - Laura Borgese
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, Brescia, Italy
| | - Paola Cirelli
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, Brescia, Italy
| | - Fabjola Bilo
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, Brescia, Italy
| | - Alessandra Patrono
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| | - Stefania Idili
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Elisa Ongaro
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Matteo Rota
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, New York, NY, USA
| | - Donatella Placidi
- Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
11
|
Saka MB, Hashim MHBM. Critical assessment of the effectiveness of different dust control measures in a granite quarry. J Public Health Policy 2024; 45:212-233. [PMID: 38600319 DOI: 10.1057/s41271-024-00481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
The exposure to respirable crystalline silica found in granite dust presents significant health hazards to quarry workers and nearby communities, including silicosis and various respiratory ailments. This study evaluates the efficacy of various pollution control measures implemented in granite quarries. It aimed to provide a comprehensive critical assessment of the effectiveness of various dust control measures, considering their mechanisms, impact on air quality, and implications for worker health and community welfare. The strategy involved compiling and systematically analysing existing research articles, literature, and industry reports. The investigation identified three primary categories of measures: engineering controls, water-based suppression methods, and technological solutions. The study highlighted the significance of environmental impact and sustainability factors in selecting measures. These factors include water and energy consumption, production of secondary pollutants, long-term ecological effects, regulatory compliance, and cost-effectiveness. Operators and policymakers should utilize integrated, context-specific, inventive, and interdisciplinary strategies to efficiently control particle emissions from granite quarrying.
Collapse
Affiliation(s)
- Mumini Babatunde Saka
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia (USM), 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Mohd Hazizan Bin Mohd Hashim
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia (USM), 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| |
Collapse
|
12
|
Tang J, Zhao H, Li K, Zhou H, Chen Q, Wang H, Li S, Xu J, Sun Y, Chang X. Intestinal microbiota promoted NiONPs-induced liver fibrosis via effecting serum metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115943. [PMID: 38194811 DOI: 10.1016/j.ecoenv.2024.115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Nickel oxide nanoparticles (NiONPs) are toxic heavy metal compounds that induce liver fibrosis and metabolic disorders. Current research shows that the intestinal microbiota regulates liver metabolism through the gut-liver axis. However, it is unclear whether NiONPs affect the intestinal microbiota and the relationship between microbiota and liver metabolic disorders. Therefore, in this study, we established liver fibrosis model by administering 0.015, 0.06 and 0.24 mg/mL NiONPs through tracheal instillation twice a week for 9 weeks in rats, then we collected serum and fecal sample for whole metabolomics and metagenomic sequencing. As the result of sequencing, we screened out seven metabolites (beta-D-glucuronide, methylmalonic acid, linoleic acid, phosphotidylcholine, lysophosphatidylinositol, docosapentaenoic acid and progesterone) that related to functional alterations (p < 0.05), and obtained a decrease of probiotics abundances (p < 0.05) as well as a variation of the microbiota enzyme activity (p < 0.05), indicating that NiONPs inhibited the proliferation of probiotics. As the result of correlation analysis, we found a positive correlation between differential metabolites and probiotics, such as lysophosphatidylinositol was positively correlated with Desulfuribacillus, Jeotgallibacillus and Rummeliibacillus (p < 0.05). We also found that differential metabolites had correlations with differential proteins and enzymes of intestinal microbiota, such as glucarate dehydratase, dihydroorotate dehydrogenase and acetyl-CoA carboxylase (p < 0.05). Finally, we screened six metabolic pathways with both differential intestinal microbiota enzymes and metabolites were involved, such as pentose and glucuronate interconversions, and linoleic acid metabolism. In vitro experiments showed that NiONPs increased the transcriptional expression of Col1A1 in LX-2 cells, while reducing the mRNA expression of serine/threonine activators, acetyl coenzyme carboxylase, and lysophosphatidylinositol synthase, and short chain fatty acid sodium butyrate can alleviate these variation trends. The results proved that the intestinal microbiota enzyme systems were associated with serum metabolites, suggesting that the disturbance of intestinal microbiota and reduction of probiotics promoted the occurrence and development of NiONPs-induced liver fibrosis by affecting metabolic pathways.
Collapse
Affiliation(s)
- Jiarong Tang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hongjun Zhao
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Kun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Haodong Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qingyang Chen
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sheng Li
- Pulmonary Hospital of Lanzhou, Public Health Department, Lanzhou 730000, China
| | - Jianguang Xu
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Xuhong Chang
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China.
| |
Collapse
|
13
|
Jeong S, Shin H, Ryu H, Lee MG, Hong J, Kwon JT, Lee J, Kim Y. Rapid estimation of tire-wear particle concentration in road dust using PM 10 and traffic data in a ternary plot. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167227. [PMID: 37734610 DOI: 10.1016/j.scitotenv.2023.167227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Air pollution, a pressing global issue, is significantly exacerbated by airborne particulate matter (PM), affecting air quality and human health. Urban vehicular activities majorly contribute to PM rise through both exhaust and non-exhaust emissions. Despite strides in managing exhaust emissions, non-exhaust particles, such as tire wear particles (TWP) remain under-addressed. This research proposes a method for estimating TWP concentrations using PM10 data and traffic activity, which could offer a valuable tool for controlling roadside fine particles and TWP. This paper introduces a ternary plotting technique and step-by-step procedure to estimate TWP levels in road dust using only PM10 and traffic data. Traditional analysis of TWP via pyrolysis-gas chromatography-mass spectrometry is complex and time-consuming. Hence, our proposed approach presents an alternate method that leverages readily accessible PM and traffic data, providing critical information for road management interpretation. The triangular plot analysis demonstrated a linear correlation: [log(Traffic) + 2]-[250,000/TWP-13]-0.18PM10. While the resulting correlation may vary based on specific road conditions, the method can be tailored to different regions, offering insights into efficient estimation of TWP concentrations and promoting improved roadside pollution management.
Collapse
Affiliation(s)
- Sohee Jeong
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Hyeokjin Shin
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Hyeongjeong Ryu
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Min Gyu Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Jaehwan Hong
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Jung-Taek Kwon
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22733, South Korea
| | - Jaewoong Lee
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22733, South Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
14
|
Das M, Proshad R, Chandra K, Islam M, Abdullah Al M, Baroi A, Idris AM. Heavy metals contamination, receptor model-based sources identification, sources-specific ecological and health risks in road dust of a highly developed city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8633-8662. [PMID: 37682507 DOI: 10.1007/s10653-023-01736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
The present study quantified Ni, Cu, Cr, Pb, Cd, As, Zn, and Fe levels in road dust collected from a variety of sites in Tangail, Bangladesh. The goal of this study was to use a matrix factorization model to identify the specific origin of these components and to evaluate the ecological and health hazards associated with each potential origin. The inductively coupled plasma mass spectrometry was used to determine the concentrations of Cu, Ni, Cr, Pb, As, Zn, Cd, and Fe. The average concentrations of these elements were found to be 30.77 ± 8.80, 25.17 ± 6.78, 39.49 ± 12.53, 28.74 ± 7.84, 1.90 ± 0.79, 158.30 ± 28.25, 2.42 ± 0.69, and 18,185.53 ± 4215.61 mg/kg, respectively. Compared to the top continental crust, the mean values of Cu, Pb, Zn, and Cd were 1.09, 1.69, 2.36, and 26.88 times higher, respectively. According to the Nemerow integrated pollution index (NIPI), pollution load index (PLI), Nemerow integrated risk index (NIRI), and potential ecological risk (PER), 84%, 42%, 30%, and 16% of sampling areas, respectively, which possessed severe contamination. PMF model revealed that Cu (43%), Fe (69.3%), and Cd (69.2%) were mainly released from mixed sources, natural sources, and traffic emission, respectively. Traffic emission posed high and moderate risks for modified NIRI and potential ecological risks. The calculated PMF model-based health hazards indicated that the cancer risk value for traffic emission, natural, and mixed sources had been greater than (1.0E-04), indicating probable cancer risks and that traffic emission posed 38% risk to adult males where 37% for both adult females and children.
Collapse
Affiliation(s)
- Mukta Das
- Department of Zoology, Government Saadat College, Tangail, 1903, Bangladesh
| | - Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Krishno Chandra
- Faculty of Agricultural Engineering and Technology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Maksudul Islam
- Department of Environmental Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Mamun Abdullah Al
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Artho Baroi
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, 62529, Abha, Saudi Arabia
| |
Collapse
|