1
|
Neal ES, Xu W, Borges K. Metabolic aspects of genetic ion channel epilepsies. J Neurochem 2024; 168:3911-3935. [PMID: 37594756 PMCID: PMC11591411 DOI: 10.1111/jnc.15938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Nowadays, particularly in countries with high incomes, individual mutations in people affected by genetic epilepsies are identified, and genetic therapies are being developed. In addition, drugs are being screened to directly target specific mutations, and personalised medicine is possible. However, people with epilepsy do not yet benefit from these advances, and many types of epilepsies are medication-resistant, including Dravet syndrome. Thus, in the meantime, alternative and effective treatment options are needed. There is increasing evidence that metabolic deficits contribute to epileptic seizures and that such metabolic impairments may be amenable to treatment, with metabolic treatment options like the ketogenic diet being employed with some success. However, the brain metabolic alterations that occur in ion channel epilepsies are not well-understood, nor how these may differ from epilepsies that are of acquired and unknown origins. Here, we provide an overview of studies investigating metabolic alterations in epilepsies caused by mutations in the SCN1A and KCNA1 genes, which are currently the most studied ion channel epilepsies in animal models. The metabolic changes found in these models are likely to contribute to seizures. A metabolic basis of these ion channel epilepsies is supported by human and/or animal studies that show beneficial effects of the ketogenic diet, which may be mediated by the provision of auxiliary brain fuel in the form of ketone bodies. Other potentially more preferred dietary therapies including medium-chain triglycerides and triheptanoin have also been tested in a limited number of studies, but their efficacies remain to be clearly established. The extent to which brain metabolism is affected in people with Dravet syndrome, KCNA1 epilepsy and the models thereof still requires clarification. This requires more experiments that yield functional insight into metabolism.
Collapse
Affiliation(s)
- Elliott S. Neal
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Weizhi Xu
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Karin Borges
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
2
|
Gamirova R, Shagimardanova E, Sato T, Kannon T, Gamirova R, Tajima A. Identification of potential disease-associated variants in idiopathic generalized epilepsy using targeted sequencing. J Hum Genet 2024; 69:59-67. [PMID: 37993639 DOI: 10.1038/s10038-023-01208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Many questions remain regarding the genetics of idiopathic generalized epilepsy (IGE), a subset of genetic generalized epilepsy (GGE). We aimed to identify the candidate coding variants of epilepsy panel genes in a cohort of affected individuals, using variant frequency information from a control cohort of the same region. We performed whole-exome sequencing analysis of 121 individuals and 10 affected relatives, focusing on variants of 950 candidate genes associated with epilepsy according to the Genes4Epilepsy curated panel. We identified 168 candidate variants (CVs) in 137 of 950 candidate genes in 88 of 121 affected individuals with IGE, of which 61 were novel variants. Notably, we identified five CVs in known GGE-associated genes (CHD2, GABRA1, RORB, SCN1A, and SCN1B) in five individuals and CVs shared by affected individuals in each of four family cases for other epilepsy candidate genes. The results of this study demonstrate that IGE is a disease with high heterogeneity and provide IGE-associated CVs whose pathogenicity should be proven by future studies, including advanced functional analysis. The low detection rate of CVs in the GGE-associated genes (4.1%) in this study suggests the current incompleteness of the Genes4Epilepsy panel for the diagnosis of IGE in clinical practice.
Collapse
Affiliation(s)
- Regina Gamirova
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Biomedical Data Science, Fujita Health University School of Medicine, Toyoake, Japan
| | - Rimma Gamirova
- Department of Neurology with Courses in Psychiatry, Clinical Psychology and Medical Genetics, Kazan Federal University, Kazan, Russia.
- Laboratory of Neurocognitive Investigations, Kazan Federal University, Kazan, Russia.
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
3
|
Zhao X, Ning H, Wang Y, Zhao G, Mei S, Liu N, Wang C, Cai A, Wei E, Kong X. Genetic analysis and identification of novel variations in Chinese patients with pediatric epilepsy by whole-exome sequencing. Neurol Sci 2022; 43:4439-4451. [DOI: 10.1007/s10072-022-05953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
|
4
|
Xu C, Zhang Y, Gozal D, Carney P. Channelopathy of Dravet Syndrome and Potential Neuroprotective Effects of Cannabidiol. J Cent Nerv Syst Dis 2021; 13:11795735211048045. [PMID: 34992485 PMCID: PMC8724990 DOI: 10.1177/11795735211048045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dravet syndrome (DS) is a channelopathy, neurodevelopmental, epileptic encephalopathy characterized by seizures, developmental delay, and cognitive impairment that includes susceptibility to thermally induced seizures, spontaneous seizures, ataxia, circadian rhythm and sleep disorders, autistic-like behaviors, and premature death. More than 80% of DS cases are linked to mutations in genes which encode voltage-gated sodium channel subunits, SCN1A and SCN1B, which encode the Nav1.1α subunit and Nav1.1β1 subunit, respectively. There are other gene mutations encoding potassium, calcium, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels related to DS. One-third of patients have pharmacoresistance epilepsy. DS is unresponsive to standard therapy. Cannabidiol (CBD), a non-psychoactive phytocannabinoid present in Cannabis, has been introduced for treating DS because of its anticonvulsant properties in animal models and humans, especially in pharmacoresistant patients. However, the etiological channelopathiological mechanism of DS and action mechanism of CBD on the channels are unclear. In this review, we summarize evidence of the direct and indirect action mechanism of sodium, potassium, calcium, and HCN channels in DS, especially sodium subunits. Some channels' loss-of-function or gain-of-function in inhibitory or excitatory neurons determine the balance of excitatory and inhibitory are associated with DS. A great variety of mechanisms of CBD anticonvulsant effects are focused on modulating these channels, especially sodium, calcium, and potassium channels, which will shed light on ionic channelopathy of DS and the precise molecular treatment of DS in the future.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics; Department of Neuroscience, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Paul Carney
- Departments of Child Health and Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
5
|
Kaplan Ö, Pekmez M, Akıncı Y, Ataklı HD, Eren F, Dirican AC, Gözübatık Çelik RG, Baştuğ Gül Z, Ur Özçelik E, Gül G, Sarı H, Özkara Ç. The relationship between DIRAS1 gene and idiopathic generalized epilepsy in the Turkish population. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Łukawski K, Czuczwar SJ. Developing precision treatments for epilepsy using patient and animal models. Expert Rev Neurother 2020; 21:1241-1250. [PMID: 33339471 DOI: 10.1080/14737175.2021.1866989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Phenytoin was the first antiepileptic drug (AED) discovered in an animal model of seizures whose clinical efficacy was subsequently confirmed. This clearly indicated that a search for other AEDs had to consider animal studies.Areas covered: Main seizure tests used for the evaluation of possible anticonvulsive activity of potential anticonvulsants and their predictive values have been reviewed. Procedures used for the estimation of antiepileptogenic effects have been also included.Expert opinion: First-line seizure models comprise maximal electroshock (MES)-, pentylenetetrazol (PTZ)- and kindling-induced convulsions in rodents. The MES test may be considered as a convenient and easy model of generalized tonic-clonic seizures, PTZ test - as a model of generalized myoclonic seizures and to a certain degree - absence seizures. Kindled seizures (for example, from amygdala) may be regarded as a model of focal seizures. Some tests have been suggested for the search of AEDs effective in drug-resistant seizures - for instance, 6 Hz (44 mA) test or intrahippocampal kainate model of mesial temporal lobe epilepsy. There are also recommendations from experimental epileptology on synergistic AED combinations for patients with drug-resistant seizures. The clinical evidence on this issue is scarce and favors a combined treatment with valproate + lamotrigine.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland.,Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
7
|
Zhang L, Gao J, Liu H, Tian Y, Zhang X, Lei W, Li Y, Guo Y, Yu H, Yuan E, Liang L, Cui S, Zhang X. Pathogenic variants identified by whole-exome sequencing in 43 patients with epilepsy. Hum Genomics 2020; 14:44. [PMID: 33287870 PMCID: PMC7720389 DOI: 10.1186/s40246-020-00294-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
Background Epilepsy is a group of neurological disorders characterized by recurrent epileptic seizures. Epilepsy is affected by many factors, approximately 20–30% of cases are caused by acquired conditions, but in the remaining cases, genetic factors play an important role. Early establishment of a specific diagnosis is important to treat and manage this disease. Methods In this study, we have recruited 43 epileptic encephalopathy patients and the molecular genetic analysis of those children was performed by whole-exome sequencing (WES). Results Fourteen patients (32.6%, 14/43) had positive genetic diagnoses, including fifteen mutations in fourteen genes. The overall diagnostic yield was 32.6%. A total of 9 patients were diagnosed as pathogenic mutations, including 4 variants had been reported as pathogenic previously and 6 novel variants that had not been reported previously. Therefore, WES heralds promise as a tool for clinical diagnosis of patients with genetic disease. Conclusion Early establishment of a specific diagnosis, on the one hand, is necessary for providing an accurate prognosis and recurrence risk as well as optimizing management and treatment options. On the other hand, to unveil the genetic architecture of epilepsy, it is of vital importance to investigate the phenotypic and genetic complexity of epilepsy.
Collapse
Affiliation(s)
- Linlin Zhang
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China
| | - Jinshuang Gao
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China
| | - Hailiang Liu
- Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China.,CapitalBio Genomics Co., Ltd., Dongguan, 532808, Guangdong, People's Republic of China
| | - Yuan Tian
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xiaoli Zhang
- Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China.,Department of Neurologic Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Wei Lei
- CapitalBio Genomics Co., Ltd., Dongguan, 532808, Guangdong, People's Republic of China
| | - Ying Li
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China
| | - Yaqing Guo
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China
| | - Haiyang Yu
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China
| | - Erfeng Yuan
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China
| | - Lisi Liang
- CapitalBio Genomics Co., Ltd., Dongguan, 532808, Guangdong, People's Republic of China
| | - Shihong Cui
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China. .,Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China. .,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Front Kangfu Street, Zhengzhou, Henan, 450052, People's Republic of China. .,Department of Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Xiaoan Zhang
- Henan Academician Workstation of Genetic Diagnosis and Precision Medicine, Zhengzhou, Henan, People's Republic of China. .,Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China. .,Department of Imaging and Gynecologic Oncology, The Third Affiliated Hospital of Zhengzhou University, 7 Front Kangfu Street, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
8
|
Jaworski T. Control of neuronal excitability by GSK-3beta: Epilepsy and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118745. [PMID: 32450268 DOI: 10.1016/j.bbamcr.2020.118745] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/22/2022]
Abstract
Glycogen synthase kinase 3beta (GSK-3β) is an enzyme with a variety of cellular functions in addition to the regulation of glycogen metabolism. In the central nervous system, different intracellular signaling pathways converge on GSK-3β through a cascade of phosphorylation events that ultimately control a broad range of neuronal functions in the development and adulthood. In mice, genetically removing or increasing GSK-3β cause distinct functional and structural neuronal phenotypes and consequently affect cognition. Precise control of GSK-3β activity is important for such processes as neuronal migration, development of neuronal morphology, synaptic plasticity, excitability, and gene expression. Altered GSK-3β activity contributes to aberrant plasticity within neuronal circuits leading to neurological, psychiatric disorders, and neurodegenerative diseases. Therapeutically targeting GSK-3β can restore the aberrant plasticity of neuronal networks at least in animal models of these diseases. Although the complete repertoire of GSK-3β neuronal substrates has not been defined, emerging evidence shows that different ion channels and their accessory proteins controlling excitability, neurotransmitter release, and synaptic transmission are regulated by GSK-3β, thereby supporting mechanisms of synaptic plasticity in cognition. Dysregulation of ion channel function by defective GSK-3β activity sustains abnormal excitability in the development of epilepsy and other GSK-3β-linked human diseases.
Collapse
Affiliation(s)
- Tomasz Jaworski
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
9
|
Mason ER, Cummins TR. Differential Inhibition of Human Nav1.2 Resurgent and Persistent Sodium Currents by Cannabidiol and GS967. Int J Mol Sci 2020; 21:ijms21072454. [PMID: 32244818 PMCID: PMC7177867 DOI: 10.3390/ijms21072454] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022] Open
Abstract
Many epilepsy patients are refractory to conventional antiepileptic drugs. Resurgent and persistent currents can be enhanced by epilepsy mutations in the Nav1.2 channel, but conventional antiepileptic drugs inhibit normal transient currents through these channels, along with aberrant resurgent and persistent currents that are enhanced by Nav1.2 epilepsy mutations. Pharmacotherapies that specifically target aberrant resurgent and/or persistent currents would likely have fewer unwanted side effects and be effective in many patients with refractory epilepsy. This study investigated the effects of cannbidiol (CBD) and GS967 (each at 1 μM) on transient, resurgent, and persistent currents in human embryonic kidney (HEK) cells stably expressing wild-type hNav1.2 channels. We found that CBD preferentially inhibits resurgent currents over transient currents in this paradigm; and that GS967 preferentially inhibits persistent currents over transient currents. Therefore, CBD and GS967 may represent a new class of more targeted and effective antiepileptic drugs.
Collapse
Affiliation(s)
- Emily R. Mason
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, IUPUI campus, Indianapolis, IN 46202, USA
- Correspondence:
| | - Theodore R. Cummins
- Department of Biology, Purdue School of Science, IUPUI campus, Indianapolis, IN 46202, USA;
| |
Collapse
|
10
|
Scala M, Bianchi A, Bisulli F, Coppola A, Elia M, Trivisano M, Pruna D, Pippucci T, Canafoglia L, Lattanzi S, Franceschetti S, Nobile C, Gambardella A, Michelucci R, Zara F, Striano P. Advances in genetic testing and optimization of clinical management in children and adults with epilepsy. Expert Rev Neurother 2020; 20:251-269. [PMID: 31941393 DOI: 10.1080/14737175.2020.1713101] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
Introduction: Epileptic disorders are a heterogeneous group of medical conditions with epilepsy as the common denominator. Genetic causes, electro-clinical features, and management significantly vary according to the specific condition.Areas covered: Relevant diagnostic advances have been achieved thanks to the advent of Next Generation Sequencing (NGS)-based molecular techniques. These revolutionary tools allow to sequence all coding (whole exome sequencing, WES) and non-coding (whole genome sequencing, WGS) regions of human genome, with a potentially huge impact on patient care and scientific research.Expert opinion: The application of these tests in children and adults with epilepsy has led to the identification of new causative genes, widening the knowledge on the pathophysiology of epilepsy and resulting in therapeutic implications. This review will explore the most recent advancements in genetic testing and provide up-to-date approaches for the choice of the correct test in patients with epilepsy.
Collapse
Affiliation(s)
- Marcello Scala
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Amedeo Bianchi
- Division of Neurology, Hospital San Donato Arezzo, Arezzo, Italy
| | - Francesca Bisulli
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Antonietta Coppola
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Maurizio Elia
- Unit of Neurology and Clinical Neurophysiopathology, IRCCS Oasi Research Institute, Troina, Italy
| | - Marina Trivisano
- Neurology Unit, Department of Neuroscience, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Clinic of Nervous System Diseases, University of Foggia, Foggia, Italy
| | - Dario Pruna
- Epilepsy Unit, A. Cao Hospital, Cagliari, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, Polyclinic Sant' Orsola-Malpighi University Hospital, Bologna, Italy
| | | | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | | | - Carlo Nobile
- CNR-Neuroscience Institute and Department of Biomedical Sciences (C.N.), University of Padua, Padua, Italy
| | - Antonio Gambardella
- Dipartimento Di Scienze Mediche E Chirurgiche, Università Della Magna Graecia, Catanzaro, Istituto Di Scienze Neurologiche CNR Mangone, Cosenza, Italy
| | - Roberto Michelucci
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Ospedale Bellaria, Bologna, Italy
| | - Federico Zara
- Laboratory of Neurogenetics and Neuroscience, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
Beretta S, Gritti L, Verpelli C, Sala C. Eukaryotic Elongation Factor 2 Kinase a Pharmacological Target to Regulate Protein Translation Dysfunction in Neurological Diseases. Neuroscience 2020; 445:42-49. [PMID: 32088293 DOI: 10.1016/j.neuroscience.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/02/2023]
Abstract
Two major processes tightly regulate protein synthesis, the initiation of mRNA translation and elongation phase that mediates the movement of ribosomes along the mRNA. The elongation phase is a high energy-consuming process, and is mainly regulated by the eukaryotic elongation factor 2 kinase (eEF2K) activity that phosphorylates and inhibits eEF2, the only known substrate of the kinase. eEF2K activity is closely regulated by several signaling pathways because the translation elongation phase strongly influences the cellular energy demand and can change the expression of specific proteins in different tissues. An increasing number of recent findings link eEF2k over activation to an array of human diseases, such as atherosclerosis, pulmonary arterial hypertension, progression of solid tumors, and some major neurological disorders. Several neurological studies suggest that eEF2K is a valuable target in treating epilepsy, depression and major neurodegenerative diseases. Despite eEF2k is an ubiquitous and conserved protein, it has been proved that its deletion does not affect development in animal models and in general cell viability. Therefore, it is possible to postulate that inhibiting its function may not cause serious side effects. In addition, eEF2K is a peculiar kinase molecularly different from most of other mammalian kinases and new compounds that inhibit eEF2K should not necessarily interfere with other important protein kinases. In this review we will critically summarize the evidence supporting the role of the altered eEF2K/eEF2 pathway in defined neurological diseases and its implications in curing these diseases in animal models, and possibly in humans, by targeting eEF2K activity.
Collapse
Affiliation(s)
| | | | | | - Carlo Sala
- CNR Neuroscience Institute, Milano, Italy.
| |
Collapse
|
12
|
Dutta UR, Rao SN, Pidugu VK, V.S. V, Bhattacherjee A, Bhowmik AD, Ramaswamy SK, Singh KG, Dalal A. Breakpoint mapping of a novel de novo translocation t(X;20)(q11.1;p13) by positional cloning and long read sequencing. Genomics 2019; 111:1108-1114. [DOI: 10.1016/j.ygeno.2018.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 01/20/2023]
|
13
|
Balciuniene J, DeChene ET, Akgumus G, Romasko EJ, Cao K, Dubbs HA, Mulchandani S, Spinner NB, Conlin LK, Marsh ED, Goldberg E, Helbig I, Sarmady M, Abou Tayoun A. Use of a Dynamic Genetic Testing Approach for Childhood-Onset Epilepsy. JAMA Netw Open 2019; 2:e192129. [PMID: 30977854 PMCID: PMC6481455 DOI: 10.1001/jamanetworkopen.2019.2129] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPORTANCE Although genetic testing is important for bringing precision medicine to children with epilepsy, it is unclear what genetic testing strategy is best in maximizing diagnostic yield. OBJECTIVES To evaluate the diagnostic yield of an exome-based gene panel for childhood epilepsy and discuss the value of follow-up testing. DESIGN, SETTING, AND PARTICIPANTS A case series study was conducted on data from clinical genetic testing at Children's Hospital of Philadelphia was conducted from September 26, 2016, to January 8, 2018. Initial testing targeted 100 curated epilepsy genes for sequence and copy number analysis in 151 children with idiopathic epilepsy referred consecutively by neurologists. Additional genetic testing options were offered afterward. EXPOSURES Clinical genetic testing. MAIN OUTCOMES AND MEASURES Molecular diagnostic findings. RESULTS Of 151 patients (84 boys [55.6%]; median age, 4.2 years [interquartile range, 1.4-8.7 years]), 16 children (10.6%; 95% CI, 6%-16%) received a diagnosis after initial panel analysis. Parental testing for 15 probands with inconclusive results revealed de novo variants in 7 individuals (46.7%), resulting in an overall diagnostic yield of 15.3% (23 of 151; 95% CI, 9%-21%). Twelve probands with nondiagnostic panel findings were reflexed to exome sequencing, and 4 were diagnostic (33.3%; 95% CI, 6%-61%), raising the overall diagnostic yield to 17.9% (27 of 151; 95% CI, 12%-24%). The yield was highest (17 of 44 [38.6%; 95% CI, 24%-53%]) among probands with epilepsy onset in infancy (age, 1-12 months). Panel diagnostic findings involved 16 genes: SCN1A (n = 4), PRRT2 (n = 3), STXBP1 (n = 2), IQSEC2 (n = 2), ATP1A2, ATP1A3, CACNA1A, GABRA1, KCNQ2, KCNT1, SCN2A, SCN8A, DEPDC5, TPP1, PCDH19, and UBE3A (all n = 1). Exome sequencing analysis identified 4 genes: SMC1A, SETBP1, NR2F1, and TRIT1. For the remaining 124 patients, analysis of 13 additional genes implicated in epilepsy since the panel was launched in 2016 revealed promising findings in 6 patients. CONCLUSIONS AND RELEVANCE Exome-based targeted panels appear to enable rapid analysis of a preselected set of genes while retaining flexibility in gene content. Successive genetic workup should include parental testing of select probands with inconclusive results and reflex to whole-exome trio analysis for the remaining nondiagnostic cases. Periodic reanalysis is needed to capture information in newly identified disease genes.
Collapse
Affiliation(s)
- Jorune Balciuniene
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth T. DeChene
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gozde Akgumus
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Edward J. Romasko
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kajia Cao
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Holly A. Dubbs
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Surabhi Mulchandani
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nancy B. Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Laura K. Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Eric D. Marsh
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ethan Goldberg
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ingo Helbig
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Mahdi Sarmady
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ahmad Abou Tayoun
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- now with Department of Genomics, Al Jalila Children’s Specialty Hospital, Dubai, United Arab Emirates
| |
Collapse
|
14
|
Ross KG, Molinaro AM, Romero C, Dockter B, Cable KL, Gonzalez K, Zhang S, Collins EMS, Pearson BJ, Zayas RM. SoxB1 Activity Regulates Sensory Neuron Regeneration, Maintenance, and Function in Planarians. Dev Cell 2019; 47:331-347.e5. [PMID: 30399335 DOI: 10.1016/j.devcel.2018.10.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 10/27/2022]
Abstract
SoxB1 genes play fundamental roles in neurodevelopmental processes and maintaining stem cell multipotency, but little is known about their function in regeneration. We addressed this question by analyzing the activity of the SoxB1 homolog soxB1-2 in the planarian Schmidtea mediterranea. Expression and functional analysis revealed that soxB1-2 marks ectodermal-lineage progenitors, and its activity is required for differentiation of subsets of ciliated epidermal and neuronal cells. Moreover, we show that inhibiting soxB1-2 or its candidate target genes leads to abnormal sensory neuron regeneration that causes planarians to display seizure-like movements or phenotypes associated with the loss of sensory modalities. Our analyses highlight soxB1-2-regulated genes that are expressed in sensory neurons and are homologous to factors implicated in epileptic disorders in humans and animal models of epilepsy, indicating that planarians can serve as a complementary model to investigate genetic causes of epilepsy.
Collapse
Affiliation(s)
- Kelly G Ross
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Alyssa M Molinaro
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Celeste Romero
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Brian Dockter
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Katrina L Cable
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Karla Gonzalez
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Siqi Zhang
- Department of Physics, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Eva-Maria S Collins
- Department of Physics, University of California, San Diego, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Bret J Pearson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
15
|
Estey CM, Dewey CW, Rishniw M, Lin DM, Bouma J, Sackman J, Burkland E. A Subset of Dogs with Presumptive Idiopathic Epilepsy Show Hippocampal Asymmetry: A Volumetric Comparison with Non-Epileptic Dogs Using MRI. Front Vet Sci 2017; 4:183. [PMID: 29167797 PMCID: PMC5682304 DOI: 10.3389/fvets.2017.00183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/11/2017] [Indexed: 01/14/2023] Open
Abstract
MRI-acquired volumetric measurements from 100 dogs with presumptive idiopathic epilepsy (IE) and 41 non-epileptic (non-IE) dogs were used to determine if hippocampal asymmetry exists in the IE as compared to the non-IE dogs. MRI databases from three institutions were searched for dogs that underwent MRI of the brain and were determined to have IE and those that were considered non-IE dogs. Volumes of the right and left hippocampi were measured using Mimics® software. Median hippocampal volumes of IE and non-IE dogs were 0.47 and 0.53 cm3, respectively. There was no significant difference in overall hippocampal volume between IE and non-IE dogs; however, IE dogs had greater hippocampal asymmetry than non-IE dogs (P < 0.012). A threshold value of 1.16 from the hippocampal ratio had an 85% specificity for identifying IE-associated asymmetry. Thirty five percent of IE dogs had a hippocampal ratio >1.16. Asymmetry was not associated with any particular hemisphere (P = 0.67). Our study indicates that hippocampal asymmetry occurs in a subset of dogs with presumptive idiopathic/genetic epilepsy, suggesting a structural etiology to some cases of IE.
Collapse
Affiliation(s)
- Chelsie M Estey
- Department of Clinical Sciences, Cornell University Hospital for Animals, Ithaca, NY, United States
| | - Curtis W Dewey
- Department of Clinical Sciences, Cornell University Hospital for Animals, Ithaca, NY, United States
| | - Mark Rishniw
- Department of Clinical Sciences, Cornell University Hospital for Animals, Ithaca, NY, United States
| | - David M Lin
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Jennifer Bouma
- Rochester Veterinary Specialists, Rochester, NY, United States
| | - Joseph Sackman
- Long Island Veterinary Specialists, Plainview, NY, United States
| | - Erica Burkland
- Department of Clinical Sciences, Cornell University Hospital for Animals, Ithaca, NY, United States
| |
Collapse
|
16
|
Gao K, Tankovic A, Zhang Y, Kusumoto H, Zhang J, Chen W, XiangWei W, Shaulsky GH, Hu C, Traynelis SF, Yuan H, Jiang Y. A de novo loss-of-function GRIN2A mutation associated with childhood focal epilepsy and acquired epileptic aphasia. PLoS One 2017; 12:e0170818. [PMID: 28182669 PMCID: PMC5300259 DOI: 10.1371/journal.pone.0170818] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE N-methyl-D-aspartate receptors (NMDAR) subunit GRIN2A/GluN2A mutations have been identified in patients with various neurological diseases, such as epilepsy and intellectual disability / developmental delay (ID/DD). In this study, we investigated the phenotype and underlying molecular mechanism of a GRIN2A missense mutation identified by next generation sequencing on idiopathic focal epilepsy using in vitro electrophysiology. METHODS Genomic DNA of patients with epilepsy and ID/DD were sequenced by targeted next-generation sequencing within 300 genes related to epilepsy and ID/DD. The effects of one missense GRIN2A mutation on NMDAR function were evaluated by two-electrode voltage clamp current recordings and whole cell voltage clamp current recordings. RESULTS We identified one de novo missense GRIN2A mutation (Asp731Asn, GluN2A(D731N)) in a child with unexplained epilepsy and DD. The D731N mutation is located in a portion of the agonist-binding domain (ABD) in the GluN2A subunit, which is the binding pocket for agonist glutamate. This residue in the ABD is conserved among vertebrate species and all other NMDAR subunits, suggesting an important role in receptor function. The proband shows developmental delay as well as EEG-confirmed seizure activity. Functional analyses reveal that the GluN2A(D731N) mutation decreases glutamate potency by over 3,000-fold, reduces amplitude of current response, shortens synaptic-like response time course, and decreases channel open probability, while enhancing sensitivity to negative allosteric modulators, including extracellular proton and zinc inhibition. The combined effects reduce NMDAR function. SIGNIFICANCE We identified a de novo missense mutation in the GRIN2A gene in a patient with childhood focal epilepsy and acquired epileptic aphasia. The mutant decreases NMDAR activation suggesting NMDAR hypofunction may contribute to the epilepsy pathogenesis.
Collapse
Affiliation(s)
- Kai Gao
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Anel Tankovic
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Yujia Zhang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Hirofumi Kusumoto
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Jin Zhang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Wenjuan Chen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenshu XiangWei
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Gil H. Shaulsky
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Chun Hu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Stephen F. Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Functional Evaluation of Rare Variant (CFERV), Emory University School of Medicine, Atlanta, GA, United States of America
| | - Hongjie Yuan
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America
- Center for Functional Evaluation of Rare Variant (CFERV), Emory University School of Medicine, Atlanta, GA, United States of America
| | - Yuwu Jiang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
17
|
Surguchov A, Surgucheva I, Sharma M, Sharma R, Singh V. Pore-Forming Proteins as Mediators of Novel Epigenetic Mechanism of Epilepsy. Front Neurol 2017; 8:3. [PMID: 28149289 PMCID: PMC5241277 DOI: 10.3389/fneur.2017.00003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 01/04/2017] [Indexed: 01/07/2023] Open
Abstract
Epilepsy is a disorder of the brain characterized by an enduring predisposition to generate epileptic seizures. In the last two decades, numerous gene defects underlying different forms of epilepsy have been identified with most of these genes encoding ion channel proteins. Despite these developments, the etiology of majority of non-familial epilepsies has no known associated genetic mutations and cannot be explained by defects in identified ion channels alone. We hypothesize that de novo formation of ion channels by naturally unfolded proteins (NUPs) increases neuronal excitability. Altered ionic homeostasis may initiate/contribute to cellular cascades related to epileptogenesis in susceptible individuals. Here, we consider two small proteins, namely, α-synuclein and stefin B, as prototypical candidates to illustrate the underlying mechanism(s). Previous work points to an association between epilepsy and α-synuclein or stefin B, but the mechanism(s) underlying such association remains elusive. We review the evidence to link the structure-function of these proteins with disease processes. Epigenetic mechanisms unrelated to altered DNA sequence(s) that may affect epileptogenesis include transcriptional or posttranscriptional regulation. Such epigenetic mechanisms or their combination(s) enhance the levels of these proteins and as a result the ability to form annular structures, which upon incorporation into membrane form novel ion channels and disturb intracellular ion homeostasis. Alternative epigenetic mechanisms may change amyloidogenic proteins by posttranslational modifications, thereby increasing their propensity to form channels. Further research elucidating the details about the formation of ion channels through these mechanisms and their role in epileptogenesis may define new molecular targets and guide the development of new drug targets.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, Kansas University Medical Center, Kansas City, KS, USA
| | - Irina Surgucheva
- Department of Neurology, Kansas University Medical Center, Kansas City, KS, USA
| | - Mukut Sharma
- Kansas City Veterans Administration Medical Center, Kansas City, MO, USA
- Midwest Biomedical Research Foundation, Kansas City, MO, USA
| | - Ram Sharma
- Kansas City Veterans Administration Medical Center, Kansas City, MO, USA
| | - Vikas Singh
- Department of Neurology, Kansas University Medical Center, Kansas City, KS, USA
- Kansas City Veterans Administration Medical Center, Kansas City, MO, USA
| |
Collapse
|
18
|
Kozhanova TV, Zhylina SS, Aivazian SO, Ananyeva TV, Abramov AA, Belenikin MS, Meshcheryakova TI, Mutovin GR, Zavadenko NN. [The diagnosis of idiopathic epilepsy in children based on the algorithm of molecular-genetic studies]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:49-56. [PMID: 28005047 DOI: 10.17116/jnevro20161169249-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To study mutations and polymorphisms in the sodium channels genes, determining the development of idiopathic epilepsy (IE). MATERIAL AND METHODS The study of SCN1A gene by direct Sanger sequencing in 53 patients and targeted resequencing of the regions of 34 genes in 40 patients with different clinical forms of IE was performed. RESULTS Seven mutations (c.3022G>T, c.3637C>T, c.1144G>T, c.80G>C, c.1603C>T, c.2427G>A and c.1131A>C) were detected among 53 patients by direct Sanger sequencing of SCN1A gene. The mutations of SCN1A gene (2 - nonsense mutation, 5 - missense mutation) were identified in 7/40 (17.5%) patients with epilepsy using high-performance sequencing, Mutations in sodium channel genes encoding other subunits: SCN1B, SCN2A, SCN9A were identified in 6 patients. CONCLUSION As epileptic encephalopathy is polygenic, it is important to conduct genetic testing of more genes (primarily sodium channel genes - SCN1B, SCN2A, SCN9A etc.) using special gene panels to find the molecular defect in DNA.
Collapse
Affiliation(s)
- T V Kozhanova
- Scientific and Practical Center of Children Medical Care, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - S S Zhylina
- Scientific and Practical Center of Children Medical Care, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - S O Aivazian
- Scientific and Practical Center of Children Medical Care, Moscow, Russia
| | - T V Ananyeva
- Scientific and Practical Center of Children Medical Care, Moscow, Russia
| | - A A Abramov
- Scientific and Practical Center of Children Medical Care, Moscow, Russia
| | - M S Belenikin
- Scientific and Practical Center of Children Medical Care, Moscow, Russia
| | - T I Meshcheryakova
- Scientific and Practical Center of Children Medical Care, Moscow, Russia
| | - G R Mutovin
- Scientific and Practical Center of Children Medical Care, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - N N Zavadenko
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
19
|
Verrotti A, Zara F, Minetti C, Striano P. Novel treatment perspectives from advances in understanding of genetic epilepsy syndromes. Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1167594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Striano P, Vari MS, Mazzocchetti C, Verrotti A, Zara F. Management of genetic epilepsies: From empirical treatment to precision medicine. Pharmacol Res 2016; 107:426-429. [PMID: 27080588 DOI: 10.1016/j.phrs.2016.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 01/17/2023]
Abstract
Despite the over 20 antiepileptic drugs (AEDs) now licensed for epilepsy treatment, seizures can be effectively controlled in about ∼70% of patients. Thus, epilepsy treatment is still challenging in about one third of patients and this may lead to a severe medically, physically, and socially disabling condition. However, there is clear evidence of heterogeneity of response to existing AEDs and a significant unmet need for effective intervention. A number of studies have shown that polymorphisms may influence the poor or inadequate therapeutic response as well as the occurrence of adverse effects. In addition, the new frontier of genomic technologies, including chromosome microarrays and next-generation sequencing, improved our understanding of the genetic architecture of epilepsies. Recent findings in some genetic epilepsy syndromes provide insights into mechanisms of epileptogenesis, unrevealing the role of a number of genes with different functions, such as ion channels, proteins associated to the vesical synaptic cycle or involved in energy metabolism. The rapid progress of high-throughput genomic sequencing and corresponding analysis tools in molecular diagnosis are revolutionizing the practice and it is a fact that for some monogenic epilepsies the molecular confirmation may influence the choice of the treatment. Moreover, the novel genetic methods, that are able to analyze all known genes at a reasonable price, are of paramount importance to discover novel therapeutic avenues and individualized (or precision) medicine.
Collapse
Affiliation(s)
- Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, G. Gaslini Institute, Genova, Italy.
| | - Maria Stella Vari
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, G. Gaslini Institute, Genova, Italy
| | | | - Alberto Verrotti
- Department of Pediatrics, University of L' Aquila, LAquila, Italy
| | - Federico Zara
- Laboratory of Neurosciences and Neurogenetics, Department of Head and Neck Diseases, G. Gaslini Institute, Genova, Italy
| |
Collapse
|
21
|
Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun 2015; 5:3251. [PMID: 24504326 PMCID: PMC3934797 DOI: 10.1038/ncomms4251] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/13/2014] [Indexed: 12/21/2022] Open
Abstract
NMDA receptors (NMDARs), ligand-gated ion channels, play important roles in various neurological disorders, including epilepsy. Here we show the functional analysis of a de novo missense mutation (L812M) in a gene encoding NMDAR subunit GluN2A (GRIN2A). The mutation, identified in a patient with early-onset epileptic encephalopathy and profound developmental delay, is located in the linker region between the ligand-binding and transmembrane domains. Electrophysiological recordings revealed that the mutation enhances agonist potency, decreases sensitivity to negative modulators including magnesium, protons and zinc, prolongs the synaptic response time course and increases single-channel open probability. The functional changes of this amino acid apply to all other NMDAR subunits, suggesting an important role of this residue on the function of NMDARs. Taken together, these data suggest that the L812M mutation causes overactivation of NMDARs and drives neuronal hyperexcitability. We hypothesize that this mechanism underlies the patient's epileptic phenotype as well as cerebral atrophy.
Collapse
|
22
|
Nicita F, Ulgiati F, Bernardini L, Garone G, Papetti L, Novelli A, Spalice A. Early myoclonic encephalopathy in 9q33-q34 deletion encompassing STXBP1 and SPTAN1. Ann Hum Genet 2015; 79:209-17. [PMID: 25779878 DOI: 10.1111/ahg.12106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/07/2015] [Indexed: 02/01/2023]
Abstract
Deletions in the 9q33-q34 region have been reported in patients with early onset epileptic encephalopathy, but a consistent phenotype has yet to emerge. We report on the diagnosis of a de novo 9q33-q34.12 microdeletion of 4 Mb in a 15-month-old girl presenting with severe psychomotor delay, facial dysmorphisms, thin corpus callosum and early myoclonic encephalopathy. This deletion encompasses 101 RefSeq genes, including the four autosomal dominant genes STXBP1, SPTAN1, ENG and TOR1A. We discuss genetic, clinical and epileptic features comparing our patient with those previously reported in the literature.
Collapse
Affiliation(s)
- Francesco Nicita
- Child Neurology Division, Department of Pediatrics, Sapienza University, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Mann M, Chhun S, Pons G. Farmacogenetica dei farmaci antiepilettici. Neurologia 2014. [DOI: 10.1016/s1634-7072(14)68868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
24
|
Tyler AL, McGarr TC, Beyer BJ, Frankel WN, Carter GW. A genetic interaction network model of a complex neurological disease. GENES BRAIN AND BEHAVIOR 2014; 13:831-40. [PMID: 25251056 PMCID: PMC4241132 DOI: 10.1111/gbb.12178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/26/2014] [Accepted: 09/18/2014] [Indexed: 12/05/2022]
Abstract
Absence epilepsy (AE) is a complex, heritable disease characterized by a brief disruption of normal behavior and accompanying spike wave discharges (SWD) on the electroencephalogram. Only a handful of genes has been definitively associated with AE in humans and rodent models. Most studies suggest that genetic interactions play a large role in the etiology and severity of AE, but mapping and understanding their architecture remains a challenge, requiring new computational approaches. Here we use Combined Analysis of Pleiotropy and Epistasis (CAPE) to detect and interpret genetic interactions in a meta-population derived from three C3H x B6 strain crosses, each of which is fixed for a different SWD-causing mutation. Although each mutation causes SWD through a different molecular mechanism, the phenotypes caused by each mutation are exacerbated on the C3H genetic background compared with B6, suggesting common modifiers. By combining information across two phenotypic measures – SWD duration and frequency – CAPE revealed a large, directed genetic network consisting of suppressive and enhancing interactions between loci on 10 chromosomes. These results illustrate the power of CAPE in identifying novel modifier loci and interactions in a complex neurological disease, towards a more comprehensive view of its underlying genetic architecture.
Collapse
Affiliation(s)
- A L Tyler
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | | | | |
Collapse
|
25
|
Ran X, Li J, Shao Q, Chen H, Lin Z, Sun ZS, Wu J. EpilepsyGene: a genetic resource for genes and mutations related to epilepsy. Nucleic Acids Res 2014; 43:D893-9. [PMID: 25324312 PMCID: PMC4384015 DOI: 10.1093/nar/gku943] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is one of the most prevalent chronic neurological disorders, afflicting about 3.5–6.5 per 1000 children and 10.8 per 1000 elderly people. With intensive effort made during the last two decades, numerous genes and mutations have been published to be associated with the disease. An organized resource integrating and annotating the ever-increasing genetic data will be imperative to acquire a global view of the cutting-edge in epilepsy research. Herein, we developed EpilepsyGene (http://61.152.91.49/EpilepsyGene). It contains cumulative to date 499 genes and 3931 variants associated with 331 clinical phenotypes collected from 818 publications. Furthermore, in-depth data mining was performed to gain insights into the understanding of the data, including functional annotation, gene prioritization, functional analysis of prioritized genes and overlap analysis focusing on the comorbidity. An intuitive web interface to search and browse the diversified genetic data was also developed to facilitate access to the data of interest. In general, EpilepsyGene is designed to be a central genetic database to provide the research community substantial convenience to uncover the genetic basis of epilepsy.
Collapse
Affiliation(s)
- Xia Ran
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jinchen Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Qianzhi Shao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Huiqian Chen
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhongdong Lin
- Department of Pediatric Neurology, The Second Affiliated & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhong Sheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China Beijing Institutes of Life Science, Chinese Academy of Science, Beijing 100101, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China Beijing Institutes of Life Science, Chinese Academy of Science, Beijing 100101, China
| |
Collapse
|
26
|
Pavone P, Striano P, Falsaperla R, Pavone L, Ruggieri M. Infantile spasms syndrome, West syndrome and related phenotypes: what we know in 2013. Brain Dev 2014; 36:739-751. [PMID: 24268986 DOI: 10.1016/j.braindev.2013.10.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 07/12/2013] [Accepted: 10/17/2013] [Indexed: 11/18/2022]
Abstract
The current spectrum of disorders associated to clinical spasms with onset in infancy is wider than previously thought; accordingly, its terminology has changed. Nowadays, the term Infantile spasms syndrome (ISs) defines an epileptic syndrome occurring in children younger than 1 year (rarely older than 2 years), with clinical (epileptic: i.e., associated to an epileptiform EEG) spasms usually occurring in clusters whose most characteristic EEG finding is hypsarrhythmia [the spasms are often associated with developmental arrest or regression]. The term West syndrome (WS) refers to a form (a subset) of ISs, characterised by the combination of clustered spasms and hypsarrhythmia on an EEG and delayed brain development or regression [currently, it is no longer required that delayed development occur before the onset of spasms]. Less usually, spasms may occur singly rather than in clusters [infantile spasms single-spasm variant (ISSV)], hypsarrhythmia can be (incidentally) recorded without any evidence of clinical spasms [hypsarrhythmia without infantile spasms (HWIS)] or typical clinical spasms may manifest in absence of hypsarrhythmia [infantile spasms without hypsarrhythmia (ISW)]. There is a growing evidence that ISs and related phenotypes may result, besides from acquired events, from disturbances in key genetic pathways of brain development: specifically, in the gene regulatory network of GABAergic forebrain dorsal-ventral development, and abnormalities in molecules expressed at the synapse. Children with these genetic associations also have phenotypes beyond epilepsy, including dysmorphic features, autism, movement disorders and systemic malformations. The prognosis depends on: (a) the cause, which gives origin to the attacks (the complex malformation forms being more severe); (b) the EEG pattern(s); (c) the appearance of seizures prior to the spasms; and (d) the rapid response to treatment. Currently, the first-line treatment includes the adrenocorticotropic hormone ACTH and vigabatrin. In the near future the gold standard could be the development of new therapies that target specific pathways of pathogenesis. In this article we review the past and growing number of clinical, genetic, molecular and therapeutic discoveries on this expanding topic.
Collapse
Affiliation(s)
- Piero Pavone
- Unit of Pediatrics and Pediatric Emergency "Costanza Gravina", University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Pasquale Striano
- Unit of Pediatric Neurology and Muscular Diseases, "G. Gaslini" Research Hospital, University of Genoa, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency "Costanza Gravina", University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Lorenzo Pavone
- Unit of Pediatrics and Pediatric Emergency "Costanza Gravina", University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Martino Ruggieri
- Department of Educational Science, Chair of Pediatrics, University of Catania, Italy.
| |
Collapse
|
27
|
Wagnon JL, Korn MJ, Parent R, Tarpey TA, Jones JM, Hammer MF, Murphy GG, Parent JM, Meisler MH. Convulsive seizures and SUDEP in a mouse model of SCN8A epileptic encephalopathy. Hum Mol Genet 2014; 24:506-15. [PMID: 25227913 PMCID: PMC4275076 DOI: 10.1093/hmg/ddu470] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
De novo mutations of the voltage-gated sodium channel gene SCN8A have recently been recognized as a cause of epileptic encephalopathy, which is characterized by refractory seizures with developmental delay and cognitive disability. We previously described the heterozygous SCN8A missense mutation p.Asn1768Asp in a child with epileptic encephalopathy that included seizures, ataxia, and sudden unexpected death in epilepsy (SUDEP). The mutation results in increased persistent sodium current and hyperactivity of transfected neurons. We have characterized a knock-in mouse model expressing this dominant gain-of-function mutation to investigate the pathology of the altered channel in vivo. The mutant channel protein is stable in vivo. Heterozygous Scn8aN1768D/+ mice exhibit seizures and SUDEP, confirming the causality of the de novo mutation in the proband. Using video/EEG analysis, we detect ictal discharges that coincide with convulsive seizures and myoclonic jerks. Prior to seizure onset, heterozygous mutants are not defective in motor learning or fear conditioning, but do exhibit mild impairment of motor coordination and social discrimination. Homozygous mutant mice exhibit earlier seizure onset than heterozygotes and more rapid progression to death. Analysis of the intermediate phenotype of functionally hemizygous Scn8aN1768D/− mice indicates that severity is increased by a double dose of mutant protein and reduced by the presence of wild-type protein. Scn8aN1768D mutant mice provide a model of epileptic encephalopathy that will be valuable for studying the in vivo effects of hyperactive Nav1.6 and the response to therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Rachel Parent
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Taylor A Tarpey
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Michael F Hammer
- Arizona Research Laboratories, Division of Biotechnology, University of Arizona, Tucson, AZ, USA
| | - Geoffrey G Murphy
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA and
| | - Jack M Parent
- Department of Neurology VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | | |
Collapse
|
28
|
Olson HE, Poduri A, Pearl PL. Genetic forms of epilepsies and other paroxysmal disorders. Semin Neurol 2014; 34:266-79. [PMID: 25192505 DOI: 10.1055/s-0034-1386765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic mechanisms explain the pathophysiology of many forms of epilepsy and other paroxysmal disorders, such as alternating hemiplegia of childhood, familial hemiplegic migraine, and paroxysmal dyskinesias. Epilepsy is a key feature of well-defined genetic syndromes including tuberous sclerosis complex, Rett syndrome, Angelman syndrome, and others. There is an increasing number of single-gene causes or susceptibility factors associated with several epilepsy syndromes, including the early-onset epileptic encephalopathies, benign neonatal/infantile seizures, progressive myoclonus epilepsies, genetic generalized and benign focal epilepsies, epileptic aphasias, and familial focal epilepsies. Molecular mechanisms are diverse, and a single gene can be associated with a broad range of phenotypes. Additional features, such as dysmorphisms, head size, movement disorders, and family history may provide clues to a genetic diagnosis. Genetic testing can impact medical care and counseling. We discuss genetic mechanisms of epilepsy and other paroxysmal disorders, tools and indications for genetic testing, known genotype-phenotype associations, the importance of genetic counseling, and a look toward the future of epilepsy genetics.
Collapse
Affiliation(s)
- Heather E Olson
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Annapurna Poduri
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Phillip L Pearl
- Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
29
|
Mariani CL. Terminology and classification of seizures and epilepsy in veterinary patients. Top Companion Anim Med 2014; 28:34-41. [PMID: 24070679 DOI: 10.1053/j.tcam.2013.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 11/11/2022]
Abstract
The classification of epileptic seizures and epilepsy is a controversial and dynamic topic that has undergone many iterations in human medicine. The International League against Epilepsy is a multinational organization that has formed a number of task forces and subcommittees to study this issue, and has ratified several reports outlining recommended terminology and classification schemes for human patients. Veterinary publications on this issue have generally adapted these schemes to fit small animal patients, but a formally endorsed system to classify seizures and epilepsy has never been developed for veterinary patients. This review outlines the classification systems that have been published for human patients and summarizes previous efforts by veterinary authors to utilize these methods. Finally, a set of definitions and terminology for use in veterinary patients is proposed, which includes a glossary of descriptive terminology for ictal semiology and a diagnostic scheme for classification of individual patients. This document is intended as a starting point of discussion, which will hopefully eventually result in a formally ratified document that will be useful for communication between health professionals, the design of clinical trials and for guiding treatment decisions and prognostication for veterinary patients with seizures.
Collapse
Affiliation(s)
- Christopher L Mariani
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
30
|
Wieser HG. Genetic epilepsies. Remarks on the proposed “Organization of the Epilepsies”. JOURNAL OF EPILEPTOLOGY 2014. [DOI: 10.1515/joepi-2015-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SUMMARYIntroduction.Genetic findings in several epilepsy syndromes provide insights into the pathophysiology of specific subtypes of epilepsy and into mechanisms of epileptogenesis, because the genes encoding ion channels, and proteins associated to the vesical synaptic cycle, or involved in energy metabolism, influence neuronal excitability.Aim.The following aspects of genetic epilepsies will be discussed: new proposed “organization of the epilepsies”, genetic and other etiologies, electroclinical syndromes and their genetics and genetic testing in the epilepsies.Methods.The updated review is based on OMIM™ (Online Mendelian Inheritance in Man).Review and remarks.Because of the vast genetic and phenotypic heterogeneity, bridging genotype and phenotype remains a major challenge in epilepsy genetics. The so-called “idiopathic” epilepsies are genetically determined. The new ILAE proposal on the “organization” of the epilepsies takes into account the genetic advances. However, despite proposed changes in the nomenclature, the concept of the electroclinical syndrome, i.e. seizure types, age-dependent onset, electroencephalographic criteria, and concomitant symptoms, such as movement disorders or developmental delay, remain important criteria to group the epilepsies. Although also the differentiation “generalized” versus “focal” is nowadays discussed critically, for practical reasons these categories remain valid. Similarly the categories “benign” syndromes of early childhood, epileptic encephalopathies, and fever-associated syndromes, have their utility.Conclusions.The large number of genetic defects in the epilepsies complicates their analysis. However, it is anticipated that novel genetic methods, that are able to analyze all known genes at a reasonable price, will help identify novel diagnostic and therapeutic avenues, including prognostic and genetic counseling. Today it is already possible to include into genetic testing genes responsible for the side effects of AEDs. In addition, for some epilepsy phenotypes it has became possible to predict the most efficacious antiepileptic drugs for patients based on their genetic makeup. Thus, the development of individualized medicine is expected to greatly improve the management of epilepsy patients.
Collapse
|
31
|
Striano P, de Jonghe P, Zara F. Genetic epileptic encephalopathies: is all written into the DNA? Epilepsia 2014; 54 Suppl 8:22-6. [PMID: 24571113 DOI: 10.1111/epi.12419] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epileptic encephalopathy is a condition in which epileptic activity, clinical or subclinical, is thought to be responsible for any disturbance of cognition, behavior, or motor control. However, experimental evidence supporting this clinical observation are still poor and the causal relationship between pharmacoresistant seizures and cognitive outcome is controversial. In the past two decades, genetic studies shed new light onto complex mechanisms underlying different severe epileptic conditions associated with intellectual disability and behavioral abnormalities, thereby providing important clues on the relationship between seizures and cognitive outcome. Dravet syndrome is a childhood disorder associated with loss-of-function mutations in SCN1A and is characterized by frequent seizures and severe cognitive impairment, thus well illustrating the concept of epileptic encephalopathy. However, it is difficult to determine the causative role of the underlying sodium channel dysfunction and that of the consequent seizures in influencing cognitive outcome in these children. It is also difficult to demonstrate whether a recognizable profile of cognitive impairment or a definite behavioral phenotype exists. Data from the laboratory and the clinics may provide greater insight into the degree to which epileptic activity may contribute to cognitive impairment in individual syndromes.
Collapse
Affiliation(s)
- Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, Institute "G. Gaslini", University of Genova, Genoa, Italy
| | | | | |
Collapse
|
32
|
Striano P, Striano S. Speeding up disease diagnosis: a reliable option for the epileptologist? JOURNAL OF EPILEPTOLOGY 2013. [DOI: 10.1515/joepi-2015-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
33
|
Abstract
Many neurologic diseases cause discrete episodic impairment in contrast with progressive deterioration. The symptoms of these episodic disorders exhibit striking variety. Herein we review what is known of the phenotypes, genetics, and pathophysiology of episodic neurologic disorders. Of these, most are genetically complex, with unknown or polygenic inheritance. In contrast, a fascinating panoply of episodic disorders exhibit Mendelian inheritance. We classify episodic Mendelian disorders according to the primary neuroanatomical location affected: skeletal muscle, cardiac muscle, neuromuscular junction, peripheral nerve, or central nervous system (CNS). Most known Mendelian mutations alter genes that encode membrane-bound ion channels. These mutations cause ion channel dysfunction, which ultimately leads to altered membrane excitability as manifested by episodic disease. Other Mendelian disease genes encode proteins essential for ion channel trafficking or stability. These observations have cemented the channelopathy paradigm, in which episodic disorders are conceptualized as disorders of ion channels. However, we expand on this paradigm to propose that dysfunction at the synaptic and neuronal circuit levels may underlie some episodic neurologic entities.
Collapse
Affiliation(s)
- Jonathan F Russell
- Department of Neurology, Howard Hughes Medical Institute, School of Medicine, University of California-San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
34
|
Giannandrea M, Guarnieri FC, Gehring NH, Monzani E, Benfenati F, Kulozik AE, Valtorta F. Nonsense-mediated mRNA decay and loss-of-function of the protein underlie the X-linked epilepsy associated with the W356× mutation in synapsin I. PLoS One 2013; 8:e67724. [PMID: 23818987 PMCID: PMC3688603 DOI: 10.1371/journal.pone.0067724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022] Open
Abstract
Synapsins are a family of neuronal phosphoproteins associated with the cytosolic surface of synaptic vesicles. Experimental evidence suggests a role for synapsins in synaptic vesicle clustering and recycling at the presynaptic terminal, as well as in neuronal development and synaptogenesis. Synapsin knock-out (Syn1(-/-) ) mice display an epileptic phenotype and mutations in the SYN1 gene have been identified in individuals affected by epilepsy and/or autism spectrum disorder. We investigated the impact of the c.1067G>A nonsense transition, the first mutation described in a family affected by X-linked syndromic epilepsy, on the expression and functional properties of the synapsin I protein. We found that the presence of a premature termination codon in the human SYN1 transcript renders it susceptible to nonsense-mediated mRNA decay (NMD). Given that the NMD efficiency is highly variable among individuals and cell types, we investigated also the effects of expression of the mutant protein and found that it is expressed at lower levels compared to wild-type synapsin I, forms perinuclear aggregates and is unable to reach presynaptic terminals in mature hippocampal neurons grown in culture. Taken together, these data indicate that in patients carrying the W356× mutation the function of synapsin I is markedly impaired, due to both the strongly decreased translation and the altered function of the NMD-escaped protein, and support the value of Syn1(-/-) mice as an experimental model mimicking the human pathology.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cells, Cultured
- Codon, Nonsense
- Epilepsy/genetics
- Epilepsy/metabolism
- Female
- Gene Expression
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- HeLa Cells
- Hippocampus/cytology
- Hippocampus/metabolism
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence
- Microtubule-Associated Proteins/metabolism
- Neurons/metabolism
- Nonsense Mediated mRNA Decay
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Synapsins/genetics
- Synapsins/metabolism
Collapse
Affiliation(s)
- Maila Giannandrea
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Fabrizia C. Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | - Elena Monzani
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andreas E. Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Medical Center and Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| |
Collapse
|
35
|
Bakir-Gungor B, Baykan B, Ugur İseri S, Tuncer FN, Sezerman OU. Identifying SNP targeted pathways in partial epilepsies with genome-wide association study data. Epilepsy Res 2013; 105:92-102. [PMID: 23498093 DOI: 10.1016/j.eplepsyres.2013.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/15/2013] [Accepted: 02/13/2013] [Indexed: 12/18/2022]
Abstract
PURPOSE In a recent genome-wide association study for partial epilepsies in the European population, a common genetic variation has been reported to affect partial epilepsy only modestly. However, in complex diseases such as partial epilepsy, multiple factors (e.g. single nucleotide polymorphisms, microRNAs, metabolic and epigenetic factors) may target different sets of genes in the same pathway, affecting its function and thus causing the disease development. In this regard, we hypothesize that the pathways are critical for elucidating the mechanisms underlying partial epilepsy. METHODS Previously we had developed a novel methodology with the aim of identifying the disease-related pathways. We had combined evidence of genetic association with current knowledge of (i) biochemical pathways, (ii) protein-protein interaction networks, and (iii) the functional information of selected single nucleotide polymorphisms. In our present study, we apply this methodology to a data set on partial epilepsy, including 3445 cases and 6935 controls of European ancestry. RESULTS We have identified 30 overrepresented pathways with corrected p-values smaller than 10(-12). These pathways include complement and coagulation cascades, cell cycle, focal adhesion, extra cellular matrix-receptor interaction, JAK-STAT signaling pathway, MAPK signaling pathway, proteasome, ribosome, calcium signaling and regulation of actin cytoskeleton pathways. Most of these pathways have growing scientific support in the literature as being associated with partial epilepsy. We also demonstrate that different factors affect distinct parts of the pathways, as shown here on complement and coagulation cascades pathway with a comparison of gene expression vs. genome-wide association study. CONCLUSIONS Traditional studies on genome-wide association have not revealed strong associations in epilepsies, since these single nucleotide polymorphisms are not shared by most of the patients. Our results suggest that it is more effective to incorporate the functional effect of a single nucleotide polymorphism on the gene product, protein-protein interaction networks and functional enrichment tools into genome-wide association studies. These can then be used to determine leading molecular pathways, which cannot be detected through traditional analyses. We hope that this type of analysis brings the research community one step closer to unraveling the complex genetic structure of epilepsies.
Collapse
Affiliation(s)
- B Bakir-Gungor
- Department of Genetics and Bioinformatics, Faculty of Arts and Sciences, Bahcesehir University, Ciragan Cad. Osmanpasa Mektebi Sok., No.: 4, 34353, Besiktas, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
36
|
Sun W, Wagnon JL, Mahaffey CL, Briese M, Ule J, Frankel WN. Aberrant sodium channel activity in the complex seizure disorder of Celf4 mutant mice. J Physiol 2012; 591:241-55. [PMID: 23090952 DOI: 10.1113/jphysiol.2012.240168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mice deficient for CELF4, a neuronal RNA-binding protein, have a complex seizure disorder that includes both convulsive and non-convulsive seizures, and is dependent upon Celf4 gene dosage and mouse strain background. It was previously shown that Celf4 is expressed predominantly in excitatory neurons, and that deficiency results in abnormal excitatory synaptic neurotransmission. To examine the physiological and molecular basis of this, we studied Celf4-deficient neurons in brain slices. Assessment of intrinsic properties of layer V cortical pyramidal neurons showed that neurons from mutant heterozygotes and homozygotes have a lower action potential (AP) initiation threshold and a larger AP gain when compared with wild-type neurons. Celf4 mutant neurons also demonstrate an increase in persistent sodium current (I(NaP)) and a hyperpolarizing shift in the voltage dependence of activation. As part of a related study, we find that CELF4 directly binds Scn8a mRNA, encoding sodium channel Na(v)1.6, the primary instigator of AP at the axon initial segment (AIS) and the main carrier of I(NaP). In the present study we find that CELF4 deficiency results in a dramatic elevation in the expression of Na(v)1.6 protein at the AIS in both null and heterozygous neurons. Together these results suggest that activation of Na(v)1.6 plays a crucial role in seizure generation in this complex model of neurological disease.
Collapse
Affiliation(s)
- Wenzhi Sun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500, USA
| | | | | | | | | | | |
Collapse
|
37
|
Garofalo S, Cornacchione M, Di Costanzo A. From genetics to genomics of epilepsy. Neurol Res Int 2012; 2012:876234. [PMID: 22645681 PMCID: PMC3356913 DOI: 10.1155/2012/876234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/17/2012] [Indexed: 12/21/2022] Open
Abstract
The introduction of DNA microarrays and DNA sequencing technologies in medical genetics and diagnostics has been a challenge that has significantly transformed medical practice and patient management. Because of the great advancements in molecular genetics and the development of simple laboratory technology to identify the mutations in the causative genes, also the diagnostic approach to epilepsy has significantly changed. However, the clinical use of molecular cytogenetics and high-throughput DNA sequencing technologies, which are able to test an entire genome for genetic variants that are associated with the disease, is preparing a further revolution in the near future. Molecular Karyotype and Next-Generation Sequencing have the potential to identify causative genes or loci also in sporadic or non-familial epilepsy cases and may well represent the transition from a genetic to a genomic approach to epilepsy.
Collapse
Affiliation(s)
- Silvio Garofalo
- Dipartimento di Medicina e Scienze per la Salute (Me.S.pe.S.), Università del Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Marisa Cornacchione
- Dipartimento di Medicina e Scienze per la Salute (Me.S.pe.S.), Università del Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Alfonso Di Costanzo
- Dipartimento di Medicina e Scienze per la Salute (Me.S.pe.S.), Università del Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| |
Collapse
|
38
|
Filloux FM, Carey JC, Krantz ID, Ekstrand JJ, Candee MS. Occurrence and clinical features of epileptic and non-epileptic paroxysmal events in five children with Pallister-Killian syndrome. Eur J Med Genet 2012; 55:367-73. [PMID: 22349688 DOI: 10.1016/j.ejmg.2012.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
Abstract
Pallister-Killian syndrome (PKS) is a rare, sporadic genetic disorder caused by tetrasomy 12p mosaicism associated with a supernumerary isochromosome. Craniofacial dysmorphism, learning impairment and seizures are considered characteristic. However, little is known of the seizure and epilepsy patterns seen in PKS. To better define the occurrence and nature of epileptic and non-epileptic paroxysmal events in PKS, we describe our experience with 5 patients and compare their features with data from a larger cohort of PKS patients ascertained via a web-based parental questionnaire. Three of the 5 patients have had definite epileptic seizures, and one other has had paroxysmal events as yet not clarified. Four of the 5 have also had either non-epileptic paroxysmal events or episodes of uncertain nature. In those with epilepsy, all have had some period of relatively refractory seizures, all have required more than one antiepileptic drug, but none experienced status epilepticus. Only one of the patients with epilepsy (the oldest) has gone into remission. In two of the four with non-epileptic events, video-electroencephalographic monitoring has been valuable in clarifying the nature of the events. EEG characteristics include a slow dominant frequency as well as generalized and focal epileptiform features. Brain MRI findings can be normal but are variable. These specific findings correspond well to information reported by parents in a larger cohort of 51 individuals with PKS. Better understanding of the nature of epileptic and non-epileptic events in PKS will result from a more detailed analysis of objective data obtained from this larger cohort, and from deeper understanding of the molecular impact of 12p tetrasomy in selected cell lines.
Collapse
Affiliation(s)
- Francis M Filloux
- Division of Pediatric Neurology, University of Utah School of Medicine and Primary Children's Medical Center, 100 N. Mario Capecchi Drive, Salt Lake City, UT 84113, USA.
| | | | | | | | | |
Collapse
|