1
|
Wu H, Peng T, Li X, Zhao Y, Huang F, Guo P, Lyu M, Yin J, Liu Q, Gouda S, Mohamed I, Huang Q, Wang X. Effects of Aging Biodegradable Agricultural Films on Soil Physicochemical Properties and Heavy Metal Speciation. TOXICS 2025; 13:245. [PMID: 40278561 PMCID: PMC12030900 DOI: 10.3390/toxics13040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025]
Abstract
Through soil incubation experiments, the effects of aged PBAT + PLA (polybutylene adipate terephthalate + polylactic acid) film fragments were analyzed. Surface characteristics and chemical structures of the films changed significantly after one (T2) and two years (T1) of aging compared to new films (T3). Both new and aged fragments reduced soil pH, altered enzyme activities, and influenced dissolved organic matter (DOM) fluorescence. Alkaline phosphatase activity declined by 33.2%, 23.8%, and 11.6% for T1, T2, and T3, respectively, while urease and sucrase activities increased in a time-dependent manner. The degree of soil humification rose by 66.4%, 60.4%, 49.3%, and 88.6% for T1, T2, T3, and T4, respectively, compared to the control (CK). Aged films exhibited stronger DOM fluorescence intensity than new films. Tessier extraction analysis revealed a decrease in exchangeable Cd by 22.9%, 13.1%, and 10.2% for T1, T2, and T3, respectively, while organically bound Cu increased. Correlation analysis indicated a significant positive relationship between soil humification and heavy metal bioavailability. These findings provide insight into the ecological effects of biodegradable agricultural films, offering a theoretical foundation for assessing their environmental risks and safety.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Tianmu Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Xueya Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Yang Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Fengshuo Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Peng Guo
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China; (P.G.); (M.L.)
| | - Mingfu Lyu
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China; (P.G.); (M.L.)
| | - Junhua Yin
- Shandong Qingtian Plastic Co., Ltd., Zibo 255410, China;
| | - Qin Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Shaban Gouda
- Agricultural and Biosystems Engineering Department, Benha University, Banha 13511, Al-Qalyubia Governorate, Egypt; (S.G.); (I.M.)
| | - Ibrahim Mohamed
- Agricultural and Biosystems Engineering Department, Benha University, Banha 13511, Al-Qalyubia Governorate, Egypt; (S.G.); (I.M.)
| | - Qing Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| | - Xu Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/Hainan Provincial Academician Team Innovation Center/International Joint Research Center for the Control and Prevention of Environmental Pollution on Tropical Islands of Hainan Province/School of Environment Science and Engineering/Haide Residential College, Hainan University, Haikou 570228, China; (H.W.); (T.P.); (X.L.); (Y.Z.); (F.H.); (Q.H.)
| |
Collapse
|
2
|
Shao X, Liang W, Gong K, Qiao Z, Zhang W, Shen G, Peng C. Effect of biodegradable microplastics and Cd co-pollution on Cd bioavailability and plastisphere in soil-plant system. CHEMOSPHERE 2024; 369:143822. [PMID: 39608653 DOI: 10.1016/j.chemosphere.2024.143822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Biodegradable plastics (BPs) are regarded as ecomaterials and are emerging as a substitute for traditional non-degradable plastics. However, the information on the interaction between biodegradable microplastics (BMPs) and cadmium (Cd) in agricultural soil is still limited. Here, lettuce plants were cultured in BMPs (polylactic acid (PLA) MPs and poly(butylene-adipate-co-terephthalate) (PBAT) MPs) and Cd co-polluted soil for 35 days. The results show that diffusive gradient in thin films technique (DGT) but not diethylenetriaminepentaacetic acid (DTPA) extraction method greatly improved the prediction reliability of Cd bioavailability in non-rhizosphere soil treated with BMPs (R2 = 0.902). BMPs increased the Cd bioavailability in non-rhizosphere soil indirectly by decreasing soil pH, cation exchange capacity (CEC), and dissolved organic carbon (DOC), rather than by directly adsorbing Cd on their surface. PLA MPs incubated in rhizosphere soil showed more considerable degradation with extremely obvious cavities and the fracture of ester functional groups on their surface than PBAT MPs. BMPs could provide ecological niches to colonize and induce microorganisms associated with BMPs' degradation to occupy a more dominant position. In addition, Cd only affected the composition and function of microbial communities in soil but not on BMPs. However, co-exposure to BMPs and Cd significantly reduced the degrees of co-occurrence network of fungal communities on PLA MPs and PBAT MPs by 37.7% and 26.7%, respectively, compared to single exposure to BMPs.
Collapse
Affiliation(s)
- Xuechun Shao
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Qiao
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Genxiang Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Miao J, Zhu Y, Li W, Che R, Zong X, Li J, Wang F, Wu Y, Fu H. Reductive soil disinfestation influences microbial aging of low-density polyethylene and polyhydroxyalkanoate microplastics and microbial communities in plastispheres. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123331. [PMID: 39586172 DOI: 10.1016/j.jenvman.2024.123331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/27/2024] [Accepted: 11/09/2024] [Indexed: 11/27/2024]
Abstract
The extensive use of plastic products has led to the accumulation of microplastics (MPs) in agricultural soils, raising concerns about their fate in various environments. Reductive soil disinfestation (RSD) treatment is increasingly being adopted in various countries to address agricultural soil health issues. However, the treatment can alter the soil microbial environment, potentially affecting the fate of contaminants, including MPs. The effect of RSD on the aging of low-density polyethylene (LDPE) and polyhydroxyalkanoates (PHA) MPs was studied through an incubation experiment. The mechanism involved was further investigated by microbial community analysis. The characterization results shown that RSD treatment inhibited the aging of LDPE but promoted the aging of PHA. The results indicated that RSD reshaped the microbial community and reduced the relative abundance of lipid metabolism in the LDPE plastisphere, thereby hindering LDPE aging. Predicted functional genes in the plastispheres were primarily involved in metabolism (77.15-87.48%) and genetic information processing (8.774-12.62%). The enrichment of bacteria related to poly(3-hydroxybutyrate) depolymerase (phaZ) in the PHA plastisphere explained the higher aging degree of PHA during RSD. Some fungus also involved in the MPs aging, while some fungus pathogens can proliferate in the MPs plastispheres. The 3DEEM analysis indicated that PHA MPs aging increased tyrosine-like substances in soil extracts. These findings provide new insights into the ecological implications of RSD and enhance our understanding of microbial communities within plastispheres.
Collapse
Affiliation(s)
- Jiahe Miao
- Key Laboratory of Environmental Biotechnology (XMUT), Fujian Province University, Xiamen University of Technology, Xiamen, 361024, China; Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | - Yining Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Wen Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Ruijie Che
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xinyan Zong
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Fenghe Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yicheng Wu
- Key Laboratory of Environmental Biotechnology (XMUT), Fujian Province University, Xiamen University of Technology, Xiamen, 361024, China; Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| | - Haiyan Fu
- Key Laboratory of Environmental Biotechnology (XMUT), Fujian Province University, Xiamen University of Technology, Xiamen, 361024, China; Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China
| |
Collapse
|
4
|
Wang D, Xiong F, Wu L, Liu Z, Xu K, Huang J, Liu J, Ding Q, Zhang J, Pu Y, Sun R. A progress update on the biological effects of biodegradable microplastics on soil and ocean environment: A perfect substitute or new threat? ENVIRONMENTAL RESEARCH 2024; 252:118960. [PMID: 38636648 DOI: 10.1016/j.envres.2024.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Conventional plastics are inherently difficult to degrade, causing serious plastic pollution. With the development of society, biodegradable plastics (BPs) are considered as an alternative to traditional plastics. However, current research indicated that BPs do not undergo complete degradation in natural environments. Instead, they may convert into biodegradable microplastics (BMPs) at an accelerated rate, thereby posing a significant threat to environment. In this paper, the definition, application, distribution, degradation behaviors, bioaccumulation and biomagnification of BPs were reviewed. And the impacts of BMPs on soil and marine ecosystems, in terms of physicochemical property, nutrient cycling, microorganisms, plants and animals were comprehensively summarized. The effects of combined exposure of BMPs with other pollutants, and the mechanism of ecotoxicity induced by BMPs were also addressed. It was found that BMPs reduced pH, increased DOC content, and disrupted the nitrification of nitrogen cycle in soil ecosystem. The shoot dry weight, pod number and root growth of soil plants, and reproduction and body length of soil animals were inhibited by BMPs. Furthermore, the growth of marine plants, and locomotion, body length and survival of marine animals were suppressed by BMPs. Additionally, the ecotoxicity of combined exposure of BMPs with other pollutants has not been uniformly concluded. Exposure to BMPs induced several types of toxicity, including neurotoxicity, gastrointestinal toxicity, reproductive toxicity, immunotoxicity and genotoxicity. The future calls for heightened attention towards the regulation of the degradation of BPs in the environment, and pursuit of interventions aimed at mitigating their ecotoxicity and potential health risks to human.
Collapse
Affiliation(s)
- Daqin Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lingjie Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhihui Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qin Ding
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Li Y, Tang Y, Qiang W, Xiao W, Lian X, Yuan S, Yuan Y, Wang Q, Liu Z, Chen Y. Effect of tire wear particle accumulation on nitrogen removal and greenhouse gases abatement in bioretention systems: Soil characteristics, microbial community, and functional genes. ENVIRONMENTAL RESEARCH 2024; 251:118574. [PMID: 38452911 DOI: 10.1016/j.envres.2024.118574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Tire wear particles (TWPs), as predominant microplastics (MPs) in road runoff, can be captured and retained by bioretention systems (BRS). This study aimed to investigate the effect of TWPs accumulation on nitrogen processes, focusing on soil characteristics, microbial community, and functional genes. Two groups of lab-scale bioretention columns containing TWPs (0 and 100 mg g-1) were established. The removal efficiencies of NH4+-N and TN in BRS significantly decreased by 7.60%-24.79% and 1.98%-11.09%, respectively, during the 101 days of TWPs exposure. Interestingly, the emission fluxes of N2O and CO2 were significantly decreased, while the emission flux of CH4 was substantially increased. Furthermore, prolonged TWPs exposure significantly influenced the contents of soil organic matter (increased by 27.07%) and NH4+-N (decreased by 42.15%) in the planting layer. TWPs exposure also significantly increased dehydrogenase activity and substrate-induced respiration rate, thereby promoting microbial metabolism. Microbial sequencing results revealed that TWPs decreased the relative abundance of nitrifying bacteria (Nitrospira and Nitrosomonas) and denitrifying bacteria (Dechloromonas and Thauera), reducing the nitrification rate by 42.24%. PICRUSt2 analysis further indicated that TWPs changed the relative abundance of functional genes related to nitrogen and enzyme-coding genes.
Collapse
Affiliation(s)
- Yunqing Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yinghui Tang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Weibo Qiang
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan, 430010, China
| | - Wenyu Xiao
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Xiaoke Lian
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shaochun Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ying Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qinyi Wang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China.
| |
Collapse
|
6
|
Wang K, Min W, Flury M, Gunina A, Lv J, Li Q, Jiang R. Impact of long-term conventional and biodegradable film mulching on microplastic abundance, soil structure and organic carbon in a cotton field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124367. [PMID: 38876376 DOI: 10.1016/j.envpol.2024.124367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Biodegradable film mulching has attracted considerable attention as an alternative to conventional plastic film mulching. However, biodegradable films generate transitory microplastics during the film degradation. How much of this transitory microplastics is being formed and their impact on soil health during long-term use of biodegradable plastic film are not known. Here, we quantified the amounts of microplastics (0.1 to 5 mm in size) in the topsoil (0-20 cm) of two cotton fields with different mulching cultivations: (1) continuous use of conventional (polyethylene, PE) film for 23 years (Plot 1), and (2) 15 years use of conventional film followed by 8 years of biodegradable (polybutylene adipate-co-terephthalate, PBAT) film (Plot 2). We further assessed the impacts of the microplastics on selected soil health parameters, with a focus on soil carbon contents and fluxes. The total amount of microplastics was larger in Plot 2 (8507 particles kg-1) than in Plot 1 (6767 particles kg-1). The microplastics (0.1-1 mm) were identified as derived from PBAT and PE in Plot 2; while in Plot 1, the microplastics were identified as PE. Microplastics > 1mm were exclusively identified as PE in both plots. Soil organic carbon was higher (27 vs. 30 g C kg-1 soil) but dissolved organic carbon (120 vs. 74 mg C kg-1 soil) and microbial biomass carbon were lower (413 vs. 246 mg C kg-1 soil) in Plot 2 compared to the Plot 1. Based on 13C natural abundance, we found that in Plot 2, carbon flow was dominated from micro- (<0.25 mm) to macroaggregates (0.25-2 and >2 mm), whereas in Plot 1, carbon flow occurred between large and small macroaggregates, and from micro- to macroaggregates. Thus, long-term application of biodegradable film changed the abundance of microplastics, and organic carbon accumulation compared to conventional polyethylene film mulching.
Collapse
Affiliation(s)
- Kai Wang
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Joint Laboratory of Cultural Heritage Conservation Science supported by the Belt and Road Initiative, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Min
- College of Agriculture, Shihezi University, Shihezi 832061, China
| | - Markus Flury
- Department of Crop and Soil Sciences, Washington State University, Pullman 99164 and Puyallup, WA 98371, United States
| | - Anna Gunina
- Department of Environmental Chemistry, University of Kassel, 37213, Witzenhausen, Germany; Peoples Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Jun Lv
- Shihezi Institute of Agricultural Sciences, Shihezi 832061, China
| | - Qiang Li
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; College of Horticulture & Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Jiang
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Joint Laboratory of Cultural Heritage Conservation Science supported by the Belt and Road Initiative, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Morreale M, La Mantia FP. Current Concerns about Microplastics and Nanoplastics: A Brief Overview. Polymers (Basel) 2024; 16:1525. [PMID: 38891471 PMCID: PMC11174615 DOI: 10.3390/polym16111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The widespread and increasing use of plastic-based goods in the present-day world has been raising many concerns about the formation of microplastics, their release, their impacts on the environment and, ultimately, on living organisms. These concerns are even greater regarding nanoplastics, i.e., nanosized microplastics, which may have even greater impacts. In this brief review, although without any claim or intention to exhaustively cover all the aspects of such a complex and many-sided issue, the very topical problem of the formation of microplastics, and the even more worrisome nanoplastics, from polymer-based products was considered. The approach is focused on a terse, straightforward, and easily accessible analysis oriented to the main technological engineering aspects regarding the sources of microplastics and nanoplastics released into the environment, their nature, some of the consequences arising from the release, the different polymers involved, their technological form (i.e., products or processes, with particular attention towards unintentional release), the formation mechanisms, and some possible mitigation pathways.
Collapse
Affiliation(s)
- Marco Morreale
- Department of Engineering and Architecture, Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy;
| | - Francesco Paolo La Mantia
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
8
|
Martín-Vélez V, Cano-Povedano J, Cañuelo-Jurado B, López-Calderón C, Céspedes V, Ros M, Sánchez MI, Shamoun-Baranes J, Müller W, Thaxter CB, Camphuysen CJ, Cózar A, Green AJ. Leakage of plastics and other debris from landfills to a highly protected lake by wintering gulls. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:13-23. [PMID: 38281470 DOI: 10.1016/j.wasman.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
GENERAL CONTEXT Gulls ingest plastic and other litter while foraging in open landfills, because organic matter is mixed with other debris. Therefore, gulls are potential biovectors of plastic pollution into natural habitats, especially when they concentrate in wetlands for roosting. NOVELTY We quantified, for the first time, the flow of plastic and other anthropogenic debris from open landfills to a natural lake via the movement of gulls. We focused on Fuente de Piedra, an inland closed-basin lake in Spain that is internationally important for biodiversity. METHODOLOGY In 2022, we sampled gull pellets regurgitated in the lake by lesser black-backed gulls Larus fuscus that feed on landfills, as well as their faeces, then characterized and quantified debris particles of ≥0.5 mm. By combining GPS and census data from 2010 to 2022, together with plastic quantification based on FTIR-ATR analysis, we estimated the average annual deposition of plastic and other debris by the wintering gull population into the lake. MAIN RESULTS 86 % of pellets contained plastics, and 94 % contained other debris such as glass and textiles. Polyethylene (54 %), polypropylene (11.5 %) and polystyrene (11.5 %) were the main plastic polymers. An estimated annual mean of 400 kg of plastics were moved by gulls into the lake. Only 1 % of plastic mass was imported in faeces. DISCUSSION Incorporating the biovectoring role of birds can provide a more holistic view of the plastic cycle and waste management. Biovectoring is predictable in sites worldwide where gulls and other waterbirds feed in landfills and roost in wetlands. We discuss bird deterrence and other ways of mitigating debris leakage into aquatic ecosystems.
Collapse
Affiliation(s)
- Víctor Martín-Vélez
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta, Barcelona 37-49 08003, Spain; Department of Conservation Biology and Global Change, Estación Biológica de Doñana CSIC, Américo Vespucio 26, Sevilla 41092, Spain.
| | - Julián Cano-Povedano
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana CSIC, Américo Vespucio 26, Sevilla 41092, Spain
| | - Belén Cañuelo-Jurado
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana CSIC, Américo Vespucio 26, Sevilla 41092, Spain
| | - Cosme López-Calderón
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana CSIC, Américo Vespucio 26, Sevilla 41092, Spain; Grupo de Investigación en Conservación. Biodiversidad y Cambio Global, Universidad de Extremadura, Badajoz, Spain
| | - Vanessa Céspedes
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana CSIC, Américo Vespucio 26, Sevilla 41092, Spain
| | - Macarena Ros
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6, Sevilla 41012, Spain
| | - Marta I Sánchez
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana CSIC, Américo Vespucio 26, Sevilla 41092, Spain
| | - Judy Shamoun-Baranes
- Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam 1090 GE, The Netherlands
| | - Wendt Müller
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp 2610, Belgium
| | - Chris B Thaxter
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, UK
| | - Cornelis J Camphuysen
- COS Department, Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Andrés Cózar
- Department of Biology, Institute of Marine Research (INMAR), University of Cadiz and European University of the Seas (SEA-EU), Puerto Real 11510, Spain
| | - Andy J Green
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana CSIC, Américo Vespucio 26, Sevilla 41092, Spain
| |
Collapse
|
9
|
Dong D, Guo Z, Yang X, Dai Y. Comprehensive understanding of the aging and biodegradation of polystyrene-based plastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123034. [PMID: 38016589 DOI: 10.1016/j.envpol.2023.123034] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
The extensive utilization and inadequate handling of plastics have resulted in severe environmental ramifications. In particular, plastics composed solely of a carbon-carbon (C-C) backbone exhibit limited degradation due to the absence of hydrolyzable functional groups. Plastics with enduring longevity in the natural environment are susceptible to environmental factors and their intrinsic properties, subsequently undergoing a series of aging processes that culminate in biodegradation. This article focuses on polystyrene (PS), which constitutes 20% of total plastic waste, as a case study. Initially, the application of PS in life and the impacts it poses are introduced. Following that, the key factors influencing the aging of PS are discussed, primarily encompassing its properties (e.g., surface characteristics, additives) and environmental factors (e.g., water matrices, biofilms). Lastly, an overview of microbial degradation of PS is provided, including potential microorganisms involved in PS degradation (bacteria, fungi, algae, and insects), four processes of microbial degradation (colonization, bio-fragmentation, assimilation, and mineralization), and potential mechanisms of microbial degradation. This study provides a comprehensive understanding of the multifaceted influences affecting the aging and biodegradation mechanisms of PS, thereby contributing valuable insights for the future management of plastic pollution.
Collapse
Affiliation(s)
- Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China.
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
10
|
Shanmugam SD, Praveena SM, Wahid SA, Liew JYC. Occurrence and characteristics of microplastics pollution in tropical agricultural soils in Klang Valley, Malaysia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:144. [PMID: 38214797 DOI: 10.1007/s10661-024-12330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Presently, microplastic pollution has emerged as a growing environmental risk around the world. Nevertheless, knowledge of the occurrence and characteristics of microplastics in tropical agricultural soil is limited. This study investigated the pollution of surface soil microplastics in two agricultural farms located at Klang Valley, Malaysia. An extraction method based on density separation by using saturated extraction solution (sodium sulfate, ρ = 2 g cm-3 and sucrose, ρ = 1.59 g cm-3 with a ratio 1:1, v/v) was carried out. The study revealed the mean particle size of soil microplastics with 3260.76 ± 880.38 μm in farm A and 2822.31 ± 408.48 μm in farm B. The dominant types of soil microplastics were fragments and films with major colors of white (59%) and transparent (28%) in farm A, while black (52%) and white (37.6%) in farm B. Representatives of soil microplastics detected polymers of polyvinyl chloride (PVC), high density polyethylene (HDPE), polycarbonate (PC), and polystyrene (PS). The sources of plastic products were black and white plastic pipes, black plastic films for vegetation, fertilizer bottles, plastic water containers and polystyrene storage boxes, and the breakdown processes, contributed to the microplastic pollution in these farms. The outcomes of this study will establish a better understanding of microplastic pollution in tropical agricultural soil in the Southeast Asian region. The findings would be beneficial as supportive reference for the endeavor to reduce microplastic pollution in agricultural soil.
Collapse
Affiliation(s)
- Shyamala Devi Shanmugam
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Samsuri Abdul Wahid
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Josephine Ying Chyi Liew
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|