1
|
Ouji Y, Hamasaki M, Misu M, Yoshikawa M, Hamano S. Simple preservation of schistosome eggs with high infectivity up to 12 weeks. Parasitol Int 2025; 106:103020. [PMID: 39710135 DOI: 10.1016/j.parint.2024.103020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
The lifecycle of schistosomes must be continuously maintained to clarify and understand this parasite in various aspects in laboratory settings. In the previous studies by other researchers, preservation of schistosome larvae or eggs was attempted by freezing with liquid nitrogen or organic chemicals, but frozen schistosomes were substantially impaired. The present study was conducted to determine whether schistosome eggs can be preserved under a non-frozen condition. The results showed that Schistosoma mansoni eggs could be maintained in phosphate-buffered saline at 4 °C, with a high level of infectivity of miracidia to freshwater snails thereafter. Furthermore, the egg hatchability was maintained for up to 12 weeks with weekly exchanges of the medium. The cercariae derived from snails infected with miracidia from preserved eggs were highly infective to mice. This simple schistosome egg preservation method allow researchers to maintain the schistosome lifecycle without freezing or other special procedures.
Collapse
Affiliation(s)
- Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan.
| | - Megumi Hamasaki
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan
| | - Masayasu Misu
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Shinjiro Hamano
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), The Joint Usage/Research Center on Tropical Disease, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Foster T, Lewkowicz M, Quintas C, Ionescu CM, Jones M, Wagle SR, Kovacevic B, Wong EYM, Mooranian A, Al-Salami H. Novel Nanoencapsulation Technology and its Potential Role in Bile Acid-Based Targeted Gene Delivery to the Inner Ear. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204986. [PMID: 36538754 DOI: 10.1002/smll.202204986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/05/2022] [Indexed: 06/17/2023]
Abstract
Hearing loss impacts a large proportion of the global population. Damage to the inner ear, in particular the sensitive hair cells, can impact individuals for the rest of their lives. There are very limited options for interventions after damage to these cells has occurred. Targeted gene delivery may provide an effective means to trigger appropriate differentiation of progenitor cells for effective replacement of these sensitive hair cells. There are several hurdles that need to be overcome to effectively deliver these genes. Nanoencapsulation technology has previously been used for the delivery of pharmaceuticals, proteins and nucleic acids, and may provide an effective means of delivering genes to trigger appropriate differentiation. This review investigates the background of hearing loss, current advancements and pitfalls of gene delivery, and how nanoencapsulation may be useful.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Michael Lewkowicz
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Christina Quintas
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, 9016, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Yang Q, Shi H, Quan Y, Chen Q, Li W, Wang L, Wang Y, Ji Z, Yin SK, Shi HB, Xu H, Gao WQ. Stepwise Induction of Inner Ear Hair Cells From Mouse Embryonic Fibroblasts via Mesenchymal- to-Epithelial Transition and Formation of Otic Epithelial Cells. Front Cell Dev Biol 2021; 9:672406. [PMID: 34222247 PMCID: PMC8248816 DOI: 10.3389/fcell.2021.672406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Abstract
Although embryonic stem cells or induced pluripotent stem cells are able to differentiate into inner ear hair cells (HCs), they have drawbacks limiting their clinical application, including a potential risk of tumourigenicity. Direct reprogramming of fibroblasts to inner ear HCs could offer an alternative solution to this problem. Here, we present a stepwise guidance protocol to induce mouse embryonic fibroblasts to differentiate into inner ear HC-like cells (HCLs) via mesenchymal-to-epithelial transition and then acquisition of otic sensory epithelial cell traits by overexpression of three key transcription factors. These induced HCLs express multiple HC-specific proteins, display protrusions reminiscent of ciliary bundle structures, respond to voltage stimulation, form functional mechanotransduction channels, and exhibit a transcriptional profile of HC signature. Together, our work provides a new method to produce functional HCLs in vitro, which may have important implications for studies of HC development, drug discovery, and cell replacement therapy for hearing loss.
Collapse
Affiliation(s)
- Qiong Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haosong Shi
- Department of Otorhinolaryngology, The Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Yizhou Quan
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qianqian Chen
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wang Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yonghui Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzhong Ji
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Shan-Kai Yin
- Department of Otorhinolaryngology, The Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Bo Shi
- Department of Otorhinolaryngology, The Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Chen M, Huang J. Retinoic acid induces differentiation of cochlear neural progenitor cells into hair cells. Braz J Otorhinolaryngol 2021; 88:962-967. [PMID: 33707121 PMCID: PMC9615533 DOI: 10.1016/j.bjorl.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 01/05/2021] [Accepted: 01/30/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Inner ear progenitor cells have the potential for multi-directional differentiation. Retinoic acid is an important requirement for the development of the inner ear. Blocking the Curtyr's retinoic acid signaling pathway can significantly reduce the number of hair cells. Therefore, we believe that retinoic acid may induce the regeneration of inner ear hair cells. OBJECTIVE To investigate whether the cochlear neural progenitor cells maintain the characteristics of stem cells during recovery and subculture, whether retinoic acid can induce cochlear neural progenitor cells into hair cells in vitro, and whether retinoic acid promotes or inhibits the proliferation of cochlear neural progenitor cells during differentiation. METHODS Cochlear neural progenitor cells were cultured and induced in DMEM/F12+RA (10-6M) and then detected the expressions of hair cell markers (Math1 and MyosinVIIa) by immunofluorescence cytochemistry and realtime-polymerase chain reaction, and the proliferation of cochlear neural progenitor cells was detected by Brdu. RESULTS The nestin of cochlear neural progenitor cells was positively expressed. The ratios of Math1-positive cells in the control group and experimental group were 1.5% and 63%, respectively; the ratios of MyosinVIIa-positive cells in the control group and experimental group were 0.96% and 56%, respectively (p<0.05). The ratios of Brdu+-labeled cells in retinoic acid group, group PBS, and group FBS were 20.6%, 29.9%, and 54.3%, respectively; however, the proliferation rate in the experimental group decreased. CONCLUSION Retinoic acid can promote cochlear neural progenitor cells to differentiate into the hair cells.
Collapse
Affiliation(s)
- Minyun Chen
- The Second Affiliated Hospital of Fujian Medical University, Department of Otolaryngology, Fujian, China
| | - Jianmin Huang
- Fujian Medical University Union Hospital, Department of Otolaryngology, Fujian, China.
| |
Collapse
|
5
|
Waqas M, Us-Salam I, Bibi Z, Wang Y, Li H, Zhu Z, He S. Stem Cell-Based Therapeutic Approaches to Restore Sensorineural Hearing Loss in Mammals. Neural Plast 2020; 2020:8829660. [PMID: 32802037 PMCID: PMC7416290 DOI: 10.1155/2020/8829660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/01/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The hair cells that reside in the cochlear sensory epithelium are the fundamental sensory structures responsible for understanding the mechanical sound waves evoked in the environment. The intense damage to these sensory structures may result in permanent hearing loss. The present strategies to rehabilitate the hearing function include either hearing aids or cochlear implants that may recover the hearing capability of deaf patients to a limited extent. Therefore, much attention has been paid on developing regenerative therapies to regenerate/replace the lost hair cells to treat the damaged cochlear sensory epithelium. The stem cell therapy is a promising approach to develop the functional hair cells and neuronal cells from endogenous and exogenous stem cell pool to recover hearing loss. In this review, we specifically discuss the potential of different kinds of stem cells that hold the potential to restore sensorineural hearing loss in mammals and comprehensively explain the current therapeutic applications of stem cells in both the human and mouse inner ear to regenerate/replace the lost hair cells and spiral ganglion neurons.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing 211102, China
| | - Iram Us-Salam
- Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan
| | - Zainab Bibi
- Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan
| | - Yunfeng Wang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - He Li
- Department of Otolaryngology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, 325000 Zhejiang Province, China
| | - Zhongshou Zhu
- Department of Otolaryngology, Ningde Municipal Hospital Affiliated of Fujian Medical University (Ningde Institute of Otolaryngology), Ningde, Fujian 352100, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing 211102, China
| |
Collapse
|
6
|
Direct reprogramming adult fibroblast into cells with partial inner ear hair cell characteristics through cell activation and signal directed approach. Neurosci Lett 2020; 729:135010. [PMID: 32344104 DOI: 10.1016/j.neulet.2020.135010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/22/2020] [Accepted: 04/21/2020] [Indexed: 11/23/2022]
Abstract
Loss of inner ear hair cell (HC) is an irreversible process in mammals and is the most common cause of human hearing and balance disorders especially in the elderly. Cell therapy based on highly scalable generation of HC linage and inner ear transplantation is one of the most promising therapeutic approaches for HC impairment. For fibroblast is quite abundant and readily available in human body, it is an ideal endogenous cell source to generate HC lineage for transplantation purpose. In the present study, by using a cell activation and signaling directed method, we demonstrate that adult fibroblast can be direct reprogrammed into a kind of cell which expresses lots of HC markers. At the same time, an intermediate progenitor stage exists during such a lineage conversion and activation of FGF pathway is critical for its formation. Although these reprogrammed cells still lack some of the key features of HC such as mechanosensitive ion channel hence have not acquired the functional properties of HC, the findings reported here raise the possibility of reprogramming endogenous fibroblasts into functional HC for regenerative purpose.
Collapse
|
7
|
Sakagami M, Ouji Y, Kawai N, Misu M, Yoshikawa M, Kitahara T. Differentiation of embryonic stem cells into inner ear vestibular hair cells using vestibular cell derived-conditioned medium. Biochem Biophys Rep 2019; 19:100649. [PMID: 31193276 PMCID: PMC6525281 DOI: 10.1016/j.bbrep.2019.100649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/19/2019] [Accepted: 05/03/2019] [Indexed: 01/12/2023] Open
Abstract
Vestibular hair cells (V-HCs) in the inner ear have important roles and various functions. When V-HCs are damaged, crippling symptoms, such as vertigo, visual field oscillation, and imbalance, are often seen. Recently, several studies have reported differentiation of embryonic stem (ES) cells, as pluripotent stem cells, to HCs, though a method for producing V-HCs has yet to be established. In the present study, we used vestibular cell conditioned medium (V-CM) and effectively induced ES cells to differentiate into V-HCs. Expressions of V-HC-related markers (Math1, Myosin6, Brn3c, Dnah5) were significantly increased in ES cells cultured in V-CM for 2 weeks, while those were not observed in ES cells cultured without V-CM. On the other hand, the cochlear HC-related marker Lmod3 was either not detected or detected only faintly in those cells when cultured in V-CM. Our results demonstrate that V-CM has an ability to specifically induce differentiation of ES cells into V-HCs.
Collapse
Affiliation(s)
- Masaharu Sakagami
- Department of Otolaryngology - Head and Neck Surgery, Nara Medical University, Kashihara, Nara, Japan.,Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Norikazu Kawai
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Masayasu Misu
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Tadashi Kitahara
- Department of Otolaryngology - Head and Neck Surgery, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
8
|
Czajkowski A, Mounier A, Delacroix L, Malgrange B. Pluripotent stem cell-derived cochlear cells: a challenge in constant progress. Cell Mol Life Sci 2019; 76:627-635. [PMID: 30341460 PMCID: PMC11105202 DOI: 10.1007/s00018-018-2950-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022]
Abstract
Hearing loss is a common affection mainly resulting from irreversible loss of the sensory hair cells of the cochlea; therefore, developing therapies to replace missing hair cells is essential. Understanding the mechanisms that drive their formation will not only help to unravel the molecular basis of deafness, but also give a roadmap for recapitulating hair cells development from cultured pluripotent stem cells. In this review, we provide an overview of the molecular mechanisms involved in hair cell production from both human and mouse embryonic stem cells. We then provide insights how this knowledge has been applied to differentiate induced pluripotent stem cells into otic progenitors and hair cells. Finally, we discuss the current limitations for properly obtaining functional hair cell in a Petri dish, as well as the difficulties that have to be overcome prior to consider stem cell therapy as a potential treatment for hearing loss.
Collapse
Affiliation(s)
- Amandine Czajkowski
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Anaïs Mounier
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium.
| |
Collapse
|
9
|
Takeda H, Dondzillo A, Randall JA, Gubbels SP. Challenges in Cell-Based Therapies for the Treatment of Hearing Loss. Trends Neurosci 2018; 41:823-837. [PMID: 30033182 DOI: 10.1016/j.tins.2018.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022]
Abstract
Hearing loss in mammals is an irreversible process caused by degeneration of the hair cells of the inner ear. Current therapies for hearing loss include hearing aids and cochlear implants that provide substantial benefits to most patients, but also have several shortcomings. There is great interest in the development of regenerative therapies to treat deafness in the future. Cell-based therapies, based either on adult, multipotent stem, or other types of pluripotent cells, offer promise for generating differentiated cell types to replace lost or damaged hair cells of the inner ear. In this review, we focus on the methods proposed and avenues for research that seem the most promising for stem cell-based auditory sensory cell regeneration, from work collected over the past 15 years.
Collapse
Affiliation(s)
- Hiroki Takeda
- Department of Otolaryngology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Otolaryngology-Head and Neck Surgery, Kumamoto University Graduate School of Medicine, Kumamoto City, Japan; These authors contributed equally to this work
| | - Anna Dondzillo
- Department of Otolaryngology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; These authors contributed equally to this work
| | - Jessica A Randall
- Department of Otolaryngology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Samuel P Gubbels
- Department of Otolaryngology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
10
|
Lee MY, Park YH. Potential of Gene and Cell Therapy for Inner Ear Hair Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8137614. [PMID: 30009175 PMCID: PMC6020521 DOI: 10.1155/2018/8137614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is caused by the loss of sensory hair cells (HCs) or a damaged afferent nerve pathway to the auditory cortex. The most common option for the treatment of sensorineural hearing loss is hearing rehabilitation using hearing devices. Various kinds of hearing devices are available but, despite recent advancements, their perceived sound quality does not mimic that of the "naïve" cochlea. Damage to crucial cochlear structures is mostly irreversible and results in permanent hearing loss. Cochlear HC regeneration has long been an important goal in the field of hearing research. However, it remains challenging because, thus far, no medical treatment has successfully regenerated cochlear HCs. Recent advances in genetic modulation and developmental techniques have led to novel approaches to generating HCs or protecting against HC loss, to preserve hearing. In this review, we present and review the current status of two different approaches to restoring or protecting hearing, gene therapy, including the newly introduced CRISPR/Cas9 genome editing, and stem cell therapy, and suggest the future direction.
Collapse
Affiliation(s)
- Min Yong Lee
- Department of Otorhinolaryngology and Head & Neck Surgery, Dankook University Hospital, Cheonan, Chungnam, Republic of Korea
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|