1
|
Nadtochy JA, Medvedev SP, Grigor’eva EV, Pavlova SV, Minina JM, Chechushkov AV, Malakhova AA, Kovalenko LV, Zakian SM. Transgenic iPSC Lines with Genetically Encoded MitoTimer to Study Mitochondrial Biogenesis in Dopaminergic Neurons with Tauopathy. Biomedicines 2025; 13:550. [PMID: 40149527 PMCID: PMC11940372 DOI: 10.3390/biomedicines13030550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/04/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Tauopathy has been identified as a prevalent causative agent of neurodegenerative diseases, including frontotemporal dementia with parkinsonism-17 (FTDP-17). This rare hereditary neurodegenerative condition is characterised by the manifestation of parkinsonism and behavioural changes. The majority of cases of FTDP-17 are associated with mutations in the MAPT gene, which encodes the tau protein. MAPT mutations lead to disruption of the balance between 3R and 4R tau forms, which causes destabilisation of microtubules and impairment of cellular organelle functions, particularly mitochondrial dysfunction. The development of model systems and tools for studying the molecular, genetic, and biochemical mechanisms underlying FTDP-17 and testing therapies at the cellular level is an urgent necessity. Methods: In this study, we generated transgenic lines of induced pluripotent stem cells (iPSCs) from a patient carrying the pathogenic mutation c.2013T > G (rs63750756, p.N279K) of MAPT and a healthy donor. A doxycycline-controlled transgene of the genetically encoded biosensor MitoTimer was integrated into the AAVS1 locus of these cells. The MitoTimer biosensor allows for lifetime monitoring of the turnover of mitochondria in neuronal cells derived from directed iPSC differentiation. The fact that transcription of the transgene can be induced by doxycycline provides additional possibilities for pulse labelling of newly formed mitochondria. Results: Transgenic iPSC lines provide a unique tool to study the molecular and genetic mechanisms of FTDP-17 caused by the presence of the c.2013T > G (p.N279K) mutation, as well as to test potential drugs in vitro.
Collapse
Affiliation(s)
- Julia A. Nadtochy
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (J.A.N.); (S.P.M.); (E.V.G.); (S.V.P.); (J.M.M.); (S.M.Z.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sergey P. Medvedev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (J.A.N.); (S.P.M.); (E.V.G.); (S.V.P.); (J.M.M.); (S.M.Z.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Elena V. Grigor’eva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (J.A.N.); (S.P.M.); (E.V.G.); (S.V.P.); (J.M.M.); (S.M.Z.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Sophia V. Pavlova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (J.A.N.); (S.P.M.); (E.V.G.); (S.V.P.); (J.M.M.); (S.M.Z.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Julia M. Minina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (J.A.N.); (S.P.M.); (E.V.G.); (S.V.P.); (J.M.M.); (S.M.Z.)
| | - Anton V. Chechushkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Federal Research Center of Fundamental and Translational Medicine Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (J.A.N.); (S.P.M.); (E.V.G.); (S.V.P.); (J.M.M.); (S.M.Z.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Liudmila V. Kovalenko
- Department of Pathophysiology and General Pathology, Medical Institute, Khanty-Mansiysk Autonomous Okrug–Ugra Surgut State University, Surgut 628403, Russia;
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (J.A.N.); (S.P.M.); (E.V.G.); (S.V.P.); (J.M.M.); (S.M.Z.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| |
Collapse
|
2
|
Wang W, Arreola M, Mathews T, DeVilbiss A, Zhao Z, Martin-Sandoval M, Mohammed A, Benegiamo G, Awani A, Goeminne L, Dever D, Nakauchi Y, Porteus MH, Pavel-Dinu M, Al-Herz W, Auwerx J, Morrison SJ, Weinacht KG. Failure of metabolic checkpoint control during late-stage granulopoiesis drives neutropenia in reticular dysgenesis. Blood 2024; 144:2718-2734. [PMID: 39378586 PMCID: PMC11830988 DOI: 10.1182/blood.2024024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/30/2024] [Accepted: 08/24/2024] [Indexed: 10/10/2024] Open
Abstract
ABSTRACT Cellular metabolism is highly dynamic during hematopoiesis, yet the regulatory networks that maintain metabolic homeostasis during differentiation are incompletely understood. Herein, we have studied the grave immunodeficiency syndrome reticular dysgenesis caused by loss of mitochondrial adenylate kinase 2 (AK2) function. By coupling single-cell transcriptomics in samples from patients with reticular dysgenesis with a CRISPR model of this disorder in primary human hematopoietic stem cells, we found that the consequences of AK2 deficiency for the hematopoietic system are contingent on the effective engagement of metabolic checkpoints. In hematopoietic stem and progenitor cells, including early granulocyte precursors, AK2 deficiency reduced mechanistic target of rapamycin (mTOR) signaling and anabolic pathway activation. This conserved nutrient homeostasis and maintained cell survival and proliferation. In contrast, during late-stage granulopoiesis, metabolic checkpoints were ineffective, leading to a paradoxical upregulation of mTOR activity and energy-consuming anabolic pathways such as ribonucleoprotein synthesis in AK2-deficient cells. This caused nucleotide imbalance, including highly elevated adenosine monophosphate and inosine monophosphate levels, the depletion of essential substrates such as NAD+ and aspartate, and ultimately resulted in proliferation arrest and demise of the granulocyte lineage. Our findings suggest that even severe metabolic defects can be tolerated with the help of metabolic checkpoints but that the failure of such checkpoints in differentiated cells results in a catastrophic loss of homeostasis.
Collapse
Affiliation(s)
- Wenqing Wang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Martin Arreola
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Thomas Mathews
- Children’s Medical Center Research Institute, The University of Texas Southwestern, Dallas, TX
| | - Andrew DeVilbiss
- Children’s Medical Center Research Institute, The University of Texas Southwestern, Dallas, TX
| | - Zhiyu Zhao
- Children’s Medical Center Research Institute, The University of Texas Southwestern, Dallas, TX
| | - Misty Martin-Sandoval
- Children’s Medical Center Research Institute, The University of Texas Southwestern, Dallas, TX
| | - Abdulvasey Mohammed
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Giorgia Benegiamo
- Laboratory for Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Avni Awani
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Ludger Goeminne
- Laboratory for Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel Dever
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Yusuke Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Matthew H. Porteus
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Waleed Al-Herz
- Department of Pediatrics, College of Medicine, Kuwait University, Safat, Kuwait
| | - Johan Auwerx
- Laboratory for Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sean J. Morrison
- Children’s Medical Center Research Institute, The University of Texas Southwestern, Dallas, TX
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Katja G. Weinacht
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
3
|
Puspita L, Juwono VB, Shim JW. Advances in human pluripotent stem cell reporter systems. iScience 2024; 27:110856. [PMID: 39290832 PMCID: PMC11407076 DOI: 10.1016/j.isci.2024.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The capability of human pluripotent stem cells (hPSCs) to self-renew and differentiate into any cell type has greatly contributed to the advancement of biomedicine. Reporter lines derived from hPSCs have played a crucial role in elucidating the mechanisms underlying human development and diseases by acting as an alternative reporter system that cannot be used in living humans. To bring hPSCs closer to clinical application in transplantation, scientists have generated reporter lines for isolating the desired cell populations, as well as improving graft quality and treatment outcomes. This review presents an overview of the applications of hPSC reporter lines and the important variables in designing a reporter system, including options for gene delivery and editing tools, design of reporter constructs, and selection of reporter genes. It also provides insights into the prospects of hPSC reporter lines and the challenges that must be overcome to maximize the potential of hPSC reporter lines.
Collapse
Affiliation(s)
- Lesly Puspita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Virginia Blessy Juwono
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| |
Collapse
|
4
|
Scarfò R, Randolph LN, Abou Alezz M, El Khoury M, Gersch A, Li ZY, Luff SA, Tavosanis A, Ferrari Ramondo G, Valsoni S, Cascione S, Didelon E, Passerini L, Amodio G, Brandas C, Villa A, Gregori S, Merelli I, Freund JN, Sturgeon CM, Tavian M, Ditadi A. CD32 captures committed haemogenic endothelial cells during human embryonic development. Nat Cell Biol 2024; 26:719-730. [PMID: 38594587 PMCID: PMC11098737 DOI: 10.1038/s41556-024-01403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
During embryonic development, blood cells emerge from specialized endothelial cells, named haemogenic endothelial cells (HECs). As HECs are rare and only transiently found in early developing embryos, it remains difficult to distinguish them from endothelial cells. Here we performed transcriptomic analysis of 28- to 32-day human embryos and observed that the expression of Fc receptor CD32 (FCGR2B) is highly enriched in the endothelial cell population that contains HECs. Functional analyses using human embryonic and human pluripotent stem cell-derived endothelial cells revealed that robust multilineage haematopoietic potential is harboured within CD32+ endothelial cells and showed that 90% of CD32+ endothelial cells are bona fide HECs. Remarkably, these analyses indicated that HECs progress through different states, culminating in FCGR2B expression, at which point cells are irreversibly committed to a haematopoietic fate. These findings provide a precise method for isolating HECs from human embryos and human pluripotent stem cell cultures, thus allowing the efficient generation of haematopoietic cells in vitro.
Collapse
Affiliation(s)
- Rebecca Scarfò
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lauren N Randolph
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mahassen El Khoury
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Amélie Gersch
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Zhong-Yin Li
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie A Luff
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Tavosanis
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Ferrari Ramondo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Valsoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cascione
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emma Didelon
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brandas
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
- INSERM U1256-NGERE, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Christopher M Sturgeon
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuela Tavian
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France.
| | - Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
5
|
Bedada FB, Thompson BR, Mikkila JL, Chan SSK, Choi SH, Toso EA, Kyba M, Metzger JM. Inducing positive inotropy in human iPSC-derived cardiac muscle by gene editing-based activation of the cardiac α-myosin heavy chain. Sci Rep 2024; 14:3915. [PMID: 38365813 PMCID: PMC10873390 DOI: 10.1038/s41598-024-53395-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Human induced pluripotent stem cells and their differentiation into cardiac myocytes (hiPSC-CMs) provides a unique and valuable platform for studies of cardiac muscle structure-function. This includes studies centered on disease etiology, drug development, and for potential clinical applications in heart regeneration/repair. Ultimately, for these applications to achieve success, a thorough assessment and physiological advancement of the structure and function of hiPSC-CMs is required. HiPSC-CMs are well noted for their immature and sub-physiological cardiac muscle state, and this represents a major hurdle for the field. To address this roadblock, we have developed a hiPSC-CMs (β-MHC dominant) experimental platform focused on directed physiological enhancement of the sarcomere, the functional unit of cardiac muscle. We focus here on the myosin heavy chain (MyHC) protein isoform profile, the molecular motor of the heart, which is essential to cardiac physiological performance. We hypothesized that inducing increased expression of α-MyHC in β-MyHC dominant hiPSC-CMs would enhance contractile performance of hiPSC-CMs. To test this hypothesis, we used gene editing with an inducible α-MyHC expression cassette into isogeneic hiPSC-CMs, and separately by gene transfer, and then investigated the direct effects of increased α-MyHC expression on hiPSC-CMs contractility and relaxation function. Data show improved cardiac functional parameters in hiPSC-CMs induced with α-MyHC. Positive inotropy and relaxation was evident in comparison to β-MyHC dominant isogenic controls both at baseline and during pacing induced stress. This approach should facilitate studies of hiPSC-CMs disease modeling and drug screening, as well as advancing fundamental aspects of cardiac function parameters for the optimization of future cardiac regeneration, repair and re-muscularization applications.
Collapse
Affiliation(s)
- Fikru B Bedada
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
- Present Address: Department of Clinical Laboratory Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, USA
| | - Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Jennifer L Mikkila
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Sunny S-K Chan
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Si Ho Choi
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Erik A Toso
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Balmas E, Sozza F, Bottini S, Ratto ML, Savorè G, Becca S, Snijders KE, Bertero A. Manipulating and studying gene function in human pluripotent stem cell models. FEBS Lett 2023; 597:2250-2287. [PMID: 37519013 DOI: 10.1002/1873-3468.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Human pluripotent stem cells (hPSCs) are uniquely suited to study human development and disease and promise to revolutionize regenerative medicine. These applications rely on robust methods to manipulate gene function in hPSC models. This comprehensive review aims to both empower scientists approaching the field and update experienced stem cell biologists. We begin by highlighting challenges with manipulating gene expression in hPSCs and their differentiated derivatives, and relevant solutions (transfection, transduction, transposition, and genomic safe harbor editing). We then outline how to perform robust constitutive or inducible loss-, gain-, and change-of-function experiments in hPSCs models, both using historical methods (RNA interference, transgenesis, and homologous recombination) and modern programmable nucleases (particularly CRISPR/Cas9 and its derivatives, i.e., CRISPR interference, activation, base editing, and prime editing). We further describe extension of these approaches for arrayed or pooled functional studies, including emerging single-cell genomic methods, and the related design and analytical bioinformatic tools. Finally, we suggest some directions for future advancements in all of these areas. Mastering the combination of these transformative technologies will empower unprecedented advances in human biology and medicine.
Collapse
Affiliation(s)
- Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Federica Sozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Maria Luisa Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Giulia Savorè
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Silvia Becca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Kirsten Esmee Snijders
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| |
Collapse
|
7
|
Xie N, Chu SN, Schultz CB, Chan SSK. Efficient Muscle Regeneration by Human PSC-Derived CD82 + ERBB3 + NGFR + Skeletal Myogenic Progenitors. Cells 2023; 12:cells12030362. [PMID: 36766703 PMCID: PMC9913306 DOI: 10.3390/cells12030362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Differentiation of pluripotent stem cells (PSCs) is a promising approach to obtaining large quantities of skeletal myogenic progenitors for disease modeling and cell-based therapy. However, generating skeletal myogenic cells with high regenerative potential is still challenging. We recently reported that skeletal myogenic progenitors generated from mouse PSC-derived teratomas possess robust regenerative potency. We have also found that teratomas derived from human PSCs contain a skeletal myogenic population. Here, we showed that these human PSC-derived skeletal myogenic progenitors had exceptional engraftability. A combination of cell surface markers, CD82, ERBB3, and NGFR enabled efficient purification of skeletal myogenic progenitors. These cells expressed PAX7 and were able to differentiate into MHC+ multinucleated myotubes. We further discovered that these cells are expandable in vitro. Upon transplantation, the expanded cells formed new dystrophin+ fibers that reconstituted almost ¾ of the total muscle volume, and repopulated the muscle stem cell pool. Our study, therefore, demonstrates the possibility of producing large quantities of engraftable skeletal myogenic cells from human PSCs.
Collapse
Affiliation(s)
- Ning Xie
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sabrina N. Chu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Sunny S. K. Chan
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: ; Tel.: +1-612-301-2187
| |
Collapse
|
8
|
An HH, Gagne AL, Maguire JA, Pavani G, Abdulmalik O, Gadue P, French DL, Westhoff CM, Chou ST. The use of pluripotent stem cells to generate diagnostic tools for transfusion medicine. Blood 2022; 140:1723-1734. [PMID: 35977098 PMCID: PMC9707399 DOI: 10.1182/blood.2022015883] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
Red blood cell (RBC) transfusion is one of the most common medical treatments, with more than 10 million units transfused per year in the United States alone. Alloimmunization to foreign Rh proteins (RhD and RhCE) on donor RBCs remains a challenge for transfusion effectiveness and safety. Alloantibody production disproportionately affects patients with sickle cell disease who frequently receive blood transfusions and exhibit high genetic diversity in the Rh blood group system. With hundreds of RH variants now known, precise identification of Rh antibody targets is hampered by the lack of appropriate reagent RBCs with uncommon Rh antigen phenotypes. Using a combination of human-induced pluripotent stem cell (iPSC) reprogramming and gene editing, we designed a renewable source of cells with unique Rh profiles to facilitate the identification of complex Rh antibodies. We engineered a very rare Rh null iPSC line lacking both RHD and RHCE. By targeting the AAVS1 safe harbor locus in this Rh null background, any combination of RHD or RHCE complementary DNAs could be reintroduced to generate RBCs that express specific Rh antigens such as RhD alone (designated D--), Goa+, or DAK+. The RBCs derived from these iPSCs (iRBCs) are compatible with standard laboratory assays used worldwide and can determine the precise specificity of Rh antibodies in patient plasma. Rh-engineered iRBCs can provide a readily accessible diagnostic tool and guide future efforts to produce an alternative source of rare RBCs for alloimmunized patients.
Collapse
Affiliation(s)
- Hyun Hyung An
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Alyssa L. Gagne
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jean Ann Maguire
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Giulia Pavani
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Osheiza Abdulmalik
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Paul Gadue
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Deborah L. French
- Department of Pathology and Laboratory Medicine, Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | - Stella T. Chou
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
9
|
Identification of cell cycle-associated and -unassociated regulators for expression of a hepatocellular carcinoma oncogene cyclin-dependent kinase inhibitor 3. Biochem Biophys Res Commun 2022; 625:46-52. [DOI: 10.1016/j.bbrc.2022.07.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
10
|
Defining the Skeletal Myogenic Lineage in Human Pluripotent Stem Cell-Derived Teratomas. Cells 2022; 11:cells11091589. [PMID: 35563894 PMCID: PMC9102156 DOI: 10.3390/cells11091589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle stem cells are essential to muscle homeostasis and regeneration after injury, and have emerged as a promising cell source for treating skeletal disorders. An attractive approach to obtain these cells utilizes differentiation of pluripotent stem cells (PSCs). We recently reported that teratomas derived from mouse PSCs are a rich source of skeletal muscle stem cells. Here, we showed that teratoma formation is also capable of producing skeletal myogenic progenitors from human PSCs. Using single-cell transcriptomics, we discovered several distinct skeletal myogenic subpopulations that represent progressive developmental stages of the skeletal myogenic lineage and recapitulate human embryonic skeletal myogenesis. We further discovered that ERBB3 and CD82 are effective surface markers for prospective isolation of the skeletal myogenic lineage in human PSC-derived teratomas. Therefore, teratoma formation provides an accessible model for obtaining human skeletal myogenic progenitors from PSCs.
Collapse
|
11
|
The Cutting Edge of Disease Modeling: Synergy of Induced Pluripotent Stem Cell Technology and Genetically Encoded Biosensors. Biomedicines 2021; 9:biomedicines9080960. [PMID: 34440164 PMCID: PMC8392144 DOI: 10.3390/biomedicines9080960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
The development of cell models of human diseases based on induced pluripotent stem cells (iPSCs) and a cell therapy approach based on differentiated iPSC derivatives has provided a powerful stimulus in modern biomedical research development. Moreover, it led to the creation of personalized regenerative medicine. Due to this, in the last decade, the pathological mechanisms of many monogenic diseases at the cell level have been revealed, and clinical trials of various cell products derived from iPSCs have begun. However, it is necessary to reach a qualitatively new level of research with cell models of diseases based on iPSCs for more efficient searching and testing of drugs. Biosensor technology has a great application prospect together with iPSCs. Biosensors enable researchers to monitor ions, molecules, enzyme activities, and channel conformation in live cells and use them in live imaging and drug screening. These probes facilitate the measurement of steady-state concentrations or activity levels and the observation and quantification of in vivo flux and kinetics. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of the false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the benefits of using biosensors in drug screening. Here, we discuss the possibilities of using biosensor technology in combination with cell models based on human iPSCs and gene editing systems. Furthermore, we focus on the current achievements and problems of using these methods.
Collapse
|
12
|
Plant AL, Halter M, Stinson J. Probing pluripotency gene regulatory networks with quantitative live cell imaging. Comput Struct Biotechnol J 2020; 18:2733-2743. [PMID: 33101611 PMCID: PMC7560648 DOI: 10.1016/j.csbj.2020.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/12/2022] Open
Abstract
Live cell imaging uniquely enables the measurement of dynamic events in single cells, but it has not been used often in the study of gene regulatory networks. Network components can be examined in relation to one another by quantitative live cell imaging of fluorescent protein reporter cell lines that simultaneously report on more than one network component. A series of dual-reporter cell lines would allow different combinations of network components to be examined in individual cells. Dynamical information about interacting network components in individual cells is critical to predictive modeling of gene regulatory networks, and such information is not accessible through omics and other end point techniques. Achieving this requires that gene-edited cell lines are appropriately designed and adequately characterized to assure the validity of the biological conclusions derived from the expression of the reporters. In this brief review we discuss what is known about the importance of dynamics to network modeling and review some recent advances in optical microscopy methods and image analysis approaches that are making the use of quantitative live cell imaging for network analysis possible. We also discuss how strategies for genetic engineering of reporter cell lines can influence the biological relevance of the data.
Collapse
Affiliation(s)
- Anne L Plant
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, United States
| | - Michael Halter
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, United States
| | - Jeffrey Stinson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, United States
| |
Collapse
|
13
|
Dost AFM, Moye AL, Vedaie M, Tran LM, Fung E, Heinze D, Villacorta-Martin C, Huang J, Hekman R, Kwan JH, Blum BC, Louie SM, Rowbotham SP, Sainz de Aja J, Piper ME, Bhetariya PJ, Bronson RT, Emili A, Mostoslavsky G, Fishbein GA, Wallace WD, Krysan K, Dubinett SM, Yanagawa J, Kotton DN, Kim CF. Organoids Model Transcriptional Hallmarks of Oncogenic KRAS Activation in Lung Epithelial Progenitor Cells. Cell Stem Cell 2020; 27:663-678.e8. [PMID: 32891189 PMCID: PMC7541765 DOI: 10.1016/j.stem.2020.07.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Mutant KRAS is a common driver in epithelial cancers. Nevertheless, molecular changes occurring early after activation of oncogenic KRAS in epithelial cells remain poorly understood. We compared transcriptional changes at single-cell resolution after KRAS activation in four sample sets. In addition to patient samples and genetically engineered mouse models, we developed organoid systems from primary mouse and human induced pluripotent stem cell-derived lung epithelial cells to model early-stage lung adenocarcinoma. In all four settings, alveolar epithelial progenitor (AT2) cells expressing oncogenic KRAS had reduced expression of mature lineage identity genes. These findings demonstrate the utility of our in vitro organoid approaches for uncovering the early consequences of oncogenic KRAS expression. This resource provides an extensive collection of datasets and describes organoid tools to study the transcriptional and proteomic changes that distinguish normal epithelial progenitor cells from early-stage lung cancer, facilitating the search for targets for KRAS-driven tumors.
Collapse
Affiliation(s)
- Antonella F M Dost
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron L Moye
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marall Vedaie
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Linh M Tran
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eileen Fung
- Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dar Heinze
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; Section of Gastroenterology and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ryan Hekman
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Julian H Kwan
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Benjamin C Blum
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sharon M Louie
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel P Rowbotham
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Julio Sainz de Aja
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Mary E Piper
- Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA 02115, USA
| | - Preetida J Bhetariya
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA 02115, USA
| | - Roderick T Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biology, Boston University, Boston, MA 02215, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; Section of Gastroenterology and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - William D Wallace
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Kostyantyn Krysan
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Steven M Dubinett
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jane Yanagawa
- Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Safety and efficacy evaluations of an adeno-associated virus variant for preparing IL10-secreting human neural stem cell-based therapeutics. Gene Ther 2019; 26:135-150. [PMID: 30692604 DOI: 10.1038/s41434-019-0057-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022]
Abstract
Gene therapy technologies are inevitably required to boost the therapeutic performance of cell therapies; thus, validating the efficacy of gene carriers specifically used for preparing cellular therapeutics is a prerequisite for evaluating the therapeutic capabilities of gene and cell combinatorial therapies. Herein, the efficacy of a recombinant adeno-associated virus derivative (rAAVr3.45) was examined to evaluate its potential as a gene carrier for genetically manipulating interleukin-10 (IL10)-secreting human neural stem cells (hNSCs) that can potentially treat ischemic injuries or neurological disorders. Safety issues that could arise during the virus preparation or viral infection were investigated; no replication-competent AAVs were detected in the final cell suspensions, transgene expression was mostly transient, and no severe interference on endogenous gene expression by viral infection occurred. IL10 secretion from hNSCs infected by rAAVr3.45 encoding IL10 did not alter the transcriptional profile of any gene by more than threefold, but the exogenously boosted IL10 was sufficient to provoke immunomodulatory effects in an ischemic brain injury animal model, thereby accelerating the recovery of neurological deficits and the reduction of brain infarction volume. This study presents evidence that rAAVr3.45 can be potentially used as a gene carrier to prepare stem cell therapeutics.
Collapse
|
15
|
Şişli HB, Hayal TB, Seçkin S, Şenkal S, Kıratlı B, Şahin F, Doğan A. Gene Editing in Human Pluripotent Stem Cells: Recent Advances for Clinical Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1237:17-28. [PMID: 31728915 DOI: 10.1007/5584_2019_439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The identification of human embryonic stem cells and reprogramming technology to obtain induced pluripotent stem cells from adult somatic cells have provided unique opportunity to create human disease models, gene editing strategies and cell therapy options.Development of pluripotent stem cells from somatic cells and genomic manipulation tools enabled to use site specific nucleases in the cell therapy research. Identification of efficient gene manipulation, safe differentiation and use will provide a novel strategy to treat many diseases in the near future. Current available registered clinical trials clearly indicate the need for pluripotent stem cell and gene therapy treatment options. Although gene editing based pluripotent stem cell research is a popular field for research worldwide, improvement of clinical approaches for treatment still remains to be investigated. In this review, we summarized the current situation of gene editing based pluripotent cell therapy developments and applications in clinics.
Collapse
Affiliation(s)
- Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selin Seçkin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selinay Şenkal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Binnur Kıratlı
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
16
|
Development and validation of an in vitro model system to study peripheral sensory neuron development and injury. Sci Rep 2018; 8:15961. [PMID: 30374154 PMCID: PMC6206093 DOI: 10.1038/s41598-018-34280-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/12/2018] [Indexed: 01/15/2023] Open
Abstract
The ability to discriminate between diverse types of sensation is mediated by heterogeneous populations of peripheral sensory neurons. Human peripheral sensory neurons are inaccessible for research and efforts to study their development and disease have been hampered by the availability of relevant model systems. The in vitro differentiation of peripheral sensory neurons from human embryonic stem cells therefore provides an attractive alternative since an unlimited source of biological material can be generated for studies that specifically address development and injury. The work presented in this study describes the derivation of peripheral sensory neurons from human embryonic stem cells using small molecule inhibitors. The differentiated neurons express canonical- and modality-specific peripheral sensory neuron markers with subsets exhibiting functional properties of human nociceptive neurons that include tetrodotoxin-resistant sodium currents and repetitive action potentials. Moreover, the derived cells associate with human donor Schwann cells and can be used as a model system to investigate the molecular mechanisms underlying neuronal death following peripheral nerve injury. The quick and efficient derivation of genetically diverse peripheral sensory neurons from human embryonic stem cells offers unlimited access to these specialised cell types and provides an invaluable in vitro model system for future studies.
Collapse
|
17
|
Osborn MJ, Lees CJ, McElroy AN, Merkel SC, Eide CR, Mathews W, Feser CJ, Tschann M, McElmury RT, Webber BR, Kim CJ, Blazar BR, Tolar J. CRISPR/Cas9-Based Cellular Engineering for Targeted Gene Overexpression. Int J Mol Sci 2018; 19:E946. [PMID: 29565806 PMCID: PMC5979553 DOI: 10.3390/ijms19040946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 12/27/2022] Open
Abstract
Gene and cellular therapies hold tremendous promise as agents for treating genetic disorders. However, the effective delivery of genes, particularly large ones, and expression at therapeutic levels can be challenging in cells of clinical relevance. To address this engineering hurdle, we sought to employ the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system to insert powerful regulatory elements upstream of an endogenous gene. We achieved robust activation of the COL7A1 gene in primary human umbilical cord blood CD34⁺ hematopoietic stem cells and peripheral blood T-cells. CD34⁺ cells retained their colony forming potential and, in a second engineering step, we disrupted the T-cell receptor complex in T-cells. These cellular populations are of high translational impact due to their engraftment potential, broad circulatory properties, and favorable immune profile that supports delivery to multiple recipients. This study demonstrates the feasibility of targeted knock in of a ubiquitous chromatin opening element, promoter, and marker gene that doubles as a suicide gene for precision gene activation. This system merges the specificity of gene editing with the high level, sustained gene expression achieved with gene therapy vectors. We predict that this design concept will be highly transferrable to most genes in multiple model systems representing a facile cellular engineering platform for promoting gene expression.
Collapse
Affiliation(s)
- Mark J Osborn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
- Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Christopher J Lees
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Amber N McElroy
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Sarah C Merkel
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Cindy R Eide
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Wendy Mathews
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Colby J Feser
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Madison Tschann
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Ron T McElmury
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Beau R Webber
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Pediatrics, Division of Hematology, Oncology, and Transplantation, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Chong Jai Kim
- Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Korea.
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
- Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Ferreira AF, Calin GA, Picanço-Castro V, Kashima S, Covas DT, de Castro FA. Hematopoietic stem cells from induced pluripotent stem cells - considering the role of microRNA as a cell differentiation regulator. J Cell Sci 2018; 131:131/4/jcs203018. [PMID: 29467236 DOI: 10.1242/jcs.203018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although hematopoietic stem cell (HSC) therapy for hematological diseases can lead to a good outcome from the clinical point of view, the limited number of ideal donors, the comorbidity of patients and the increasing number of elderly patients may limit the application of this therapy. HSCs can be generated from induced pluripotent stem cells (iPSCs), which requires the understanding of the bone marrow and liver niches components and function in vivo iPSCs have been extensively applied in several studies involving disease models, drug screening and cellular replacement therapies. However, the somatic reprogramming by transcription factors is a low-efficiency process. Moreover, the reprogramming process is also regulated by microRNAs (miRNAs), which modulate the expression of the transcription factors OCT-4 (also known as POU5F1), SOX-2, KLF-4 and MYC, leading somatic cells to a pluripotent state. In this Review, we present an overview of the challenges of cell reprogramming protocols with regard to HSC generation from iPSCs, and highlight the potential role of miRNAs in cell reprogramming and in the differentiation of induced pluripotent stem cells.
Collapse
Affiliation(s)
- Aline F Ferreira
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| | - George A Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Virgínia Picanço-Castro
- Center of Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Simone Kashima
- Center of Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Dimas T Covas
- Center of Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo 14051-140, Brazil.,Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Fabiola A de Castro
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-903, Brazil
| |
Collapse
|
19
|
ФC31 Integrase-Mediated Isolation and Characterization of Novel Safe Harbors for Transgene Expression in the Pig Genome. Int J Mol Sci 2018; 19:ijms19010149. [PMID: 29300364 PMCID: PMC5796098 DOI: 10.3390/ijms19010149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/25/2017] [Accepted: 01/01/2018] [Indexed: 01/11/2023] Open
Abstract
Programmable nucleases have allowed the rapid development of gene editing and transgenics, but the technology still suffers from the lack of predefined genetic loci for reliable transgene expression and maintenance. To address this issue, we used ФC31 integrase to navigate the porcine genome and identify the pseudo attP sites suitable as safe harbors for sustained transgene expression. The combined ФC31 integrase mRNA and an enhanced green fluorescence protein (EGFP) reporter donor were microinjected into one-cell zygotes for transgene integration. Among the resulting seven EGFP-positive piglets, two had transgene integrations at pseudo attP sites, located in an intergenic region of chromosome 1 (chr1-attP) and the 6th intron of the TRABD2A gene on chromosome 3 (chr3-attP), respectively. The integration structure was determined by TAIL-PCR and Southern blotting. Primary fibroblast cells were isolated from the two piglets and examined using fluorescence-activated cell sorting (FACS) and enzyme-linked immunosorbent assay (ELISA), which demonstrated that the chr1-attP site was more potent than chr3-attP site in supporting the EGFP expression. Both piglets had green feet under the emission of UV light, and pelleted primary fibroblast cells were green-colored under natural light, corroborating that the two pseudo attP sites are beneficial to transgene expression. The discovery of these two novel safe harbors for robust and durable transgene expression will greatly facilitate the use of transgenic pigs for basic, biomedical and agricultural studies and applications.
Collapse
|
20
|
Kuhn A, Ackermann M, Mussolino C, Cathomen T, Lachmann N, Moritz T. TALEN-mediated functional correction of human iPSC-derived macrophages in context of hereditary pulmonary alveolar proteinosis. Sci Rep 2017; 7:15195. [PMID: 29123113 PMCID: PMC5680188 DOI: 10.1038/s41598-017-14566-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/10/2017] [Indexed: 01/09/2023] Open
Abstract
Hereditary pulmonary alveolar proteinosis (herPAP) constitutes a rare, life threatening lung disease characterized by the inability of alveolar macrophages to clear the alveolar airspaces from surfactant phospholipids. On a molecular level, the disorder is defined by a defect in the CSF2RA gene coding for the GM-CSF receptor alpha-chain (CD116). As therapeutic options are limited, we currently pursue a cell and gene therapy approach aiming for the intrapulmonary transplantation of gene-corrected macrophages derived from herPAP-specific induced pluripotent stem cells (herPAP-iPSC) employing transcriptional activator-like effector nucleases (TALENs). Targeted insertion of a codon-optimized CSF2RA-cDNA driven by the hybrid cytomegalovirus (CMV) early enhancer/chicken beta actin (CAG) promoter into the AAVS1 locus resulted in robust expression of the CSF2RA gene in gene-edited herPAP-iPSCs as well as thereof derived macrophages. These macrophages displayed typical morphology, surface phenotype, phagocytic and secretory activity, as well as functional CSF2RA expression verified by STAT5 phosphorylation and GM-CSF uptake studies. Thus, our study provides a proof-of-concept, that TALEN-mediated integration of the CSF2RA gene into the AAVS1 safe harbor locus in patient-specific iPSCs represents an efficient strategy to generate functionally corrected monocytes/macrophages, which in the future may serve as a source for an autologous cell-based gene therapy for the treatment of herPAP.
Collapse
Affiliation(s)
- Alexandra Kuhn
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover, Germany
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany. .,RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover, Germany.
| |
Collapse
|
21
|
Kitano K, Schwartz DM, Zhou H, Gilpin SE, Wojtkiewicz GR, Ren X, Sommer CA, Capilla AV, Mathisen DJ, Goldstein AM, Mostoslavsky G, Ott HC. Bioengineering of functional human induced pluripotent stem cell-derived intestinal grafts. Nat Commun 2017; 8:765. [PMID: 29018244 PMCID: PMC5635127 DOI: 10.1038/s41467-017-00779-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/25/2017] [Indexed: 11/29/2022] Open
Abstract
Patients with short bowel syndrome lack sufficient functional intestine to sustain themselves with enteral intake alone. Transplantable vascularized bioengineered intestine could restore nutrient absorption. Here we report the engineering of humanized intestinal grafts by repopulating decellularized rat intestinal matrix with human induced pluripotent stem cell-derived intestinal epithelium and human endothelium. After 28 days of in vitro culture, hiPSC-derived progenitor cells differentiate into a monolayer of polarized intestinal epithelium. Human endothelial cells seeded via native vasculature restore perfusability. Ex vivo isolated perfusion testing confirms transfer of glucose and medium-chain fatty acids from lumen to venous effluent. Four weeks after transplantation to RNU rats, grafts show survival and maturation of regenerated epithelium. Systemic venous sampling and positron emission tomography confirm uptake of glucose and fatty acids in vivo. Bioengineering intestine on vascularized native scaffolds could bridge the gap between cell/tissue-scale regeneration and whole organ-scale technology needed to treat intestinal failure patients. There is a need for humanised grafts to treat patients with intestinal failure. Here, the authors generate intestinal grafts by recellularizing native intestinal matrix with human induced pluripotent stem cell-derived epithelium and human endothelium, and show nutrient absorption after transplantation in rats.
Collapse
Affiliation(s)
- Kentaro Kitano
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Dana M Schwartz
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Haiyang Zhou
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA.,Department of General Surgery, Changzheng Hospital, Second Military Medical University, No.415, Fengyang Road, Shanghai, 200003, China
| | - Sarah E Gilpin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital, Richard B. Simches Research Center, 185 Cambridge St, Boston, MA, 02114, USA
| | - Xi Ren
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Cesar A Sommer
- Center for Regenerative Medicine, Boston University School of Medicine, 72 E. Concord St., Boston, MA, 02118, USA
| | - Amalia V Capilla
- Center for Regenerative Medicine, Boston University School of Medicine, 72 E. Concord St., Boston, MA, 02118, USA
| | - Douglas J Mathisen
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Founders 7, Boston, MA, 02114, USA
| | - Allan M Goldstein
- Division of Pediatric Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine, Boston University School of Medicine, 72 E. Concord St., Boston, MA, 02118, USA.,Section of Gastroenterology, Department of Medicine, Boston Medical Center, 830 Harrison Ave, Boston, MA, 02118, USA
| | - Harald C Ott
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Founders 7, Boston, MA, 02114, USA. .,Harvard Stem Cell Institute, 7 Divinity Ave, Cambridge, MA, 02138, USA.
| |
Collapse
|
22
|
Chandrasekaran AP, Song M, Ramakrishna S. Genome editing: a robust technology for human stem cells. Cell Mol Life Sci 2017; 74:3335-3346. [PMID: 28405721 PMCID: PMC11107609 DOI: 10.1007/s00018-017-2522-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022]
Abstract
Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.
Collapse
Affiliation(s)
| | - Minjung Song
- Division of Bioindustry, Department of Food Biotechnology, College of Medical and Life Science, Silla University, Seoul, Republic of Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.
- College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Tiyaboonchai A, Cardenas-Diaz FL, Ying L, Maguire JA, Sim X, Jobaliya C, Gagne AL, Kishore S, Stanescu DE, Hughes N, De Leon DD, French DL, Gadue P. GATA6 Plays an Important Role in the Induction of Human Definitive Endoderm, Development of the Pancreas, and Functionality of Pancreatic β Cells. Stem Cell Reports 2017; 8:589-604. [PMID: 28196690 PMCID: PMC5355564 DOI: 10.1016/j.stemcr.2016.12.026] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
Induced pluripotent stem cells were created from a pancreas agenesis patient with a mutation in GATA6. Using genome-editing technology, additional stem cell lines with mutations in both GATA6 alleles were generated and demonstrated a severe block in definitive endoderm induction, which could be rescued by re-expression of several different GATA family members. Using the endodermal progenitor stem cell culture system to bypass the developmental block at the endoderm stage, cell lines with mutations in one or both GATA6 alleles could be differentiated into β-like cells but with reduced efficiency. Use of suboptimal doses of retinoic acid during pancreas specification revealed a more severe phenotype, more closely mimicking the patient’s disease. GATA6 mutant β-like cells fail to secrete insulin upon glucose stimulation and demonstrate defective insulin processing. These data show that GATA6 plays a critical role in endoderm and pancreas specification and β-like cell functionality in humans. GATA6 is required for definitive endoderm specification in human ES/iPS cells Bypassing the endoderm defect allows GATA6 mutants to generate β-like cells Suboptimal retinoic acid signaling blocks pancreas specification in GATA6 mutants GATA6 is critical for human β cell function in vitro
Collapse
Affiliation(s)
- Amita Tiyaboonchai
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fabian L Cardenas-Diaz
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lei Ying
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Xiuli Sim
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chintan Jobaliya
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Alyssa L Gagne
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Siddharth Kishore
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diana E Stanescu
- Division of Endocrinology, Department of Pediatrics, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nkecha Hughes
- Clinical and Translational Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Diva D De Leon
- Division of Endocrinology, Department of Pediatrics, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Jung HS, Uenishi G, Kumar A, Park MA, Raymond M, Fink D, McLeod E, Slukvin I. A human VE-cadherin-tdTomato and CD43-green fluorescent protein dual reporter cell line for study endothelial to hematopoietic transition. Stem Cell Res 2016; 17:401-405. [PMID: 27879215 DOI: 10.1016/j.scr.2016.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 01/24/2023] Open
Abstract
Human embryonic stem cell line WA01 was genetically modified using zinc-finger nucleases and the PiggyBac/transponson system to introduce a fluorescence reporter for VE-cadherin (VEC; tdTomato) and CD43 (eGFP). Phenotypic and functional assays for pluripotency revealed the modified hES cell reporter lines remained normal. When the cells were differentiated into hematoendothelial lineages, either by directed differentiation or direct reprogramming, flow cytometric and fluorescence microscopy showed that VEC+ endothelial cells express tdTomato and CD43+ hematopoietic progenitors express eGFP.
Collapse
Affiliation(s)
- Ho Sun Jung
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Gene Uenishi
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53792, USA
| | - Akhilesh Kumar
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Mi Ae Park
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Matt Raymond
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Dustin Fink
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Ethan McLeod
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Igor Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53792, USA.
| |
Collapse
|
25
|
Cai Y, Laustsen A, Zhou Y, Sun C, Anderson MV, Li S, Uldbjerg N, Luo Y, Jakobsen MR, Mikkelsen JG. Targeted, homology-driven gene insertion in stem cells by ZFN-loaded 'all-in-one' lentiviral vectors. eLife 2016; 5. [PMID: 27278774 PMCID: PMC4900802 DOI: 10.7554/elife.12213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/14/2016] [Indexed: 01/16/2023] Open
Abstract
Biased integration remains a key challenge for gene therapy based on lentiviral vector technologies. Engineering of next-generation lentiviral vectors targeting safe genomic harbors for insertion is therefore of high relevance. In a previous paper (Cai et al., 2014a), we showed the use of integrase-defective lentiviral vectors (IDLVs) as carriers of complete gene repair kits consisting of zinc-finger nuclease (ZFN) proteins and repair sequences, allowing gene correction by homologous recombination (HR). Here, we follow this strategy to engineer ZFN-loaded IDLVs that insert transgenes by a homology-driven mechanism into safe loci. This insertion mechanism is driven by time-restricted exposure of treated cells to ZFNs. We show targeted gene integration in human stem cells, including CD34(+) hematopoietic progenitors and induced pluripotent stem cells (iPSCs). Notably, targeted insertions are identified in 89% of transduced iPSCs. Our findings demonstrate the applicability of nuclease-loaded 'all-in-one' IDLVs for site-directed gene insertion in stem cell-based gene therapies.
Collapse
Affiliation(s)
- Yujia Cai
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anders Laustsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Yan Zhou
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Chenglong Sun
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mads Valdemar Anderson
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Technical University of Denmark, Lyngby, Denmark
| | - Shengting Li
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Beijing Genomics Institute, Shenzhen, China
| | - Niels Uldbjerg
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
26
|
Oceguera-Yanez F, Kim SI, Matsumoto T, Tan GW, Xiang L, Hatani T, Kondo T, Ikeya M, Yoshida Y, Inoue H, Woltjen K. Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their differentiated derivatives. Methods 2016; 101:43-55. [PMID: 26707206 DOI: 10.1016/j.ymeth.2015.12.012] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022] Open
Abstract
The potential use of induced pluripotent stem cells (iPSCs) in personalized regenerative medicine applications may be augmented by transgenics, including the expression of constitutive cell labels, differentiation reporters, or modulators of disease phenotypes. Thus, there is precedence for reproducible transgene expression amongst iPSC sub-clones with isogenic or diverse genetic backgrounds. Using virus or transposon vectors, transgene integration sites and copy numbers are difficult to control, and nearly impossible to reproduce across multiple cell lines. Moreover, randomly integrated transgenes are often subject to pleiotropic position effects as a consequence of epigenetic changes inherent in differentiation, undermining applications in iPSCs. To address this, we have adapted popular TALEN and CRISPR/Cas9 nuclease technologies in order to introduce transgenes into pre-defined loci and overcome random position effects. AAVS1 is an exemplary locus within the PPP1R12C gene that permits robust expression of CAG promoter-driven transgenes. Gene targeting controls transgene copy number such that reporter expression patterns are reproducible and scalable by ∼2-fold. Furthermore, gene expression is maintained during long-term human iPSC culture and in vitro differentiation along multiple lineages. Here, we outline our AAVS1 targeting protocol using standardized donor vectors and construction methods, as well as provide practical considerations for iPSC culture, drug selection, and genotyping.
Collapse
Affiliation(s)
- Fabian Oceguera-Yanez
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Shin-Il Kim
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Tomoko Matsumoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Ghee Wan Tan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Long Xiang
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; iPS Portal Inc., Kyoto 602-0841, Japan
| | - Takeshi Hatani
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Takayuki Kondo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Ikeya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Knut Woltjen
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
27
|
|
28
|
Merkert S, Martin U. Targeted genome engineering using designer nucleases: State of the art and practical guidance for application in human pluripotent stem cells. Stem Cell Res 2016; 16:377-86. [PMID: 26921872 DOI: 10.1016/j.scr.2016.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/14/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022] Open
Abstract
Within the last years numerous publications successfully applied sequence specific designer nucleases for genome editing in human PSCs. However, despite this abundance of reports together with the rapid development and improvement accomplished with the technology, it is still difficult to choose the optimal methodology for a specific application of interest. With focus on the most suitable approach for specific applications, we present a practical guidance for successful gene editing in human PSCs using designer nucleases. We discuss experimental considerations, limitations and critical aspects which will guide the investigator for successful implementation of this technology.
Collapse
Affiliation(s)
- Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH - Cluster of Excellence, Hannover Medical School, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH - Cluster of Excellence, Hannover Medical School, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
29
|
Understanding platelet generation from megakaryocytes: implications for in vitro-derived platelets. Blood 2016; 127:1227-33. [PMID: 26787738 DOI: 10.1182/blood-2015-08-607929] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022] Open
Abstract
Platelets are anucleate cytoplasmic discs derived from megakaryocytes that circulate in the blood and have major roles in hemostasis, thrombosis, inflammation, and vascular biology. Platelet transfusions are required to prevent the potentially life-threatening complications of severe thrombocytopenia seen in a variety of medical settings including cancer therapy, trauma, and sepsis. Platelets used in the clinic are currently donor-derived which is associated with concerns over sufficient availability, quality, and complications due to immunologic and/or infectious issues. To overcome our dependence on donor-derived platelets for transfusion, efforts have been made to generate in vitro-based platelets. Work in this area has advanced our understanding of the complex processes that megakaryocytes must undergo to generate platelets both in vivo and in vitro. This knowledge has also defined the challenges that must be overcome to bring in vitro-based platelet manufacturing to a clinical reality. This review will focus on our understanding of committed megakaryocytes and platelet release in vivo and in vitro, and how this knowledge can guide the development of in vitro-derived platelets for clinical application.
Collapse
|
30
|
Ordovás L, Boon R, Pistoni M, Chen Y, Wolfs E, Guo W, Sambathkumar R, Bobis-Wozowicz S, Helsen N, Vanhove J, Berckmans P, Cai Q, Vanuytsel K, Eggermont K, Vanslembrouck V, Schmidt BZ, Raitano S, Van Den Bosch L, Nahmias Y, Cathomen T, Struys T, Verfaillie CM. Efficient Recombinase-Mediated Cassette Exchange in hPSCs to Study the Hepatocyte Lineage Reveals AAVS1 Locus-Mediated Transgene Inhibition. Stem Cell Reports 2015; 5:918-931. [PMID: 26455413 PMCID: PMC4649136 DOI: 10.1016/j.stemcr.2015.09.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 01/08/2023] Open
Abstract
Tools for rapid and efficient transgenesis in "safe harbor" loci in an isogenic context remain important to exploit the possibilities of human pluripotent stem cells (hPSCs). We created hPSC master cell lines suitable for FLPe recombinase-mediated cassette exchange (RMCE) in the AAVS1 locus that allow generation of transgenic lines within 15 days with 100% efficiency and without random integrations. Using RMCE, we successfully incorporated several transgenes useful for lineage identification, cell toxicity studies, and gene overexpression to study the hepatocyte lineage. However, we observed unexpected and variable transgene expression inhibition in vitro, due to DNA methylation and other unknown mechanisms, both in undifferentiated hESC and differentiating hepatocytes. Therefore, the AAVS1 locus cannot be considered a universally safe harbor locus for reliable transgene expression in vitro, and using it for transgenesis in hPSC will require careful assessment of the function of individual transgenes.
Collapse
Affiliation(s)
- Laura Ordovás
- Stem Cell Institute, KU Leuven, Leuven 3000, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven 3000, Belgium.
| | - Ruben Boon
- Stem Cell Institute, KU Leuven, Leuven 3000, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven 3000, Belgium
| | - Mariaelena Pistoni
- Stem Cell Institute, KU Leuven, Leuven 3000, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven 3000, Belgium
| | - Yemiao Chen
- Stem Cell Institute, KU Leuven, Leuven 3000, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven 3000, Belgium
| | - Esther Wolfs
- Group of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek 3590, Belgium
| | - Wenting Guo
- Leuven Research Institute for Neuroscience and Disease (LIND), Leuven 3000, Belgium; Department of Neurosciences, Experimental Neurology, KU Leuven, Leuven 3000, Belgium; Laboratory for Neurobiology, VIB-Vesalius Research Center, Leuven 3000, Belgium
| | - Rangarajan Sambathkumar
- Stem Cell Institute, KU Leuven, Leuven 3000, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven 3000, Belgium
| | - Sylwia Bobis-Wozowicz
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg 79108, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg 79108, Germany
| | - Nicky Helsen
- Stem Cell Institute, KU Leuven, Leuven 3000, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven 3000, Belgium
| | - Jolien Vanhove
- Stem Cell Institute, KU Leuven, Leuven 3000, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven 3000, Belgium
| | - Pieter Berckmans
- Stem Cell Institute, KU Leuven, Leuven 3000, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven 3000, Belgium
| | - Qing Cai
- Stem Cell Institute, KU Leuven, Leuven 3000, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven 3000, Belgium
| | - Kim Vanuytsel
- Stem Cell Institute, KU Leuven, Leuven 3000, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven 3000, Belgium
| | - Kristel Eggermont
- Stem Cell Institute, KU Leuven, Leuven 3000, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven 3000, Belgium
| | - Veerle Vanslembrouck
- Stem Cell Institute, KU Leuven, Leuven 3000, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven 3000, Belgium
| | - Béla Z Schmidt
- Switch Laboratory, VIB, Leuven 3000, Belgium; Department of Cellular and Molecular Medicine, Switch Laboratory, KU Leuven, Leuven 300, Belgium
| | - Susanna Raitano
- Stem Cell Institute, KU Leuven, Leuven 3000, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven 3000, Belgium
| | - Ludo Van Den Bosch
- Leuven Research Institute for Neuroscience and Disease (LIND), Leuven 3000, Belgium; Department of Neurosciences, Experimental Neurology, KU Leuven, Leuven 3000, Belgium; Laboratory for Neurobiology, VIB-Vesalius Research Center, Leuven 3000, Belgium
| | - Yaakov Nahmias
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem 91904, Israel; Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg 79108, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg 79108, Germany
| | - Tom Struys
- Group of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek 3590, Belgium
| | - Catherine M Verfaillie
- Stem Cell Institute, KU Leuven, Leuven 3000, Belgium; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven, Leuven 3000, Belgium.
| |
Collapse
|
31
|
Gadalla KKE, Ross PD, Hector RD, Bahey NG, Bailey MES, Cobb SR. Gene therapy for Rett syndrome: prospects and challenges. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rett syndrome (RTT) is a neurological disorder that affects females and is caused by loss-of-function mutations in the X-linked gene MECP2. Deletion of Mecp2 in mice results in a constellation of neurological features that resemble those seen in RTT patients. Experiments in mice have demonstrated that restoration of MeCP2, even at adult stages, reverses several aspects of the RTT-like pathology suggesting that the disorder may be inherently treatable. This has provided an impetus to explore several therapeutic approaches targeting RTT at the level of the gene, including gene therapy, activation of MECP2 on the inactive X chromosome and read-through and repair of RTT-causing mutations. Here, we review these different strategies and the challenges of gene-based approaches in RTT.
Collapse
Affiliation(s)
- Kamal KE Gadalla
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
- Pharmacology Department, Faculty of Medicine, Tanta University, Egypt
| | - Paul D Ross
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Ralph D Hector
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Noha G Bahey
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
- Histology Department, Faculty of Medicine, Tanta University, Egypt
| | - Mark ES Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Stuart R Cobb
- University of Glasgow, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| |
Collapse
|
32
|
Pei Y, Sierra G, Sivapatham R, Swistowski A, Rao MS, Zeng X. A platform for rapid generation of single and multiplexed reporters in human iPSC lines. Sci Rep 2015; 5:9205. [PMID: 25777362 PMCID: PMC4361878 DOI: 10.1038/srep09205] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
Induced pluripotent stem cells (iPSC) are important tools for drug discovery assays and toxicology screens. In this manuscript, we design high efficiency TALEN and ZFN to target two safe harbor sites on chromosome 13 and 19 in a widely available and well-characterized integration-free iPSC line. We show that these sites can be targeted in multiple iPSC lines to generate reporter systems while retaining pluripotent characteristics. We extend this concept to making lineage reporters using a C-terminal targeting strategy to endogenous genes that express in a lineage-specific fashion. Furthermore, we demonstrate that we can develop a master cell line strategy and then use a Cre-recombinase induced cassette exchange strategy to rapidly exchange reporter cassettes to develop new reporter lines in the same isogenic background at high efficiency. Equally important we show that this recombination strategy allows targeting at progenitor cell stages, further increasing the utility of the platform system. The results in concert provide a novel platform for rapidly developing custom single or dual reporter systems for screening assays.
Collapse
Affiliation(s)
- Ying Pei
- Buck Institute for Age Research, Novato, CA
| | | | | | | | | | - Xianmin Zeng
- 1] Buck Institute for Age Research, Novato, CA [2] XCell Science, Novato, CA
| |
Collapse
|
33
|
Ul Ain Q, Chung JY, Kim YH. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release 2014; 205:120-7. [PMID: 25553825 DOI: 10.1016/j.jconrel.2014.12.036] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/19/2014] [Accepted: 12/24/2014] [Indexed: 12/14/2022]
Abstract
Gene therapy by engineered nucleases is a genetic intervention being investigated for curing the hereditary disorders by targeting selected genes with specific nucleotides for establishment, suppression, abolishment of a function or correction of mutation. Here, we review the fast developing technology of targeted genome engineering using site specific programmable nucleases zinc finger nucleases (ZFNs), transcription activator like nucleases (TALENs) and cluster regulatory interspaced short palindromic repeat/CRISPR associated proteins (CRISPR/Cas) based RNA-guided DNA endonucleases (RGENs) and their different characteristics including pros and cons of genome modifications by these nucleases. We have further discussed different types of delivery methods to induce gene editing, novel development in genetic engineering other than nucleases and future prospects.
Collapse
Affiliation(s)
- Qurrat Ul Ain
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791 Seoul, Republic of Korea
| | - Jee Young Chung
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791 Seoul, Republic of Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791 Seoul, Republic of Korea.
| |
Collapse
|
34
|
Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood 2014; 125:930-40. [PMID: 25490895 DOI: 10.1182/blood-2014-06-585513] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To explore how RUNX1 mutations predispose to leukemia, we generated induced pluripotent stem cells (iPSCs) from 2 pedigrees with germline RUNX1 mutations. The first, carrying a missense R174Q mutation, which acts as a dominant-negative mutant, is associated with thrombocytopenia and leukemia, and the second, carrying a monoallelic gene deletion inducing a haploinsufficiency, presents only as thrombocytopenia. Hematopoietic differentiation of these iPSC clones demonstrated profound defects in erythropoiesis and megakaryopoiesis and deregulated expression of RUNX1 targets. iPSC clones from patients with the R174Q mutation specifically generated an increased amount of granulomonocytes, a phenotype reproduced by an 80% RUNX1 knockdown in the H9 human embryonic stem cell line, and a genomic instability. This phenotype, found only with a lower dosage of RUNX1, may account for development of leukemia in patients. Altogether, RUNX1 dosage could explain the differential phenotype according to RUNX1 mutations, with a haploinsufficiency leading to thrombocytopenia alone in a majority of cases whereas a more complete gene deletion predisposes to leukemia.
Collapse
|
35
|
Modeling CVD in human pluripotent cells by genome editing. J Am Coll Cardiol 2014; 64:460-2. [PMID: 25082578 DOI: 10.1016/j.jacc.2014.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 11/22/2022]
|
36
|
Sim X, Cardenas-Diaz FL, French DL, Gadue P. A Doxycycline-Inducible System for Genetic Correction of iPSC Disease Models. Methods Mol Biol 2014; 1353:13-23. [PMID: 25630922 DOI: 10.1007/7651_2014_179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) are valuable tools for the study of developmental biology and disease modeling. In both applications, genetic correction of patient iPSCs is a powerful method to understand the specific contribution of a gene(s) in development or diseased state(s). Here, we describe a protocol for the targeted integration of a doxycycline-inducible transgene expression system in a safe harbor site in iPSCs. Our gene targeting strategy uses zinc finger nucleases (ZFNs) to enhance homologous recombination at the AAVS1 safe harbor locus, thus increasing the efficiency of the site-specific integration of the two targeting vectors that make up the doxycycline-inducible system. Importantly, the use of dual-drug selection in our system increases the efficiency of positive selection for double-targeted clones to >50 %, permitting a less laborious screening process. If desired, this protocol can also be adapted to allow the use of tissue-specific promoters to drive gene expression instead of the doxycycline-inducible promoter (TRE). Additionally, this protocol is also compatible with the use of Transcription-Activator-Like Effector Nucleases (TALENs) or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system in place of ZFNs.
Collapse
Affiliation(s)
- Xiuli Sim
- School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fabian L Cardenas-Diaz
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|