1
|
Wang X, Nie T, Li A, Ma J. Hesperidin mitigated deoxynivalenol-induced liver injury by inhibiting ROS/ P53/ PGC-1α-mediated disruption of mitochondrial dynamics and PANoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156747. [PMID: 40315639 DOI: 10.1016/j.phymed.2025.156747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Deoxynivalenol (DON) is a physico-chemically stable food contaminant that is difficult to destroy during food production and culinary processing. Consumption of food contaminated with DON can impair the liver's antioxidant capacity and trigger various forms of programmed cell death. Hesperidin (HDN) is a highly antioxidant flavonoid compound with excellent biological activity and is a potential drug for treating liver damage. While the various pharmacological actions of HDN have been increasingly clarified over time, its protective role and precise mechanisms in mitigating liver damage caused by DON exposure are still largely shrouded in mystery. PURPOSE AND METHODS To investigate the potential of HDN to mitigate DON-induced liver injury and elucidate its specific mechanisms of action, we established both in vitro and in vivo models of DON exposure and administered HDN intervention. RESULTS Our findings revealed that DON exposure triggered oxidative stress in the liver, DNA damage, and P53 pathway activation, resulted in mitochondrial dynamics disorder and dysfunction, and induced PANoptosis in the liver. HDN significantly attenuated these changes. Using COIP, protein-protein molecular docking, and immunofluorescence methods, we discovered that PGC-1α and P53 can connect tightly, regulating the dynamics and function of the mitochondria. In addition, we intervened in vitro using the N-acetyl-l-cysteine, the pifithrin α, and the Mito TEMPO. CONCLUSION The findings demonstrated that HDN attenuated PANoptosis induced through mtROS overproduction by inhibiting ROS/ P53/ PGC-1α-mediated mitochondrial damage, which ameliorated DON-induced liver injury.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Nie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Aqun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China.
| |
Collapse
|
2
|
Wang Q, He W, Zhou Y, Feng R, Wang Y, Liu L, Yuan Y, Dai J, Liu Y, Zhang X. Polystyrene nanoplastics aggravate house dust mite induced allergic airway inflammation through EGFR/ERK-dependent lung epithelial barrier dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118329. [PMID: 40381396 DOI: 10.1016/j.ecoenv.2025.118329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Concerns that airborne micro- and nanoplastics (MNPs) may impair human respiratory health are rising. However, the specific effects of MNPs on allergic asthma remain insufficiently explored. This study developed an allergic asthma model using house dust mite (HDM), and mice were exposed to 50 μg polystyrene nanoparticles (PS-NPs) at three-days interval. Additionally, the effects and potential mechanisms of PS-NPs exposure (25, 50 and 100 μg/mL) on lung epithelial barrier dysfunction were explored using mouse lung epithelial type II (MLE-12) and A549 cells. The pathological changes of airway tissue and the increase of inflammatory response confirmed that exposure to PS-NPs significantly aggravated allergic asthma in mice. Importantly, in the presence of HDM sensitization, the accumulation of PS-NPs in the alveolar region was increased, leading to lung epithelial barrier dysfunction and more Th2-mediated eosinophilic inflammation, characterized by elevated IL-4, IL-13, immunoglobulin E (Ig E) and eosinophils. The activation of the epidermal growth factor receptor (EGFR) pathway and its downstream extracellular regulating kinase (ERK) was investigated using transcriptomic sequencing to elucidate the effects of PS-NPs exposure on lung epithelial barrier dysfunction. Furthermore, an EGFR-specific inhibitor AG1478 was employed to confirm the role of the EGFR/ERK pathway in lung epithelial barrier dysfunction and asthma exacerbation in vitro and in vivo experiments. In conclusion, the molecular mechanism by which PS-NPs aggravates asthma in mice was elucidated, which helps to improve the understanding of the health effects of PS-NPs and lays a theoretical foundation for addressing the health risks posed by PS-NPs.
Collapse
Affiliation(s)
- Qing Wang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Wen He
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| | - Rui Feng
- Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai 200433, China
| | - Yingwen Wang
- Department of Nursing, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Lijuan Liu
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yuan Yuan
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Jiajia Dai
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200032, China.
| | - Xiaobo Zhang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Center for Pediatric Clinical Quality Control of Shanghai, Shanghai 201102, China.
| |
Collapse
|
3
|
Poinsignon L, Lefrère B, Ben Azzouz A, Chissey A, Colombel J, Djelidi R, Ferecatu I, Fournier T, Beaudeux JL, Lespes G, Zerrad-Saadi A. Exposure of the human placental primary cells to nanoplastics induces cytotoxic effects, an inflammatory response and endocrine disruption. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137713. [PMID: 40037196 DOI: 10.1016/j.jhazmat.2025.137713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Humans are inevitably exposed to micro- and nanoplastics (MP/NP). These particles are able to cross the biological barriers and enter the bloodstream with levels close to 1.6 µg mL-1; MP/NP have been detected in placentas and meconium of newborns. However, the consequences of this exposure on the integrity, development and functions of the human placenta are not documented. In this study, trophoblasts purified from human placentas at term were exposed for 48 h, to two different sizes of polystyrene nanoparticles (PS-NP) of 20 nm (PS-NP20) and 100 nm (PS-NP100), at environmental and supra-environmental concentrations (0.01-100 µg mL-1). Cell viability, oxidative stress, mitochondrial dynamics, lysosomal degradation processes, autophagy, inflammation/oxidative responses and consequences for placental endocrine and angiogenic functions were assessed. PS-NP size determines their internalization rate and their behavior in trophoblasts. Indeed, PS-NP20 are more rapidly translocated, and accumulated in lysosomes as shown by confocal and TEM imaging. They induce higher cytotoxicity than PS-NP100, as early as 1 µg mL-1 (p < 0.05). In addition, they induce a pro-inflammatory cytokines response: IL-1ß is induced from 0.01 µg mL-1 for the both nanoparticle sizes; IL-6, and TNF-α are overexpressed at 100 µg mL-1 only for PS-NP20 (p < 0.05). For the first time, we report that PS-NP disrupt endocrine function, as observed by a decreased hCG release at concentrations found in human blood. This work, provides an in-depth in vitro assessment of the effects of PS-NP on the human placenta.
Collapse
Affiliation(s)
- Léa Poinsignon
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Bertrand Lefrère
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France; Service de Biochimie, AP-HP, Hôpital Necker Enfants Malades, Paris F-75006, France
| | - Amani Ben Azzouz
- IPREM, CNRS, Université de Pau et des pays d'Adour, Pau 64000, France
| | - Audrey Chissey
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Juliette Colombel
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Raja Djelidi
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Ioana Ferecatu
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Thierry Fournier
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Jean-Louis Beaudeux
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France; Service de Biochimie, AP-HP, Hôpital Necker Enfants Malades, Paris F-75006, France
| | - Gaëtane Lespes
- IPREM, CNRS, Université de Pau et des pays d'Adour, Pau 64000, France
| | - Amal Zerrad-Saadi
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France.
| |
Collapse
|
4
|
Zhang Y, Guo Y, Liu L, Xia W, Wang Y, Liu M, Lin D, Li J, Zhao Y, Zhu S, Liu X. Role of endoplasmic reticulum stress on formaldehyde-exacerbated allergic asthma in mice. Toxicol Res (Camb) 2025; 14:tfaf066. [PMID: 40342429 PMCID: PMC12057736 DOI: 10.1093/toxres/tfaf066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
Both epidemiological and laboratory evidence indicate a significant relationship between formaldehyde (FA) exposure and allergic asthma. However, the mechanisms underlying the relationship remain unclear. Research has demonstrated that endoplasmic reticulum (ER) stress is closely associated with the onset of allergic asthma. Nonetheless, it has yet to be established whether FA exposure exacerbates allergic asthma by activating ER stress. To systematically investigate the exacerbation of allergic asthma-like symptoms due to FA exposure (0.5 mg/m3) in Balb/c mice, we assessed lung function and histopathology, serum immunoglobulin levels, neuropeptide substance P (SP) and calcitonin gene-related peptide (CGRP) levels, Th2 (IL-4, IL-5, IL-13) and Th17 (IL-22, IL-17A) cytokine levels and biomarkers of the ER stress pathway (IRE1α, PERK, and ATF-6). Additionally, we employed the ER stress antagonist phenylbutyric acid (4-PBA) to confirm the mediating role of ER stress in FA-aggravated allergic asthma. Our findings suggest that prolonged exposure to FA increases levels of ER stress markers, SP, CGRP, Th2 and Th17 cytokines, and immunoglobulin, leading to increased airway mucus hyperplasia and airway remodeling. Furthermore, we demonstrated that blocking ER stress with 4-PBA effectively alleviated associated allergic asthma-like symptoms. In conclusion, we provide evidence that the ER stress signaling pathway plays a significant role in the exacerbation of allergic asthma due to FA exposure.
Collapse
Affiliation(s)
- Yuchao Zhang
- School of Brewing Engineering, Moutai Institute, Luban Road, Renhuai, Guizhou, 564507, China
| | - Yutong Guo
- School of Food Engineering, Moutai Institute, Luban Road, Renhuai, Guizhou, 564507, China
| | - Liangyu Liu
- School of Food Engineering, Moutai Institute, Luban Road, Renhuai, Guizhou, 564507, China
| | - Wei Xia
- School of Resources and Environmental Engineering, Moutai Institute, Luban Road, Renhuai, Guizhou, 564507, China
| | - Yi Wang
- School of Food Engineering, Moutai Institute, Luban Road, Renhuai, Guizhou, 564507, China
| | - Mengyin Liu
- School of Food Engineering, Moutai Institute, Luban Road, Renhuai, Guizhou, 564507, China
| | - Dayuan Lin
- School of Food Engineering, Moutai Institute, Luban Road, Renhuai, Guizhou, 564507, China
| | - Jiaxing Li
- School of Food Engineering, Moutai Institute, Luban Road, Renhuai, Guizhou, 564507, China
| | - Yuanchao Zhao
- School of Food Engineering, Moutai Institute, Luban Road, Renhuai, Guizhou, 564507, China
| | - Sijie Zhu
- School of Food Engineering, Moutai Institute, Luban Road, Renhuai, Guizhou, 564507, China
| | - Xudong Liu
- School of Food Engineering, Moutai Institute, Luban Road, Renhuai, Guizhou, 564507, China
| |
Collapse
|
5
|
Jia H, Liu S, Wang W, He P, Zhao F, Xu X. Microplastic exposure induces preeclampsia-like symptoms via HIF-1α/TFRC-mediated ferroptosis in placental trophoblast cells. Toxicology 2025; 516:154197. [PMID: 40414414 DOI: 10.1016/j.tox.2025.154197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/12/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Microplastic (MP) pollution is an emerging environmental concern with potential health risks, yet its impact on pregnancy remains largely unexplored. This study investigated the effects of polystyrene microplastic (PS-MP) exposure on placental function and its role in preeclampsia (PE) pathogenesis. Pregnant rats were exposed to PS-MP, which induced PE-like symptoms including elevated blood pressure, increased proteinuria, and altered expression of angiogenic factors. Transcriptomic and molecular analyses revealed PS-MP triggered ferroptosis in placental trophoblast cells by activating the HIF-1α/TFRC axis, resulting in iron overload and oxidative stress. PS-MP exposure impaired trophoblast migration, invasion, and angiogenesis; these effects were ameliorated by ferroptosis inhibition. These findings identified PS-MP-induced ferroptosis as a critical mechanism underlying placental dysfunction, highlighting PS-MP as a potential environmental risk factor for PE. Understanding the impact of MP on pregnancy provides crucial insights into their reproductive toxicity and underscores the need for further research on mitigating their effects.
Collapse
Affiliation(s)
- Haoyi Jia
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Siyu Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Pengyuan He
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Fujun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Xianming Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
6
|
Chen Y, Nan Y, Xu L, Dai A, Orteg RMM, Ma M, Zeng Y, Li J. Polystyrene nanoplastics exposure induces cognitive impairment in mice via induction of oxidative stress and ERK/MAPK-mediated neuronal cuproptosis. Part Fibre Toxicol 2025; 22:13. [PMID: 40394693 PMCID: PMC12090536 DOI: 10.1186/s12989-025-00633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Recent studies emphasize the significance of copper dyshomeostasis in neurodegenerative diseases, such as Alzheimer's and Parkinson's, thereby highlighting the role of copper in neurotoxicity. Cuproptosis, a novel mechanism of copper-dependent cell death, remains underexplored, particularly concerning environmental pollutants like polystyrene nanoplastics (PS-NPs). While PS-NPs are recognized for inducing neurotoxicity through various forms of cell death, including apoptosis and ferroptosis, their potential to trigger neuronal cuproptosis has not yet been investigated. This study aims to determine whether exposure to PS-NPs induces neurotoxicity via cuproptosis and to explore the preliminary molecular mechanisms involved, thereby addressing this significant knowledge gap. METHODS Seven-week-old male C57BL/6 mice were exposed to PS-NPs at dose of 12.5 mg/kg, and were co-treated with the antioxidant N-acetylcysteine (NAC). Complementary in vitro experiments were conducted using SH-SY5Y neuronal cells exposed to PS-NPs at a concentration of 0.75 mg/mL, with interventions that included the copper chelator tetrathiomolybdate (TTM), NAC, and the MAPK inhibitor PD98059. RESULTS Exposure to PS-NPs significantly increased cerebral copper accumulation (P < 0.05) and induced cuproptosis, characterized by lipid-acylated DLAT oligomerization, dysregulation of cuproptosis regulators (FDX1, LIAS, HSP70), and mitochondrial damage. In murine models, PS-NPs elicited neurotoxicity, as evidenced by neuronal loss, decreased Nissl body density, impaired synaptic plasticity, and suppressed oxidative stress markers (GSH, SOD, Nrf2), alongside activation of the ERK-MAPK pathway, ultimately resulting in deficits in learning and memory. Treatment with NAC alleviated these adverse effects. In SH-SY5Y cells, exposure to PS-NPs resulted in reduced cell viability (p < 0.01), an effect that was mitigated by TTM. Furthermore, NAC and PD98059 were found to reverse elevated copper levels, cuproptosis markers, and mitochondrial anomalies (p < 0.05). CONCLUSION This study presents preliminary evidence indicating that PS-NPs may induce neuronal cuproptosis, potentially through the oxidative stress-mediated activation of the ERK-MAPK pathway, which contributes to cognitive dysfunction in mice. These findings provide insights into the potential mechanisms underlying PS-NPs neurotoxicity and highlight possible therapeutic targets, such as copper chelation or MAPK inhibition, for mitigating the neurological risks associated with nanoplastic exposure, pending further validation in human-relevant models.
Collapse
Affiliation(s)
- Yinuo Chen
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yiyang Nan
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lang Xu
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Anqi Dai
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | | | - Mantong Ma
- School of Medicine, Wuhan University, Wuhan, China
| | - Yan Zeng
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Jinquan Li
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China.
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Viana M, Tonin FS, Ladeira C. Assessing the Impact of Nanoplastics in Biological Systems: Systematic Review of In Vitro Animal Studies. J Xenobiot 2025; 15:75. [PMID: 40407539 PMCID: PMC12101406 DOI: 10.3390/jox15030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/08/2025] [Accepted: 05/14/2025] [Indexed: 05/26/2025] Open
Abstract
Nanoplastic (NP) pollution has emerged as a growing concern due to its potential impact on human health, although its adverse effects on different organ systems are not yet fully understood. This systematic scoping review, conducted in accordance with international guidelines, aimed to map the current evidence on the biological effects of NPs. In vitro animal studies assessing cellular damage caused by exposure to any type of NP were searched on PubMed, Web of Science, and Scopus. Data on primary outcomes related to genotoxicity and cytotoxicity (cell viability, oxidative stress, inflammation, DNA and cytoplasmic damage, apoptosis) were extracted from the included studies, and overall reporting quality was assessed. A total of 108 articles published between 2018 and 2024, mostly by China (54%), Spain (14%), and Italy (9%), were included. Polystyrene (PS) was the most frequently studied polymer (85%). NP sizes in solution ranged from 15 to 531 nm, with a higher prevalence in the 40-100 nm range (38%). The overall quality of studies was rated as moderate (60%), with many lacking essential details about cell culture conditions (e.g., pH of the medium, passage number, substances used). A higher frequency of negative effects from NP exposure was observed in respiratory cell lines, while immune, digestive, and hepatic cell lines showed greater resistance. Nervous, urinary, and connective tissue systems were impacted by NPs. Positively charged and smaller PS particles were consistently associated with higher toxicity across all systems. In summary, this review highlights the multifactorial nature of NP toxicity, influenced by size, surface charge, and polymer type. It also reveals a significant knowledge gap, stemming from the predominant use of immortalized monocultures exposed to commercially available PS NPs, the limited use of environmentally relevant particles, and the underutilization of advanced experimental models (e.g., organ-on-chip systems) that better mimic physiological conditions.
Collapse
Affiliation(s)
- Maria Viana
- ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
| | - Fernanda S. Tonin
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- Pharmacy and Pharmaceutical Technology Department, Social and Legal Pharmacy Section, University of Granada, 18071 Granada, Spain
| | - Carina Ladeira
- ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
| |
Collapse
|
8
|
Bu W, Yu M, Ma X, Shen Z, Ruan J, Qu Y, Huang R, Xue P, Ma Y, Tang J, Zhao X. Gender-specific effects of prenatal polystyrene nanoparticle exposure on offspring lung development. Toxicol Lett 2025; 407:1-16. [PMID: 40088994 DOI: 10.1016/j.toxlet.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/21/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Nanoplastics are widely present in the environment. Exposure to environmental pollutants during pregnancy can have adverse effects on fetal development and health. Establishing a link between nanoplastics and Bronchopulmonary Dysplasia (BPD) requires further investigation. In this study, we examined the impact of prenatal exposure to 80 nm polystyrene nanoparticles (PS-NPs) on offspring lung development, taking into account potential gender-specific effects. Pregnant female mice were exposed to PS-NPs through oropharyngeal aspiration, and critical data on lung development were collected at postnatal days 1, 7, and 21. We found that exposure to PS-NPs reduced birth weight in female offspring and significantly increased lung weight in both male and female offspring by PND 21. Maternal exposure led to a reduction in alveolar numbers across offspring, with distinct underlying mechanisms observed between sexes. In female offspring, the reduction in alveolar numbers was linked to disrupted surfactant protein expression, significant inflammation, and increased apoptosis and fibrosis. In male offspring, impaired angiogenesis was the primary factor contributing to the increased risk of BPD. The impact on alveolar development was substantial in both genders. This study underscores the gender-specific impacts of prenatal nanoplastic exposure on lung development and offers new evidence and direction for future research on the cross-generational respiratory toxicity of PS-NPs.
Collapse
Affiliation(s)
- Wenxia Bu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Mengjiao Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xinyi Ma
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zhaoping Shen
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Jialing Ruan
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yi Qu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong 226000, China
| | - Peng Xue
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Yuanyuan Ma
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
9
|
Chen L, Tang J, Zuo X, Li B, Liu C, Hong S, Min J, Hu M, Li S, Zhou M, Chen M, He Y, Xiao Y, Huang X, Hong L. SIRT1 Alleviates Oxidative Stress-Induced Mitochondrial Dysfunction and Mitochondria-Associated Membrane Dysregulation in Stress Urinary Incontinence. Cell Prolif 2025; 58:e70009. [PMID: 39980436 PMCID: PMC12099215 DOI: 10.1111/cpr.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/21/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025] Open
Abstract
The pathogenesis of stress urinary incontinence (SUI), a condition common in women, remains to be fully elucidated. This study revealed that the incidence of SUI is associated with mitochondrial homeostasis dysregulation following oxidative stress in the fibrous connective tissue of the pelvic floor. SIRT1 is an essential factor for maintaining mitochondrial homeostasis; however, its potential role and mechanism of action in SUI pathogenesis remain unclear. Both in vitro and in vivo, we observed that oxidative stress reduced SIRT1 expression to inhibit the PGC-1α/NRF1/TFAM and PINK1/Parkin signalling pathways, eliciting impairment of mitochondrial biogenesis and mitophagy in L929 cells and SUI mice. Decreased SIRT1 levels induced endoplasmic reticulum (ER) stress and altered the structure of mitochondria-associated membranes (MAMs), disrupting ER-mitochondrial calcium homeostasis and exacerbting ROS accumulation. SIRT1 activation can restore mitochondrial function and the structure of MAMs and alleviate ER stress in fibroblasts, promoting anterior vaginal wall repair and improving urodynamic parameters in the SUI model. Our findings provide novel insights into the role and associated mechanism of SIRT1 in ameliorating oxidative stress-induced mitochondrial dysfunction in fibroblasts of the anterior vaginal wall and propose SIRT1 as a potential therapeutic target for SUI.
Collapse
Affiliation(s)
- Liying Chen
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Jianming Tang
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Xiaohu Zuo
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Bingshu Li
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Cheng Liu
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Shasha Hong
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Jie Min
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Ming Hu
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Suting Li
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Min Zhou
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Mao Chen
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Yong He
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Ya Xiao
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Xiaoyu Huang
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| | - Li Hong
- Department of Gynecology and ObstetricsRenmin Hospital of Wuhan UniversityWuhanPeople's Republic of China
| |
Collapse
|
10
|
Huang Z, Xu R, Wan Z, Liu C, Li J, He J, Li L. Melatonin protects against cadmium-induced endoplasmic reticulum stress and ferroptosis through activating Nrf2/HO-1 signaling pathway in mice lung. Food Chem Toxicol 2025; 198:115324. [PMID: 39954982 DOI: 10.1016/j.fct.2025.115324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Cadmium (Cd) is a prevalent heavy metal pollutant known to cause lung damage. However, the mechanisms underlying Cd-induced lung injury and the associated therapeutic strategies remain unclear. By establishing Cd-induced lung damage models both in vivo and in vitro, we observed that Cd inhibited the Nrf2/HO-1 signaling pathway, disrupted the redox balance in lung tissue, accelerated endoplasmic reticulum (ER) stress, and promoted ferroptosis, ultimately leading to lung injury. Melatonin (Mel), a potent reactive oxygen species (ROS) inhibitor with high antioxidative efficacy, mitigated the increasing in ROS and the decreasing in superoxide dismutase levels induced by Cd, as well as the upregulation of PERK-eIF2α-ATF4 signaling associated with ER stress, through the activation of the Nrf2/HO-1 signaling pathway. Furthermore, Mel administration not only prevented Cd-induced iron overload but also reduced lipid peroxidation levels, thereby improving mitochondrial morphological alterations. Collectively, our results demonstrated that Mel treatment alleviated Cd-induced lung injury by inhibiting oxidative stress, which in turn ameliorated ER stress and ferroptosis through the activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Ziyang Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Science, Hubei University, Wuhan, 430070, China; School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ruijia Xu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhongjun Wan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Science, Hubei University, Wuhan, 430070, China
| | - Chao Liu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jinquan Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jun He
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China; Institute of Forensic Medicine, Wuhan University School of Medicine, Wuhan, 430072, China.
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Science, Hubei University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Bai H, Chen H, Du S, Qiu D, Li S, Ma T, Gao R, Zhang Z. N-Acetylcysteine Mitigates Ketamine Neurotoxicity in Young Rats by Modulating ROS-Mediated Pyroptosis and Ferroptosis. Mol Neurobiol 2025:10.1007/s12035-025-04860-2. [PMID: 40111652 DOI: 10.1007/s12035-025-04860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Ketamine, an N-methyl-D-aspartate receptor antagonist with anesthetic and analgesic properties, is extensively utilized for the induction and maintenance of pediatric perioperative anesthesia. Increasing evidence suggests that prolonged exposure to ketamine may induce neurotoxicity in developing animals, adversely affecting their long-term cognitive function. N-acetylcysteine (NAC) is an organic sulfur compound in the Allium genus; however, the mechanisms through which it alleviates ketamine-induced neurotoxicity during developmental stages remain inadequately understood. Refine the investigation of the mechanisms by which Nac mitigates ketamine-induced neurotoxicity during development via ferroptosis and pyroptosis pathways. Postnatal day 7 in SD rats PC12 cells and HAPI cells were used in this study. The neuroprotective mechanism of Nac was elucidated through pathological, histological, and molecular biological methodologies to assess pyroptosis, ferroptosis, hippocampal tissue damage, and behavioral modifications in adulthood. The results suggest that prior administration of Nac reduced lipid peroxidation and mitochondrial injury, along with pyroptosis activated by the NLRP3/caspase-1 pathway, hippocampal damage, and cognitive deficits after exposure to ketamine. In summary, our findings from both in vivo and in vitro studies indicate that ROS plays a significant regulatory role in the neurotoxic effects of ketamine during development. Furthermore, Nac mitigates hippocampal damage and cognitive deficits associated with ketamine exposure by inhibiting ROS-mediated ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Hui Bai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Chen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Di Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siyao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianwen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruifeng Gao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.
| | - Zhiheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
12
|
Kim N, Lee JH, Lee I, Park JH, Jung GS, Lee MJ, Im W, Cho S, Choi YS. Investigation of potential toxic effects of nano- and microplastics on human endometrial stromal cells. Reprod Toxicol 2025; 132:108848. [PMID: 39884398 DOI: 10.1016/j.reprotox.2025.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/27/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Nanoplastics (NPs) and microplastics (MPs) have become a global concern in recent years. Most current research on the impact of plastics on obstetrics has focused on their accumulation in specific tissues in animal models and the disease-causing potential of MPs. However, there is a relative lack of research on the cellular changes caused by the accumulation of MPs. In this study, we aimed to establish a proper in vitro exposure protocol for polystyrene (PS)-NPs and MPs and to investigate possible cytotoxic effects of PS-NPs and MPs on human endometrial stromal cells (ESCs) using different plastic sizes and concentrations. The results showed that smaller plastics, specifically 100 nm PS-NPs and 1 μm PS-MPs, had a higher cellular uptake propensity than larger particles, such as 5 μm PS-MPs, with significant morphological changes and cell death observed at concentrations above 100 μg/mL a 24-h period. In addition, confocal microscopy and real-time imaging confirmed the accumulation of these particles in the nucleus and cytoplasm, with internalization rates correlating with particle size. Also, 100 nm PS-NPs reduced cell proliferation and induced apoptosis. In conclusion, this study demonstrates that exposure to 100 nm PS-NPs and 1 μm PS-MPs leads to dynamic accumulation in ESCs, resulting in cell death or decreased proliferation at specific concentrations, which highlights the potential cellular toxicity of NPs or MPs.
Collapse
Affiliation(s)
- Nara Kim
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Hoon Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Inha Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Joo Hyun Park
- Department of Obstetrics and Gynecology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Gee Soo Jung
- Department of Integrative Medicine, Yonsei University College of Medicine, Seoul 06229, South Korea
| | - Min Jung Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wooseok Im
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| | - SiHyun Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| | - Young Sik Choi
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Fusagawa H, Youn A, Wilkerson E, Pandya N, Feeley BT. The Effects of Microplastics on Musculoskeletal Disorder; A Narrative Review. Curr Rev Musculoskelet Med 2025; 18:39-47. [PMID: 39572502 PMCID: PMC11775366 DOI: 10.1007/s12178-024-09932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 01/29/2025]
Abstract
PURPOSE OF REVIEW The physical health impacts of microplastics have received increasing attention in recent years. However, limited data impedes a full understanding of the internal exposure to microplastics, especially concerning the musculoskeletal system. The purpose of this review is to summarize the recent literature regarding the effects of microplastics on the musculoskeletal system. RECENT FINDINGS Microplastics have been shown to cause abnormal endochondral ossification and disrupt the normal function of pre-osteoblasts, osteocyte-like cells, and pre-osteoclasts through gene mutations, endoplasmic reticulum stress induction, and reduced autophagosome formation in bone growth areas. Although there are few reports on their effects on muscle, it has been noted that microplastics inhibit energy and lipid metabolism, decrease type I muscle fiber density, impair muscle angiogenesis, cause muscle atrophy, and increase lipid deposition. Only a few recent studies have shown that microplastics interfere with the normal function of bone growth-related cells and reduce muscle mass and quality. This review underscores the need for further research into other parts of the musculoskeletal system and studies using human tissues at the disease level.
Collapse
Affiliation(s)
- Hiroyori Fusagawa
- Department of Orthopaedic Surgery, University of California-San Francisco, 1500 Owens Street, San Francisco, CA, 94158, USA.
| | - Alex Youn
- School of Medicine, University of California-San Francisco, 505 Parnassus Ave MU 320W, San Francisco, CA, 94143, USA
| | - Elyse Wilkerson
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
- Department of Chemical Engineering, College of Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Nirav Pandya
- Department of Orthopaedic Surgery, University of California-San Francisco, 1500 Owens Street, San Francisco, CA, 94158, USA
| | - Brian T Feeley
- Department of Orthopaedic Surgery, University of California-San Francisco, 1500 Owens Street, San Francisco, CA, 94158, USA
| |
Collapse
|
14
|
Xu Y, Liu L, Ma Y, Wang C, Duan F, Feng J, Yin H, Sun L, Cao Z, Jung J, Li P, Li ZH. Biotransport and toxic effects of micro- and nanoplastics in fish model and their potential risk to humans: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107215. [PMID: 39706134 DOI: 10.1016/j.aquatox.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization. This review focuses on current research examining the in vivo and in vitro toxic effects of MPs/NPs on aquatic organisms, particularly fish, in relation to particulate toxicity aspects (such as particle transport mechanisms and structural modifications). Meanwhile, from the perspectives of the food chain and environmental factors, it emphasizes the comprehensive threats of MPs/NPs to human health in terms of both direct and indirect toxicity. Additionally, future research needs and strategies are discussed to aid in mitigating the potential risks of particulate plastics as carriers of toxic trace elements to human health.
Collapse
Affiliation(s)
- Yanan Xu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cunlong Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Fengshang Duan
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Le Sun
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
15
|
Wang H, Fan S, Zhan Y, Xu Y, Du Y, Luo J, Zang H, Peng S, Wang W. Targeting EGFR-binding protein SLC7A11 enhancing antitumor immunity of T cells via inducing MHC-I antigen presentation in nasopharyngeal carcinoma. Cell Death Dis 2025; 16:21. [PMID: 39820491 PMCID: PMC11739652 DOI: 10.1038/s41419-024-07327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/08/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
Approximately 80% of nasopharyngeal carcinoma (NPC) patients exhibit EGFR overexpression. The overexpression of EGFR has been linked to its potential role in modulating major histocompatibility complex class I (MHC-I) molecules. We discovered that EGFR, operating in a kinase-independent manner, played a role in stabilizing the expression of SLC7A11, which subsequently inhibited MHC-I antigen presentation. This mechanism, in turn, provided protection to NPC cells against T cell-mediated cytotoxicity. The underlying molecular processes revealed that the high and stable expression of SLC7A11 hindered the nuclear entry of GR, thereby suppressing TAP1 transcription and the presentation of MHC-I molecules. Additionally, elevated SLC7A11 expression led to an increase in FAF2 expression and triggered ERAD-dependent degradation of MHC-I, resulting in a reduction of MHC-I molecules on the cell membrane. The NPC patients exhibiting high EGFR and low MHC-I expression, combined with a scarcity of CD8+ T cells (EGFRhighMHC-IlowCD8few phenotype), experienced considerably shorter overall survival times compared to other situations. What is more, our study demonstrated that sorafenib had the capability to enhance the MHC-I antigen presentation process, thereby facilitating T cell-mediated killing of NPC cells via targeting SLC7A11. Consequently, targeting SLC7A11 with sorafenib emerges as a promising therapeutic strategy for the treatment of NPC.
Collapse
Affiliation(s)
- Haihua Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, 570216, Haikou, Hainan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, 410011, Changsha, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, 410011, Changsha, Hunan, China
| | - Yue Xu
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, 410011, Changsha, Hunan, China
| | - Yao Du
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, 410011, Changsha, Hunan, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, 410011, Changsha, Hunan, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, 410011, Changsha, Hunan, China
| | - Shuping Peng
- Cancer Research Institute, School of Basic Medical Science, Central South University, 410078, Changsha, Hunan, China
| | - Weiyuan Wang
- Department of Pathology, The Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
16
|
Chia SPS, Pang JKS, Winanto W, Soh BS. Nanoplastics induces arrhythmia in human stem-cells derived cardiomyocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117657. [PMID: 39756176 DOI: 10.1016/j.ecoenv.2024.117657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Nanoplastics (NPs), plastic particles ranging from 1-1000 nm, form through weathering and are considered more hazardous than larger plastics due to their ability to penetrate cell barriers and be internalised by biological systems. Most research on NPs has focused on animal models, examining effects on the brain, lungs, and gastrointestinal tract. To enhance physiological relevance, this study investigated the impact of NPs on human cardiomyocytes (CMs) derived from human embryonic stem cells (hESCs). We observed significantly higher cellular uptake of 50 nm NPs compared to 500 nm particles, with dose-dependent accumulation over 3, 5, and 7 days of treatment. This accumulation induced oxidative and endoplasmic reticulum (ER) stress, culminating in arrhythmias by day 7. Complementing these in vitro findings, transcriptome profiling of mice exposed to NPs for 8 weeks revealed disrupted RNA splicing, dysregulated protein translation, and defective protein folding. These molecular changes led to ER stress, apoptosis, and impaired transmembrane ion conductance, contributing to the arrhythmic phenotype. Our findings highlight the detrimental effects of NPs on the human heart. Further research is needed to fully elucidate the mechanisms underlying NP-induced toxicity and to develop strategies for mitigating their adverse effects. This study underscores the urgency of addressing NP pollution to protect human health.
Collapse
Affiliation(s)
- Shirley Pei Shan Chia
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore (NUS), 16 Science Drive 4, Singapore 117558, Singapore.
| | - Jeremy Kah Sheng Pang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), Proteos, 61 Biopolis Drive, Singapore 138673, Singapore.
| | - Winanto Winanto
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore (NUS), 16 Science Drive 4, Singapore 117558, Singapore.
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore (NUS), 16 Science Drive 4, Singapore 117558, Singapore.
| |
Collapse
|
17
|
Bang E, Hwangbo H, Lee H, Park C, Hong SH, Kim HS, Jung Y, Hyun YM, Hyun JW, Kim GY, Choi YH. Exposure to polystyrene nanoplastics promotes premature cellular senescence through mitochondrial ROS production and dysfunction in pre-differentiated skeletal myoblasts. Toxicology 2025; 510:154002. [PMID: 39551124 DOI: 10.1016/j.tox.2024.154002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Nanoplastics (NPs) are emerging environmental contaminants present in atmospheric, freshwater, and aquatic environments. NPs can rapidly permeate cell membranes and build up in human tissues and organs, causing a potential threat to human health. As the skeletal muscle undergoes aging, myogenesis gradually deteriorates, leading to loss of muscle mass. While previous studies have demonstrated the adverse and toxic effects of polystyrene (PS)-NPs, gaps remain in understanding aging effects and specific mechanisms by PS-NPs in pre-differentiated myoblasts. In this study, we investigated the cellular internalization, aggregation, and senescent effects of PS-NPs using an in vitro model of pre-differentiated C2C12 myoblasts. Pre-differentiated C2C12 myoblasts were exposed to increasing concentrations of PS-NPs and internalization was observed in myoblasts using flow cytometry and transmission electron microscopy (TEM). We further investigated whether internalization of these PS-NPs at sublethal cytotoxic concentrations led to an increase in senescence hallmarks, such as increased β-galactosidase activity, increased expression of p16, p21 and senescence-related secretory phenotypes, and cell cycle arrest. In addition, PS-NP treatment caused notable mitochondrial superoxide production and damage, including mitochondrial membrane depolarization, content loss, fragmentation, and decreased ATP production. Rotenone, a mitochondrial function inhibitor, and exacerbated PS-NP-induced cell proliferation inhibition, whereas Mito-TEMPO, a mitochondrial superoxide scavenger, restored the cell proliferation rate and rescued cellular senescence. Therefore, our findings indicate the senescent effects of PS-NPs through mitochondrial superoxide production and dysfunction in pre-differentiated myoblasts.
Collapse
Affiliation(s)
- EunJin Bang
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Dong-eui University, Busan 47227, Republic of Korea; Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea.
| | - Hyun Hwangbo
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Dong-eui University, Busan 47227, Republic of Korea; Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea.
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.
| | - Cheol Park
- Department Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea.
| | - Su Hyun Hong
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Dong-eui University, Busan 47227, Republic of Korea; Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea.
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | - Youngmi Jung
- Department of Biological Sciences, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea.
| | - Young-Min Hyun
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea.
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| | - Yung Hyun Choi
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Dong-eui University, Busan 47227, Republic of Korea; Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea.
| |
Collapse
|
18
|
Tian S, Li R, Li J, Zou J. Polystyrene nanoplastics promote colitis-associated cancer by disrupting lipid metabolism and inducing DNA damage. ENVIRONMENT INTERNATIONAL 2025; 195:109258. [PMID: 39805171 DOI: 10.1016/j.envint.2025.109258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Nanoplastics (NPs) have attracted widespread attention owing to their presence in the body. Recent studies highlighted the detrimental effects of NPs on the digestive tract. However, no studies have reported an association between NPs exposure and colitis-associated cancer (CAC). An azoxymethane/dextran sodium sulfate-induced CAC model was used, and polystyrene nanoparticles (PS-NPs) were selected for long-term exposure. Non-targeted metabolomics and 16S rRNA sequencing were used to detect changes in colonic metabolites and gut microbes following PS-NPs exposure. A lipopolysaccharide (LPS)-treated cancer cell model (Caco-2) exposed to PS-NPs was used to investigate the underlying molecular mechanism. Compared to the normal control group, mice in the PS-NPs group exhibited more tumor nodes and reactive oxygen species (ROS), higher expression of pan-CK and Ki-67, and more severe DNA damage. 16S rRNA sequencing revealed that exposure to PS-NPs altered the abundance of Allobaculum and Lactobacillus, whereas metabolic analysis showed that the most significant metabolites were enriched mostly in fatty acid metabolism. Experiments in LPS intervened Caco-2 cells showed that exposure to PS-NPs led to lipid peroxidation, oxidative stress, and DNA damage in Caco-2. Exposure to PS-NPs activated the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway both in the AOM/DSS mouse model and cellular model. Key proteins involved in fatty acid metabolism were downregulated in Caco-2 cells exposed to PS-NPs. The metabolic effects of cancer cells exposed to PS-NPs were significantly inhibited by the activation of the fatty acid metabolism pathway by fenofibrate. PS-NPs exposure disturbed lipid metabolism and induced DNA damage via the activation of PI3K/AKT/mTOR to promote CAC progression. Inhibition of fatty acid metabolism is a therapeutic target for controlling PS-NP-induced CAC. Our study provides an important reference for the prevention and treatment of CAC from the perspective of the environment and enhances awareness of the necessity of plastic control.
Collapse
Affiliation(s)
- Shan Tian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Ruixue Li
- Department of Internal Medicine, The hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Jiao Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China.
| | - Jinhui Zou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.
| |
Collapse
|
19
|
Lee DE, Lee HM, Jun Y, Choi SY, Lee SJ, Kwon OS. Metformin induces apoptosis in TRAIL-resistant colorectal cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119873. [PMID: 39500444 DOI: 10.1016/j.bbamcr.2024.119873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/11/2024]
Abstract
Resistance to chemotherapy drugs, which commonly occurs during the treatment of colorectal cancer (CRC), can lead to tumor recurrence and metastasis, so combinational treatment strategies according to the cancer cell type are urgently needed to overcome drug resistance and increase therapeutic efficiency. To this end, the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising anticancer strategy. Some CRC cell lines such as SW620 have low sensitivity to TRAIL, so additional sensitizers are required to make the strategy effective. Therefore, we focused on the apoptotic effect of combinational metformin and TRAIL treatment on TRAIL-resistant SW620 cells. Treatment with TRAIL alone did not induce apoptosis whereas combined treatment with metformin and TRAIL significantly increased it. TRAIL activated caspases through an extrinsic pathway but increased resistance to apoptosis through the protein kinase B or AKT (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway. On the other hand, metformin reduced the inhibitory effect of X-linked inhibitor of apoptosis (XIAP) by blocking the AKT and nuclear factor kappa B (NF-κB) pathways and activated CCAAT-enhancer-binding protein homologous protein (CHOP) via endoplasmic reticulum (ER) stress but without inducing apoptosis. In addition, metformin induced cell-cycle arrest, thereby blocking cell proliferation and growth. These results were also confirmed through an in vivo mouse xenograft CRC model, in which combined treatment with metformin and TRAIL induced tumor cell death, thus demonstrating the anticancer effect of their coadministration. Therefore, cotreatment of metformin and TRAIL could be an effective anticancer treatment strategy for TRAIL-resistant CRC.
Collapse
Affiliation(s)
- Da Eun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hae Min Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yunhyeok Jun
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea.
| | - Su Jin Lee
- Department of Biochemistry, Chungbuk National University College of Medicine and Medical Research Center, Cheongju 28644, Republic of Korea
| | - Oh-Shin Kwon
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
20
|
Chartres N, Cooper CB, Bland G, Pelch KE, Gandhi SA, BakenRa A, Woodruff TJ. Effects of Microplastic Exposure on Human Digestive, Reproductive, and Respiratory Health: A Rapid Systematic Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22843-22864. [PMID: 39692326 PMCID: PMC11697325 DOI: 10.1021/acs.est.3c09524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024]
Abstract
Microplastics are ubiquitous environmental contaminants for which there are documented human exposures, but there is a paucity of research evaluating their impacts on human health. We conducted a rapid systematic review using the "Navigation Guide" systematic review method. We searched four databases in July 2022 and April 2024 with no restriction on the date. We included studies using predefined eligibility criteria that quantitatively examined the association of microplastic exposure with any health outcomes. We amended the eligibility criteria after screening studies and prioritized digestive, reproductive, and respiratory outcomes for further evaluation. We included three human observational studies examining reproductive (n = 2) and respiratory (n = 1) outcomes and 28 animal studies examining reproductive (n = 11), respiratory (n = 7), and digestive (n = 10) outcomes. For reproductive outcomes (sperm quality) and digestive outcomes (immunosuppresion) we rated overall body evidence as "high" quality and concluded microplastic exposure is "suspected" to adversely impact them. For reproductive outcomes (female follicles and reproductive hormones), digestive outcomes (gross or microanatomic colon/small intestine effects, alters cell proliferation and cell death, and chronic inflammation), and respiratory outcomes (pulmonary function, lung injury, chronic inflammation, and oxidative stress) we rated the overall body of evidence as "moderate" quality and concluded microplastic exposure is "suspected" to adversely impact them. We concluded that exposure to microplastics is "unclassifiable" for birth outcomes and gestational age in humans on the basis of the "low" and "very low" quality of the evidence. We concluded that microplastics are "suspected" to harm human reproductive, digestive, and respiratory health, with a suggested link to colon and lung cancer. Future research on microplastics should investigate additional health outcomes impacted by microplastic exposure and identify strategies to reduce exposure.
Collapse
Affiliation(s)
- Nicholas Chartres
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California, San Francisco, San Francisco, California 94143, United States
- School
of Pharmacy, Faculty of Medicine & Health, The University of Sydney, Sydney 2006, Australia
| | - Courtney B. Cooper
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California, San Francisco, San Francisco, California 94143, United States
| | - Garret Bland
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California, San Francisco, San Francisco, California 94143, United States
| | - Katherine E. Pelch
- Natural
Resources Defense Council, San
Francisco, California 94104, United States
| | - Sheiphali A. Gandhi
- Division
of Occupational, Environmental, and Climate Medicine, Department of
Medicine, University of California, San
Francisco, San Francisco, California 94117, United States
- Division
of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department
of Medicine, University of California, San
Francisco, San Francisco, California 94117, United States
| | - Abena BakenRa
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California, San Francisco, San Francisco, California 94143, United States
| | - Tracey J. Woodruff
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
21
|
Ruggieri L, Amato O, Marrazzo C, Nebuloni M, Dalu D, Cona MS, Gambaro A, Rulli E, La Verde N. Rising Concern About the Carcinogenetic Role of Micro-Nanoplastics. Int J Mol Sci 2024; 26:215. [PMID: 39796071 PMCID: PMC11720132 DOI: 10.3390/ijms26010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
In recent years, awareness regarding micro-nanoplastics' (MNPs) potential effects on human health has progressively increased. Despite a large body of evidence regarding the origin and distribution of MNPs in the environment, their impact on human health remains to be determined. In this context, there is a major need to address their potential carcinogenic risks, since MNPs could hypothetically mediate direct and indirect carcinogenic effects, the latter mediated by particle-linked chemical carcinogens. Currently, evidence in this field is scarce and heterogeneous, but the reported increased incidence of malignant tumors among younger populations, together with the ubiquitous environmental abundance of MNPs, are rising a global concern regarding the possible role of MNPs in the development and progression of cancer. In this review, we provide an overview of the currently available evidence in eco-toxicology, as well as methods for the identification and characterization of environmental MNP particulates and their health-associated risks, with a focus on cancer. In addition, we suggest possible routes for future research in order to unravel the carcinogenetic potential of MNP exposure and to understand prognostic and preventive implications of intratumoral MNPs.
Collapse
Affiliation(s)
- Lorenzo Ruggieri
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Ottavia Amato
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Cristina Marrazzo
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Manuela Nebuloni
- Pathology Unit, Luigi University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy;
| | - Davide Dalu
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Maria Silvia Cona
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Anna Gambaro
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Eliana Rulli
- Methodology for Clinical Research Laboratory, Clinical Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Nicla La Verde
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| |
Collapse
|
22
|
Li R, Sun X, Hu Y, Liu S, Huang S, Zhang Z, Chen K, Liu Q, Chen X. Machine Learning-Assisted "Shrink-Restricted" SERS Strategy for Classification of Environmental Nanoplastic-Induced Cell Death. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22528-22538. [PMID: 39670472 DOI: 10.1021/acs.est.4c05590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The biotoxicity of nanoplastics (NPs), especially from environmental sources, and "NPs carrier effect" are in the early stages of research. This study presents a machine learning-assisted "shrink-restricted" SERS strategy (SRSS) to monitor molecular changes in the cellular secretome exposure to six types of NPs. Utilizing three-dimensional (3D) Ag@hydrogel-based SRSS, active targeting of molecules within adjustable nanogaps was achieved to track information. Machine learning was employed to analyze the overall spectral profiles, biochemical signatures, and time-dependent changes. Results indicate that environmentally derived NPs exhibited higher toxicity to BEAS-2B and L02 cells. Notably, the "NPs carrier effect," resulting from pollutant adsorption, proved to be more harmful. This effect altered the death pathway of BEAS-2B cells from a combination of apoptosis and ferroptosis to primarily ferroptosis. Furthermore, L02 cells demonstrated greater metabolic vulnerability to NPs exposure than that of BEAS-2B cells, especially concerning the "NPs carrier effect." Traditional detection methods for cell death often rely on end point assays, which limit temporal resolution and focus on single or multiple markers. In contrast, our study pioneers a machine learning-assisted SERS approach for monitoring overall metabolic levels post-NPs exposure at both cellular and molecular levels. This endeavor has significantly advanced our understanding of the risks associated with plastic pollution.
Collapse
Affiliation(s)
- Ruili Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaotong Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuyang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shenghong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shuting Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhipeng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Kecen Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Xiangjiang Laboratory, Changsha 410205, China
| |
Collapse
|
23
|
Bu W, Cui Y, Jin Y, Wang X, Jiang M, Huang R, Egbobe JO, Zhao X, Tang J. Unmasking the Invisible Threat: Biological Impacts and Mechanisms of Polystyrene Nanoplastics on Cells. TOXICS 2024; 12:908. [PMID: 39771123 PMCID: PMC11728749 DOI: 10.3390/toxics12120908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
Polystyrene nanoplastics (PS-NPs), a pervasive component of plastic pollution, have emerged as a significant environmental and health threat due to their microscopic size and bioaccumulative properties. This review systematically explores the biological effects and mechanisms of PS-NPs on cellular systems, encompassing oxidative stress, mitochondrial dysfunction, DNA damage, inflammation, and disruptions in autophagy. Notably, PS-NPs induce multiple forms of cell death, including apoptosis, ferroptosis, necroptosis, and pyroptosis, mediated through distinct yet interconnected molecular pathways. The review also highlights various factors that influence the cytotoxicity of PS-NPs, such as particle size, surface modifications, co-exposure with other pollutants, and protein corona formation. These complex interactions underscore the extensive and potentially hazardous impacts of PS-NPs on cellular health. The findings presented here emphasize the need for continued research on the mechanisms underlying PS-NP toxicity and the development of effective strategies for mitigating their effects, thereby informing regulatory frameworks aimed at minimizing environmental and biological risks.
Collapse
Affiliation(s)
- Wenxia Bu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Ye Cui
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Yueyuan Jin
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Xuehai Wang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Mengna Jiang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong 226000, China;
| | - JohnPaul Otuomasiri Egbobe
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Xinyuan Zhao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Juan Tang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| |
Collapse
|
24
|
Gou Z, Wu H, Li S, Liu Z, Zhang Y. Airborne micro- and nanoplastics: emerging causes of respiratory diseases. Part Fibre Toxicol 2024; 21:50. [PMID: 39633457 PMCID: PMC11616207 DOI: 10.1186/s12989-024-00613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Airborne micro- and nanoplastics (AMNPs) are ubiquitously present in human living environments and pose significant threats to respiratory health. Currently, much research has been conducted on the relationship between micro- and nanoplastics (MNPs) and cardiovascular and gastrointestinal diseases, yet there is a clear lack of understanding regarding the link between AMNPs and respiratory diseases. Therefore, it is imperative to explore the relationship between the two. Recent extensive studies by numerous scholars on the characteristics of AMNPs and their relationship with respiratory diseases have robustly demonstrated that AMNPs from various sources significantly influence the onset and progression of respiratory conditions. Thus, investigating the intrinsic mechanisms involved and finding necessary preventive and therapeutic measures are crucial. In this review, we primarily describe the fundamental characteristics of AMNPs, their impact on the respiratory system, and the intrinsic toxic mechanisms that facilitate disease development. It is hoped that this article will provide new insights for further research and contribute to the advancement of human health.
Collapse
Affiliation(s)
- Zixuan Gou
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Haonan Wu
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Shanyu Li
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Ziyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China.
| | - Ying Zhang
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China.
- Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
25
|
Zhang M, Shi J, Pan H, Zhu J, Wang X, Zhou J, Deng H. F-53B stimulated vascular smooth muscle cell phenotypic switch and vascular remodeling via ferroptosis-related pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176565. [PMID: 39341237 DOI: 10.1016/j.scitotenv.2024.176565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
The compound 6:2 chlorinated polyfluorinated ether sulfonate (F53B), an alternative to perfluorooctane sulfonate (PFOS), has been widely utilized in China. Although the connection between the exposure and toxicity of F53B is established, the role and mechanisms of the compound in promoting vascular remodeling are yet to be elucidated. Thus, the present study investigated the impact of F53B on the function of vascular smooth muscle cells (VSMCs) and vascular remodeling. The data exhibited that F53B stimulates vascular morphological alterations in vivo, and exposure to the compound caused excessive VSMCs ferroptosis and phenotype switching, as determined using phenotype and molecular assays. Moreover, Fer-1 reversed F-53B-induced VSMC dysfunction and vascular remodeling. Furthermore, F53B activated the ferroptosis-related pathway, encompassing ATR expression and LOC101929922/miR-542-3p/ACSL4 pathway. Thus, the current results elaborated on the multifaceted toxicities of F53B that induce vascular remodeling, thereby necessitating the assessment of vasotoxicity risks associated with the compound.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Cardiovascular Diseases, Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China.
| | - Jun Shi
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Huichao Pan
- Institute of Cardiovascular Diseases, Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China
| | - Jie Zhu
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xueting Wang
- Institute of Cardiovascular Diseases, Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China
| | - Jun Zhou
- Institute of Cardiovascular Diseases, Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China
| | - Huiping Deng
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
26
|
Li MJ, Xu JY, Zhang HY, Guo M, Lan MN, Kong J, Liu SW, Zheng HJ. A medicine and food homology formula prevents cognitive deficits by inhibiting neuroinflammation and oxidative stress via activating AEA-Trpv1-Nrf2 pathway. Inflammopharmacology 2024; 32:3745-3759. [PMID: 39305407 DOI: 10.1007/s10787-024-01570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 11/10/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder frequently accompanied by neuroinflammation and oxidative stress. The medicine and food homology (MFH) has shown potential for treating neuroinflammation and oxidative stress. This study aimed to provide a safe and efficient therapy for AD based on MFH. In this study, we develop a MFH formula consisting of egg yolk oil, perilla seed oil, raphani seed oil, cinnamon oil, and noni puree (EPRCN). To evaluate the ameliorative effects of EPRCN on AD-related symptoms, a mouse model of AD was constructed using intraperitoneal injection of scopolamine in ICR mice. Experimental results demonstrated that EPRCN supplement restored behavioral deficits and suppressed neuroinflammation and oxidative stress in the hippocampus of scopolamine-induced mice. An in vitro study was then performed using induction of Aβ(25-35) in glial (BV-2 and SW-1783) and neuron (SH-SY5Y) cell lines to examine the improvement mechanism of EPRCN on cognitive deficits. Multi-omics and in vitro studies demonstrated that these changes were driven by the anandamide (AEA)-Trpv1-Nrf2 pathway, which was inhibited by AM404 (an AEA inhibitor), AMG9810 (a Trpv1 inhibitor), and BT (an Nrf2 inhibitor). Consequently, EPRCN is an effective therapy on preventing cognitive deficits in mouse models of AD. In contrast to donepezil, EPRCN exhibits a novel modes action for ameliorating neuroinflammation. The mechanism of EPRCN on preventing cognitive deficits is mediated by improving neuroinflammation and oxidative stress via activating the AEA-Trpv1-Nrf2 pathway.
Collapse
Affiliation(s)
- Ming-Jie Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing-Yi Xu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 117004, China
| | - Hua-Yue Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Min Guo
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Meng-Ning Lan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jie Kong
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Shi-Wei Liu
- Shanghai Xizuo Biotechnology Co., Ltd, Shanghai, 201107, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| |
Collapse
|
27
|
Gosselink IF, van Schooten FJ, Drittij MJ, Höppener EM, Leonhardt P, Moschini E, Serchi T, Gutleb AC, Kooter IM, Remels AH. Assessing toxicity of amorphous nanoplastics in airway- and lung epithelial cells using air-liquid interface models. CHEMOSPHERE 2024; 368:143702. [PMID: 39522701 DOI: 10.1016/j.chemosphere.2024.143702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Inhalation is one of the main exposure routes to nanoplastics. Knowledge of the toxicological impact of nanoplastics on the airway- and lung epithelium is limited and almost exclusively based on submerged in vitro models using spherical polystyrene (PS) particles. METHODS Mono-cultures and advanced (co-)cultures of human bronchial- and alveolar epithelial cells, all air-liquid interface (ALI) cultures, were exposed to nanoplastics and reference nanoparticles. Alveolar models included A549 mono-cultures and A549 cells co-cultured with endothelial cells (Ea.hy926) and macrophage-like cells (differentiated THP-1). Bronchial models included BEAS-2B cells and differentiated primary bronchial epithelial cells (PBEC). Cultures were exposed to PS, copper(II) oxide (CuO) or titanium dioxide (TiO2) nanoparticles (50 nm). Additionally, BEAS-2B cells were exposed to well-characterised, amorphous polyvinyl chloride (PVC), polypropylene (PP), or polyamide (PA) nanoplastics. Cytotoxicity and inflammation (IL-8 secretion and IL-8 transcript levels) were assessed after 24 h of exposure. RESULTS Cell viability remained unaffected by all exposures in all models. Unlike PS and TiO2, CuO exposure dose-dependently induced IL-8 protein secretion and mRNA levels. Although the extent of IL-8 secretion differed between models, the relative response to CuO was similar in both mono-cultures and advanced (co-)cultures. None of the environmentally relevant nanoplastics (PVC, PA or PP) impacted inflammation or cell viability in BEAS-2B ALI cultures. CONCLUSION Although CuO induced inflammation, PS failed to elicit an inflammatory response in any of our models. For the first time, we show that PVC, PA and PP do not induce cell death or inflammation in a BEAS-2B ALI model.
Collapse
Affiliation(s)
- I F Gosselink
- Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands.
| | - F J van Schooten
- Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands.
| | - M J Drittij
- Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands.
| | - E M Höppener
- Netherlands Organisation for Applied Scientific Research, TNO, Utrecht, the Netherlands.
| | - P Leonhardt
- Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands.
| | - E Moschini
- Environmental Sustainability Assessment and Circularity (SUSTAIN) Unit, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg; Heriot-Watt University, IB3, EPS, EH14 4AS, Edinburgh, UK.
| | - T Serchi
- Environmental Sustainability Assessment and Circularity (SUSTAIN) Unit, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg.
| | - A C Gutleb
- Environmental Sustainability Assessment and Circularity (SUSTAIN) Unit, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg.
| | - I M Kooter
- Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands; Netherlands Organisation for Applied Scientific Research, TNO, Utrecht, the Netherlands
| | - A H Remels
- Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
28
|
Cui Y, Zhang P, Song K, Qi C, Liu Y, Liu J. Role of PERK-Mediated Endoplasmic Reticulum Stress in Ferroptosis Caused by Hexavalent Chromium in Chicken Hepatocytes. Biol Trace Elem Res 2024; 202:5208-5218. [PMID: 38183555 DOI: 10.1007/s12011-023-04046-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
This study aimed to investigate whether Cr(VI) can induce ferroptosis in chicken hepatocytes and determine the role of PERK-mediated endoplasmic reticulum stress (ERS). First, a model of Cr(VI) poisoning was established by exposing chicken hepatocytes to Cr(VI). The levels of ferroptosis-related proteins, meanwhile, GSH, SOD, MDA, and lipid ROS, were measured. Furthermore, the expression of GRP78 and PERK proteins was examined. Changes in ERS and ferroptosis were evaluated by silencing the PERK gene. Results showed that Cr(VI) led to the accumulation of lipid ROS, decreased expression of GPX4 and HSP27, increased expression of COX2, and induced ferroptosis in chicken hepatocytes. Exposure to Cr(VI) increased the protein expression of GRP78 and PERK, and silencing of PERK worsened Cr(VI)-induced ferroptosis. In conclusion, Cr(VI) can induce ferroptosis in chicken hepatocytes, and PERK plays an important role as a negative regulator.
Collapse
Affiliation(s)
- Yukun Cui
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Pu Zhang
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China
| | - Kaimin Song
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Changxi Qi
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
29
|
Kang H, Huang D, Zhang W, Wang J, Liu Z, Wang Z, Jiang G, Gao A. Inhaled polystyrene microplastics impaired lung function through pulmonary flora/TLR4-mediated iron homeostasis imbalance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174300. [PMID: 38936707 DOI: 10.1016/j.scitotenv.2024.174300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Microplastics (MPs) have been found in the air, human nasal cavity, and lung, suggesting that the respiratory tract is one of the important exposure routes for MPs. The lung is a direct target organ for injury from inhaled MPs, but data on lung injury from longer-term exposure to environmental doses of MPs are limited, and the mechanisms remain unclear. Here, C57BL/6 J mice were treated with 5 μm polystyrene (PS)-MPs by intratracheal instillation (0.6, 3, and 15 mg/kg) for 60 days to establish MPs exposure model. We found that PS-MPs lead to increased collagen fibers and decreased lung barrier permeability and lung function in lung tissue. Mechanistically, the abundance of gram-negative bacteria in the pulmonary flora increased after inhalation of PS-MPs, causing lipopolysaccharide (LPS) release. The expression of Toll-like receptor 4 (TLR4), the key receptor of LPS, was increased, and ferroptosis occurred in lung tissue cells. Further in vitro intervention experiments were performed, pulmonary flora/TLR4-induced imbalance of lung iron homeostasis is an important mechanism of PS-MPs-induced lung injury. Our study provides new evidence for lung injury caused by environmental doses of MPs and strategies to prevent it through longer-term dynamic observation.
Collapse
Affiliation(s)
- Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Danyang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - JingYu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Guangyu Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
30
|
Wu Q, Li R, You Y, Cheng W, Li Y, Feng Y, Fan Y, Wang Y. Lung microbiota participated in fibrous microplastics (MPs) aggravating OVA-induced asthma disease in mice. Food Chem Toxicol 2024; 190:114776. [PMID: 38851522 DOI: 10.1016/j.fct.2024.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Environmental pollution is one of the risk factors for asthma. Currently, whether micro-plastics could aggravate asthma, is still unclear. In the air, fibrous MPs are the predominant shape. Since fibrous micro-plastics are reported to be detected in the lower respiratory tract and other body parts, the relationship of fibrous MP and asthma, as well as the potential mechanism is not well investigated. In this study, we produced fibrous MPs, whose lengths and widths were in accordance with the natural environment, and further, investigated the potential adverse effect of which on the asthma in a OVA (ovalbumin)-induced mice model, aiming at exploring the true life hazard of MP to the respiratory system. Following nasal exposure to fibrous MPs, the airway inflammation, mucus hypersecretion and fibrosis were aggravated in asthmatic mice. Fibrous MPs exposure also significantly increased the levels of total IgE, and, cardinal Th2 and Th1 pro-inflammatory cytokines participated in the etiopathogenesis of allergic airway inflammation. In addition, MP fibers exposure induced lung epithelial cells apoptosis, disruption of epithelial barrier integrity and activation of NLRP3 related signaling pathways. Moreover, fibrous MPs significantly altered the bacterial composition at the genus level. Compared to the control group, the relative abundance of Escherichia-Shigella and Uncultured were decreased to 4.47% and 0.15% in OVA group, while Blautia and Prevotella were elevated to 4.96% and 2.94%. For the OVA + MPs group, the relative abundance of Blautia and Uncultured were decreased to 2.27% and 0.006%, while Prevotella was increased to 3.05%. Our study highlights the detrimental effect of fibrous MPs on asthmatic population and facilitates an indication of the latent mechanisms of fibrous MPs induced airway pathology.
Collapse
Affiliation(s)
- Qian Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Rui Li
- The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, China.
| | - Yifei You
- School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Yuqin Fan
- The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, China
| | - Yan Wang
- The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
31
|
Zhang HJ, Luo JZ, Lan CL, Teng X, Ge B, Liu JQ, Xie HX, Yang KJ, Qin CJ, Zhou X, Peng T. Baicalin protects against hepatocyte injury caused by aflatoxin B 1 via the TP53-related ferroptosis Pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116661. [PMID: 38954907 DOI: 10.1016/j.ecoenv.2024.116661] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE Baicalin has antioxidative, antiviral, and anti-inflammatory properties. However, its ability to alleviate oxidative stress (OS) and DNA damage in liver cells exposed to aflatoxin B1 (AFB1), a highly hepatotoxic compound, remains uncertain. In this study, the protective effects of baicalin on AFB1-induced hepatocyte injury and the mechanisms underlying those effects were investigated. METHODS Stable cell lines expressing CYP3A4 were established using lentiviral vectors to assess oxidative stress levels by conducting assays to determine the content of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Additionally, DNA damage was evaluated by 8-hydroxy-2-deoxyguanosine (8-OHdG) and comet assays. Transcriptome sequencing, molecular docking, and in vitro experiments were conducted to determine the mechanisms underlying the effects of baicalin on AFB1-induced hepatocyte injury. In vivo, a rat model of hepatocyte injury induced by AFB1 was used to evaluate the effects of baicalin. RESULTS In vitro, baicalin significantly attenuated AFB1-induced injury caused due to OS, as determined by a decrease in ROS, MDA, and SOD levels. Baicalin also considerably decreased AFB1-induced DNA damage in hepatocytes. This protective effect of baicalin was found to be closely associated with the TP53-mediated ferroptosis pathway. To elaborate, baicalin physically interacts with P53, leading to the suppression of the expression of GPX4 and SLC7A11, which in turn inhibits ferroptosis. In vivo findings showed that baicalin decreased DNA damage and ferroptosis in AFB1-treated rat liver tissues, as determined by a decrease in the expression of γ-H2AX and an increase in GPX4 and SLC7A11 levels. Overexpression of TP53 weakened the protective effects of baicalin. CONCLUSIONS Baicalin can alleviate AFB1-induced OS and DNA damage in liver cells via the TP53-mediated ferroptosis pathway. In this study, a theoretical foundation was established for the use of baicalin in protecting the liver from the toxic effects of AFB1.
Collapse
Affiliation(s)
- Han-Jing Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of South China, Hengyang Medical School, Hengyang, Hunan 421001, China
| | - Jian-Zhu Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Chen-Lu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China
| | - Xiong Teng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China
| | - Bin Ge
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China
| | - Jun-Qi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China
| | - Hai-Xiang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China
| | - Ke-Jian Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China
| | - Chong-Jiu Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China.
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning 530021, China.
| |
Collapse
|
32
|
Liang Y, Wang Z, Huo D, Hu JN, Song L, Ma X, Jiang S, Li W. Nanoplastic-Induced Liver Damage Was Alleviated by Maltol via Enhancing Autophagic Flow: An In Vivo and In Vitro Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16250-16262. [PMID: 38915203 DOI: 10.1021/acs.jafc.4c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In recent years, there has been a growing concern regarding health issues arising from exposure to nanoplastics (Nps) in the natural environment. The Nps bioaccumulate within the body via the circulatory system and accumulate in the liver, resulting in damage. Previous studies have demonstrated that maltol, derived from red ginseng (Panax ginseng C.A. Meyer) as a Maillard product, exhibits hepatoprotective effects by alleviating liver damage caused by carbon tetrachloride or cisplatin. In order to explore the specific mechanism of maltol in improving hepatotoxicity induced by Nps, mice exposed to 100 mg/kg Nps were given maltol at doses of 50 and 100 mg/kg, respectively. The results showed that Nps induced an increase in the levels of liver apoptotic factors BAX and cytochrome c, a decrease in the levels of the autophagy key gene LC3 II/I, and an increase in P62. It also caused oxidative stress by affecting the Nrf2/HO-1 pathway, and a decrease in GPX4 protein expression suggested the occurrence of ferroptosis. However, treatment with maltol significantly improved these changes. In addition, maltol (2, 4, and 8 μM) also protected human normal liver L02 cells from Np (400 μg/mL)-induced damage. Our data suggest that maltol could ameliorate Np-induced L02 cytotoxicity by reducing autophagy-dependent oxidative stress, exhibiting similar protective effects in vitro as in vivo. This study helps shed light on the specific molecular mechanism of Np-induced hepatotoxicity. For the first time, we studied the protective effect of maltol on Np-induced liver injury from multiple perspectives, expanding the possibility of treatment for diseases caused by environmental pollutants.
Collapse
Affiliation(s)
- Ying Liang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Deyang Huo
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Lingjie Song
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
33
|
Wang M, Dai B, Liu Q, Wang X, Xiao Y, Zhang G, Jiang H, Zhang X, Zhang L. Polystyrene nanoplastics exposure causes erectile dysfunction in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116551. [PMID: 38875818 DOI: 10.1016/j.ecoenv.2024.116551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Polystyrene nanoplastics (PS-NPs), emerging and increasingly pervasive environmental contaminants, have the potential to cause persistent harm to organisms. Although previous reports have documented local accumulation and adverse effects in a variety of major organs after PS-NPs exposure, the impact of PS-NPs exposure on erectile function remains unexplored. Herein, we established a rat model of oral exposure to 100 nm PS-NPs for 28 days. To determine the best dose range of PS-NPs, we designed both low-dose and high-dose PS-NPs groups, which correspond to the minimum and maximum human intake doses, respectively. The findings indicated that PS-NPs could accumulate within the corpus cavernosum and high dose but not low dose of PS-NPs triggered erectile dysfunction. Moreover, the toxicological effects of PS-NPs on erectile function include fibrosis in the corpus cavernous, endothelial dysfunction, reduction in testosterone levels, elevated oxidative stress and apoptosis. Overall, this study revealed that PS-NPs exposure can cause erectile dysfunction via multiple ways, which provided new insights into the toxicity of PS-NPs.
Collapse
Affiliation(s)
- Ming Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Urology, Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Bangshun Dai
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Urology, Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Qiushi Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Urology, Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Xiaobin Wang
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen 518052, China
| | - Yunzheng Xiao
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen 518052, China
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China.
| | - Hui Jiang
- Department of Urology, Peking University First Hospital Institute of Urology, Peking University Andrology Center, Beijing 100034, China.
| | - Xiansheng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Urology, Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China.
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Urology, Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China; Center for Scientific Research of the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
34
|
Xuan L, Wang Y, Qu C, Yi W, Yang J, Pan H, Zhang J, Chen C, Bai C, Zhou PK, Huang R. Exposure to polystyrene nanoplastics induces abnormal activation of innate immunity via the cGAS-STING pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116255. [PMID: 38552388 DOI: 10.1016/j.ecoenv.2024.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Abstract
Endogenous immune defenses provide an intrinsic barrier against external entity invasion. Microplastics in the environment, especially those at the nanoscale (nanoplastics or NPs), may pose latent health risks through direct exposure. While links between nanoplastics and inflammatory processes have been established, detailed insights into how they may perturb the innate immune mechanisms remain uncharted. Employing murine and macrophage (RAW264.7) cellular models subjected to polystyrene nanoplastics (PS-NPs), our investigative approach encompassed an array of techniques: Cell Counting Kit-8 assays, flow cytometric analysis, acridine orange/ethidium bromide (AO/EB) fluorescence staining, cell transfection, cell cycle scrutiny, genetic manipulation, messenger RNA expression profiling via quantitative real-time PCR, and protein expression evaluation through western blotting. The results showed that PS-NPs caused RAW264.7 cell apoptosis, leading to cell cycle arrest, and activated the cGAS-STING pathway. This resulted in NF-κB signaling activation and increased pro-inflammatory mediator expression. Importantly, PS-NPs-induced activation of NF-κB and its downstream inflammatory cascade were markedly diminished after the silencing of the STING gene. Our findings highlight the critical role of the cGAS-STING pathway in the immunotoxic effects induced by PS-NPs. We outline a new mechanism whereby nanoplastics may trigger dysregulated innate immune and inflammatory responses via the cGAS/STING pathway.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Yin Wang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Can Qu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China
| | - Wensen Yi
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China
| | - Jingjing Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China
| | - Huiji Pan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Jing Zhang
- Clinical Medical Oncology, Xiangya Medical College, Central South University, China.
| | - Cuimei Chen
- School of Public Health, Xiang Nan University, Chenzhou, Hunan 423000, China.
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| |
Collapse
|