1
|
Xu Z, Zhang J, Qi R, Liu Q, Cao H, Wen F, Liao Y, Shih K, Tang Y. Complex release dynamics of microplastic additives: An interplay of additive degradation and microplastic aging. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137711. [PMID: 40024124 DOI: 10.1016/j.jhazmat.2025.137711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
This study investigates the complex dynamics of additive release from microplastics in aquatic environments under natural ultraviolet (UV) radiation, which is critical for assessing ecotoxicological impacts and developing pollution remediation strategies. We focused on release kinetics of additives (Dimethyl phthalate (DMP), Dibutyl phthalate (DBP), Di(2-ethylhexyl) phthalate (DEHP), Bisphenol A (BPA) and Decabromodiphenyl ether (BDE-209)) from polyvinyl chloride (PVC), polyethylene (PE), and acrylonitrile-butadiene-styrene (ABS) microplastics exposed to UV light, exploring the interplay between additive release, photodegradation, and microplastic aging. Initial results showed a consistent release pattern, but under UV exposure, the release became more complex due to additive degradation and changes in the microplastics' structure. Factors such as polymer type, microplastic size, additive content, and environmental conditions (UV or darkness) significantly influenced the release quantity and kinetics. UV-induced additive degradation altered the concentration gradient between the microplastic and water, while aging, marked by changes in surface chemistry and internal polymer breakdown, accelerated additive release. By applying Inner Particle Diffusion (IPD) and Aqueous Boundary Layer Diffusion (ABLD) models, we demonstrated how UV-induced degradation and aging affected key parameters like the diffusion and partition coefficients, impacting the overall release process. These insights lay the foundation for understanding the environmental risks posed by microplastic additives and developing strategies to mitigate their impact in aquatic ecosystems.
Collapse
Affiliation(s)
- Zhe Xu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR
| | - Jianshuai Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruimin Qi
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Liu
- Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, China
| | - Hongmei Cao
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng Wen
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yixin Liao
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR
| | - Yuanyuan Tang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Chia RW, Lee JY, Cha J, Viaroli S, Atem NV. Methods to optimize the collection, pretreatment, extraction, separation, and examination of microplastics in soil, groundwater, and human samples. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137807. [PMID: 40054189 DOI: 10.1016/j.jhazmat.2025.137807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) in soil, groundwater, and human (SGH) present a significant global challenge due to their ecological and human health impacts. However, current protocols for detecting MPs in these environments and humans are limited, inconsistently applied, and vary significantly, particularly during the pretreatment stages of MP analysis. Moreover, no study has investigated the impact of methodological flaws on MP detection. This study conducted a thorough global assessment of the existing soil and groundwater (SG) pretreatment methods, using statistical tests to evaluate their effectiveness. It also reviewed filtration and analytical techniques for MPs in SGH samples. The analysis included research articles from PubMed, Google Scholar, Scopus, and Web of Science published between 2015 and 2024. Findings show that pretreatment using more than 100 g of soil can impact MP quantification, likely due to soil heterogeneity, while groundwater volume did not significantly affect MP quantification, likely due to the homogeneity of groundwater. During SGH pretreatment, various salts (e.g., ZnCl2 and NaCl) can be used for density flotation. Fenton's reagent was found to be a better choice than H2O2 for organic material removal because less heat was released. Post treatment MPs in SGH samples can be analyzed using various instruments and resolutions such as FTIR down to 1-5 µm, ATR-FTIR down to 2 µm, micro-Raman down to 500 nm, and LDIR down to 1 µm. This study lays the foundation for developing an effective MP analysis in SGH.
Collapse
Affiliation(s)
- Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; Research Institute for Earth Resources, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; Research on Microplastics in Groundwater (RMPG), Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Jihye Cha
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; School of Science and Engineering, University of Missouri, Kansas City, MO 64110, USA
| | - Stefano Viaroli
- Department of Earth Sciences, University of Pisa, Pisa, Italy
| | - Ntegang Venant Atem
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Zhang Y, Wang P, Tang Y, Liao C, Tang X, Hou P, Chen C, Huang X, Lu G, Li L, Zhang M, Li F, Mei S, Chen C, Li P. Cooperation of Lactoplantibacillus plantarum and polyethylene microplastics facilitated the disappearance of tetracycline during anaerobic fermentation of whole plant maize. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137172. [PMID: 39818061 DOI: 10.1016/j.jhazmat.2025.137172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
In agricultural production systems, the harm of both antibiotics and microplastics (MPs) to human health has been an important and continuously concerned issue. A small bagged silage production system was designed to investigate the effects of Lactoplantibacillus plantarum, polyethylene (PE) -MPs and their mixture on the silage fermentation and chemical composition of Tetracycline (TET) -contaminated whole plant maize. In addition, the bacterial community of silage samples was analyzed by using next generation genome sequencing technology. The formation of an extremely acidic environment (pH < 3.8) by ensiling effectively promoted the degradation of tetracycline (about 12.36 ng/ml), with PE-MPs particles also cleaved from 100 μm to 10 μm (in diameter) after 60 days of anaerobic storage. The PE-MPs physically adsorbed TET through its special pore structure and interacted with silage fermentation-dominated microorganisms including Lacticaseibacillus with relative abundances of 33-95 %, where the combination of PE-MPs and L. plantarum degrades tetracycline to 7.05 ng/ml. The PE-MPs inclusion enhanced the fermentation function of Lacticaseibacillus and stabilized the pH, ammonia nitrogen and other chemical indices of silage mass. Importantly, the co-occurrence of PE-MPs sustained also the dominance of desirable Lacticaseibacillus at late stage of ensiling with TET-contaminated maize. Therefore, the combination of PE-MPs and L. plantarum counteracted undesirable silage fermentation from TET contamination, reduced hypothetically the risks to animal and even human health by unappreciated use of antibiotics in agricultural production system.
Collapse
Affiliation(s)
- Yubo Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Pan Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yu Tang
- Southwest University of Science and Technology, Mianyang 621010, China
| | - Chaosheng Liao
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiaolong Tang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Pai Hou
- Clover (Beijing) Eco-Technology Co, Ltd., Beijing 101318, China
| | - Cheng Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiaokang Huang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Guangrou Lu
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Lin Li
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Mingjie Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Fuxiang Li
- Experimental Station of Grassland in Plateau, Weining 553199, China
| | - Shihui Mei
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Wang K, Liu X, Chadwick DR, Yan C, Reay M, Ge T, Ding F, Wang J, Qi R, Xiao M, Jiang R, Chen Y, Ma J, Lloyd C, Evershed RP, Luo Y, Zhu Y, Zhang F, Jones DL. The agricultural plastic paradox: Feeding more, harming more? ENVIRONMENT INTERNATIONAL 2025; 198:109416. [PMID: 40215920 DOI: 10.1016/j.envint.2025.109416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
Agricultural plastic film mulch (PFM) covers ca. 50 million hectares of the Earth's surface and has revolutionized agriculture, particularly in arid and semi-arid regions, by improving crop yields, water use efficiency, farmer incomes and feeding an extra 85 million people in China alone. However, concerns are growing about the impact of PFM-derived microplastics (MP) on soil quality, the food chain, and the environment. Here we show that current research on the effects of MP in agricultural soils is limited by inconsistent methodologies and unrealistic experimental concentrations, leading to major uncertainty in assessing the true risks associated with PFM use. Furthermore, we highlight the need for standardized protocols, experiments using realistic MP concentrations, and a better understanding of the relative contribution of PFM to MP pollution to develop informed policies. Furthermore, while biodegradable alternatives show promise, their significantly higher costs (2-3 times that of conventional LDPE PFM) and variable performance across different agricultural environments present economic and practical challenges that must be addressed through targeted policy incentives and continued technological innovation. Our findings suggest that while further research is conducted, managing PFM to reduce environmental impact, rather than imposing ill-informed bans on plastic use, is crucial to balance food security and sustainable development goals. Exploring "zero-leakage" instead of "zero-use" approaches to PFM should be the primary aim to help mitigate potential risks while preserving the substantial benefits of this agricultural technology.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, PR China
| | - Xuejun Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, PR China
| | - David R Chadwick
- School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Changrong Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Michaela Reay
- School of Chemistry, University of Bristol, Bristol BS8 1TH, UK
| | - Tida Ge
- State Key Laboratory for Quality and Safety of Agro-Products, International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo University, Ningbo 315211, PR China
| | - Fan Ding
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110086, PR China
| | - Jingkuan Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110086, PR China
| | - Ruimin Qi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Mouliang Xiao
- State Key Laboratory for Quality and Safety of Agro-Products, International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo University, Ningbo 315211, PR China; State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Rui Jiang
- Research Center for Cultural Landscape Protection and Ecological Restoration, China-Portugal Belt and Road Cooperation Laboratory of Cultural Heritage Conservation Science, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, PR China
| | - Yanling Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Ji Ma
- College of Economics and Management, China Agricultural University, Beijing 10083, PR China
| | - Charlotte Lloyd
- School of Chemistry, University of Bristol, Bristol BS8 1TH, UK
| | | | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, PR China
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, UK.
| |
Collapse
|
5
|
Zhang L, Zhao W, Yan R, Lyu S, Sui Q. Occurrence, sources, and ecological risk of microplastics in groundwater: Impacts by agricultural activities and atmospheric deposition. WATER RESEARCH 2025; 281:123585. [PMID: 40198953 DOI: 10.1016/j.watres.2025.123585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Although microplastic (MP) pollution in groundwater is a serious issue, its potential sources and environmental risks are poorly understood. This study identified the sources of MPs in groundwater from a megacity in China. It estimated the environmental risks of MPs using a combination of the pollution load index (PLI), the polymer hazard index (PHI), and the potential ecological risk index (PERI). The groundwater in Shanghai showed high MP abundances, ranging from 3 ± 3 particles/L to 99 ± 19 particles/L. A total of 43 polymer types were detected, of which polypropylene (PP) and polyethylene (PE) were the main polymer types. Groundwater in agricultural areas has the highest level of MP pollution, with >50 % of MPs being identified as PP. Plastic woven bags used in agricultural activities were the primary sources. Similar characteristics of MPs in groundwater from open wells and atmospheric deposition samples suggested that atmospheric deposition was a significant source of MPs in groundwater from open wells. Landfills and construction activities were also recognized as potential MP pollution sources in groundwater. Based on PLI, PHI and PERI analysis, the groundwater in Shanghai exhibited a high MP pollution load, a middle polymer hazard, and a high potential ecological risk level, respectively. The PERI analysis, a comprehensive assessment compared to the PLI and PHI analyses, indicated an overall high ecological risk of MPs in agricultural groundwater. This study advances the knowledge of MP sources and their ecological risks in groundwater, allowing for better MP pollution control in areas with high MP abundance and high risk levels.
Collapse
Affiliation(s)
- Lei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Ruiqi Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
6
|
Bello FA, Folorunsho AB, Chia RW, Lee JY, Fasusi SA. Microplastics in agricultural soils: sources, impacts on soil organisms, plants, and humans. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:448. [PMID: 40116958 DOI: 10.1007/s10661-025-13874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Agricultural land has long been regarded as a resource for food production, but over time, the effects of climate change have reduced the ability of soil to produce food efficiently. Nowadays, farmers have moved from traditional to modern techniques of farming. Across the globe, plastic mulching has become widely used on farmlands. According to a few studies, the breakdown of plastic mulches releases microplastics (MPs) into the soil. Despite studies reporting the presence of MPs in soils, there are limited studies on the sources and impacts on soil organisms, plant growth, fruits, and human health. This study evaluated research articles collected from the Web of Science to assess the origin of MP in soil and crops and its effects on soil organisms, plants, and humans. It was observed that MPs come from different sources such as waste water, organic fertilizer, irrigation water, sewage, and sludge. Plastic mulching, which can spread across agricultural fields at varying depths, is the dominant source. Furthermore, it was observed that MPs alter crop quality, reduce the leaf count of wheat, and decrease the root length of crops such as maize, water spinach, black gram, and garden cress. MP can decrease the abundance of soil microarthropods and nematodes, damage the intestinal walls of earthworms, and reduce the feeding and excretion of snails. MP causes liver damage, inflammation, respiratory irritation, and immunological issues. Ultimately, these contaminants (MPs) can transfer and have been detected in fruits and vegetables, which pose adverse effects on human health.
Collapse
Affiliation(s)
- Fatimo Ajoke Bello
- Department of Soil Science, Federal University of Agriculture Abeokuta, P.M.B, 2240, Alabata Road, Abeokuta, Ogun State, Nigeria
- Department of Environmental Standard, University of Lagos, Akoka, Yaba, Lagos, Nigeria
| | - Abidemi Bashiru Folorunsho
- Department of Civil and Construction Engineering, Kangwon National University, 346 Jungang-Ro, Samcheok, 25913, Republic of Korea
| | - Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Research Institute for Earth Resources, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Research on Microplastics in Groundwater (RMPG), Kangwon National University, Chuncheon, 24341, Republic of Korea
| | | |
Collapse
|
7
|
Zhang H, Yang X, Wang K, Cui J, Ritsema CJ, Yan C, Liu X, Geissen V. Macro- and micro-plastic accumulation in soils under different intensive farming systems: A case study in Quzhou county, the North China Plain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125312. [PMID: 39547560 DOI: 10.1016/j.envpol.2024.125312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The macroplastics (MaPs) and microplastics (MiPs) polluting agricultural soils raise great concerns. Unfortunately, scientists know little about the occurrence of MaPs/MiPs in soil among different farming systems. In this study, we analyzed MaPs/MiPs in soils (0-30 cm) collected from six different farming systems (wheat-maize rotations, cotton, vegetables, permanent orchards, greenhouses with and without mulching) in Quzhou county, the North China Plain, by using fluorescence microscope and micro-Fourier transform infrared spectroscopy. The results showed that the abundance of MaPs and MiPs ranged from 0.2 to 46.8 kg ha-1, and 4.1 × 103-3.7 × 104 items kg-1, respectively. The prominent colors of the MaPs were white and black. The predominant shape, size and chemical composition of soil MiPs were fragments (45-62%), <1 mm (98-99%), and polyethylene (38-43%), respectively. MaPs were mainly detected in the 0-10 cm soil layer. MiP abundance in the 0-10 cm soil layer was significantly higher than that in the 20-30 cm soil layers among different farming systems, except for the fields with wheat-maize rotations and permanent orchards (p < 0.05). Overall, cotton fields showed the highest MaP and MiP abundance, followed by vegetable fields and orchards. Redundancy analysis revealed that tillage practices and plastic film management greatly influence the size distribution of MiPs. A strong negative correlation between large-sized plastic fractions (0.2-1 mm) and tillage frequency was tested while the years of application of plastic films and the abundance of plastic residues showed a strong positive correlation with small-sized plastic fractions (<0.2 mm). Our findings conclude that agricultural mulch films are an important source of MaPs and MiPs in agricultural soil and distributions are strongly influenced by agricultural management practices and farming systems. Further studies should take farming systems and farming practices into account, thereby exploring the potential mechanisms of plastic fragmentation and granularization in agricultural soil.
Collapse
Affiliation(s)
- Hanyue Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Xiaomei Yang
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands; College of Resources and Environmental Sciences, Northwest A&F University, 712100, Yangling, China
| | - Kai Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China.
| | - Jixiao Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Coen J Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Changrong Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xuejun Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
8
|
Wrigley O, Braun M, Amelung W. Global soil microplastic assessment in different land-use systems is largely determined by the method of analysis: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177226. [PMID: 39481568 DOI: 10.1016/j.scitotenv.2024.177226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/30/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Although microplastics (1 μm - 5 mm, MP) are increasingly recognised as a novel entity of pollutants, we still lack a basic understanding of their prevalence in different terrestrial environments. Here, we aimed at performing comparisons of MP concentrations (items kg-1) in different agro-ecosystems, with specific focus on input pathways and land uses, while accounting for the plethora of method variations available, such as analysed MP sizes, sampling depths, density separation solutions, as well as removal of organic matter. We found that the current global means of MP loads, from 89 studies (553 sites), benchmarks 2900 ± 7600 MP items kg-1 soil, substantially more than the global median of 480 MP items kg-1. Roughly 81 % of the studies were conducted in Asia; hence, continent-wide comparisons are still hampered by low study numbers for most regions. Maximum MP numbers were found for soils under both greenhouses and plastic mulching (5200 ± 8300 items kg-1), followed by arable soils with sludge amendments (3700 ± 8800 items kg-1), surprisingly without evidence of elevated MP loads in horticultural fields relative to other agricultural management practices. Intriguingly, global MP loads significantly increased with decreasing levels of urbanisation, i.e., they were highest in rural areas. Yet, quantitative comparisons among sites are biased by the methodology selected for MP analyses. Apart from inconsistencies in sampling depth and size of screened MP particles, across all sites and treatments, largest MP loads were commonly found when using high-density solutions rather than low-density ones, and when soil organic matter removal was performed after, and not before, the density separation step.
Collapse
Affiliation(s)
- Olivia Wrigley
- Institute of Crop Science and Resource Conservation (INRES) - Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| | - Melanie Braun
- Institute of Crop Science and Resource Conservation (INRES) - Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES) - Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany
| |
Collapse
|
9
|
Macan GPF, Munhoz DR, Willems LAJ, Monkley C, Lloyd CEM, Hageman J, Geissen V, Landa BB, Harkes P. Macro- and microplastics leachates: Characterization and impact on seed germination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136013. [PMID: 39423638 DOI: 10.1016/j.jhazmat.2024.136013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Although plastic mulch enhances crop yield, its removal and disposal present significant challenges, contributing to macro- and microplastic pollution in agricultural soils. The adverse effects of this pollution on soil and plant health are not fully understood but may stem from the plastic particles or the toxicity of leached chemical additives. This study assessed the impact of macro- and microplastics from nondegradable LDPE-based (LDPEb) and biodegradable PBAT-based (PBATb) mulch films, along with their leachates, on the germination of three plant species. After seven days of incubation, PBAT mulch leached compounds that significantly inhibited Arabidopsis germination, while cotton and tomato exhibited notable tolerance. Notably, PBATb mulch released a higher concentration of compounds, whereas LDPEb mulch exhibited a greater diversity of leached chemicals. Microplastic particles alone did not hinder seed germination, indicating that plastic toxicity primarily arises from the leachates. Many of these leached compounds lack global regulation and hazard information, underscoring the urgent need for further investigation into their environmental impacts and the development of appropriate regulatory frameworks to mitigate the potential toxicity of chemicals from conventional and biodegradable mulches.
Collapse
Affiliation(s)
- Giovana P F Macan
- Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain; Programa de Doctorado de Ingeniería Agraria, Alimentaria, Forestal y de Desarrollo Rural Sostenible, Universidad de Córdoba, Córdoba, Spain.
| | - Davi R Munhoz
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands.
| | - Leo A J Willems
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Charlie Monkley
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
| | - Charlotte E M Lloyd
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK; School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Jos Hageman
- Biometris, Applied Statistics, Wageningen University & Research, Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Blanca B Landa
- Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| |
Collapse
|
10
|
Chanda M, Bathi JR, Khan E, Katyal D, Danquah M. Microplastics in ecosystems: Critical review of occurrence, distribution, toxicity, fate, transport, and advances in experimental and computational studies in surface and subsurface water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122492. [PMID: 39307085 DOI: 10.1016/j.jenvman.2024.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 11/17/2024]
Abstract
Microplastics (MPs), particles under 5 mm, pervade water, soil, sediment, and air due to increased plastic production and improper disposal, posing global environmental and health risks. Examining their distribution, quantities, fate, and transport is crucial for effective management. Several studies have explored MPs' sources, distribution, transport, and biological impacts, primarily focusing on the marine environment. However, there is a need for a comprehensive review of all environmental systems together for enhanced pollution control. This review critically examines the occurrence, distribution, fate, and transport of MPs in the following environments: freshwater, marine, and terrestrial ecosystems. The concentration of MPs is highly variable in the environment, ranging from negligible to significant amounts (0.003-519.223 items/liter in water and 0-18,000 items/kg dry weight sediment, respectively). Predominantly, these MPs manifest as fibers and fragments, with primary polymer types including polypropylene, polystyrene, polyethylene, and polyethylene terephthalate. A complex interplay of natural and anthropogenic actions, including wastewater treatment plant discharges, precipitation, stormwater runoff, inadequate plastic waste management, and biosolid applications, influences MPs' presence and distribution. Our critical synthesis of existing literature underscores the significance of factors such as wind, water flow rates, settling velocities, wave characteristics, plastic morphology, density, and size in determining MPs' transport dynamics in surface and subsurface waters. Furthermore, this review identifies research gaps, both in experimental and simulation, and outlines pivotal avenues for future exploration in the realm of MPs.
Collapse
Affiliation(s)
- Mithu Chanda
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States
| | - Jejal Reddy Bathi
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, United States
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Michael Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| |
Collapse
|
11
|
Miao H, Zhang S, Gao W, Zhou J, Cai H, Wu L, Liu J, Wang Z, Liu T. Microplastics occurrence and distribution characteristics in mulched agricultural soils of Guizhou province. Sci Rep 2024; 14:21505. [PMID: 39277645 PMCID: PMC11401850 DOI: 10.1038/s41598-024-72829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024] Open
Abstract
Microplastics pollution in agricultural soil is increasingly recognized, but the specific situation varies with geography, climate conditions, and farming practices. The karst landscape, a typical geomorphology in China, demands a deeper understanding of microplastics pollution in such areas. This research zeroes in on Guizhou, a province known for its karst formations, by collecting soil samples from the mulched cultivation layer in ten counties and cities. The study employed metallographic microscopy, scanning electron microscopy (SEM-EDS), and Fourier-transform infrared spectroscopy (FT-IR) to analyze the presence and distribution of microplastics. Results show that polyethylene is the predominant component of microplastics in the mulched agricultural soils of Guizhou, primarily existing as irregular fragments in black, transparent, and translucent forms, with diameters of 40 ~ 120 μm and rough surfaces marked by significant erosion. The concentration of microplastics varies from 143.28 to 3,283.46 items/kg, averaging 1,150.60 ± 647.86 items/kg. The majority of particles accounting for 64.79% are sized between 10 ~ 100 μm. A highly significant positive correlation (p < 0.001) is found between mulching duration and microplastics concentration, indicating that prolonged mulching increases microplastics accumulation in farmlands. Additionally, crop type, irrigation method, and soil type also influence microplastics concentration. This study highlights the escalating issue of microplastics pollution in China's karst regions, underscoring the need for attention.
Collapse
Affiliation(s)
- Haiying Miao
- College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, 550025, China
- Engineering Research Center of Green and Low-carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang, 550025, China
| | - Shuyi Zhang
- College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Weichang Gao
- Upland Flue-cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guizhou Academy of Tobacco Science, Guiyang, 550081, China.
| | - Jianyun Zhou
- Guiyang Tobacco Company of Guizhou Province, Guiyang, 550001, China
| | - Heqing Cai
- Bijie Tobacco Company of Guizhou Province, Bijie, 551700, China
| | - Linjing Wu
- College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, 550025, China
- Engineering Research Center of Green and Low-carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang, 550025, China
| | - Juncong Liu
- College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, 550025, China
- Engineering Research Center of Green and Low-carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang, 550025, China
| | - Zhanghong Wang
- College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, 550025, China
- Engineering Research Center of Green and Low-carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang, 550025, China
- Research Center of Solid Waste Pollution Control and Recycling, Guizhou Minzu University, Guiyang, 550025, China
| | - Taoze Liu
- College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, 550025, China.
- Engineering Research Center of Green and Low-carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang, 550025, China.
| |
Collapse
|
12
|
Qi R, Jones DL, Tang Y, Gao F, Li J, Chi Y, Yan C. Regulatory path for soil microbial communities depends on the type and dose of microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134702. [PMID: 38788589 DOI: 10.1016/j.jhazmat.2024.134702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
To reveal the feedbacks and regulating mechanisms of microplastic types and doses on microbial community, a microcosm experiment was carried out with two non-degradable microplastics [polyethylene (PE) and polyvinyl chloride (PVC)] and four biodegradable microplastics [poly(butylene succinate) (PBS), polyhydroxyalkanoates (PHA), poly(butyleneadipate-co-terephthalate) (PBAT), and polypropylene carbonate (PPC)] at different levels (1 %, 7 %, and 28 %). As a result, the content of total carbon (TC), soil organic carbon (SOC), and microbial biomass carbon (MBC) (expect MBC in PBS soil) increased with increasing doses of microplastics, and increased at the lowest PE dose rate. Biodegradable microplastics created a more active ecological niche while enriching more pathogens than non-degradable microplastics. Structural equation modeling indicated that microbial diversities were in a type-dependent assembly, whereas microbial compositions were more profoundly affected by the microplastic doses, ultimately. The standardized total effect coefficient of microplastic types on bacterial and fungal diversities was - 0.429 and - 0.282, and that of doses on bacterial and fungal compositions was 0.487 and 0.336, respectively. Both microplastic types and doses significantly impacted pH, electrical conductivity, total nitrogen, TC, SOC, and MBC, subsequently inhibiting microbial diversities and stimulating microbial compositions with particular pathways. The results provide a comprehensive understanding for evaluating the potential risk of microplastics.
Collapse
Affiliation(s)
- Ruimin Qi
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Yuanyuan Tang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Fengxiang Gao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry CAS, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiawei Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yihan Chi
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changrong Yan
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
13
|
Convertino F, Carroccio SC, Cocca MC, Dattilo S, Dell'Acqua AC, Gargiulo L, Nizzetto L, Riccobene PM, Schettini E, Vox G, Zannini D, Cerruti P. The fate of post-use biodegradable PBAT-based mulch films buried in agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174697. [PMID: 39019280 DOI: 10.1016/j.scitotenv.2024.174697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
The fate of black biodegradable mulch film (MF) based on starch and poly(butylene-adipate-co-terephthalate) (PBAT) in agricultural soil is investigated herein. Pristine (BIO-0) and UV-aged film samples (BIO-A192) were buried for 16 months at an experimental field in southern Italy. Visual, physical, chemical, morphological, and mechanical analyses were carried out before and after samples burial. Film residues in the form of macro- and microplastics in soil were analyzed at the end of the trial. Progressive deterioration of both pristine and UV-aged samples, with surface loss and alterations in mechanical properties, occurred from 42 days of burial. After 478 days, the apparent surface of BIO-0 and BIO-A192 films decreased by 57 % and 66 %, respectively. Burial determined a rapid depletion of starch from the polymeric blend, especially for the BIO-A192, while the degradation of the polyester phase was slower. Upon burial, an enrichment of aromatic moieties of PBAT in the film residues was observed, as well as microplastics release to soil. The analysis of the MF degradation products extracted from soil (0.006-0.008 % by mass in the soil samples) revealed the predominant presence of adipate moieties. After 478 days of burial, about 23 % and 17 % of the initial amount of BIO-0 and BIO-A192, respectively, were extracted from the soil. This comprehensive study underscores the complexity of biodegradation phenomena that involve the new generation of mulch films in the field. The different biodegradability of the polymeric components, the climate, and the soil conditions that did not strictly meet the parameters required for the standard test method devised for MFs, have significantly influenced their degradation rate. This finding further emphasizes the importance of implementing field experiments to accurately assess the real effects of biodegradable MFs on soil health and overall agroecosystem sustainability.
Collapse
Affiliation(s)
- Fabiana Convertino
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy
| | - Sabrina Carola Carroccio
- National Research Council of Italy, Institute of Polymers, Composites and Biomaterials (CNR-IPCB), Catania, Italy
| | - Maria Cristina Cocca
- National Research Council of Italy, Institute of Polymers, Composites and Biomaterials (CNR-IPCB), Pozzuoli (Naples), Italy
| | - Sandro Dattilo
- National Research Council of Italy, Institute of Polymers, Composites and Biomaterials (CNR-IPCB), Catania, Italy
| | | | - Luca Gargiulo
- National Research Council of Italy, Institute of Polymers, Composites and Biomaterials (CNR-IPCB), Pozzuoli (Naples), Italy
| | - Luca Nizzetto
- Norwegian Institute for Water Research, Oslo, Norway; Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
| | - Paolo Maria Riccobene
- National Research Council of Italy, Institute of Polymers, Composites and Biomaterials (CNR-IPCB), Catania, Italy
| | - Evelia Schettini
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy.
| | - Giuliano Vox
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy
| | - Domenico Zannini
- National Research Council of Italy, Institute of Chemical Sciences and Technologies "G. Natta" (CNR-SCITEC), Genova, Italy
| | - Pierfrancesco Cerruti
- National Research Council of Italy, Institute of Polymers, Composites and Biomaterials (CNR-IPCB), Pozzuoli (Naples), Italy
| |
Collapse
|
14
|
Bai R, Liu H, Cui J, Wu Y, Guo X, Liu Q, Liu Q, Gao H, Yan C, He W. The characteristics and influencing factors of farmland soil microplastic in Hetao Irrigation District, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133472. [PMID: 38219587 DOI: 10.1016/j.jhazmat.2024.133472] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Microplastic pollution, a major global concern, has garnered increasing attention in agricultural ecosystem research. China's Hetao Irrigation District, vital for grain production in the Yellow River Basin, lacks sufficient research on microplastic pollution of agricultural soils. This study, based on a detailed background investigation and testing of 47 samples, is the first to elucidate the characteristics and potential influencing factors of microplastics in the Hetao Irrigation District. The abundance of microplastics in the farmland soil ranged from 1810 to 86331 items/kg, with 90% measuring below 180 µm and mainly in film and fragment forms. Predominant polymers were polyethylene (PE, 43.0%) and polyamide (PA, 27.8%). Key pollution influencers were identified as agricultural inputs, with low-density polyethylene (LDPE) being the most extensively used plastic type. The carbonyl index and hydroxyl indices of the detected LDPE microplastics ranged from 0.041 to 0.96 and 0.092 to 1.20, respectively. The study highlights the significance of mulching management and agronomic practices in shaping microplastic characteristics. Potential pollution sources include agricultural inputs, irrigation equipment, domestic waste, and tire wear. Proposed effective strategies include responsible plastic use, robust waste management, and irrigation system upgrades, establishing a foundation for future ecological risk assessments and effective management approaches in the Hetao Irrigation District. ENVIRONMENTAL IMPLICATION: The harmful substances studied in this paper are microplastics, which are widely distributed in the environment and have potential ecological risks. This study is the first to investigate the characteristics of microplastics in farmland soil within the Hetao Irrigation Area, a region that is of critical importance to agricultural production in the Yellow River Basin of China. The study provides comprehensive insights into the factors influencing the characteristics of microplastics and speculates on their sources. These findings offer a novel perspective on the assessment of microplastic contamination in the area and provide valuable recommendations for prevention and control measures.
Collapse
Affiliation(s)
- Runhao Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongjin Liu
- Inner Mongolia Autonomous Region Agriculture Ecology and Resource Protection Center, Huhhot 010011, China
| | - Jixiao Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Yan Wu
- Inner Mongolia Autonomous Region Agriculture Ecology and Resource Protection Center, Huhhot 010011, China
| | - Xiaoyu Guo
- Inner Mongolia Autonomous Region Agriculture Ecology and Resource Protection Center, Huhhot 010011, China
| | - Qin Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haihe Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changrong Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wenqing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
15
|
Wang S, Li X, Li Q, Sun Z, Qin M. Preparation and characterization of a novel high barrier mulching film with tunicate cellulose nanocrystals/sodium alginate/alkali lignin. Int J Biol Macromol 2024; 262:129588. [PMID: 38296668 DOI: 10.1016/j.ijbiomac.2024.129588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
In this study, the base film (CSL) was prepared by blending tunicate cellulose nanocrystals (TCNCs) extracted from tunicate shells, with sodium alginate (SA) and alkali lignin (AL). Then, the mulching film (CSL-WK) was prepared using water-borne polyurethane (WPU) as binder to install low-energy Kaolin on the surface of CSL film. The influences of composition with different concentrations on mechanical properties were studied. The tensile strength and elongation at break of CSL-WK film could reach 86.58 MPa and 50.49 %, respectively. The mulching films were characterized by degradability test, SEM, FTIR, and TGA. TCNCs had good compatibility with SA and AL, and a rough structure was formed on the surface of the film to improve the hydrophobicity. The barrier properties, including ultraviolet resistance, water contact angle, water vapor permeability, water retention, and flame retardancy, were tested. The results showed that CSL-WK films could block 97 % of ultraviolet light, reduce about 25 % of soil water loss, and self-extinguish within 7 s of open flame ignition. Note that the secondary spraying method significantly improved the barrier property of films. This study lays a foundation for the preparation of ecologically friendly, biodegradable, and high barrier mulching film, and expands the application of marine resources.
Collapse
Affiliation(s)
- Shujie Wang
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Xiang Li
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Qing Li
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Zhonghua Sun
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271000, China.
| | - Menghua Qin
- College of Qilu Normal University, Jinan 250200, China
| |
Collapse
|
16
|
Gong K, Zhang Q, Shao X, Wu Y, Qiao Z, Qiu L, Zhang W, Peng C. Microplastics alter Cr accumulation and fruit quality in Cr(VI) contaminated soil-cucumber system during the lifecycle: Insight from rhizosphere bacteria and root metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168792. [PMID: 38000747 DOI: 10.1016/j.scitotenv.2023.168792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Both microplastics and Cr(VI) potentially threaten soil and crops, but little is known about their interaction in the soil-plant system. This study investigated the effect and mechanism of polyethylene (PE), polyamide (PA), and polylactic acid (PLA) microplastics on Cr bioaccumulation and toxicity in a Cr(VI) contaminated soil-cucumber system during the lifecycle. The results show that microplastics had a greater effect on Cr accumulation in cucumber roots, stems, and leaves than in fruits. PE microplastics increased, but PA and PLA microplastics decreased the Cr accumulation in cucumber. Microplastics, especially high-dose, small, and aged microplastics, exacerbated the effects of accumulated Cr in cucumber on fresh weight and fruit yield. The nutrient contents in fruits except soluble sugars were reduced by microplastics. The random forest regression model shows that the microplastic type was the most important factor causing changes in the soil-cucumber system except for Cr(VI) addition. Under Cr(VI) and microplastic co-exposure, bacteria that could simultaneously tolerate Cr(VI) stress and degrade microplastics were enriched in the rhizosphere soil. The partial least squares path model shows that microplastics reduced the beneficial effect of the bacterial community on cucumber growth. Microplastics, especially PLA microplastics, alleviated the adverse effects of Cr(VI) stress on root metabolism.
Collapse
Affiliation(s)
- Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road, Nanjing 210008, China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linlin Qiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|