1
|
Wang C, Zhang Q, Li Q, Wang Y, Chen X. From infection to tumor: genetic evidence of viral antibody immune response' role in urologic cancer development. Discov Oncol 2025; 16:947. [PMID: 40442531 PMCID: PMC12122962 DOI: 10.1007/s12672-025-02768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Urologic tumors are among the most common malignancies worldwide, and the association between chronic infections and the risk of developing these tumors has garnered significant attention. However, traditional observational studies are prone to confounding factors, making it challenging to establish a clear causal relationship. METHOD This study employs a two-sample bidirectional Mendelian randomization analysis, utilizing genetic data on antibody levels and urologic tumors obtained from GWAS databases. The inverse variance weighted (IVW) method was used to estimate causal relationships, while MR-Egger and MR-PRESSO methods were applied for sensitivity analyses to assess horizontal pleiotropy and heterogeneity. RESULT The results showed that antibody levels associated with various viral infections were significantly correlated with the risk of developing urologic tumors. For example, antibodies related to cytomegalovirus IgG and Epstein-Barr virus (EBV) were found to have complex associations with the risk of prostate cancer, bladder cancer, and testicular cancer. Some antibodies, such as those related to Varicella zoster virus, were associated with a reduced risk of clear cell renal carcinoma. Additionally, sensitivity analyses suggested the potential presence of horizontal pleiotropy in bladder and testicular cancers. CONCLUSION Through Mendelian randomization analysis, we revealed a potential causal relationship between antibody immune responses and urologic tumors. These findings provide new evidence for the role of chronic infections in the pathogenesis of urologic tumors, suggesting that prevention and treatment strategies targeting related pathogens, such as vaccination and antiviral therapies, could offer new avenues for the prevention and management of urologic cancers.
Collapse
Affiliation(s)
- Chen Wang
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qifa Zhang
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Qiang Li
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Yelong Wang
- Department of Urology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Xin Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
2
|
Alemu BK, Tommasi S, Hulin JA, Meyers J, Mangoni AA. Current knowledge on the mechanisms underpinning vasculogenic mimicry in triple negative breast cancer and the emerging role of nitric oxide. Biomed Pharmacother 2025; 186:118013. [PMID: 40147105 DOI: 10.1016/j.biopha.2025.118013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
Vasculogenic mimicry (VM) is the process by which cancer cells form vascular-like channels to support their growth and dissemination. These channels lack endothelial cells and are instead lined by the tumour cells themselves. VM was first reported in uveal melanomas but has since been associated with other aggressive solid tumours, such as triple-negative breast cancer (TNBC). In TNBC patients, VM is associated with tumour aggressiveness, drug resistance, metastatic burden, and poor prognosis. The lack of effective targeted therapies for TNBC has stimulated research on the mechanisms underpinning VM in order to identify novel druggable targets. In recent years, studies have highlighted the role of nitric oxide (NO), the NO synthesis inhibitor, asymmetric dimethylarginine (ADMA), and dimethylarginine dimethylaminohydrolase 1 (DDAH1), the key enzyme responsible for ADMA metabolism, in regulating VM. Specifically, NO inhibition through downregulation of DDAH1 and consequent accumulation of ADMA appears to be a promising strategy to suppress VM in TNBC. This review discusses the current knowledge regarding the molecular pathways underpinning VM in TNBC, anti-VM therapies under investigation, and the emerging role of NO regulation in VM.
Collapse
Affiliation(s)
- Belete Kassa Alemu
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Injibara University, College of Medicine and Health Sciences, Department of Pharmacy, Injibara, Ethiopia
| | - Sara Tommasi
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| | - Julie-Ann Hulin
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Jai Meyers
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Arduino A Mangoni
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
| |
Collapse
|
3
|
Wang K, Zhang X, Li A, Qiao X, Xu Y. The mechanism of action and therapeutic potential of tumor-associated macrophages in tumor immune evasion. Front Immunol 2025; 16:1545928. [PMID: 40330472 PMCID: PMC12052954 DOI: 10.3389/fimmu.2025.1545928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Tumor-associated macrophages (TAMs) play a multifaceted role in tumor progression. As specialized immune cells, macrophages are capable of phagocytosis and digesting foreign substances, as well as removing harmful substances including cellular debris and tumor cells. Under specific pathological conditions, circulating monocytes can be recruited into the tumor microenvironment and differentiate into TAMs. Macrophages are generally polarized into two distinct subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). TAMs constitute a significant proportion of the mononuclear leukocyte population in solid tumors, exhibiting a complex and dualistic relationship with tumor cells. Substantial evidence indicates that TAMs can interact with tumor cells, facilitating their immune evasion while promoting invasion and metastasis. This review focuses on the mechanism and regulation of macrophages in the immune response to tumor cells, as well as various macrophage-based tumor-targeted therapeutic strategies. It will provide a reference for research on macrophage-centered therapy strategies and their application in clinical practice.
Collapse
Affiliation(s)
- Kehua Wang
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xu Zhang
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Aiqin Li
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xia Qiao
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yanan Xu
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
4
|
Behera B, Meher RK, Mir SA, Nayak B, Satapathy KB. Phytochemical profiling, in vitro analysis for anti-inflammatory, immunomodulatory activities, structural elucidation and in silico evaluation of potential selective COX-2 and TNF-α inhibitor from Hydrilla verticillata (L.f.) Royle. J Biomol Struct Dyn 2025; 43:859-873. [PMID: 38018914 DOI: 10.1080/07391102.2023.2283871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Abstract
Hydrilla verticillata (L.f.) Royle is a perennial aquatic plant, which exhibits nutritional as well as therapeutic properties. The present study has been carried out to evaluate anti-inflammatory and immunomodulatory activities along with in silico evaluation of potential selective COX-2 and TNF-α inhibitors from methanolic extract of H. verticillata (L.f.) Royle. The potential therapeutic compounds have been identified by high-resolution GC-MS analysis. Its capacity to inhibit inflammatory responses using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells has been explored. The anti-inflammatory properties of the plant extract were investigated by inhibiting inducible nitric oxide (NO) synthase and reduced NO generation driven by LPS on stimulated RAW 264.7 macrophage cells. Further investigation for the underlying molecular mechanism of the anti-inflammatory activity of plant extract has been carried out by molecular docking and molecular dynamics simulation approaches with COX-2 and TNF-α inhibitors ability against the most potent phytocompound phytol from the plant extract. To evaluate whether the extract causes any toxicity, the cytotoxicity test has been carried out with the Human embryonic kidney cell line (Hek-293), Mouse fibroblast (L929), human mesenchyme stem cells (hMSCs) and human breast epithelial cell line (MCF-10a). Ultimately, our findings suggest that the plant extract have great potential to reduce inflammation without causing any toxicity to normal cell.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhagyeswari Behera
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Rajesh Kumar Meher
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Odisha, India
| | - Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Odisha, India
| | - Binata Nayak
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Odisha, India
| | - Kunja Bihari Satapathy
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
5
|
Mezhubeinuo, Mohanta R, Bordoloi H, Verma AK, Bez G. L-proline H 2SO 4 catalyzed synthesis of novel coumarin-based spiroindolino-3,4-dihydropyrimidin-2(1H)-ones: in vitro cytotoxic assay and molecular docking study. Mol Divers 2025; 29:607-622. [PMID: 39030285 DOI: 10.1007/s11030-024-10878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 07/21/2024]
Abstract
Development of environmentally benign catalyst systems, especially those derived from readily available nature's pool, in multicomponent synthesis, consolidates multiple facets of green chemistry. Here, an L-proline derived green acid catalyst in the form of L-proline⋅H2SO4 was developed and employed for multicomponent synthesis of coumarin-based spiroindolino-3,4-dihydropyrimidin-2(1H)-ones from the reaction of 4-hydroxycoumarin, isatin and urea/thiourea. Preliminary cytotoxicity studies showed that a couple of compounds (M5 and M6) have good cytotoxicity (40-50%) against in Dalton's Lymphoma (DL) cells while demonstrating minimal cytotoxicity (10-12%) for normal non-cancerous cell lines. Molecular docking simulations for the least and most cytotoxic compounds, M3 and M6 respectively, against nineteen tumor target proteins were carried out, and seven of them were identified to test against all the sixteen compounds. Based on the estimated docking score and inhibition constants (Ki), the interaction of the compounds with the tumor target protein, beta-hexosaminidase B (PDB ID: 1NOW) matched closely with in vitro cytotoxicity data.
Collapse
Affiliation(s)
- Mezhubeinuo
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Rahul Mohanta
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Hemanta Bordoloi
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Akalesh Kumar Verma
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, India.
| | - Ghanashyam Bez
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
6
|
Özdemiral C, Yaz I, Esenboga S, Nabiyeva Cevik N, Bildik HN, Kilic M, Tezcan I, Cagdas D. Human FCHO1 deficiency: review of the literature and additional two cases. Clin Exp Immunol 2025; 219:uxae097. [PMID: 39498505 PMCID: PMC11773606 DOI: 10.1093/cei/uxae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 01/29/2025] Open
Abstract
F-BAR domain only protein 1 (FCHO1) contributes as a critical component to an essential cellular process, clathrin-mediated endocytosis. Clathrin-mediated endocytosis involves cellular membrane invagination followed by cargo protein recruitment and adaptor protein assembly to form endocytic vesicles and maintains several cellular functions, such as signaling, differentiation, nutrition, absorption, and secretion. We aimed to determine the clinical/immunological findings of FCHO1 deficiency to generate an appropriate medical approach. We present clinical/immunological/genetic findings of two FCHO1 deficiency patients together with recently reported 17 patients. We found two different variants in the patients, one previously defined and one novel homozygous mutation [c.306C > A (p.Tyr102Ter)]. Recurrent sinopulmonary infections occurred in all patients, with viral (63.1%) and fungal (52.6%) infections frequently reported. Lymphopenia and CD4 + T cell lymphopenia are present in 77.7% (14/18) and 100% of patients, respectively. CD8+ T cell number is low in half. Hypogammaglobulinemia and low IgM are present in 83.3% (15/18) and 61.1% (11/18) of patients, respectively. Neurological disorders (Guillian-Barre Syndrome, Moya-Moya disease, encephalitis, and cranial infarction) are common [n = 6 (31.5%)]. Malignancy is present in four (21%) patients, three suffered from diffuse large B cell lymphoma, and one developed Hodgkin lymphoma. Additional clinical and laboratory results from more patients helped to define the characteristics of FCHO1 deficiency. The early application of molecular genetic analysis in CID patients is crucial. Since all transplanted patients were alive, allogeneic hematopoietic stem cell transplantation emerged as a potential curative therapy.
Collapse
Affiliation(s)
- Cansu Özdemiral
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Ismail Yaz
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Saliha Esenboga
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Nadira Nabiyeva Cevik
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Hacer Neslihan Bildik
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Mehmet Kilic
- Division of Allergy and Immunology, Department of Pediatrics, Fırat University Faculty of Medicine, Elazığ, Türkiye
| | - Ilhan Tezcan
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| | - Deniz Cagdas
- Division of Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Türkiye
- İhsan Doğramacı Children’s Hospital, Hacettepe University, Ankara, Türkiye
- Division of Immunology, Department of Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
7
|
Khalid T, Malik A, Rasool N, Kanwal A, Nawaz H, Almas I. Cracking the code: the clinical and molecular impact of aminopyridines; a review (2019-2024). RSC Adv 2025; 15:688-711. [PMID: 39781020 PMCID: PMC11708541 DOI: 10.1039/d4ra07438f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Aminopyridines belong to a class of compounds that are monoamino and diamino derivatives of pyridine. They work primarily by blocking voltage-gated potassium channels in a dose-dependent manner. Essential heterocycles used extensively in synthetic, natural products, and medicinal chemistry are aminopyridine and its derivatives. A vast array of biological and pharmacological effects can result from the interaction of aminopyridine rings with different enzymes and receptors, due to their unique structural properties. Aminopyridine research is continually growing, and there are now greater expectations for how it may aid in the treatment of numerous disorders. This review article will serve as an innovative platform for researchers investigating aminopyridine compounds, intending thoroughly to examine both traditional and novel synthesis strategies in addition to investigating the various biological characteristics displayed by these adaptable heterocycles. We attempt to provide valuable insights that will contribute to further progress in the synthesis and utilization of aminopyridines in various fields.
Collapse
Affiliation(s)
- Tahira Khalid
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Ayesha Malik
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Hamna Nawaz
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Iffat Almas
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| |
Collapse
|
8
|
Fomichova O, Oliveira PF, Bernardino RL. Exploring the interplay between inflammation and male fertility. FEBS J 2024. [PMID: 39702986 DOI: 10.1111/febs.17366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Male fertility results from a complex interplay of physiological, environmental, and genetic factors. It is conditioned by the properly developed anatomy of the reproductive system, hormonal regulation balance, and the interplay between different cell populations that sustain an appropriate and functional environment in the testes. Unfortunately, the mechanisms sustaining male fertility are not flawless and their perturbation can lead to infertility. Inflammation is one of the factors that contribute to male infertility. In the testes, it can be brought on by varicocele, obesity, gonadal infections, leukocytospermia, physical obstructions or traumas, and consumption of toxic substances. As a result of prolonged or untreated inflammation, the testicular resident cells that sustain spermatogenesis can suffer DNA damage, lipid and protein oxidation, and mitochondrial dysfunction consequently leading to loss of function in affected Sertoli cells (SCs) and Leydig cells (LCs), and the formation of morphologically abnormal dysfunctional sperm cells that lay in the basis of male infertility and subfertility. This is due mainly to the production and secretion of pro-inflammatory mediators, including cytokines, chemokines, and reactive oxygen species (ROS) by local immune cells (macrophages, lymphocytes T, mast cells) and tissue-specific cells [SCs, LCs, peritubular myoid cells (PMCs) and germ cells (GCs)]. Depending on the location, duration, and intensity of inflammation, these mediators can exert their toxic effect on different elements of the testes. In this review, we discuss the most prevalent inflammatory factors that negatively affect male fertility and describe the different ways inflammation can impair male reproductive function.
Collapse
Affiliation(s)
- Oleksandra Fomichova
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Portugal
| | - Raquel L Bernardino
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Portugal
| |
Collapse
|
9
|
Kassab AE, Gedawy EM. Repurposing of Indomethacin and Naproxen as anticancer agents: progress from 2017 to present. RSC Adv 2024; 14:40031-40057. [PMID: 39717807 PMCID: PMC11664213 DOI: 10.1039/d4ra07581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024] Open
Abstract
Inflammation is strongly linked to cancer and is essential for the growth and development of tumors. Targeting inflammation and the mediators involved in the inflammatory process could therefore provide a suitable method for cancer prevention and therapy. Numerous studies have shown that inflammation can predispose tumors. Non-steroidal anti-inflammatory drugs (NSAIDs) can affect the tumor microenvironment through increasing apoptosis and chemo-sensitivity while decreasing cell migration. Since the development of novel drugs requires a significant amount of money and time and poses a significant challenge for drug discovery, there has been a recent increase in interest in drug repositioning or repurposing. The growing body of research suggests that drug repurposing is essential for the quicker and less expensive development of anticancer therapies. In order to set the course for potential future repositioning of NSAIDs for clinical deployment in the treatment of cancer, the antiproliferative activity of derivatives of Indomethacin and Naproxen as well as their mechanism of action and structural activity relationships (SARs) published in the time frame from 2017 to 2024 are summarized in this review.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Kasr El-Aini Street, P. O. Box 11562 Cairo Egypt +2023635140 +2023639307
| | - Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Kasr El-Aini Street, P. O. Box 11562 Cairo Egypt +2023635140 +2023639307
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC) Badr City, P. O. Box 11829 Cairo Egypt
| |
Collapse
|
10
|
Liao AQ, Wen J, Wei JC, Xu BB, Jin N, Lin HY, Qin XY. Syntheses, crystal structures of copper (II)-based complexes of sulfonamide derivatives and their anticancer effects through the synergistic effect of anti-angiogenesis, anti-inflammation, pro-apoptosis and cuproptosis. Eur J Med Chem 2024; 280:116954. [PMID: 39406115 DOI: 10.1016/j.ejmech.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/25/2024]
Abstract
Three novel copper(II)-based complexes Cu-1, Cu-2, and Cu-3 containing sulfamethoxazole or sulfamethazine ligand were obtained, and their single structures were characterized. Both Cu-1 and Cu-3 show a broad spectrum of cytotoxicity than Cu-2, and Cu-1 is more cytotoxic than Cu-3. What's interesting is that Cu-1 can exhibit obvious inhibitory effect on the growth of human triple-negative breast cancer in vivo and vitro through anti-proliferative, anti-angiogenic, anti-inflammatory, pro-apoptotic and cuproptotic synergistic effects. Though Cu-3 shows no significant cytotoxicity against MDA-MB-231 cells, it can significantly inhibit the growth of SKOV3 cells in vitro by down-regulating the expression of some key proteins in the VEGF/VEGFR2 signaling pathway and the expression of some pro-inflammatory cytokines, and by disrupting the balance of intracellular reactive oxygen species levels.
Collapse
Affiliation(s)
- Ai-Qiu Liao
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Juan Wen
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guangxi, Guilin, 541001, China
| | - Jing-Chen Wei
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Bing-Bing Xu
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Nan Jin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Hong-Yu Lin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Xiu-Ying Qin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China.
| |
Collapse
|
11
|
Batiste M, Joy B, Yee CK, Cho L, Christensen A, Abed I, Nguyen K, Yanumula A, Chang H, Cho ED, Wang W, Chou E, Chang EH, Shyu YL, Abram A, Alcaide J, Zhou J, Gillespie B, Senderovich M, Cusick GA, Le AV, Hoang F, Shi Y, Mohamed E, Cusick JK. RELT Is Upregulated in Breast Cancer and Induces Death in Breast Cancer Cells. Biomedicines 2024; 12:2667. [PMID: 39767574 PMCID: PMC11727564 DOI: 10.3390/biomedicines12122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Receptor Expressed in Lymphoid Tissues (RELT) is a TNFRSF member that has two paralogs, RELL1 and RELL2; the three proteins are collectively referred to as RELT family members (RELTfms). METHODS We sought to evaluate RELT expression in cancerous cells by using real-time PCR, western blotting, flow cytometry, and immunohistochemistry (IHC). The mechanism of RELT-induced cell death was assessed by western blotting, flow cytometry, luciferase assays, and morphology staining. RELT localization was detected through immunofluorescence and western blotting, and co-immunoprecipitation was used to test whether a mutated RELT interacts with the OXSR1 kinase. RESULTS RELT and RELL1 protein expression was significantly elevated in cell lines representing breast and lung cancer, whereas RELL2 protein expression was relatively consistent across different cell lines. The surface expression of RELT was highest in monocytes. IHC staining revealed increased RELT expression in malignant breast cancer biopsies compared to patient-matched benign tissue. RELTfm overexpression induced death in MDA-MB-231 (231) breast cancer cells, accompanied by increased phosphatidylserine externalization and Caspase-3/7 activation. The co-transfection of plasmids predicted to block the phosphorylation of RELT by the OXSR1 kinase did not abrogate RELT-induced apoptosis, indicating that the activation of p38 by RELT through the OXSR1 kinase is not required for RELT-induced cell death. Interestingly, nuclear localization of RELT was detected in 231 and HEK-293 cells. CONCLUSIONS These results demonstrate that RELT induces death in breast cancer cells through an apoptotic pathway that does not require OXSR1 phosphorylation and that RELT possesses the ability to translocate to the nucleus, a novel finding that warrants further investigation.
Collapse
Affiliation(s)
- Maryann Batiste
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Bethany Joy
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Cara K. Yee
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Luke Cho
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Ashley Christensen
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Ihab Abed
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Kailey Nguyen
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Anusri Yanumula
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Hannah Chang
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Evan D. Cho
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Wenjia Wang
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Emily Chou
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Esther H. Chang
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Yennie L. Shyu
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Alyssa Abram
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Jessa Alcaide
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - James Zhou
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Brittany Gillespie
- Masters of Pharmaceutical Sciences Department, College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
| | - Michelle Senderovich
- Masters of Pharmaceutical Sciences Department, College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
| | - Gianne Almeida Cusick
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Ai-Vy Le
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Frank Hoang
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| | - Yihui Shi
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Eslam Mohamed
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
- Masters of Pharmaceutical Sciences Department, College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
| | - John K. Cusick
- Department of Basic Science, College of Medicine, California Northstate University, Elk Grove, CA 95757, USA (B.J.); (A.C.); (H.C.); (E.D.C.); (E.H.C.); (Y.L.S.); (A.-V.L.); (Y.S.); (E.M.)
| |
Collapse
|
12
|
Fan Y, Meng Y, Hu X, Liu J, Qin X. Uncovering novel mechanisms of chitinase-3-like protein 1 in driving inflammation-associated cancers. Cancer Cell Int 2024; 24:268. [PMID: 39068486 PMCID: PMC11282867 DOI: 10.1186/s12935-024-03425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that is induced and regulated by multiple factors during inflammation in enteritis, pneumonia, asthma, arthritis, and other diseases. It is associated with the deterioration of the inflammatory environment in tissues with chronic inflammation caused by microbial infection or autoimmune diseases. The expression of CHI3L1 expression is upregulated in several malignant tumors, underscoring the crucial role of chronic inflammation in the initiation and progression of cancer. While the precise mechanism connecting inflammation and cancer is unclear, the involvement of CHI3L1 is involved in chronic inflammation, suggesting its role as a contributing factor to in the link between inflammation and cancer. CHI3L1 can aggravate DNA oxidative damage, induce the cancerous phenotype, promote the development of a tumor inflammatory environment and angiogenesis, inhibit immune cells, and promote cancer cell growth, invasion, and migration. Furthermore, it participates in the initiation of cancer progression and metastasis by binding with transmembrane receptors to mediate intracellular signal transduction. Based on the current research on CHI3L1, we explore introduce the receptors that interact with CHI3L1 along with the signaling pathways that may be triggered during chronic inflammation to enhance tumorigenesis and progression. In the last section of the article, we provide a brief overview of anti-inflammatory therapies that target CHI3L1.
Collapse
Affiliation(s)
- Yan Fan
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Yuan Meng
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xingwei Hu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China.
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China.
| |
Collapse
|
13
|
Boersma B, Poinot H, Pommier A. Stimulating the Antitumor Immune Response Using Immunocytokines: A Preclinical and Clinical Overview. Pharmaceutics 2024; 16:974. [PMID: 39204319 PMCID: PMC11357675 DOI: 10.3390/pharmaceutics16080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cytokines are immune modulators which can enhance the immune response and have been proven to be an effective class of immunotherapy. Nevertheless, the clinical use of cytokines in cancer treatment has faced several challenges associated with poor pharmacokinetic properties and the occurrence of adverse effects. Immunocytokines (ICKs) have emerged as a promising approach to overcome the pharmacological limitations observed with cytokines. ICKs are fusion proteins designed to deliver cytokines in the tumor microenvironment by taking advantage of the stability and specificity of immunoglobulin-based scaffolds. Several technological approaches have been developed. This review focuses on ICKs designed with the most impactful cytokines in the cancer field: IL-2, TNFα, IL-10, IL-12, IL-15, IL-21, IFNγ, GM-CSF, and IFNα. An overview of the pharmacological effects of the naked cytokines and ICKs tested for cancer therapy is detailed. A particular emphasis is given on the immunomodulatory effects of ICKs associated with their technological design. In conclusion, this review highlights active ways of development of ICKs. Their already promising results observed in clinical trials are likely to be improved with the advances in targeting technologies such as cytokine/linker engineering and the design of multispecific antibodies with tumor targeting and immunostimulatory functional properties.
Collapse
Affiliation(s)
- Bart Boersma
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland;
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Hélène Poinot
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Translational Research Centre in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
| | - Aurélien Pommier
- UMR1240 Imagerie Moléculaire et Stratégies Théranostiques INSERM, Université Clermont Auvergne, BP 184, F-63005 Clermont-Ferrand, France
| |
Collapse
|
14
|
Chida K, Kanazawa H, Kinoshita H, Roy AM, Hakamada K, Takabe K. The role of lidocaine in cancer progression and patient survival. Pharmacol Ther 2024; 259:108654. [PMID: 38701900 PMCID: PMC11162934 DOI: 10.1016/j.pharmthera.2024.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Since its development in 1943, lidocaine has been one of the most commonly used local anesthesia agents for surgical procedures. Lidocaine alters neuronal signal transmission by prolonging the inactivation of fast voltage-gated sodium channels in the cell membrane of neurons, which are responsible for action potential propagation. Recently, it has attracted attention due to emerging evidence suggesting its potential antitumor properties, particularly in the in vitro setting. Further, local administration of lidocaine around the tumor immediately prior to surgical removal has been shown to improve overall survival in breast cancer patients. However, the exact mechanisms driving these antitumor effects remain largely unclear. In this article, we will review the existing literature on the mechanism of lidocaine as a local anesthetic, its effects on the cancer cells and the tumor microenvironment, involved pathways, and cancer progression. Additionally, we will explore recent reports highlighting its impact on clinical outcomes in cancer patients. Taken together, there remains significant ambiguity surrounding lidocaine's functions and roles in cancer biology, particularly in perioperative setting.
Collapse
Affiliation(s)
- Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Hirofumi Kanazawa
- The University of Texas Health Science Center at Tyler School of Medicine, TX, USA.
| | - Hirotaka Kinoshita
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Arya Mariam Roy
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan; Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14263, USA; Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
15
|
Yang M, Zhang J, Wei D, Yu T, Chen Z, Liu X, Zhu H. Inflammatory markers predict survival in patients with postoperative urothelial carcinoma receiving tislelizumab (PD-1 inhibitor) adjuvant therapy. BMC Cancer 2024; 24:196. [PMID: 38347460 PMCID: PMC10860305 DOI: 10.1186/s12885-024-11969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND In the management of urothelial carcinoma, patient selection for immunotherapy, particularly with immune checkpoint inhibitors such as PD-1 (programmed cell death protein 1), is important for treatment efficacy. Inflammatory markers are useful for predicting treatment outcomes and immune-related adverse events (irAEs). This study aims to retrospectively explore the associations between inflammatory markers and outcomes in patients with postoperative urothelial carcinoma undergoing tislelizumab (PD-1 inhibitor) adjuvant therapy. METHODS A retrospective analysis was conducted on 133 patients with postoperative urothelial carcinoma who received tislelizumab adjuvant therapy at the Affiliated Hospital of Xuzhou Medical University from April 2020 to August 2023. The prognostic effects of the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR) on disease-free survival (DFS) and overall survival (OS) were assessed using Cox regression models. The correlation between inflammatory markers and the onset of irAEs was analyzed using logistic regression models. RESULTS NLR < 5 and MLR < 0.31 were significantly associated with better outcomes compared to NLR >5 and MLR >0.31, respectively. Multivariate analysis revealed that an NLR < 5 was independently associated with better DFS and OS. However, there was no significant effect on the DFS and OS between PLR < 135 and PLR >135. Patients who experienced irAEs had longer DFS and OS. Multivariate analysis demonstrated that irAEs were an independent prognostic risk factor for DFS and OS. There was no significant difference in the occurrence of irAEs among different NLR, PLR, and MLR groups. CONCLUSION In patients with postoperative urothelial carcinoma receiving tislelizumab adjuvant therapy, the assessment of NLR and MLR before treatment may serve as valuable predictive markers of clinical outcome.
Collapse
Affiliation(s)
- Meng Yang
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jingwen Zhang
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dongqun Wei
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tianyi Yu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zeyu Chen
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xin Liu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Haitao Zhu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
16
|
Yu C, Yin X, Li A, Li R, Yu H, Xing R, Liu S, Li P. Toxin metalloproteinases exert a dominant influence on pro-inflammatory response and anti-inflammatory regulation in jellyfish sting dermatitis. J Proteomics 2024; 292:105048. [PMID: 37981009 DOI: 10.1016/j.jprot.2023.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Toxin metalloproteinases are the primary components responsible for various toxicities in jellyfish venom, and there is still no effective specific therapy for jellyfish stings. The comprehension of the pathogenic mechanisms underlying toxin metalloproteinases necessitates further refinement. In this study, we conducted a differential analysis of a dermatitis mouse model induced by jellyfish Nemopilema nomurai venom (NnNV) samples with varying levels of metalloproteinase activity. Through skin tissue proteomics and serum metabolomics, the predominant influence of toxin metalloproteinase activity on inflammatory response was revealed, and the signal pathway involved in its regulation was identified. In skin tissues, many membrane proteins were significantly down-regulated, which might cause tissue damage. The expression of pro-inflammatory factors was mainly regulated by PI3K-Akt signaling pathway. In serum, many fatty acid metabolites were significantly down-regulated, which might be the anti-inflammation feedback regulated by NF-κB p65 signaling pathway. These results reveal the dermatitis mechanism of toxin metalloproteinases and provide new therapeutic targets for further studies. SIGNIFICANCE: Omics is an important method to analyze the pathological mechanism and discover the key markers, which can reveal the pathological characteristics of jellyfish stings. Our research first analyzed the impact of toxin metalloproteinases on jellyfish sting dermatitis by skin proteomics and serum metabolomics. The present results suggest that inhibition of toxin metalloproteinases may be an effective treatment strategy, and provide new references for further jellyfish sting studies.
Collapse
Affiliation(s)
- Chunlin Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiujing Yin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aoyu Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
17
|
Files R, Okwu V, Topa N, Sousa M, Silva F, Rodrigues P, Delgado L, Prada J, Pires I. Assessment of Tumor-Associated Tissue Eosinophilia (TATE) and Tumor-Associated Macrophages (TAMs) in Canine Transitional Cell Carcinoma of the Urinary Bladder. Animals (Basel) 2024; 14:519. [PMID: 38338162 PMCID: PMC10854732 DOI: 10.3390/ani14030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Transitional cell carcinoma of the urinary bladder is a significant neoplasm in dogs, characterized by a poor prognosis and a high metastatic potential. These canine spontaneous tumors share many characteristics with human transitional cell carcinoma, making them an excellent comparative model. The role of inflammatory infiltration in tumor development and progression is frequently contradictory, especially concerning tumor-associated tissue eosinophils (TATE) and tumor-associated macrophages (TAMs). This study aims to analyze TATE and TAMs in canine transitional cell carcinoma of the urinary bladder. Congo Red staining was used to identify TATE, and immunohistochemistry was performed to detect TAMs in 34 cases of canine transitional cell carcinoma of the bladder carcinomas, categorized into low and high grades. Statistically significant differences were observed between the number of eosinophils and macrophages in the two groups of tumors. The number of TATE was higher in low-grade malignant tumors, but the number of TAMs was higher in high-grade tumors. Our findings suggest the importance of TATEs and TAMs in the aggressiveness of canine transitional cell carcinoma and propose their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Rita Files
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
| | - Victor Okwu
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
| | - Nuno Topa
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
| | - Marisa Sousa
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
| | - Filipe Silva
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Paula Rodrigues
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
| | - Leonor Delgado
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal;
- Pathology Department, INNO Specialized Veterinary Services, 4710-503 Braga, Portugal
| | - Justina Prada
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Isabel Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.F.); (V.O.); (N.T.); (M.S.); (F.S.); (P.R.); (J.P.)
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
18
|
Xiao Y, Han M, Chen Y, Li YZ, Zhang YY, Chen L, Huang S, Zhou XL. In vitro and in vivo biological evaluation of Lappaconitine derivatives as potential anti-inflammatory agents. Chem Biodivers 2024; 21:e202301761. [PMID: 38117633 DOI: 10.1002/cbdv.202301761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/22/2023]
Abstract
Natural products and their derivatives are a precious treasure in the pursuit of potent anti-inflammatory drugs. In this work, we measured the toxicity of 78 LA derivatives at 20 μM using MTT, then we evaluated the NO release of compounds without obvious toxicity in LPS-induced RAW.264.7 by Griess reagent, we identified three compounds, namely compounds 6, 19, 70, which exhibited promising anti-inflammatory potential. These compounds exhibited IC50 values of 10.34±2.05 μM, 18.18±4.80 μM and 15.66±0.88 μM. In addition, through ELISA kits, compounds 6, 19, 70 significantly reduce the production of inflammatory factors (TNF-α, IL-6, IL-1β). Real-time PCR and western blot analysis showed that compounds 6, 19, 70 inhibited the mRNA and protein expression of iNOS and COX-2. Notably, compound 6 exhibited the most potent inhibitory activity. In vitro, it inhibits LPS-induced phosphorylation of NF-κB p65, IκBα, ERK1/2, JNK, and p38 MAPKs in RAW264.7 cells. In vivo, compound 6 potently inhibits the secretion of inflammatory mediators and neutrophil activation in ALI mice. Our findings suggest that compound 6 may be a potential anti-inflammatory drug.
Collapse
Affiliation(s)
- Yan Xiao
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, Sichuan, People's Republic of China
| | - Meng Han
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, Sichuan, People's Republic of China
| | - Ying Chen
- Sichuan Provincial Administration of Traditional Chinese Medicine, 610017, Chengdu, Sichuan, People's Republic of China
| | - Yu-Zhu Li
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, Sichuan, People's Republic of China
| | - Yin-Yong Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, Sichuan, People's Republic of China
| | - Lin Chen
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, Sichuan, People's Republic of China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, Sichuan, People's Republic of China
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
19
|
Hou K, Ye W, Huang Q, Li W, Tan Z, Tao N, Yang D, Lin H, Deng Z, Xia Y, Yu G. The predictive value of peripheral blood CD4 cells ATP concentration for immune-related adverse events in advanced non-small cell lung cancer patients. BMC Immunol 2024; 25:3. [PMID: 38184521 PMCID: PMC10771702 DOI: 10.1186/s12865-023-00592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE Lung cancer with the highest incidence and mortality in the world. Immune checkpoint inhibitors (ICIs), can bring long-term survival benefits to patients, but also can bring immune-related adverse events (irAEs) in some patients during therapy. Therefore, the aim of this study was to investigate the predictive effect of peripheral blood WBC, NLR, sATPCD4 and nATPCD4 on irAEs in advanced non-small cell lung cancer (NSCLC). METHODS Clinical data of 112 patients with advanced NSCLC who were treated with PD -1/PD -L1 inhibitor in the Fifth Affiliated Hospital of Guangzhou Medical University from December 15, 2019 to April 30, 2023 were retrospectively analyzed. These patients were divided into the irAEs group (n = 27) and non-irAEs group (n = 85). The clinical data of the two groups were compared. Receiver operating characteristic (ROC) curves were drawn to determine the threshold value of baseline peripheral blood parameters to predict the occurrence of irAEs. Multivariate logistic regression analysis was used to explore the relationship between peripheral blood markers and the incidence of irAEs. RESULTS The patient characteristics have no significant difference between irAEs and non-irAEs group. But the baseline peripheral blood WBC, sATPCD4 and nATPCD4 of patients in the irAEs group were higher than those in the non-irAEs group (p < 0.05), and the NLR in irAEs group was similar to in the non-irAEs group (p = 0.639).Univariate analysis showed that high WBC, sATPCD4 and nATPCD4 may the risk factors for the occurrence of irAEs (p < 0.05). Multivariate logistic regression analysis showed that high sATPCD4 and nATPCD4 were independent risk factors for the occurrence of irAEs (p < 0.05). The best critical values of WBC, sATPCD4 and nATPCD4 before treatment for predicting the occurrence of irAEs were 8.165 × 109cells/L (AUC = 0.705) ,484.5 ng/mL (AUC = 0.777), and 156 ng/mL (AUC = 0.840), respectively. CONCLUSIONS sATPCD4 and nATPCD4 were independent risk factors for the occurrence of irAEs in advanced NSCLC patients. This discovery provides a new method to predict the occurrence of irAEs in patients. Based on the prediction results, corresponding treatment measures can be taken to reduce the incidence of adverse events.
Collapse
Affiliation(s)
- Kailian Hou
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No. 621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Weipeng Ye
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No. 621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Qunfeng Huang
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No. 621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Weiyi Li
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No. 621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Zhiqiong Tan
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No. 621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Na Tao
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No. 621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Dongheng Yang
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No. 621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Haoxin Lin
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No. 621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Zihao Deng
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No. 621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Yuanyuan Xia
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No. 621, Gangwan Road, Huangpu District, Guangzhou, 510700, China
| | - Guifang Yu
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, No. 621, Gangwan Road, Huangpu District, Guangzhou, 510700, China.
| |
Collapse
|
20
|
Tajbakhsh A, Yousefi F, Farahani N, Savardashtaki A, Reiner Ž, Jamialahmadi T, Sahebkar A. Molecular Mechanisms and Therapeutic Potential of Resolvins in Cancer - Current Status and Perspectives. Curr Med Chem 2024; 31:5898-5917. [PMID: 37497711 DOI: 10.2174/0929867331666230727100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
Resolvins are specialized pro-resolving mediators derived from omega-3 fatty acids that can suppress several cancer-related molecular pathways, including important activation of transcription parameters in the tumor cells and their microenvironment, inflammatory cell infiltration, cytokines as well as chemokines. Recently, an association between resolvins and an important anti-inflammatory process in apoptotic tumor cell clearance (efferocytosis) was shown. The inflammation status or the oncogene activation increases the risk of cancer development via triggering the transcriptional agents, including nuclear factor kappa-light-chain-enhancer of activated B cells by generating the pro-inflammatory lipid molecules and infiltrating the tumor cells along with the high level of pro-inflammatory signaling. These events can cause an inflammatory microenvironment. Resolvins might decrease the leukocyte influx into the inflamed tissues. It is widely accepted that resolvins prohibit the development of debris-triggered cancer via increasing the clearance of debris, especially by macrophage phagocytosis in tumors without any side effects. Resolvins D2, D1, and E1 might suppress tumor-growing inflammation by activation of macrophages clearance of cell debris in the tumor. Resolvin D5 can assist patients with pain during treatment. However, the effects of resolvins as anti-inflammatory mediators in cancers are not completely explained. Thus, based on the most recent studies, we tried to summarize the most recent knowledge on resolvins in cancers.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Geng Z, Wu L, Wang Q, Ma J, Shi Z. Non B Cell-Derived Immunoglobulins in Intestinal Tract. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:137-149. [PMID: 38967756 DOI: 10.1007/978-981-97-0511-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Intestinal epithelium constitutes a barrier to the unrestricted movement of pathogens, and other detrimental substances from the external world (gut lumen) into the interstitial environment. Intestinal epithelial cells obstruct harmful substances passing through the epithelium as a physical and chemical barrier; Moreover, the epithelial cells can express Toll-like receptors (TLRs) and cytokines to exert innate immune function. In addition, high levels of immunoglobulin A (IgA) and other antibodies exist in the intestinal mucosa, maintaining intestinal immune homeostasis in conjunction with intestinal probiotics. Traditionally, these antibodies have been deemed to be secreted by submucosal plasma cells. Nonetheless, in recent years, it has been demonstrated that intestinal epithelial cells produce a substantial amount of Igs, especially IgA or free Ig light chains, which are involved in intestinal immune homeostasis and the survival of normal epithelial cells. Furthermore, mounting evidence affirms that many human carcinoma cells, including colorectal cancer (CRC), can overexpress Igs, particularly IgG. Cancer-derived Igs exhibit a unique V(D)J rearrangement pattern distinct from B cell-derived Ig; moreover, this cancer cell-derived IgG also has a unique sialic acid modification on the 162 site of CH1 domain (SIA-IgG). The SIA-IgG plays a crucial role in promoting cancer initiation, progression, metastasis, and tumour immune escape. Simultaneously, CRC cells can also express free Ig light chains, which promote colitis, colitis-associated colon carcinogenesis, and CRC progression. Therefore, Igs expressed by CRC cells could be a potential target for diagnosing and preventing the transformation of inflammation into cancer, as well as treating CRC.
Collapse
Affiliation(s)
- Zihan Geng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lina Wu
- Central Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Qianqian Wang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
| | - Junfan Ma
- Department of Clinical Research, Sinocelltech Group Limited, Beijing, China
| | - Zhan Shi
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Kassab AE, Gedawy EM. Recent Advancements in Refashioning of NSAIDs and their Derivatives as Anticancer Candidates. Curr Pharm Des 2024; 30:1217-1239. [PMID: 38584541 DOI: 10.2174/0113816128304230240327044201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 04/09/2024]
Abstract
Inflammation is critical to the formation and development of tumors and is closely associated with cancer. Therefore, addressing inflammation and the mediators that contribute to the inflammatory process may be a useful strategy for both cancer prevention and treatment. Tumor predisposition can be attributed to inflammation. It has been demonstrated that NSAIDs can modify the tumor microenvironment by enhancing apoptosis and chemosensitivity and reducing cell migration. There has been a recent rise in interest in drug repositioning or repurposing because the development of innovative medications is expensive, timeconsuming, and presents a considerable obstacle to drug discovery. Repurposing drugs is crucial for the quicker and less expensive development of anticancer medicines, according to an increasing amount of research. This review summarizes the antiproliferative activity of derivatives of NSAIDs such as Diclofenac, Etodolac, Celecoxib, Ibuprofen, Tolmetin, and Sulindac, published between 2017 and 2023. Their mechanism of action and structural activity relationships (SARs) were also discussed to set the path for potential future repositioning of NSAIDs for clinical deployment in the treatment of cancer.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, P.O. Box 11829, Egypt
| |
Collapse
|
23
|
Yan Y, Lv Q, Zhou F, Jian Y, Xinhua L, Chen X, Hu Y. Discovery of an effective anti-inflammatory agent for inhibiting the activation of NF-κB. J Enzyme Inhib Med Chem 2023; 38:2225135. [PMID: 37325874 PMCID: PMC10281321 DOI: 10.1080/14756366.2023.2225135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
In this study, based on the effect of compounds on the activation of NF-κB and NO release, compound 51 was discovered as the best one with NO release inhibition IC50 value was 3.1 ± 1.1 μM and NF-κB activity inhibition IC50 value was 172.2 ± 11.4 nM. Compound 51 could inhibit the activation of NF-κB through suppressing phosphorylation and nuclear translocation of NF-κB, and suppress LPS-induced inflammatory response in RAW264.7 cells, such as the over-expression of TNF-α and IL-6, which were target genes of NF-κB. This compound also showed preferable anti-inflammatory activity in vivo, including alleviating significantly gastric distention and splenomegaly caused by LPS stimulation, reducing the level of oxidative stress induced by LPS, and inhibiting the expression of IL-6 and TNF-α in serum. Thus, it's reasonable to consider that this compound is a promising small molecule with anti-inflammatory effect for inhibiting the NF-κB signalling pathway.
Collapse
Affiliation(s)
- Yaoyao Yan
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, PR China
| | - Qi Lv
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, PR China
| | - Feilong Zhou
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, PR China
| | - Yujie Jian
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, PR China
| | - Liu Xinhua
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, PR China
| | - Xing Chen
- School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, PR China
| | - Yong Hu
- Anhui Academy of Agricultural Sciences, Agricultural Products Processing Institute, Hefei, P. R. China
| |
Collapse
|
24
|
Hao R, Liu Q, Wang L, Jian W, Cheng Y, Zhang Q, Hayer K, Kamarudin Raja Idris R, Zhang Y, Lu H, Tu Z. Anti-inflammatory effect of Lactiplantibacillus plantarum T1 cell-free supernatants through suppression of oxidative stress and NF-κB- and MAPK-signaling pathways. Appl Environ Microbiol 2023; 89:e0060823. [PMID: 37702501 PMCID: PMC10617582 DOI: 10.1128/aem.00608-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/08/2023] [Indexed: 09/14/2023] Open
Abstract
Lactiplantibacillus plantarum T1 is an isolated probiotic lactic acid bacterium (LAB) from pickled vegetables in Chongqing, China. In this study, we evaluated the anti-inflammatory activity and the underlying mechanisms of L. plantarum T1 cell-free supernatant (CFS) on lipopolysaccharide (LPS)-stimulated murine RAW264.7 macrophages in vitro. Reverse transcription quantitative PCR (RT-qPCR), immunofluorescence, Griess methods, and western blotting were utilized to assess the anti-inflammatory cytokines and antioxidative effect of L. plantarum T1 CFS. Our results showed that L. plantarum T1 CFS pretreatment significantly reduced pro-inflammatory cytokine levels, including nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor, interleukin (IL)-1β, and IL-6, as well as reactive oxygen species. Interestingly, L. plantarum T1 CFS unregulated the antioxidant indicators, including superoxide dismutase, catalase, and glutathione in RAW264.7 cells. Furthermore, L. plantarum T1 CFS activated the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathway. This study showed the excellent antioxidant and anti-inflammatory properties of L. plantarum T1 through multiple pathways, highlighting its potential for further research and application as a probiotic strain.IMPORTANCEL. plantarum T1 stood out in a series of acid and bile salt tolerance and bacterial inhibition tests as a probiotic isolated from paocai, which provides many health benefits to the host by inhibiting the growth of harmful pathogenic microorganisms and suppressing excessive levels of oxidative stress and inflammation. Not all LAB have good probiotic functions and are used in various applications. The anti-inflammatory antioxidant potential and mechanisms of L. plantarum T1 CFS have not been described and reported. By using RT-qPCR, Griess method, and western blotting, we showed that L. plantarum T1 CFS had anti-inflammatory and antioxidant effects. Griess assay, TBA assay, WST-8 assay, immunofluorescence assay, RT-qPCR, and western blotting data revealed that its anti-inflammatory and antioxidant mechanisms were associated with oxidative stress and NF-κB and MAPK signaling pathways. The anti-inflammatory and antioxidant effects of L. plantarum T1 CFS in paocai generates opportunities for probiotic product development.
Collapse
Affiliation(s)
- Rui Hao
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Qianqian Liu
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Wenwen Jian
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yu Cheng
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Qiuyue Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Kim Hayer
- Leicester Medical School, University of Leicester, Leicester, United Kingdom
| | | | - Yi Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - He Lu
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zeng Tu
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Turanli B. Decoding Systems Biology of Inflammation Signatures in Cancer Pathogenesis: Pan-Cancer Insights from 12 Common Cancers. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:483-493. [PMID: 37861711 DOI: 10.1089/omi.2023.0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Chronic inflammation is an important contributor to tumorigenesis in many tissues. However, the underlying mechanisms of inflammatory signaling in the tumor microenvironment are not yet fully understood in various cancers. Therefore, this study aimed to uncover the gene expression signatures of inflammation-associated proteins that lead to tumorigenesis, and with an eye to discovery of potential system biomarkers and novel drug candidates in oncology. Gene expression profiles associated with 12 common cancers (e.g., breast invasive carcinoma, colon adenocarcinoma, liver hepatocellular carcinoma, and prostate adenocarcinoma) from The Cancer Genome Atlas were retrieved and mapped to inflammation-related gene sets. Subsequently, the inflammation-associated differentially expressed genes (i-DEGs) were determined. The i-DEGs common in all cancers were proposed as tumor inflammation signatures (TIS) after pan-cancer analysis. A TIS, consisting of 45 proteins, was evaluated as a potential system biomarker based on its prognostic forecasting and secretion profiles in multiple tissues. In addition, i-DEGs for each cancer type were used as queries for drug repurposing. Narciclasine, parthenolide, and homoharringtonine were identified as potential candidates for drug repurposing. Biomarker candidates in relation to inflammation were identified such as KNG1, SPP1, and MIF. Collectively, these findings inform precision diagnostics development to distinguish individual cancer types, and can also pave the way for novel prognostic decision tools and repurposed drugs across multiple cancers. These new findings and hypotheses warrant further research toward precision/personalized medicine in oncology. Pan-cancer analysis of inflammatory mediators can open up new avenues for innovation in cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Türkiye
| |
Collapse
|
26
|
Zhang H, Li Q, Huang G, Yang Z, Chen K, Meng B, Yu H. Construction and validation of a novel prognostic model for intrahepatic cholangiocarcinoma based on a combined scoring system of systemic immune-inflammation index and albumin-bilirubin: a multicenter study. Front Oncol 2023; 13:1239375. [PMID: 37841429 PMCID: PMC10569214 DOI: 10.3389/fonc.2023.1239375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background The degree of inflammation and immune status is widely recognized to be associated with intrahepatic cholangiocarcinoma (ICC) and is closely linked to poor postoperative survival. The purpose of this study was to evaluate whether the systemic immune-inflammatory index (SII) and the albumin bilirubin (ALBI) grade together exhibit better predictive strength compared to SII and ALBI separately in patients with ICC undergoing curative surgical resection. Methods A retrospective analysis was performed on a cohort of 374 patients with histologically confirmed ICC who underwent curative surgical resection from January 2016 to January 2020 at three medical centers. The cohort was divided into a training set comprising 258 patients and a validation set consisting of 116 patients. Subsequently, the prognostic predictive abilities of three indicators, namely SII, ALBI, and SII+ALBI grade, were evaluated. Independent risk factors were identified through univariate and multivariate analyses. The identified independent risk factors were then utilized to construct a nomogram prediction model, and the predictive strength of the nomogram prediction model was assessed through Receiver Operating Characteristic (ROC) survival curves and calibration curves. Results Univariate analysis of the training set, consisting of 258 eligible patients with ICC, revealed that SII, ALBI, and SII+ALBI grade were significant prognostic factors for overall survival (OS) and recurrence-free survival (RFS) (p < 0.05). Multivariate analysis revealed the independent significance of SII+ALBI grade as a risk factor for postoperative OS and RFS (p < 0.05). Furthermore, we conducted an analysis of the correlation between SII, ALBI, SII+ALBI grade, and clinical features, indicating that SII+ALBI grade exhibited stronger associations with clinical and pathological characteristics compared to SII and ALBI. We constructed a predictive model for postoperative survival in ICC based on SII+ALBI grade, as determined by the results of multivariate analysis. Evaluation of the model's predictive strength was performed through ROC survival curves and calibration curves in the training set and validation set, revealing favorable predictive performance. Conclusion The SII+ALBI grade, a novel classification based on inflammatory and immune status, serves as a reliable prognostic indicator for postoperative OS and RFS in patients with ICC.
Collapse
Affiliation(s)
- Haofeng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qingshan Li
- Department of Hepatobiliary and Pancreatic Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Guan Huang
- Department of Hepatobiliary and Pancreatic Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhenwei Yang
- Department of Hepatobiliary and Pancreatic Surgery, People’s Hospital of Henan University, Zhengzhou, China
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Meng
- Department of Hepatobiliary and Pancreatic Surgery, Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Haibo Yu
- Department of Hepatobiliary and Pancreatic Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
27
|
Tarek H, Cho SS, Hossain MS, Yoo JC. Attenuation of Oxidative Damage via Upregulating Nrf2/HO-1 Signaling Pathway by Protease SH21 with Exerting Anti-Inflammatory and Anticancer Properties In Vitro. Cells 2023; 12:2190. [PMID: 37681922 PMCID: PMC10486937 DOI: 10.3390/cells12172190] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Oxidative damage and inflammation are among the very significant aspects interrelated with cancer and other degenerative diseases. In this study, we investigated the biological activities of a 25 kDa protease (SH21) that was purified from Bacillus siamensis. SH21 exhibited very powerful antioxidant and reactive oxygen species (ROS) generation inhibition activity in a dose-dependent approach. The mRNA and protein levels of antioxidant enzymes such as superoxide dismutase 1 (SOD1), catalase (CAT), and glutathione peroxidase 1 (GPx-1) were enhanced in the SH21-treated sample. SH21 also increased the transcriptional and translational activities of NF-E2-related factor 2 (Nrf2) with the subsequent development of detoxifying enzyme heme oxygenase-1 (HO-1). In addition, SH21 showed potential anti-inflammatory activity via inhibition of nitric oxide (NO) and proinflammatory cytokines, such as TNF-α, IL-6, and IL-1β, production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. At concentrations of 60, 80, and 100 μg/mL, SH21 potentially suppressed nitric oxide synthase (iNOS) and cytokine gene expressions. Furthermore, SH21 significantly released lactate dehydrogenase (LDH) enzyme in cancer cell supernatant in a concentration-dependent manner and showed strong activity against three tested cancer cell lines, including HL-60, A549, and Hela. Our results suggest that SH21 has effective antioxidant, anti-inflammatory, and anticancer effects and could be an excellent therapeutic agent against inflammation-related diseases.
Collapse
Affiliation(s)
- Hasan Tarek
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea;
| | - Seung Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea;
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Md. Selim Hossain
- Department of Biomedical Sciences, Chosun University, Gwangju 61452, Republic of Korea;
| | - Jin Cheol Yoo
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
28
|
Fiorilla I, Martinotti S, Todesco AM, Bonsignore G, Cavaletto M, Patrone M, Ranzato E, Audrito V. Chronic Inflammation, Oxidative Stress and Metabolic Plasticity: Three Players Driving the Pro-Tumorigenic Microenvironment in Malignant Mesothelioma. Cells 2023; 12:2048. [PMID: 37626858 PMCID: PMC10453755 DOI: 10.3390/cells12162048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a lethal and rare cancer, even if its incidence has continuously increased all over the world. Asbestos exposure leads to the development of mesothelioma through multiple mechanisms, including chronic inflammation, oxidative stress with reactive oxygen species (ROS) generation, and persistent aberrant signaling. Together, these processes, over the years, force normal mesothelial cells' transformation. Chronic inflammation supported by "frustrated" macrophages exposed to asbestos fibers is also boosted by the release of pro-inflammatory cytokines, chemokines, growth factors, damage-associated molecular proteins (DAMPs), and the generation of ROS. In addition, the hypoxic microenvironment influences MPM and immune cells' features, leading to a significant rewiring of metabolism and phenotypic plasticity, thereby supporting tumor aggressiveness and modulating infiltrating immune cell responses. This review provides an overview of the complex tumor-host interactions within the MPM tumor microenvironment at different levels, i.e., soluble factors, metabolic crosstalk, and oxidative stress, and explains how these players supporting tumor transformation and progression may become potential and novel therapeutic targets in MPM.
Collapse
Affiliation(s)
- Irene Fiorilla
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Simona Martinotti
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Alberto Maria Todesco
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Gregorio Bonsignore
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Maria Cavaletto
- Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, 13100 Vercelli, Italy;
| | - Mauro Patrone
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Elia Ranzato
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Valentina Audrito
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, 15121 Alessandria, Italy; (I.F.); (S.M.); (A.M.T.); (G.B.); (M.P.); (E.R.)
- Department of Integrated Activities Research and Innovation (DAIRI), Public Hospital Azienda Ospedaliera “SS. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| |
Collapse
|
29
|
Shi M, Liu X, Pan W, Li N, Tang B. Anti-inflammatory strategies for photothermal therapy of cancer. J Mater Chem B 2023. [PMID: 37326239 DOI: 10.1039/d3tb00839h] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High temperature generated by photothermal therapy (PTT) can trigger an inflammatory response at the tumor site, which not only limits the efficacy of PTT but also increases the risk of tumor metastasis and recurrence. In light of the current limitations posed by inflammation in PTT, several studies have revealed that inhibiting PTT-induced inflammation can significantly improve the efficacy of cancer treatment. In this review, we summarize the research progress made in combining anti-inflammatory strategies to enhance the effectiveness of PTT. The goal is to offer valuable insights for developing better-designed photothermal agents in clinical cancer therapy.
Collapse
Affiliation(s)
- Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
30
|
Kennedy BM, Harris RE. Cyclooxygenase and Lipoxygenase Gene Expression in the Inflammogenesis of Colorectal Cancer: Correlated Expression of EGFR, JAK STAT and Src Genes, and a Natural Antisense Transcript, RP11-C67.2.2. Cancers (Basel) 2023; 15:cancers15082380. [PMID: 37190308 DOI: 10.3390/cancers15082380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
We examined the expression of major inflammatory genes, cyclooxygenase-1, 2 (COX1, COX2), arachidonate-5-lipoxygenase (ALOX5), and arachidonate-5-lipoxygenase activating protein (ALOX5AP) among 469 tumor specimens of colorectal cancer in The Cancer Genome Atlas (TCGA). Among 411 specimens without mutations in mismatch repair (MMR) genes, the mean expression of each of the inflammatory genes ranked above the 80th percentile, and the overall mean cyclooxygenase expression (COX1+COX2) ranked in the upper 99th percentile of all genes. Similar levels were observed for 58 cases with MMR mutations. Pearson correlation coefficients exceeding r = 0.70 were observed between COX and LOX mRNA levels with genes of major cell-signaling pathways involved in tumorigenesis (Src, JAK STAT, MAPK, PI3K). We observed a novel association (r = 0.78) between ALOX5 expression and a natural antisense transcript (NAT), RP11-67C2.2, a long non-coding mRNA gene, 462 base pairs in length that is located within the terminal intron of the ALOX5 gene on chromosome 10q11.21. Tumor-promoting genes highly correlated with the expression of COX1, COX2, ALOX5 and ALOX5AP are known to increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the inflammogenesis of colorectal cancer. These genes and the novel NAT, RP1167C2.2 are potential molecular targets for chemoprevention and therapy of colorectal cancer.
Collapse
Affiliation(s)
- Brian M Kennedy
- Colleges of Public Health and Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210-1351, USA
| | - Randall E Harris
- Colleges of Public Health and Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210-1351, USA
| |
Collapse
|
31
|
Nicoletti M. The Anti-Inflammatory Activity of Viscum album. PLANTS (BASEL, SWITZERLAND) 2023; 12:1460. [PMID: 37050086 PMCID: PMC10096603 DOI: 10.3390/plants12071460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The therapeutic story of European mistletoe (Viscum album L.) presents a seesawing profile. In ancient times, this hemiparasitic plant was considered a panacea and even to be endowed with exceptional beneficial properties. In more recent times, despite its multiple uses in traditional medicines, some parts of the plant, in particular the berries, were considered poisonous and dangerous, including concerns of cytotoxicity, which spread serious suspicion on its medicinal utility. However, since the last century, medical interest in mistletoe has come back in force due to its utilization in clinical cancer treatments, based on its selective action on tumor cells. In Central Europe, the hydro-alcoholic extracts of European mistletoe register a relevant and continuous utilization in anthroposophic medicine, which is a holistic system that includes the utilization of phytomedicinal substances. In Switzerland and Germany, most physicians and patients use these products as complementary therapy in oncological treatments. However, despite its increasing use in this field, the results of mistletoe's use are not always convincing, and other aspects have appeared. Nowadays, products that contain mistletoe are utilized in several fields, including diet, phytotherapy, veterinary medicine and homeopathy, but in particular in cancer therapies as coadjuvant factors, in consideration of several positive effects including effects in the improvement of quality-of-life conditions and reinforcement of the immune system. In this review, based on the understanding of the association between cancer and inflammation, we propose a relationship between these recent uses of mistletoe, based on its antioxidant properties, which are supported by phytochemical and pharmacological data. The unicity of mistletoe metabolism, which is a direct consequence of its hemiparasitism, is utilized as a key interpretation element to explain its biological properties and steer its consequent therapeutic uses.
Collapse
Affiliation(s)
- Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
32
|
Li M, Huang X, Huang M, Jin W, Hong Z, Zhang Y, Fang H, Chen W. Effects of fatty acid-ethanol amine (FA-EA) derivatives on lipid accumulation and inflammation. Lipids 2023; 58:117-127. [PMID: 36942837 DOI: 10.1002/lipd.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
This study aimed to investigate the effect of fatty acid-ethanol amine (FA-EA) derivatives (L1-L10) on the mitigation of intracellular lipid accumulation and downregulation of pro-inflammatory cytokines in vitro. First, the series of FA-EA derivatives were synthesized and characterized. Then, their cytotoxic, intracellular lipid accumulation and inhibition of pro-inflammatory cytokines were evaluated. The oil red O staining experiment showed that the tested compounds L4, L6, L8, L9, and L10 could reduce intracellular lipid accumulation induced by palmitic acid (PA). Moreover, ω-3/ω-6 PUFA-EA derivatives showed inhibitory effect on the production of pro-inflammatory cytokines in lipopolysaccharide (LPS) -stimulated RAW 264.7 cells. ω-3/ω-6 PUFA-EA derivatives at a concentrations of 10 μM could significantly decrease mRNA levels of IL-6, IL-1β, and TNF-α, inhibit NO production, and alleviate the protein expression of IL-1β in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. These data suggest that ω-3 PUFA-EA derivatives can be beneficial for further pharmaceutical development to treat chronic low-grade inflammation diseases such as obesity.
Collapse
Affiliation(s)
- Mengyu Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xiaoqing Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
| | - Mengxian Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- College of Biology and Environment, Zhejiang Wanli University, Ningbo, 315100, China
| | - Wenhui Jin
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| | - Zhuan Hong
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| | - Yucang Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Hua Fang
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| | - Weizhu Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Xiamen Ocean Vocational College, Xiamen, 361102, China
| |
Collapse
|
33
|
Chai J, Zhu J, Tian Y, Yang K, Luan J, Wang Y. Carbon monoxide therapy: a promising strategy for cancer. J Mater Chem B 2023; 11:1849-1865. [PMID: 36786000 DOI: 10.1039/d2tb02599j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer is one of the acute life-threatening diseases endangering the whole of humanity. The treatment modalities for cancer are various. However, in most cases, a single treatment choice provides multiple side effects, poor targeting, and ineffective treatment. In recent years, the physiological regulatory function of carbon monoxide (CO) in the cancer process has been reported gradually, and CO-related nano-drugs have been explored. It shows better application prospects in cancer treatment and provides new ideas for treatment. The present review introduces the pathophysiological role of CO. The recent advances in cancer therapy, such as CO-mediated gas therapy, combined application of CO chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), and immunotherapy, are described. Current challenges and future developments in CO-based treatment are also discussed. This review provides comprehensive information on recent advances in CO therapy and also some valuable guidance for promoting the progress of gas therapy nanomedicine.
Collapse
Affiliation(s)
- Jingjing Chai
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Yu Tian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
34
|
Borovcanin MM, Vesić K, Arsenijević D, Milojević-Rakić M, Mijailović NR, Jovanovic IP. Targeting Underlying Inflammation in Carcinoma Is Essential for the Resolution of Depressiveness. Cells 2023; 12:710. [PMID: 36899845 PMCID: PMC10000718 DOI: 10.3390/cells12050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
In modern clinical practice and research on behavioral changes in patients with oncological problems, there are several one-sided approaches to these problems. Strategies for early detection of behavioral changes are considered, but they must take into account the specifics of the localization and phase in the course and treatment of somatic oncological disease. Behavioral changes, in particular, may correlate with systemic proinflammatory changes. In the up-to-date literature, there are a lot of useful pointers on the relationship between carcinoma and inflammation and between depression and inflammation. This review is intended to provide an overview of these similar underlying inflammatory disturbances in both oncological disease and depression. The specificities of acute and chronic inflammation are considered as a basis for causal current and future therapies. Modern therapeutic oncology protocols may also cause transient behavioral changes, so assessment of the quality, quantity, and duration of behavioral symptoms is necessary to prescribe adequate therapy. Conversely, antidepressant properties could be used to ameliorate inflammation. We will attempt to provide some impetus and present some unconventional potential treatment targets related to inflammation. It is certain that only an integrative oncology approach is justifiable in modern patient treatment.
Collapse
Affiliation(s)
- Milica M. Borovcanin
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Katarina Vesić
- Department of Neurology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragana Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | | | - Nataša R. Mijailović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan P. Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
35
|
Dioscin modulates macrophages polarization and MDSCs differentiation to inhibit tumorigenesis of colitis-associated colorectal cancer. Int Immunopharmacol 2023; 117:109839. [PMID: 36809720 DOI: 10.1016/j.intimp.2023.109839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
It has been reported that colitis is one of risk factors in colorectal cancer (CRC). Intervention of intestinal inflammation and in the early stage of tumorigenesis is of great significance to control the incidence and mortality of CRC. In recent years, natural active products of traditional Chinese medicine have been confirmed that they had made great progress in disease prevention. Here, we showed that Dioscin, a natural active product of Dioscorea nipponica Makino, inhibited initiation and tumorigenesis of AOM/DSS-induced colitis-associated colon cancer (CAC), including alleviating colonic inflammation, improving intestinal barrier function and decreasing tumor burden. In addition, we also explored the immunoregulatory effect of Dioscin on mice. The results showed that Dioscin modulated M1/M2 macrophages phenotype in spleen and decreased monocytic myeloid-derived suppressor cells (M-MDSCs) population in blood and spleen of mice. The in vitro assay demonstrated that Dioscin promoted M1 as well as inhibited M2 macrophages phenotype in LPS- or IL-4-induced bone marrow-derived macrophages (BMDMs) model. Based on the plasticity of MDSCs and its ability to differentiate into M1/M2 macrophages, we here found that Dioscin increased M1- and decreased M2-like phenotype during the process of MDSCs differentiation in vitro, suggesting Dioscin promoted MDSCs differentiate into M1 as well as inhibited its differentiation into M2 macrophages. Taken together, our study indicated that Dioscin had the inhibitory effect on the initial of tumorigenesis at early stage of CAC via the ant-inflammatory effect, which provided a natural active candidate for effective prevention of CAC.
Collapse
|
36
|
Leśniak M, Lipniarska J, Majka P, Kopyt W, Lejman M, Zawitkowska J. The Role of TRL7/8 Agonists in Cancer Therapy, with Special Emphasis on Hematologic Malignancies. Vaccines (Basel) 2023; 11:vaccines11020277. [PMID: 36851155 PMCID: PMC9967151 DOI: 10.3390/vaccines11020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Toll-like receptors (TLR) belong to the pattern recognition receptors (PRR). TLR7 and the closely correlated TLR8 affiliate with toll-like receptors family, are located in endosomes. They recognize single-stranded ribonucleic acid (RNA) molecules and synthetic deoxyribonucleic acid (DNA)/RNA analogs-oligoribonucleotides. TLRs are primarily expressed in hematopoietic cells. There is compiling evidence implying that TLRs also direct the formation of blood cellular components and make a contribution to the pathogenesis of certain hematopoietic malignancies. The latest research shows a positive effect of therapy with TRL agonists on the course of hemato-oncological diseases. Ligands impact activation of antigen-presenting cells which results in production of cytokines, transfer of mentioned cells to the lymphoid tissue and co-stimulatory surface molecules expression required for T-cell activation. Toll-like receptor agonists have already been used in oncology especially in the treatment of dermatological neoplastic lesions. The usage of these substances in the treatment of solid tumors is being investigated. The present review discusses the direct and indirect influence that TLR7/8 agonists, such as imiquimod, imidazoquinolines and resiquimod have on neoplastic cells and their promising role as adjuvants in anticancer vaccines.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Weronika Kopyt
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
37
|
Alam AU, Goodyear MD, Wu C, Sun HL. Increased acute care utilisation, comorbidities and mortality in adults with haemophilia: A population-based cohort study from 2012 to 2019. Haemophilia 2023; 29:219-229. [PMID: 36264207 DOI: 10.1111/hae.14680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Improvements in treatment strategies have led to increased life expectancy of persons with haemophilia (PWH). Consequently, age-related comorbidities become increasingly relevant. AIM To evaluate the prevalence of age-related comorbidities, mortality, health service utilisation and predictors of hospitalisation in PWH compared to the general population. METHODS We conducted a population-based retrospective cohort study using linked administrative data. Men with haemophilia were identified in Alberta, Canada (2012-2019) with a validated case definition and were age-matched with male population controls. We calculated the prevalence of major comorbidities, all-cause mortality, and examined health service utilisation including Emergency Department visits and hospitalisations. Logistic regression was applied to identify predictors of hospitalisation. RESULTS We identified 198 and 329 persons with moderately severe haemophilia and mild/moderate, respectively. Moderately severe haemophilia had a higher risk of death (standardised mortality ratio 3.2, 95% confidence interval [CI] 1.4-6.3) compared to the general population. PWH had a significantly higher prevalence of hypertension, liver diseases and malignancies than controls. Moderately severe haemophilia was associated with significantly higher rates of hospitalisations (52.5% vs. 14.5%), Emergency Department visits (89.1% vs. 62.7%) and intensive care admissions (8.9% vs. 2.3%). Age > 65 years (adjusted odds ratio [aOR] 6.8) and presence of multiple comorbidities (aOR 3.9) were significant predictors of hospitalisations among PWH. CONCLUSION Despite advanced care, haemophilia is associated with higher acute care utilisation than the general population, highlighting the substantial burden of illness on patients and the health care system.
Collapse
Affiliation(s)
- Arafat Ul Alam
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - M Dawn Goodyear
- Division of Hematology, Department of Medicine, University of Calgary, Calgary, Canada
| | - Cynthia Wu
- Division of Hematology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Haowei Linda Sun
- Division of Hematology, Department of Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
38
|
Zhao R, Liang Z, Chen K, Zhu X. Nomogram Based on Hemoglobin, Albumin, Lymphocyte and Platelet Score to Predict Overall Survival in Patients with T3-4N0-1 Nasopharyngeal Carcinoma. J Inflamm Res 2023; 16:1995-2006. [PMID: 37193071 PMCID: PMC10182792 DOI: 10.2147/jir.s411194] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
Purpose There is still uncertainty regarding the prognosis of nasopharyngeal carcinoma (NPC) based on hemoglobin, albumin, lymphocytes, and platelets (HALP) score. The aim of this study was to build and verify a nomogram using HALP score to investigate the prognostic value of NPC and identify low-risk patients in T3-4N0-1 NPC to guide treatment options. Patients and methods A total of 568 NPC patients with stage T3-4N0-1M0 were recruited in the study, who were given either concurrent chemoradiotherapy (CCRT) or induction chemotherapy (IC) plus CCRT. The prognostic factors of overall survival (OS) were picked by Cox proportional hazards regression analysis to generate a nomogram, which appraised by discrimination, calibration and clinical utility. Patients were stratified according to risk scores calculated by the nomogram, and compared to the 8th TNM staging system using the Kaplan-Meier methods. Results Multivariate analysis showed that TNM stage, Epstein-Barr virus DNA (EBV DNA), HALP score, lactate dehydrogenase-to-albumin ratio (LAR) and systemic inflammatory response index (SIRI) were independent prognostic indicators for OS, and these factors contained in the nomogram. The nomogram demonstrated a significant enhancement over the 8th TNM staging system in terms of assessing OS (C-index, 0.744 vs 0.615 in the training cohort, P < 0.001; 0.757 vs 0.646 in the validation cohort, P = 0.002). Calibration curves displayed good agreement and the stratification in high-risk and low-risk groups resulted in a significant divergence of Kaplan-Meier curves for OS (P < 0.001). In addition, the decision analysis (DCA) curves confirmed satisfactory discriminability and clinical utility. Conclusion The HALP score was an independent prognostic factor for NPC. The prognostic function of the nomogram for T3-4N0-1 NPC patients was more accurate compared to the 8th TNM system, facilitating personalized treatment planning.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Zhongguo Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Kaihua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Affiliated Wu-Ming Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education/Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi, People’s Republic of China
- Correspondence: Xiaodong Zhu, Email
| |
Collapse
|
39
|
Zhong Y, Li T, Zhu Y, Zhou J, Akinade TO, Lee J, Liu F, Bhansali D, Lao YH, Quek CH, Shao D, Leong KW. Targeting Proinflammatory Molecules Using Multifunctional MnO Nanoparticles to Inhibit Breast Cancer Recurrence and Metastasis. ACS NANO 2022; 16:20430-20444. [PMID: 36382718 DOI: 10.1021/acsnano.2c06713] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photothermal therapy (PTT) is an effective treatment modality that is highly selective for tumor suppression and is a hopeful alternative to traditional cancer therapy. However, PTT-induced inflammatory responses may result in undesirable side effects including increased risks of tumor recurrence and metastasis. Here we developed multifunctional MnO nanoparticles as scavengers of proinflammatory molecules to alleviate the PTT-induced inflammatory response. The MnO nanoparticles improve the PTT therapy by (1) binding and scavenging proinflammatory molecules to inhibit the proinflammatory molecule-induced Toll-like receptors (TLR) activation and nuclear factor kappa B (NF-κB) signaling; (2) inhibiting activated macrophage-induced macrophage recruitment; and (3) inhibiting tumor cell migration and invasion. In vivo experimental results showed that further treatment with MnO nanoparticles after laser therapy not only inhibited the PTT-induced inflammatory response and primary tumor recurrence but also significantly reduced tumor metastasis due to the scavenging activity. These findings suggest that MnO nanoparticles hold the potential for mitigating the therapy-induced severe inflammatory response and inhibiting tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Yiling Zhong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 511436, China
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jie Zhou
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
- Department of Breast Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Tolu O Akinade
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jounghyun Lee
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Feng Liu
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Divya Bhansali
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Chai Hoon Quek
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Dan Shao
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
40
|
Marangio A, Biccari A, D’Angelo E, Sensi F, Spolverato G, Pucciarelli S, Agostini M. The Study of the Extracellular Matrix in Chronic Inflammation: A Way to Prevent Cancer Initiation? Cancers (Basel) 2022; 14:cancers14235903. [PMID: 36497384 PMCID: PMC9741172 DOI: 10.3390/cancers14235903] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Bidirectional communication between cells and their microenvironment has a key function in normal tissue homeostasis, and in disease initiation, progression and a patient's prognosis, at the very least. The extracellular matrix (ECM), as an element of all tissues and cellular microenvironment, is a frequently overlooked component implicated in the pathogenesis and progression of several diseases. In the inflammatory microenvironment (IME), different alterations resulting from remodeling processes can affect ECM, progressively inducing cancer initiation and the passage toward a tumor microenvironment (TME). Indeed, it has been demonstrated that altered ECM components interact with a variety of surface receptors triggering intracellular signaling that affect cellular pathways in turn. This review aims to support the notion that the ECM and its alterations actively participate in the promotion of chronic inflammation and cancer initiation. In conclusion, some data obtained in cancer research with the employment of decellularized ECM (dECM) models are described. The reported results encourage the application of dECM models to investigate the short circuits contributing to the creation of distinct IME, thus representing a potential tool to avoid the progression toward a malignant lesion.
Collapse
Affiliation(s)
- Asia Marangio
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Andrea Biccari
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Edoardo D’Angelo
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Francesca Sensi
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy
| | - Gaya Spolverato
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Marco Agostini
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Correspondence: ; Tel.: +39-049-964-0160
| |
Collapse
|
41
|
Cao X, Zhen M, Li L, Wu Z, Zhou C, Huo J, Su S, Xu Y, Jia W, Liao X, Sun Z, Li H, Wang C. Oral fullerene tablets for colorectal cancer therapy based on modulation of tumor inflammatory microenvironments. J Mater Chem B 2022; 10:9457-9465. [PMID: 36346268 DOI: 10.1039/d2tb01518h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The development and progression of colorectal cancer (CRC) are highly dependent on the long-term inflammatory microenvironment with immune dysregulation in the colorectum. However, effective therapeutics are limited to targeting CRC. Here, we developed oral fullerene tablets (OFTs) that can act directly on the colorectal site by oral administration and reduce the inflammatory state at the tumor site for effective CRC therapy. In detail, OFTs scavenged reactive oxygen species (ROS), restrained the mutation of the wild-type P53, inhibited the activation of the inflammatory pathway nuclear factor-κB (NF-κB) and the signal transducer and activator of transcription 3 (STAT3) in the colorectum of CRC mice. Subsequently, OFTs could greatly reduce the infiltration of pro-inflammatory M1 macrophages and neutrophils at the tumor site, restoring the inflammatory microenvironment and immune homeostasis in the colorectal region, and ultimately achieving the inhibition of CRC. In addition, there were no significant toxic side effects of the long-term administration of OFTs. Our work provides an effective oral therapeutic strategy for CRC therapy by modulating the colorectal tumor inflammatory microenvironment and sheds light on the route for oral nano-materials in the clinical treatment of CRC.
Collapse
Affiliation(s)
- Xinran Cao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Huo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenge Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodan Liao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- Beijing Fullcan Biotechnology Co. Ltd, Beijing, 100085, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Lee SA, Kwon SO, Song M, Choi JY, Shin A, Shu XO, Zheng W, Lee JK, Kang D. The Association of Serum High-Sensitivity C-Reactive Protein Level With the Risk of Site-Specific Cancer Mortality: The Health Examinees (HEXA) Study Cohort. Am J Epidemiol 2022; 191:2002-2013. [PMID: 35916370 DOI: 10.1093/aje/kwac141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/01/2021] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Few studies have investigated the association between high-sensitivity C-reactive protein (hsCRP) level and site-specific cancer mortality. In this study, we aimed to examine the associations of hsCRP with overall and site-specific cancer mortality among South Koreans using data on the Health Examinees (HEXA) Study cohort (41,070 men and 81,011 women aged ≥40 years). We obtained mortality information from the National Statistical Office of Korea, which provided the dates and causes of all deaths occurring through December 31, 2015, by linking mortality data with each participant's unique national identifier. Cox proportional hazards and restricted cubic spline models were used to assess the association between hsCRP and cancer mortality with adjustment for covariates. An analysis of site-specific cancer mortality was focused on 5 major cancers (lung, liver, gastric, colorectal, and breast/prostate). Median hsCRP levels were 0.77 mg/L and 0.59 mg/L for men and women, respectively. A dose-response association between hsCRP and overall cancer mortality was observed in men but disappeared in women after exclusion of deaths occurring in the first 1 or 2 years of follow-up. Elevated hsCRP levels increased the risks of lung, liver, and gastric cancer mortality in men, but the risks of colorectal and breast cancer mortality were not increased. The dose-response association between hsCRP and cancer mortality was observed differently depending on site-specific cancer mortality by sex.
Collapse
|
43
|
Zi M, Xingyu C, Yang C, Xiaodong S, Shixian L, Shicheng W. Improved antitumor immunity of chemotherapy in OSCC treatment by Gasdermin-E mediated pyroptosis. Apoptosis 2022; 28:348-361. [PMID: 36370260 DOI: 10.1007/s10495-022-01792-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 11/13/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a malignant tumor with high mortality and poor prognosis. Many OSCC patients have low response rate to current treatments including immunotherapies largely due to the immune-suppressive tumor microenvironment (TME). Chemotherapy could induce immunogenic cell death (ICD), a type of cell death such as pyroptosis and necroptosis, which has proved to be capable to alter the immune-suppressive TME and beneficial for better anti-tumor effect. GSDME, a key protein of pyroptosis, is however often silenced in tumors due to abnormal methylation. To overcome these limitations, we utilizied methyltransferase inhibitor (decitabine, DAC) to trigger pyroptosis of tumor cells, combined with chemodrug cisplatin (DDP) and immune checkpoints inhibitors to amplify the immunotherapies outcomes. To the best of our knowledge, this is the first study of tumor suppressive effect of GSDME in OSCC. Our investigation demonstrated that stimulation of GSDME expression could improve the sensitivity of chemotherapeutics, activate inflammatory tumor cell pyroptosis and alter the tumor immune-suppressive microenvironment, providing an important perspective for clinical OSCC treatment.
Collapse
Affiliation(s)
- Mei Zi
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology; School of Materials Science and Engineering, Peking University, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100871, People's Republic of China
| | - Chen Xingyu
- Biomedical Pioneering Innovation Center (BIOPIC)State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Chen Yang
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Su Xiaodong
- Biomedical Pioneering Innovation Center (BIOPIC)State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Lv Shixian
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology; School of Materials Science and Engineering, Peking University, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100871, People's Republic of China.
| | - Wei Shicheng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology; School of Materials Science and Engineering, Peking University, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100871, People's Republic of China.
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China.
- , No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
44
|
Villarreal-García V, Estupiñan-Jiménez JR, Vivas-Mejía PE, Gonzalez-Villasana V, Vázquez-Guillén JM, Reséndez-Pérez D. A vicious circle in breast cancer: The interplay between inflammation, reactive oxygen species, and microRNAs. Front Oncol 2022; 12:980694. [PMID: 36226048 PMCID: PMC9548555 DOI: 10.3389/fonc.2022.980694] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide. This highly heterogeneous disease is molecularly stratified into luminal A, luminal B, HER2, triple-negative/basal-like, and normal-like subtypes. An important aspect in BC progression is the activation of inflammatory processes. The activation of CD8+/Th1, NK, and M1 tumor associated macrophages (TAMs), leads to tumor destruction. In contrast, an anti-inflammatory response mediated by CD4+/Th2 and M2 TAMs will favor tumor progression. Inflammation also stimulates the production of inflammatory mediators like reactive oxygen species (ROS). In chronic inflammation, ROS activates oxidative stress and endothelial dysfunction. In cancer, ROS plays a dual role with anti-tumorigenic and pro-tumorigenic effects in cell signaling pathways that control proliferation, survival, apoptosis, and inflammation. MicroRNAs (miRNAs), which are known to be involved in BC progression and inflammation, can be regulated by ROS. At the same time, miRNAs regulate the expression of genes modulating oxidative stress. In this review, we will discuss the interplay between inflammation, ROS, and miRNAs as anticancer and tumor promoter molecules in BC. A clear understanding of the role of miRNAs in the regulation of ROS production and inflammation, may lead to new opportunities for therapy in BC.
Collapse
Affiliation(s)
- Valeria Villarreal-García
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - José Roberto Estupiñan-Jiménez
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Pablo E. Vivas-Mejía
- Department of Biochemestry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Vianey Gonzalez-Villasana
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - José Manuel Vázquez-Guillén
- Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Diana Reséndez-Pérez
- Departmento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
- Departamento de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
45
|
Capuozzo M, Santorsola M, Bocchetti M, Perri F, Cascella M, Granata V, Celotto V, Gualillo O, Cossu AM, Nasti G, Caraglia M, Ottaiano A. p53: From Fundamental Biology to Clinical Applications in Cancer. BIOLOGY 2022; 11:1325. [PMID: 36138802 PMCID: PMC9495382 DOI: 10.3390/biology11091325] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
p53 tumour suppressor gene is our major barrier against neoplastic transformation. It is involved in many cellular functions, including cell cycle arrest, senescence, DNA repair, apoptosis, autophagy, cell metabolism, ferroptosis, immune system regulation, generation of reactive oxygen species, mitochondrial function, global regulation of gene expression, miRNAs, etc. Its crucial importance is denounced by the high percentage of amino acid sequence identity between very different species (Homo sapiens, Drosophila melanogaster, Rattus norvegicus, Danio rerio, Canis lupus familiaris, Gekko japonicus). Many of its activities allowed life on Earth (e.g., repair from radiation-induced DNA damage) and directly contribute to its tumour suppressor function. In this review, we provide paramount information on p53, from its discovery, which is an interesting paradigm of science evolution, to potential clinical applications in anti-cancer treatment. The description of the fundamental biology of p53 is enriched by specific information on the structure and function of the protein as well by tumour/host evolutionistic perspectives of its role.
Collapse
Affiliation(s)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Venere Celotto
- Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| |
Collapse
|
46
|
Chan Wah Hak CML, Rullan A, Patin EC, Pedersen M, Melcher AA, Harrington KJ. Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Front Oncol 2022; 12:971959. [PMID: 36106115 PMCID: PMC9465159 DOI: 10.3389/fonc.2022.971959] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the most effective and frequently used treatments for a wide range of cancers. In addition to its direct anti-cancer cytotoxic effects, ionising radiation can augment the anti-tumour immune response by triggering pro-inflammatory signals, DNA damage-induced immunogenic cell death and innate immune activation. Anti-tumour innate immunity can result from recruitment and stimulation of dendritic cells (DCs) which leads to tumour-specific adaptive T-cell priming and immunostimulatory cell infiltration. Conversely, radiotherapy can also induce immunosuppressive and anti-inflammatory mediators that can confer radioresistance. Targeting the DNA damage response (DDR) concomitantly with radiotherapy is an attractive strategy for overcoming radioresistance, both by enhancing the radiosensitivity of tumour relative to normal tissues, and tipping the scales in favour of an immunostimulatory tumour microenvironment. This two-pronged approach exploits genomic instability to circumvent immune evasion, targeting both hallmarks of cancer. In this review, we describe targetable DDR proteins (PARP (poly[ADP-ribose] polymerase); ATM/ATR (ataxia-telangiectasia mutated and Rad3-related), DNA-PKcs (DNA-dependent protein kinase, catalytic subunit) and Wee1 (Wee1-like protein kinase) and their potential intersections with druggable immunomodulatory signalling pathways, including nucleic acid-sensing mechanisms (Toll-like receptors (TLR); cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and retinoic acid-inducible gene-I (RIG-I)-like receptors), and how these might be exploited to enhance radiation therapy. We summarise current preclinical advances, recent and ongoing clinical trials and the challenges of therapeutic combinations with existing treatments such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Antonio Rullan
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Emmanuel C. Patin
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Malin Pedersen
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Alan A. Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Kevin J. Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
47
|
Lee HM, Lee HJ, Chang JE. Inflammatory Cytokine: An Attractive Target for Cancer Treatment. Biomedicines 2022; 10:biomedicines10092116. [PMID: 36140220 PMCID: PMC9495935 DOI: 10.3390/biomedicines10092116] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
The relationship between inflammation and cancer has attracted attention for a long time. The inflammatory tumor microenvironment consists of inflammatory cells, chemokines, cytokines, and signaling pathways. Among them, inflammatory cytokines play an especially pivotal role in cancer development, prognosis, and treatment. Interleukins, tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interferons, and vascular endothelial growth factor (VEGF) are the representative inflammatory cytokines in various cancers, which may promote or inhibit cancer progression. The pro-inflammatory cytokines are associated with advanced cancer stages, resistance to immunotherapy, and poor prognoses, such as in objective response and disease control rates, and progression-free and overall survival. In this review, we selected colorectal, pancreatic, breast, gastric, lung, and prostate cancers, which are well-reported for an association between cancer and inflammatory cytokines. The related cytokines and their effects on each cancer’s development and prognosis were summarized. In addition, the treatment strategies targeting inflammatory cytokines in each carcinoma were also described here. By understanding the biological roles of cancer-related inflammatory cytokines, we may modulate the inflammatory tumor microenvironment for potential cancer treatment.
Collapse
|
48
|
Pieniawska-Śmiech K, Pasternak G, Lewandowicz-Uszyńska A, Jutel M. Diagnostic Challenges in Patients with Inborn Errors of Immunity with Different Manifestations of Immune Dysregulation. J Clin Med 2022; 11:4220. [PMID: 35887984 PMCID: PMC9324612 DOI: 10.3390/jcm11144220] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Inborn errors of immunity (IEI), formerly known as primary immunodeficiency disorders (PIDs), are inherited disorders caused by damaging germline variants in single genes, which result in increased susceptibility to infections and in allergic, autoimmune, autoinflammatory, nonmalignant lymphoproliferative, and neoplastic conditions. Along with well-known warning signs of PID, attention should be paid to signs of immune dysregulation, which seem to be equally important to susceptibility to infection in defining IEI. The modern diagnostics of IEI offer a variety of approaches but with some problems. The aim of this review is to discuss the diagnostic challenges in IEI patients in the context of an immune dysregulation background.
Collapse
Affiliation(s)
- Karolina Pieniawska-Śmiech
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
| | - Gerard Pasternak
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Aleksandra Lewandowicz-Uszyńska
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J. Gromkowski, 51-149 Wroclaw, Poland; (G.P.); (A.L.-U.)
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- ALL-MED Medical Research Institute, 53-201 Wroclaw, Poland
| |
Collapse
|
49
|
Pandey SK, Machlof-Cohen R, Santhanam M, Shteinfer-Kuzmine A, Shoshan-Barmatz V. Silencing VDAC1 to Treat Mesothelioma Cancer: Tumor Reprograming and Altering Tumor Hallmarks. Biomolecules 2022; 12:biom12070895. [PMID: 35883451 PMCID: PMC9312978 DOI: 10.3390/biom12070895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Mesothelioma, an aggressive cancer with a poor prognosis, is linked to asbestos exposure. However, carbon nanotubes found in materials we are exposed to daily can cause mesothelioma cancer. Cancer cells reprogram their metabolism to support increased biosynthetic and energy demands required for their growth and motility. Here, we examined the effects of silencing the expression of the voltage-dependent anion channel 1 (VDAC1), controlling the metabolic and energetic crosstalk between mitochondria and the rest of the cell. We demonstrate that VDAC1 is overexpressed in mesothelioma patients; its levels increase with disease stage and are associated with low survival rates. Silencing VDAC1 expression using a specific siRNA identifying both mouse and human VDAC1 (si-m/hVDAC1-B) inhibits cell proliferation of mesothelioma cancer cells. Treatment of xenografts of human-derived H226 cells or mouse-derived AB1 cells with si-m/hVDAC1-B inhibited tumor growth and caused metabolism reprogramming, as reflected in the decreased expression of metabolism-related proteins, including glycolytic and tricarboxylic acid (-)cycle enzymes and the ATP-synthesizing enzyme. In addition, tumors depleted of VDAC1 showed altered microenvironments and inflammation, both associated with cancer progression. Finally, tumor VDAC1 silencing also eliminated cancer stem cells and induced cell differentiation to normal-like cells. The results show that silencing VDAC1 expression leads to reprogrammed metabolism and to multiple effects from tumor growth inhibition to modulation of the tumor microenvironment and inflammation, inducing differentiation of malignant cells. Thus, silencing VDAC1 is a potential therapeutic approach to treating mesothelioma.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.K.P.); (R.M.-C.); (M.S.)
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Renen Machlof-Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.K.P.); (R.M.-C.); (M.S.)
| | - Manikandan Santhanam
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.K.P.); (R.M.-C.); (M.S.)
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Anna Shteinfer-Kuzmine
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.K.P.); (R.M.-C.); (M.S.)
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Correspondence: ; Tel.: +972-528795939; Fax: +972-86479207
| |
Collapse
|
50
|
Influenza Vaccination and Risk of Lung Cancer in Patients with Chronic Kidney Disease: A Nationwide, Population-Based Cohort Study. Cancers (Basel) 2022; 14:cancers14122926. [PMID: 35740592 PMCID: PMC9221107 DOI: 10.3390/cancers14122926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic kidney disease (CKD) is significantly associated with lung cancer incidence. The aim of this study was to elucidate whether influenza vaccination reduces the incidence of lung cancer in patients with CKD. This cohort study enrolled patients with a record of CKD diagnosis from 2000 to 2012 in Taiwan’s National Health Insurance Research Database. Included patients were divided into vaccinated and unvaccinated groups. In total 12,985 patients with CKD were enrolled. Among these patients, 5495 were vaccinated and 7490 were unvaccinated. The risk of lung cancer was significantly lower in the influenza vaccination group after adjusting for age, sex, dialysis status, lung diseases, comorbidities, level of urbanization, and monthly income (adjusted hazard ratio (HR): 0.50, 95% confidence interval (CI; 0.38−0.65), p < 0.05). Lower risk of lung cancer was observed in both sexes, all age groups, dialysis status and co-existed lung diseases. The association between the risk of lung cancer and vaccination appeared to be dose-dependent (adjusted HRs: 0.91 (0.66−1.25), 0.49 (0.34−0.71), and 0.25 (0.17−0.38) for patients who received 1, 2 or 3, and ≥4 vaccinations during the follow-up period, respectively). In conclusion, Influenza vaccination decreased the risk of lung cancer in patients diagnosed with CKD. This potentially protective effect against lung cancer appeared to be dose dependent.
Collapse
|