1
|
Szasz A. Peto's "Paradox" and Six Degrees of Cancer Prevalence. Cells 2024; 13:197. [PMID: 38275822 PMCID: PMC10814230 DOI: 10.3390/cells13020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Peto's paradox and the epidemiologic observation of the average six degrees of tumor prevalence are studied and hypothetically solved. A simple consideration, Petho's paradox challenges our intuitive understanding of cancer risk and prevalence. Our simple consideration is that the more a cell divides, the higher the chance of acquiring cancerous mutations, and so the larger or longer-lived organisms have more cells and undergo more cell divisions over their lifetime, expecting to have a higher risk of developing cancer. Paradoxically, it is not supported by the observations. The allometric scaling of species could answer the Peto paradox. Another paradoxical human epidemiology observation in six average mutations is necessary for cancer prevalence, despite the random expectations of the tumor causes. To solve this challenge, game theory could be applied. The inherited and random DNA mutations in the replication process nonlinearly drive cancer development. The statistical variance concept does not reasonably describe tumor development. Instead, the Darwinian natural selection principle is applied. The mutations in the healthy organism's cellular population can serve the species' evolutionary adaptation by the selective pressure of the circumstances. Still, some cells collect multiple uncorrected mutations, adapt to the extreme stress in the stromal environment, and develop subclinical phases of cancer in the individual. This process needs extensive subsequent DNA replications to heritage and collect additional mutations, which are only marginal alone. Still, together, they are preparing for the first stage of the precancerous condition. In the second stage, when one of the caretaker genes is accidentally mutated, the caused genetic instability prepares the cell to fight for its survival and avoid apoptosis. This can be described as a competitive game. In the third stage, the precancerous cell develops uncontrolled proliferation with the damaged gatekeeper gene and forces the new game strategy with binary cooperation with stromal cells for alimentation. In the fourth stage, the starving conditions cause a game change again, starting a cooperative game, where the malignant cells cooperate and force the cooperation of the stromal host, too. In the fifth stage, the resetting of homeostasis finishes the subclinical stage, and in the fifth stage, the clinical phase starts. The prevention of the development of mutated cells is more complex than averting exposure to mutagens from the environment throughout the organism's lifetime. Mutagenic exposure can increase the otherwise random imperfect DNA reproduction, increasing the likelihood of cancer development, but mutations exist. Toxic exposure is more challenging; it may select the tolerant cells on this particular toxic stress, so these mutations have more facility to avoid apoptosis in otherwise collected random mutational states.
Collapse
Affiliation(s)
- Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
2
|
Santos NCND, Soares BM, Pessoa CDÓ, Freitas LMAD, Cruz JPP, Ramos MESP, Pithon MM, Cerqueira EMDM. Evaluation of the Genotoxicity of Endodontic Materials for Deciduous Teeth Using the Comet Assay. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2021. [DOI: 10.1590/pboci.2021.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
3
|
Komarova NL, Boland CR, Goel A, Wodarz D. Aspirin and the chemoprevention of cancers: A mathematical and evolutionary dynamics perspective. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1487. [PMID: 32163237 PMCID: PMC7486281 DOI: 10.1002/wsbm.1487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022]
Abstract
Epidemiological data indicate that long-term low dose aspirin administration has a protective effect against the occurrence of colorectal cancer, both in sporadic and in hereditary forms of the disease. The mechanisms underlying this protective effect, however, are incompletely understood. The molecular events that lead to protection have been partly defined, but remain to be fully characterized. So far, however, approaches based on evolutionary dynamics have not been discussed much, but can potentially offer important insights. The aim of this review is to highlight this line of investigation and the results that have been obtained. A core observation in this respect is that aspirin has a direct negative impact on the growth dynamics of the cells, by influencing the kinetics of tumor cell division and death. We discuss the application of mathematical models to experimental data to quantify these parameter changes. We then describe further mathematical models that have been used to explore how these aspirin-mediated changes in kinetic parameters influence the probability of successful colony growth versus extinction, and how they affect the evolution of the tumor during aspirin administration. Finally, we discuss mathematical models that have been used to investigate the selective forces that can lead to the rise of mismatch-repair deficient cells in an inflammatory environment, and how this selection can be potentially altered through aspirin-mediated interventions. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Analytical Methods Analytical and Computational Methods > Computational Methods.
Collapse
Affiliation(s)
- Natalia L Komarova
- Department of Mathematics, University of California Irvine, Irvine, California, USA
| | - C Richard Boland
- Department of Medicine, UCSD School of Medicine, San Diego, California, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Biomedical Research Center, Monrovia, California, USA
| | - Dominik Wodarz
- Department of Population Health and Disease Prevention, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California Irvine, Irvine, California, USA
| |
Collapse
|
4
|
Birtwell D, Luebeck G, Maley CC. The evolution of metapopulation dynamics and the number of stem cells in intestinal crypts and other tissue structures in multicellular bodies. Evol Appl 2020; 13:1771-1783. [PMID: 32821281 PMCID: PMC7428809 DOI: 10.1111/eva.13069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/04/2022] Open
Abstract
Carcinogenesis is a process of somatic evolution. Previous models of stem and transient amplifying cells in epithelial proliferating units like colonic crypts showed that intermediate numbers of stem cells in a crypt should optimally prevent progression to cancer. If a stem cell population is too small, it is easy for a mutator mutation to drift to fixation. If it is too large, it is easy for selection to drive cell fitness enhancing carcinogenic mutations to fixation. Here, we show that a multiscale microsimulation, that captures both within-crypt and between-crypt evolutionary dynamics, leads to a different conclusion. Epithelial tissues are metapopulations of crypts. We measured time to initiation of a neoplasm, implemented as inactivation of both alleles of a tumor suppressor gene. In our model, time to initiation is dependent on the spread of mutator clones in the crypts. The proportion of selectively beneficial and deleterious mutations in somatic cells is unknown and so was explored with a parameter. When the majority of non-neutral mutations are deleterious, the fitness of mutator clones tends to decline. When crypts are maintained by few stem cells, intercrypt competition tends to remove crypts with fixed mutators. When there are many stem cells within a crypt, there is virtually no crypt turnover, but mutator clones are suppressed by within-crypt competition. If the majority of non-neutral mutations are beneficial to the clone, then these results are reversed and intermediate-sized crypts provide the most protection against initiation. These results highlight the need to understand the dynamics of turnover and the mechanisms that control homeostasis, both at the level of stem cells within proliferative units and at the tissue level of competing proliferative units. Determining the distribution of fitness effects of somatic mutations will also be crucial to understanding the dynamics of tumor initiation and progression.
Collapse
Affiliation(s)
- David Birtwell
- Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Georg Luebeck
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWAUSA
| | - Carlo C. Maley
- Arizona Cancer Evolution CenterBiodesign Institute and School of Life SciencesArizona State UniversityTempeAZUSA
| |
Collapse
|
5
|
Marongiu F, Serra M, Laconi E. Development versus Evolution in Cancer Biology. Trends Cancer 2018; 4:342-348. [PMID: 29709258 DOI: 10.1016/j.trecan.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 01/08/2023]
Abstract
The terms 'development' and 'evolution' are both used to describe the unfolding of the carcinogenic process. However, there is increasing awareness of an essential difference in the meanings of these two terms with reference to cancer. We discuss evidence suggesting that the concepts of development and evolution are both pertinent to the description of carcinogenesis; however, they appropriately apply to distinct phases of a multistep process. Such a distinction bears important implications for the study and management of cancer.
Collapse
Affiliation(s)
- Fabio Marongiu
- Unit of Experimental Medicine, Department of Biomedical Sciences, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy
| | - Monica Serra
- Unit of Experimental Medicine, Department of Biomedical Sciences, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy
| | - Ezio Laconi
- Unit of Experimental Medicine, Department of Biomedical Sciences, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy.
| |
Collapse
|
6
|
Kang SW, Kim SK, Park HJ, Chung JH, Ban JY. Human 8-oxoguanine DNA glycosylase gene polymorphism (Ser326Cys) and cancer risk: updated meta-analysis. Oncotarget 2018; 8:44761-44775. [PMID: 28415770 PMCID: PMC5546516 DOI: 10.18632/oncotarget.16226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/03/2017] [Indexed: 01/30/2023] Open
Abstract
Genetic polymorphism of human 8-oxoguanine glycosylase 1 (hOGG1) has been reported to have a relationship with the risk of the development of various cancers. Many studies have described the influence of Ser326Cys polymorphism of the hOGG1 gene on cancer susceptibility. However, the results have remained inconclusive and controversial. Therefore, we performed a meta-analysis to more precisely determine the relationship between the hOGG1 polymorphism and the development of cancer.Electronic databases including PubMed, Embase, Google Scholar, and the Korean Studies Information Service System (KISS) were searched. The odds ratio (OR), 95% confidence interval (CI), and p value were calculated to assess the strength of the association with the risk of cancer using Comprehensive Meta-analysis software (Corporation, NJ, USA). The 127 studies including 38,757 cancer patients and 50,177 control subjects were analyzed for the meta-analysis.Our meta-analysis revealed that G allele of Ser326Cys polymorphism of the hOGG1 gene statistically increased the susceptibility of cancer (all population, OR = 1.092, 95% CI = 1.051-1.134, p < 0.001; in Asian, OR = 1.095, 95% CI = 1.048-1.145, p < 0.001; in Caucasian, OR = 1.097, 95% CI = 1.033-1.179, p = 0.002). Also, other genotype models showed significant association with cancer (p < 0.05, respectively).The present meta-analysis concluded that the G allele was associated with an increased risk of cancer. It suggested that the hOGG1 polymorphism may be a candidate marker of cancer.
Collapse
Affiliation(s)
- Sang Wook Kang
- Department of Dental Pharmacology, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Su Kang Kim
- Kohwang Medical Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hae Jeong Park
- Kohwang Medical Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Joo-Ho Chung
- Kohwang Medical Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ju Yeon Ban
- Department of Dental Pharmacology, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
7
|
Al-Hashimi F, J. Diaz-Cano S. Multi-target analysis of neoplasms for the evaluation of tumor progression: stochastic approach of biologic processes. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Wodarz D, Goel A, Komarova NL. Effect of cell cycle duration on somatic evolutionary dynamics. Evol Appl 2017; 10:1121-1129. [PMID: 29151865 PMCID: PMC5680637 DOI: 10.1111/eva.12518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 07/13/2017] [Indexed: 01/10/2023] Open
Abstract
Cellular checkpoints prevent damage and mutation accumulation in tissue cells. DNA repair is one mechanism that can be triggered by checkpoints and involves temporary cell cycle arrest and thus delayed reproduction. Repair-deficient cells avoid this delay, which has been argued to lead to a selective advantage in the presence of frequent damage. We investigate this hypothesis with stochastic modeling, using mathematical analysis and agent-based computations. We first model competition between two cell types: a cell population that enters temporary cell cycle arrest, corresponding to repair (referred to as arresting cells), and one that does not enter arrest (referred to as nonarresting cells). Although nonarresting cells are predicted to grow with a faster rate than arresting cells in isolation, this does not translate into a selective advantage in the model. Interestingly, the evolutionary properties of the nonarresting cells depend on the measure (or observable) of interest. When examining the average populations sizes in competition simulations, nonarresting and arresting cells display neutral dynamics. The fixation probability of nonarresting mutants, however, is lower than predicted for a neutral scenario, suggesting a selective disadvantage in this setting. For nonarresting cells to gain a selective advantage, additional mechanisms must be invoked in the model, such as small, repeated phases of tissue damage, each resulting in a brief period of regenerative growth. The same properties are observed in a more complex model where it is explicitly assumed that repair and temporary cell cycle arrest are dependent on the cell having sustained DNA damage, the rate of which can be varied. We conclude that repair-deficient cells are not automatically advantageous in the presence of frequent DNA damage and that mechanisms beyond avoidance of cell cycle delay must be invoked to explain their emergence.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCAUSA
- Department of MathematicsUniversity of CaliforniaIrvineCAUSA
| | - Ajay Goel
- Center for Gastroenterological ResearchBaylor Research Institute and Sammons Cancer CenterBaylor University Medical CenterDallasTXUSA
| | - Natalia L. Komarova
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCAUSA
- Department of MathematicsUniversity of CaliforniaIrvineCAUSA
| |
Collapse
|
9
|
Tissot T, Thomas F, Roche B. Non-cell-autonomous effects yield lower clonal diversity in expanding tumors. Sci Rep 2017; 7:11157. [PMID: 28894191 PMCID: PMC5593982 DOI: 10.1038/s41598-017-11562-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/21/2017] [Indexed: 01/07/2023] Open
Abstract
Recent cancer research has investigated the possibility that non-cell-autonomous (NCA) driving tumor growth can support clonal diversity (CD). Indeed, mutations can affect the phenotypes not only of their carriers (“cell-autonomous”, CA effects), but also sometimes of other cells (NCA effects). However, models that have investigated this phenomenon have only considered a restricted number of clones. Here, we designed an individual-based model of tumor evolution, where clones grow and mutate to yield new clones, among which a given frequency have NCA effects on other clones’ growth. Unlike previously observed for smaller assemblages, most of our simulations yield lower CD with high frequency of mutations with NCA effects. Owing to NCA effects increasing competition in the tumor, clones being already dominant are more likely to stay dominant, and emergent clones not to thrive. These results may help personalized medicine to predict intratumor heterogeneity across different cancer types for which frequency of NCA effects could be quantified.
Collapse
Affiliation(s)
- Tazzio Tissot
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, Cedex 5, France.
| | - Frédéric Thomas
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, Cedex 5, France
| | - Benjamin Roche
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394, Montpellier, Cedex 5, France.,Unité mixte internationale de Modélisation Mathématique et Informatique des Systèmes Complexes. (UMI IRD/UPMC UMMISCO), 32 Avenue Henri Varagnat, 93143, Bondy Cedex, France
| |
Collapse
|
10
|
Morais MCC, Stuhl I, Sabino AU, Lautenschlager WW, Queiroga AS, Tortelli TC, Chammas R, Suhov Y, Ramos AF. Stochastic model of contact inhibition and the proliferation of melanoma in situ. Sci Rep 2017; 7:8026. [PMID: 28808257 PMCID: PMC5556068 DOI: 10.1038/s41598-017-07553-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/27/2017] [Indexed: 11/09/2022] Open
Abstract
Contact inhibition is a central feature orchestrating cell proliferation in culture experiments; its loss is associated with malignant transformation and tumorigenesis. We performed a co-culture experiment with human metastatic melanoma cell line (SKMEL- 147) and immortalized keratinocyte cells (HaCaT). After 8 days a spatial pattern was detected, characterized by the formation of clusters of melanoma cells surrounded by keratinocytes constraining their proliferation. In addition, we observed that the proportion of melanoma cells within the total population has increased. To explain our results we propose a spatial stochastic model (following a philosophy of the Widom-Rowlinson model from Statistical Physics and Molecular Chemistry) which considers cell proliferation, death, migration, and cell-to-cell interaction through contact inhibition. Our numerical simulations demonstrate that loss of contact inhibition is a sufficient mechanism, appropriate for an explanation of the increase in the proportion of tumor cells and generation of spatial patterns established in the conducted experiments.
Collapse
Affiliation(s)
- Mauro César Cafundó Morais
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.,Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av Arlindo Béttio, 1000, Sao Paulo, 03828-000, SP, Brazil.,Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo Paulo, Brazil.,Núcleo de Estudos Interdisciplinares em Sistemas Complexos, Universidade de São Paulo, São Paulo, Brazil
| | - Izabella Stuhl
- Math Department, University of Denver, Denver, USA.,DAMPT, University of Debrecen, Debrecen, Hungary
| | - Alan U Sabino
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av Arlindo Béttio, 1000, Sao Paulo, 03828-000, SP, Brazil.,Math Department, University of Denver, Denver, USA.,Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo Paulo, Brazil.,Núcleo de Estudos Interdisciplinares em Sistemas Complexos, Universidade de São Paulo, São Paulo, Brazil
| | - Willian W Lautenschlager
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av Arlindo Béttio, 1000, Sao Paulo, 03828-000, SP, Brazil.,Math Department, University of Denver, Denver, USA.,Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo Paulo, Brazil.,Núcleo de Estudos Interdisciplinares em Sistemas Complexos, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre S Queiroga
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.,Math Department, University of Denver, Denver, USA.,Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo Paulo, Brazil.,Núcleo de Estudos Interdisciplinares em Sistemas Complexos, Universidade de São Paulo, São Paulo, Brazil
| | - Tharcisio Citrangulo Tortelli
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.,Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo Paulo, Brazil
| | - Roger Chammas
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.,Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo Paulo, Brazil
| | - Yuri Suhov
- DPMMS, University of Cambridge, Cambridge, UK.,Math Department, Penn State University, State College, USA
| | - Alexandre F Ramos
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil. .,Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av Arlindo Béttio, 1000, Sao Paulo, 03828-000, SP, Brazil. .,Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo Paulo, Brazil. .,Núcleo de Estudos Interdisciplinares em Sistemas Complexos, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Manjili MH. Tumor Dormancy and Relapse: From a Natural Byproduct of Evolution to a Disease State. Cancer Res 2017; 77:2564-2569. [PMID: 28507050 PMCID: PMC5459601 DOI: 10.1158/0008-5472.can-17-0068] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/22/2017] [Accepted: 03/10/2017] [Indexed: 12/24/2022]
Abstract
Species evolve by mutations and epigenetic changes acting on individuals in a population; tumors evolve by similar mechanisms at a cellular level in a tissue. This article reviews growing evidence about tumor dormancy and suggests that (i) cellular malignancy is a natural byproduct of evolutionary mechanisms, such as gene mutations and epigenetic modifications, which is manifested in the form of tumor dormancy in healthy individuals as well as in cancer survivors; (ii) cancer metastasis could be an early dissemination event that could occur during malignant dormancy even before primary cancer is clinically detectable; and (iii) chronic inflammation is a key factor in awakening dormant malignant cells at the primary site, leading to primary cancer development, and at distant sites, leading to advanced stage diseases. On the basis of this evidence, it is reasonable to propose that we are all cancer survivors rather than cancer-free individuals because of harboring dormant malignant cells in our organs. A better understanding of local and metastatic tumor dormancy could lead to novel cancer therapeutics for the prevention of cancer. Cancer Res; 77(10); 2564-9. ©2017 AACR.
Collapse
Affiliation(s)
- Masoud H Manjili
- Department of Microbiology & Immunology, VCU School of Medicine, Massey Cancer Center, Richmond, Virginia.
| |
Collapse
|
12
|
Hanselmann RG, Welter C. Origin of Cancer: An Information, Energy, and Matter Disease. Front Cell Dev Biol 2016; 4:121. [PMID: 27909692 PMCID: PMC5112236 DOI: 10.3389/fcell.2016.00121] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/14/2016] [Indexed: 02/01/2023] Open
Abstract
Cells are open, highly ordered systems that are far away from equilibrium. For this reason, the first function of any cell is to prevent the permanent threat of disintegration that is described by thermodynamic laws and to preserve highly ordered cell characteristics such as structures, the cell cycle, or metabolism. In this context, three basic categories play a central role: energy, information, and matter. Each of these three categories is equally important to the cell and they are reciprocally dependent. We therefore suggest that energy loss (e.g., through impaired mitochondria) or disturbance of information (e.g., through mutations or aneuploidy) or changes in the composition or distribution of matter (e.g., through micro-environmental changes or toxic agents) can irreversibly disturb molecular mechanisms, leading to increased local entropy of cellular functions and structures. In terms of physics, changes to these normally highly ordered reaction probabilities lead to a state that is irreversibly biologically imbalanced, but that is thermodynamically more stable. This primary change—independent of the initiator—now provokes and drives a complex interplay between the availability of energy, the composition, and distribution of matter and increasing information disturbance that is dependent upon reactions that try to overcome or stabilize this intracellular, irreversible disorder described by entropy. Because a return to the original ordered state is not possible for thermodynamic reasons, the cells either die or else they persist in a metastable state. In the latter case, they enter into a self-driven adaptive and evolutionary process that generates a progression of disordered cells and that results in a broad spectrum of progeny with different characteristics. Possibly, 1 day, one of these cells will show an autonomous and aggressive behavior—it will be a cancer cell.
Collapse
Affiliation(s)
- Rainer G Hanselmann
- Institute of Human Genetics, Saarland UniversityHomburg, Germany; Beratungszentrum für HygieneFreiburg, Germany
| | - Cornelius Welter
- Institute of Human Genetics, Saarland University Homburg, Germany
| |
Collapse
|
13
|
Santos NCN, Ramos MESP, Ramos AFB, Cerqueira AB, Cerqueira EMM. Evaluation of the genotoxicity and cytotoxicity of filling pastes used for pulp therapy on deciduous teeth using the micronucleus test on bone marrow from mice (Mus musculus). Mutagenesis 2016; 31:589-95. [DOI: 10.1093/mutage/gew026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Diaz-Cano SJ. Pathological bases for a robust application of cancer molecular classification. Int J Mol Sci 2015; 16:8655-75. [PMID: 25898411 PMCID: PMC4425102 DOI: 10.3390/ijms16048655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022] Open
Abstract
Any robust classification system depends on its purpose and must refer to accepted standards, its strength relying on predictive values and a careful consideration of known factors that can affect its reliability. In this context, a molecular classification of human cancer must refer to the current gold standard (histological classification) and try to improve it with key prognosticators for metastatic potential, staging and grading. Although organ-specific examples have been published based on proteomics, transcriptomics and genomics evaluations, the most popular approach uses gene expression analysis as a direct correlate of cellular differentiation, which represents the key feature of the histological classification. RNA is a labile molecule that varies significantly according with the preservation protocol, its transcription reflect the adaptation of the tumor cells to the microenvironment, it can be passed through mechanisms of intercellular transference of genetic information (exosomes), and it is exposed to epigenetic modifications. More robust classifications should be based on stable molecules, at the genetic level represented by DNA to improve reliability, and its analysis must deal with the concept of intratumoral heterogeneity, which is at the origin of tumor progression and is the byproduct of the selection process during the clonal expansion and progression of neoplasms. The simultaneous analysis of multiple DNA targets and next generation sequencing offer the best practical approach for an analytical genomic classification of tumors.
Collapse
Affiliation(s)
- Salvador J Diaz-Cano
- King's Health Partners, Cancer Studies, King's College Hospital-Viapath, Denmark Hill, London SE5-9RS, UK.
| |
Collapse
|
15
|
Sadr-Nabavi A, Dastpak M, Homaei-Shandiz F, Bahrami AR, Bidkhori HR, Raeesolmohaddeseen M. Analysis of novel mutations in BRCA1 in Iranian families with breast cancer. Hereditas 2015; 151:38-42. [PMID: 25041116 DOI: 10.1111/hrd2.00040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/13/2014] [Indexed: 11/29/2022] Open
Abstract
In Iran and the rest of the world, breast cancer (BC) is the most common malignancy in women. Familial history and age are significant risk factors for the development of this disease in Iran. Most hereditary BCs are associated with inherited mutations in the BRCA1 and BRCA2 genes. Some recent studies demonstrated that BRCA1 mutations are seen in high-risk women with family histories of BC. In this report we investigated all BRCA1 exons from 40 female patients with family histories of BC and one BC twin, and report a novel mutation in this gene in one patient. As controls, BRCA1 exons from 100 normal women and the BC-free twin of the BC twin were also examined for this mutation. None of the women in the normal group harbored the mutation. Whether this variation is specific for the Iranian population or for special subgroups remains to be determined.
Collapse
Affiliation(s)
- Ariane Sadr-Nabavi
- Cellular and Molecular Biology Research Department, ACECR-Mashhad Branch, Iran; Department of Medical Genetics, Mashhad University of Medical Science, Iran; Medical Genetic Research Centre (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Wu J, Starr S. Low-fidelity compensatory backup alternative DNA repair pathways may unify current carcinogenesis theories. Future Oncol 2015; 10:1239-53. [PMID: 24947263 DOI: 10.2217/fon.13.272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The somatic mutation carcinogenesis theory has dominated for decades. The alternative theory, tissue organization field theory, argues that the development of cancer is determined by the surrounding microenvironment. However, neither theory can explain all features of cancer. As cancers share the features of uncontrolled proliferation and genomic instability, they are likely to have the same pathogenesis. It has been found that various DNA repair pathways within a cell crosstalk with one another, forming a DNA repair network. When one DNA repair pathways is defective, the others may work as compensatory backups. The latter pathways are explored for synthetic lethal anticancer therapy. In this article, we extend the concept of compensatory alternative DNA repair to unify the theories. We propose that the microenvironmental stress can activate low-fidelity compensatory alternative DNA repair, causing mutations. If the mutation occurs to a DNA repair gene, this secondarily mutated gene can lead to even more mutated genes, including those related to other DNA repair pathways, eventually destabilizing the genome. Therefore, the low-fidelity compensatory alternative DNA repair may mediate microenvironment-dependent carcinogenesis. The proposal seems consistent with the view of evolution: the environmental stress causes mutations to adapt to the changing environment.
Collapse
Affiliation(s)
- Jiaxi Wu
- Central Laboratories, Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China
| | | |
Collapse
|
18
|
Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY, Ye KJ, Ye CJ. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev 2014; 32:325-40. [PMID: 23605440 DOI: 10.1007/s10555-013-9427-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Results of various cancer genome sequencing projects have "unexpectedly" challenged the framework of the current somatic gene mutation theory of cancer. The prevalence of diverse genetic heterogeneity observed in cancer questions the strategy of focusing on contributions of individual gene mutations. Much of the genetic heterogeneity in tumors is due to chromosomal instability (CIN), a predominant hallmark of cancer. Multiple molecular mechanisms have been attributed to CIN but unifying these often conflicting mechanisms into one general mechanism has been challenging. In this review, we discuss multiple aspects of CIN including its definitions, methods of measuring, and some common misconceptions. We then apply the genome-based evolutionary theory to propose a general mechanism for CIN to unify the diverse molecular causes. In this new evolutionary framework, CIN represents a system behavior of a stress response with adaptive advantages but also serves as a new potential cause of further destabilization of the genome. Following a brief review about the newly realized functions of chromosomes that defines system inheritance and creates new genomes, we discuss the ultimate importance of CIN in cancer evolution. Finally, a number of confusing issues regarding CIN are explained in light of the evolutionary function of CIN.
Collapse
Affiliation(s)
- Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA,
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sanchez-Tapia C, Wan FYM. Fastest time to cancer by loss of tumor suppressor genes. Bull Math Biol 2014; 76:2737-84. [PMID: 25338553 DOI: 10.1007/s11538-014-0027-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 09/11/2014] [Indexed: 11/24/2022]
Abstract
Genetic instability promotes cancer progression (by increasing the probability of cancerous mutations) as well as hinders it (by imposing a higher cell death rate for cells susceptible to cancerous mutation). With the loss of tumor suppressor gene function known to be responsible for a high percentage of breast and colorectal cancer (and a good fraction of lung cancer and other types as well), it is important to understand how genetic instability can be orchestrated toward carcinogenesis. In this context, this paper gives a complete characterization of the optimal (time-varying) cell mutation rate for the fastest time to a target cancerous cell population through the loss of both copies of a tumor suppressor gene. Similar to the (one-step) oncogene activation model previously analyzed, the optimal mutation rate of the present two-step model changes qualitatively with the convexity of the (mutation rate-dependent) cell death rate. However, the structure of the Hamiltonian for the new model differs significantly and intrinsically from that of the one-step model, and a completely new approach is needed for the solution of the present two-step problem. Considerable insight into the biology of optimal switching (between corner controls) is extracted from numerical results for cases with nonconvex death rates.
Collapse
Affiliation(s)
- Cynthia Sanchez-Tapia
- Department of Mathematics, University of California, Irvine, Irvine, CA , 92697-3875, USA,
| | | |
Collapse
|
20
|
Wodarz D, Boland CR, Goel A, Komarova NL. Methylation kinetics and CpG-island methylator phenotype status in colorectal cancer cell lines. Biol Direct 2013; 8:14. [PMID: 23758948 PMCID: PMC3691599 DOI: 10.1186/1745-6150-8-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/24/2013] [Indexed: 12/31/2022] Open
Abstract
Background Hypermethylation of CpG islands is thought to contribute to carcinogenesis through the inactivation of tumor suppressor genes. Tumor cells with relatively high levels of CpG island methylation are considered CpG island methylator phenotypes (CIMP). The mechanisms that are responsible for regulating the activity of de novo methylation are not well understood. Results We quantify and compare de novo methylation kinetics in CIMP and non-CIMP colon cancer cell lines in the context of different loci, following 5-aza-2’deoxycytidine (5-AZA)-mediated de-methylation of cells. In non-CIMP cells, a relatively fast rate of re-methylation is observed that starts with a certain time delay after cessation of 5-AZA treatment. CIMP cells, on the other hand, start re-methylation without a time delay but at a significantly slower rate. A mathematical model can account for these counter-intuitive results by assuming negative feedback regulation of de novo methylation activity and by further assuming that this regulation is corrupted in CIMP cells. This model further suggests that when methylation levels have grown back to physiological levels, de novo methylation activity ceases in non-CIMP cells, while it continues at a constant low level in CIMP cells. Conclusions We propose that the faster rate of re-methylation observed in non-CIMP compared to CIMP cells in our study could be a consequence of feedback-mediated regulation of DNA methyl transferase activity. Testing this hypothesis will involve the search for specific feedback regulatory mechanisms involved in the activation of de novo methylation. Reviewers’ report This article was reviewed by Georg Luebeck, Tomasz Lipniacki, and Anna Marciniak-Czochra
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
21
|
Feller LL, Khammissa RR, Kramer BB, Lemmer JJ. Oral squamous cell carcinoma in relation to field precancerisation: pathobiology. Cancer Cell Int 2013; 13:31. [PMID: 23552362 PMCID: PMC3626548 DOI: 10.1186/1475-2867-13-31] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/20/2013] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma of the oral cavity evolves within a field of precancerized oral epithelium containing keratinocytes at different stages of transformation. Following acquisition of additional genetic alterations, these precancerous keratinocytes may become cancerous.Persons with apparently successfully treated oral squamous cell carcinoma are at high risk of developing a new carcinoma at, or close to the site of the treated tumour. This second carcinoma may have developed either from malignant keratinocytes left behind at surgery (recurrence), or from transformed keratinocytes within the field of precancerized epithelium from which the primary carcinoma had arisen (new carcinoma).The cells of the new carcinoma may have genetic changes in common with the cells of the original carcinoma because both are descended from a proliferating monoclone within the precancerized field; but if the new cancer originates from a different clone, it may have a dissimilar genetic profile even if the original and the new carcinoma are closely contiguous.The purpose of this article is to review the pathobiology of oral squamous cell carcinoma in relation to fields of precancerised oral epithelium.
Collapse
Affiliation(s)
- Liviu L Feller
- Department of Periodontology and Oral Medicine, University of Limpopo, Medunsa campus, South Africa.
| | | | | | | |
Collapse
|
22
|
Zahreddine H, Borden KLB. Mechanisms and insights into drug resistance in cancer. Front Pharmacol 2013; 4:28. [PMID: 23504227 PMCID: PMC3596793 DOI: 10.3389/fphar.2013.00028] [Citation(s) in RCA: 464] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/25/2013] [Indexed: 11/24/2022] Open
Abstract
Cancer drug resistance continues to be a major impediment in medical oncology. Clinically, resistance can arise prior to or as a result of cancer therapy. In this review, we discuss different mechanisms adapted by cancerous cells to resist treatment, including alteration in drug transport and metabolism, mutation and amplification of drug targets, as well as genetic rewiring which can lead to impaired apoptosis. Tumor heterogeneity may also contribute to resistance, where small subpopulations of cells may acquire or stochastically already possess some of the features enabling them to emerge under selective drug pressure. Making the problem even more challenging, some of these resistance pathways lead to multidrug resistance, generating an even more difficult clinical problem to overcome. We provide examples of these mechanisms and some insights into how understanding these processes can influence the next generation of cancer therapies.
Collapse
Affiliation(s)
- Hiba Zahreddine
- Department of Pathology and Cell Biology, Institute of Research in Immunology and Cancer, Université de Montréal Montreal, QC, Canada
| | | |
Collapse
|
23
|
Alvarado-Hernandez DL, Montero-Montoya R, Serrano-García L, Arellano-Aguilar O, Jasso-Pineda Y, Yáñez-Estrada L. Assessment of exposure to organochlorine pesticides and levels of DNA damage in mother-infant pairs of an agrarian community. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:99-111. [PMID: 23355095 DOI: 10.1002/em.21753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 06/01/2023]
Abstract
Exposure to organochlorine pesticides was studied in a group of mother-infant pairs living in a rural area where agriculture is the main economic activity. Fumigation in this zone is performed with airplanes, thus affecting the inhabited areas around them, including schools. Heparinized venous blood of mothers and umbilical cords was used to evaluate the olive tail moment in the comet assay, and micronuclei, chromatin buds, and nucleoplasmic bridges in peripheral blood lymphocytes. Cord blood samples were taken at the moment of birth only from natural and normal parturitions. Determinations of hexachlorobenzene, aldrin, heptachlor epoxide, oxichlordane, t and c-chlordane, cis-nonachlor, mirex, alpha and beta-endosulfan, alpha, beta and gamma hexachlorocyclohexane, and p'p'-DDT, p'p'-DDE were conducted to establish the differential distribution of the toxicants between compartments, i.e., mother and umbilical cord. Significantly higher pesticide levels were found in umbilical cord plasma than in mothers' plasma for almost all compounds tested, except DDE and oxychlordane. Significantly higher olive tail moments were found in umbilical cords than in mothers, whereas micronuclei frequencies were higher in mothers than in umbilical cords. However, neither the levels of micronuclei nor the olive tail moment were correlated with pesticide levels. Given that no other exposure to toxic compounds has been identified in this region, the lack of correlation between genotoxicity biomarkers and pesticide levels may be due to the variability of the exposure and to endogenous processes related to lipid mobility during pregnancy, the metabolism of the compounds, and individual susceptibilities.
Collapse
Affiliation(s)
- Diana Lorena Alvarado-Hernandez
- Departamento de Toxicología Ambiental, Facultad de Medicina, Laboratorio de Género, Salud y Ambiente, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., México
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Diaz-Cano SJ. Tumor heterogeneity: mechanisms and bases for a reliable application of molecular marker design. Int J Mol Sci 2012; 13:1951-2011. [PMID: 22408433 PMCID: PMC3292002 DOI: 10.3390/ijms13021951] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/23/2012] [Accepted: 02/01/2012] [Indexed: 12/22/2022] Open
Abstract
Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma), mechanisms of intercellular transference of genetic information (exosomes), and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning.
Collapse
Affiliation(s)
- Salvador J. Diaz-Cano
- Department Histopathology, King’s College Hospital and King’s Health Partners, Denmark Hill, London SE5 9RS, UK; E-Mail: ; Tel.: +44-20-3299-3041; Fax: +44-20-3299-3670
| |
Collapse
|
26
|
Abstract
A major dogma in cancer research is that cancer begins at the cellular level. Because of this single-cell origin, evolutionary principles have often been used to explain how somatic cancer cells are selected at a sub-individual level. The traditional application of Darwinian theory, however, in which the colony of cells constituting an individual is regarded as a whole, has not been applied extensively to the understanding of cancer until recently. Two proponents for this view, Breivik and Gaudernack, have suggested that in certain situations the cost of DNA repair might exceed the cost of errors. This model predicts that genetic stability is configured for an optimal cost-benefit relationship. Natural selection is not expected to have produced the best genetic stability available in the human body, merely the best compromise of DNA repair and costs. Repair and maintenance of the vast human genome is thermodynamically expensive, and an optimal balance between DNA repair and dietary needs is likely to have originated. Furthermore, fast growth conveys significant advantages such as early maturation or cognitive development, but usually at the expense of replication accuracy. Thus, a compromise between growth speed and cancer risk is likely to have taken place. These and other ecological mechanisms have probably prevented genomic stability to reach its full potential in the human body. In contrast, germ lines express near perfect DNA maintenance. Although germ cells are specialized DNA-conserving cells with few other functions, it's not given that their proteins will all be incompatible with the somatic cell. One approach to study this would be to systematically explore which DNA-stability and -repair systems are unique in germ cells, and induce their expression in invertebrate and mammalian model organisms. This could unveil which DNA-repair systems are switched off in the somatic cell lines, as they are incompatible, and which are absent due to evolution. The present review discuss different DNA-repair systems and cell cycle check point control mechanisms shown to be different or unique in the germ cell, and how they may be utilized in cancer therapy.
Collapse
|
27
|
Heng HHQ, Stevens JB, Bremer SW, Liu G, Abdallah BY, Ye CJ. Evolutionary mechanisms and diversity in cancer. Adv Cancer Res 2012; 112:217-53. [PMID: 21925306 DOI: 10.1016/b978-0-12-387688-1.00008-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The recently introduced genome theory of cancer evolution provides a new framework for evolutionary studies on cancer. In particular, the established relationship between the large number of individual molecular mechanisms and the general evolutionary mechanism of cancer calls upon a change in our strategies that have been based on the characterization of common cancer gene mutations and their defined pathways. To further explain the significance of the genome theory of cancer evolution, a brief review will be presented describing the various attempts to illustrate the evolutionary mechanism of cancer, followed by further analysis of some key components of somatic cell evolution, including the diversity of biological systems, the multiple levels of information systems and control systems, the two phases (the punctuated or discontinuous phase and gradual Darwinian stepwise phase) and dynamic patterns of somatic cell evolution where genome replacement is the driving force. By linking various individual molecular mechanisms to the level of genome population diversity and tumorigenicity, the general mechanism of cancer has been identified as the evolutionary mechanism of cancer, which can be summarized by the following three steps including stress-induced genome instability, population diversity or heterogeneity, and genome-mediated macroevolution. Interestingly, the evolutionary mechanism is equal to the collective aggregate of all individual molecular mechanisms. This relationship explains why most of the known molecular mechanisms can contribute to cancer yet there is no single dominant mechanism for the majority of clinical cases. Despite the fact that each molecular mechanism can serve as a system stress and initiate the evolutionary process, to achieve cancer, multiple cycles of genome-mediated macroevolution are required and are a stochastically determined event. Finally, the potential clinical implications of the evolutionary mechanism of cancer are briefly reviewed.
Collapse
Affiliation(s)
- Henry H Q Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, MI, USA
| | | | | | | | | | | |
Collapse
|
28
|
Mamun MA, Rahman MS, Fahmid Islam M, Honi U, Sobhani ME. Molecular biology and riddle of cancer: the ‘Tom & Jerry’ show. Oncol Rev 2011. [DOI: 10.1007/s12156-011-0091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
29
|
Tian T, Olson S, Whitacre JM, Harding A. The origins of cancer robustness and evolvability. Integr Biol (Camb) 2010; 3:17-30. [PMID: 20944865 DOI: 10.1039/c0ib00046a] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Unless diagnosed early, many adult cancers remain incurable diseases. This is despite an intense global research effort to develop effective anticancer therapies, calling into question the use of rational drug design strategies in targeting complex disease states such as cancer. A fundamental challenge facing researchers and clinicians is that cancers are inherently robust biological systems, able to survive, adapt and proliferate despite the perturbations resulting from anticancer drugs. It is essential that the mechanisms underlying tumor robustness be formally studied and characterized, as without a thorough understanding of the principles of tumor robustness, strategies to overcome therapy resistance are unlikely to be found. Degeneracy describes the ability of structurally distinct system components (e.g. proteins, pathways, cells, organisms) to be conditionally interchangeable in their contribution to system traits and it has been broadly implicated in the robustness and evolvability of complex biological systems. Here we focus on one of the most important mechanisms underpinning tumor robustness and degeneracy, the cellular heterogeneity that is the hallmark of most solid tumors. Based on a combination of computational, experimental and clinical studies we argue that stochastic noise is an underlying cause of tumor heterogeneity and particularly degeneracy. Drawing from a number of recent data sets, we propose an integrative model for the evolution of therapy resistance, and discuss recent computational studies that propose new therapeutic strategies aimed at defeating the adaptable cancer phenotype.
Collapse
|
30
|
Feller L, Wood NH, Khammissa RAG, Lemmer J. Human papillomavirus-mediated carcinogenesis and HPV-associated oral and oropharyngeal squamous cell carcinoma. Part 1: human papillomavirus-mediated carcinogenesis. Head Face Med 2010; 6:14. [PMID: 20633287 PMCID: PMC2912877 DOI: 10.1186/1746-160x-6-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 07/15/2010] [Indexed: 12/20/2022] Open
Abstract
High-risk human papillomavirus (HPV) E6 and E7 oncoproteins are essential factors for HPV-induced carcinogenesis, and for the maintenance of the consequent neoplastic growth. Cellular transformation is achieved by complex interaction of these oncogenes with several cellular factors of cell cycle regulation including p53, Rb, cyclin-CDK complexes, p21 and p27. Both persistent infection with high-risk HPV genotypes and immune dysregulation are associated with increased risk of HPV-induced squamous cell carcinoma.
Collapse
Affiliation(s)
- Liviu Feller
- Department of Periodontology and Oral Medicine, University of Limpopo, Medunsa Campus, South Africa.
| | | | | | | |
Collapse
|
31
|
Silva Soares EW, de Lima Santos SC, Bueno AG, Cavalli IJ, Cavalli LR, Fouto Matias JE, de Souza Fonseca Ribeiro EM. Concomitant loss of heterozygosity at the BRCA1 and FHIT genes as a prognostic factor in sporadic breast cancer. ACTA ACUST UNITED AC 2010; 199:24-30. [PMID: 20417865 DOI: 10.1016/j.cancergencyto.2010.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/21/2010] [Accepted: 01/25/2010] [Indexed: 11/16/2022]
Abstract
Previous studies have shown loss of heterozygosity (LOH) at the BRCA1 and FHIT genes in sporadic primary breast cancer. The aim of this study was to evaluate concomitant LOH at the BRCA1 and FHIT genes in sporadic breast cancer and investigate its influence on patient survival. Loss of heterozygosity was determined using microsatellite markers. The analysis on the informative cases (n = 72) indicated LOH at both the BRCA1 and FHIT loci in 25 cases (35%), the absence of LOH at both loci in 23 cases (32%), and the presence of LOH at one of the loci in 24 cases (33%). The concomitant LOH was associated with poor prognostic factors, such as large tumors (P = 0.01), axillary nodal involvement (P < 0.01), histologic grade III (P < 0.01), vascular invasion (P = 0.01), and negative hormone receptor (P = 0.02). After a median follow-up period of 48 months, the concomitant LOH group had the shortest survival (P < 0.02 by log-rank test; P < 0.05 by Cox model; hazard ratio of 4.87), compared with patients without LOH. These data suggest that concomitant allelic losses of the BRCA1 and FHIT genes are associated with more aggressive breast tumors.
Collapse
|
32
|
Little MP. Cancer models, genomic instability and somatic cellular Darwinian evolution. Biol Direct 2010; 5:19; discussion 19. [PMID: 20406436 PMCID: PMC2873266 DOI: 10.1186/1745-6150-5-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/20/2010] [Indexed: 01/03/2023] Open
Abstract
The biology of cancer is critically reviewed and evidence adduced that its development can be modelled as a somatic cellular Darwinian evolutionary process. The evidence for involvement of genomic instability (GI) is also reviewed. A variety of quasi-mechanistic models of carcinogenesis are reviewed, all based on this somatic Darwinian evolutionary hypothesis; in particular, the multi-stage model of Armitage and Doll (Br. J. Cancer 1954:8;1-12), the two-mutation model of Moolgavkar, Venzon, and Knudson (MVK) (Math. Biosci. 1979:47;55-77), the generalized MVK model of Little (Biometrics 1995:51;1278-1291) and various generalizations of these incorporating effects of GI (Little and Wright Math. Biosci. 2003:183;111-134; Little et al. J. Theoret. Biol. 2008:254;229-238).
Collapse
Affiliation(s)
- Mark P Little
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College Faculty of Medicine, London, UK.
| |
Collapse
|
33
|
Talavera D, Taylor MS, Thornton JM. The (non)malignancy of cancerous amino acidic substitutions. Proteins 2010; 78:518-29. [PMID: 19787769 DOI: 10.1002/prot.22574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The process of natural selection acts both on individual organisms within a population and on individual cells within an organism as they develop into cancer. In this work, we have taken a first step toward understanding the differences in selection pressures exerted on the human genome under these disparate circumstances. Focusing on single amino acid substitutions, we have found that cancer-related mutations (CRMs) are frequent in evolutionarily conserved sites, whereas single amino acid polymorphisms (SAPs) tend to appear in sites having a more relaxed evolutionary pressure. Those CRMs classed as cancer driver mutations show greater enrichment for conserved sites than passenger mutations. Consistent with this, driver mutations are enriched for sites annotated as key functional residues and their neighbors, and are more likely to be located on the surface of proteins than expected by chance. Overall the pattern of CRM and polymorphism is remarkably similar, but we do see a clear signal indicative of diversifying selection for disruptive amino acid substitutions in the cancer driver mutations. The ultimate consequence of the appearance of those mutations must be advantageous for the tumor cell, leading to cell population-growth and migration events similar to those seen in natural ecosystems.
Collapse
Affiliation(s)
- David Talavera
- EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.
| | | | | |
Collapse
|
34
|
Reid BJ, Li X, Galipeau PC, Vaughan TL. Barrett's oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat Rev Cancer 2010; 10:87-101. [PMID: 20094044 PMCID: PMC2879265 DOI: 10.1038/nrc2773] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The public health importance of Barrett's oesophagus lies in its association with oesophageal adenocarcinoma. The incidence of oesophageal adenocarcinoma has risen at an alarming rate over the past four decades in many regions of the Western world, and there are indications that the incidence of this disease is on the rise in Asian populations in which it has been rare. Much has been learned of host and environmental risk factors that affect the incidence of oesophageal adenocarcinoma, and data indicate that patients with Barrett's oesophagus rarely develop oesophageal adenocarcinoma. Given that 95% of oesophageal adenocarcinomas arise in individuals without a prior diagnosis of Barrett's oesophagus, what strategies can be used to reduce late diagnosis of oesophageal adenocarcinoma?
Collapse
Affiliation(s)
- Brian J Reid
- Divisions of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, 98109 Seattle, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
Barrett's esophagus is a condition in which the stratified squamous epithelium of the distal esophagus is replaced by specialized intestinal metaplasia. Clinical management of Barrett's esophagus, like many other "premalignant" conditions, is characterized by overdiagnosis of benign early changes that will not cause death or suffering during the lifetime of an individual and underdiagnosis of life-threatening early disease. Recent studies of a number of different types of cancer have revealed much greater genomic complexity than was previously suspected. This genomic complexity could create challenges for early detection and prevention if it develops in premalignant epithelia prior to cancer. Neoplastic progression unfolds in space and time, and Barrett's esophagus provides one of the best models for rapid advances, including "gold standard" cohort studies, to distinguish individuals who do and do not progress to cancer. Specialized intestinal metaplasia has many properties that appear to be protective adaptations to the abnormal environment of gastroesophageal reflux. A large body of evidence accumulated over several decades implicates chromosome instability in neoplastic progression from Barrett's esophagus to esophageal adenocarcinoma. Small, spatial scale studies have been used to infer the temporal order in which genomic abnormalities develop during neoplastic progression in Barrett's esophagus. These spatial studies have provided the basis for prospective cohort studies of biomarkers, including DNA content abnormalities (tetraploidy, aneuploidy) and a biomarker panel of 9p LOH, 17p LOH and DNA content abnormalities. Recent advances in SNP array technology provide a uniform platform to assess chromosome instability.
Collapse
Affiliation(s)
- Brian J Reid
- Fred Hutchinson Cancer Research Center, Divisions of Human Biology and Public Health Sciences, Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
36
|
Abstract
Semen quality appears to have declined in recent decades in some populations, e.g. north-western Europe. At the same time, couple fertility may have increased. Hypotheses are suggested for this apparent inconsistency. Alongside the deterioration of spermatogenesis there is clear evidence of an increase in other related problems, notably testicular cancer. The sharply rising trend in this condition started a century ago--decades earlier than sometimes thought. This and other evidence clearly indicates an environmental origin, but there is also a definite genetic component. The relationship of genetics and environment is discussed in the context of the puzzle that infertility is inherited, which appears to be impossible from an evolutionary standpoint. Poor semen quality is related not only to testicular cancer but also to zygote development, in which cancer-like disruption of the genetic apparatus is observed, with serious implications for offspring health. This needs to be seen in the context that human reproduction is prone to a higher degree of impairment than that of other mammalian species, in relation to spermatogenesis, couple fertility, early pregnancy loss and embryonic aneuploidy; female- and male-mediated pathways are both implicated. It is unclear whether such human specificity originated on an evolutionary/genetic or a historico-social timescale, which is important in relation to pathogenesis. The evidence clearly indicates that the currently most popular explanation for male reproductive system impairment, the endocrine disruption hypothesis, cannot explain the main features of the descriptive epidemiology. An alternative pathogenesis is outlined, and some possible exposures considered that could be responsible.
Collapse
Affiliation(s)
- Michael Joffe
- Department of Epidemiology and Public Health, Imperial College, London W2 1PF, UK.
| |
Collapse
|
37
|
Sheu JJC, Lee CH, Ko JY, Tsao GS, Wu CC, Fang CY, Tsai FJ, Hua CH, Chen CL, Chen JY. Chromosome 3p12.3-p14.2 and 3q26.2-q26.32 Are Genomic Markers for Prognosis of Advanced Nasopharyngeal Carcinoma. Cancer Epidemiol Biomarkers Prev 2009; 18:2709-16. [DOI: 10.1158/1055-9965.epi-09-0349] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Sheu JJC, Hua CH, Wan L, Lin YJ, Lai MT, Tseng HC, Jinawath N, Tsai MH, Chang NW, Lin CF, Lin CC, Hsieh LJ, Wang TL, Shih IM, Tsai FJ. Functional genomic analysis identified epidermal growth factor receptor activation as the most common genetic event in oral squamous cell carcinoma. Cancer Res 2009; 69:2568-76. [PMID: 19276369 DOI: 10.1158/0008-5472.can-08-3199] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A 250K single-nucleotide polymorphism array was used to study subchromosomal alterations in oral squamous cell carcinoma (OSCC). The most frequent amplification was found at 7p11.2 in 9 of 29 (31%) oral cancer patients. Minimal genomic mapping verified a unique amplicon spanning from 54.6 to 55.3 Mb on chromosome 7, which contains SEC61G and epidermal growth factor receptor (EGFR). Results from fluorescence in situ hybridization, transcriptome, and immunohistochemistry analyses indicated that the expression level of EGFR, but not of SEC61G, was up-regulated and tightly correlated with DNA copy number in 7p11.2 amplified tumors. Among the members of the erbB family, EGFR (HER1) was found to be the most frequently amplified and highly expressed gene in both human and mouse oral tumors (P < 0.01). Genes for downstream effectors of EGFR, including KRAS, mitogen-activated protein kinase 1, and CCND1, were also found amplified or mutated, which resulted in activation of EGFR signaling in 55% of OSCC patients. Head and neck squamous cancer cells with different EGFR expression levels showed differential sensitivity to antitumor effects of AG1478, a potent EGFR inhibitor. AG1478-induced EGFR inactivation significantly suppressed tumor development and progression in a mouse oral cancer model. Our data suggest that EGFR signaling is important in oral cancer development and that anti-EGFR therapy would benefit patients who carry the 7p11.2 amplicon in their tumors.
Collapse
|
39
|
Chi YH, Ward JM, Cheng LI, Yasunaga J, Jeang KT. Spindle assembly checkpoint and p53 deficiencies cooperate for tumorigenesis in mice. Int J Cancer 2009; 124:1483-9. [PMID: 19065665 DOI: 10.1002/ijc.24094] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The spindle assembly checkpoint (SAC) guards against chromosomal missegregation during mitosis. To investigate the role of SAC in tumor development, mice heterozygously knocked out for the mitotic arrest deficient (Mad) genes Mad1 and/or Mad2 were mated with p53(+/) (-) mice. Increased tumor frequencies were reproducibly observed in Mad2(+/) (-)p53(+/) (-) (88.2%) and Mad1(+/) (-)Mad2(+/) (-)p53(+/) (-) (95.0%) mice compared with p53(+/) (-) (66.7%) mice. Moreover, 53% of Mad2(+/) (-)p53(+/) (-) mice developed lymphomas compared with 11% of p53(+/) (-) mice. By examining chromosome content, increased loss in diploidy was seen in cells from Mad2(+/) (-)p53(+/) (-) versus p53(+/) (-) mice, correlating loss of SAC function, in a p53(+/) (-) context, with increased aneuploidy and tumorigenesis. The findings here provide evidence for a cooperative role of Mad1/Mad2 and p53 genes in preventing tumor development.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
40
|
Payne CM, Bernstein C, Dvorak K, Bernstein H. Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis. Clin Exp Gastroenterol 2008; 1:19-47. [PMID: 21677822 PMCID: PMC3108627 DOI: 10.2147/ceg.s4343] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sporadic colon cancer is caused predominantly by dietary factors. We have selected bile acids as a focus of this review since high levels of hydrophobic bile acids accompany a Western-style diet, and play a key role in colon carcinogenesis. We describe how bile acid-induced stresses cause cell death in susceptible cells, contribute to genomic instability in surviving cells, impose Darwinian selection on survivors and enhance initiation and progression to colon cancer. The most likely major mechanisms by which hydrophobic bile acids induce stresses on cells (DNA damage, endoplasmic reticulum stress, mitochondrial damage) are described. Persistent exposure of colon epithelial cells to hydrophobic bile acids can result in the activation of pro-survival stress-response pathways, and the modulation of numerous genes/proteins associated with chromosome maintenance and mitosis. The multiple mechanisms by which hydrophobic bile acids contribute to genomic instability are discussed, and include oxidative DNA damage, p53 and other mutations, micronuclei formation and aneuploidy. Since bile acids and oxidative stress decrease DNA repair proteins, an increase in DNA damage and increased genomic instability through this mechanism is also described. This review provides a mechanistic explanation for the important link between a Western-style diet and associated increased levels of colon cancer.
Collapse
Affiliation(s)
- Claire M Payne
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|
41
|
Bizzarri M, Cucina A, Conti F, D’Anselmi F. Beyond the oncogene paradigm: understanding complexity in cancerogenesis. Acta Biotheor 2008; 56:173-96. [PMID: 18288572 DOI: 10.1007/s10441-008-9047-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 02/06/2008] [Indexed: 12/13/2022]
Abstract
In the past decades, an enormous amount of precious information has been collected about molecular and genetic characteristics of cancer. This knowledge is mainly based on a reductionistic approach, meanwhile cancer is widely recognized to be a 'system biology disease'. The behavior of complex physiological processes cannot be understood simply by knowing how the parts work in isolation. There is not solely a matter how to integrate all available knowledge in such a way that we can still deal with complexity, but we must be aware that a deeply transformation of the currently accepted oncologic paradigm is urgently needed. We have to think in terms of biological networks: understanding of complex functions may in fact be impossible without taking into consideration influences (rules and constraints) outside of the genome. Systems Biology involves connecting experimental unsupervised multivariate data to mathematical and computational approach than can simulate biologic systems for hypothesis testing or that can account for what it is not known from high-throughput data sets. Metabolomics could establish the requested link between genotype and phenotype, providing informations that ensure an integrated understanding of pathogenic mechanisms and metabolic phenotypes and provide a screening tool for new targeted drug.
Collapse
|
42
|
Frumkin D, Wasserstrom A, Itzkovitz S, Stern T, Harmelin A, Eilam R, Rechavi G, Shapiro E. Cell lineage analysis of a mouse tumor. Cancer Res 2008; 68:5924-31. [PMID: 18632647 DOI: 10.1158/0008-5472.can-07-6216] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Revealing the lineage relations among cancer cells can shed light on tumor growth patterns and metastasis formation, yet cell lineages have been difficult to come by in the absence of a suitable method. We previously developed a method for reconstructing cell lineage trees from genomic variability caused by somatic mutations. Here, we apply the method to cancer and reconstruct, for the first time, a lineage tree of neoplastic and adjacent normal cells obtained by laser microdissection from tissue sections of a mouse lymphoma. Analysis of the reconstructed tree reveals that the tumor initiated from a single founder cell, approximately 5 months before diagnosis, that the tumor grew in a physically coherent manner, and that the average number of cell divisions accumulated in cancerous cells was almost twice than in adjacent normal lung epithelial cells but slightly less than the expected figure for normal B lymphocytes. The cells were also genotyped at the TP53 locus, and neoplastic cells were found to share a common mutation, which was most likely present in a heterozygous state. Our work shows that the ability to obtain data regarding the physical appearance, precise anatomic position, genotypic profile, and lineage position of single cells may be useful for investigating cancer development, progression, and interaction with the microenvironment.
Collapse
Affiliation(s)
- Dan Frumkin
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhao Y, Epstein RJ. Programmed genetic instability: a tumor-permissive mechanism for maintaining the evolvability of higher species through methylation-dependent mutation of DNA repair genes in the male germ line. Mol Biol Evol 2008; 25:1737-49. [PMID: 18535014 PMCID: PMC2464741 DOI: 10.1093/molbev/msn126] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tumor suppressor genes are classified by their somatic behavior either as caretakers (CTs) that maintain DNA integrity or as gatekeepers (GKs) that regulate cell survival, but the germ line role of these disease-related gene subgroups may differ. To test this hypothesis, we have used genomic data mining to compare the features of human CTs (n = 38), GKs (n = 36), DNA repair genes (n = 165), apoptosis genes (n = 622), and their orthologs. This analysis reveals that repair genes are numerically less common than apoptosis genes in the genomes of multicellular organisms (P < 0.01), whereas CT orthologs are commoner than GK orthologs in unicellular organisms (P < 0.05). Gene targeting data show that CTs are less essential than GKs for survival of multicellular organisms (P < 0.0005) and that CT knockouts often permit offspring viability at the cost of male sterility. Patterns of human familial oncogenic mutations confirm that isolated CT loss is commoner than is isolated GK loss (P < 0.00001). In sexually reproducing species, CTs appear subject to less efficient purifying selection (i.e., higher Ka/Ks) than GKs (P = 0.000003); the faster evolution of CTs seems likely to be mediated by gene methylation and reduced transcription-coupled repair, based on differences in dinucleotide patterns (P = 0.001). These data suggest that germ line CT/repair gene function is relatively dispensable for survival, and imply that milder (e.g., epimutational) male prezygotic repair defects could enhance sperm variation—and hence environmental adaptation and speciation—while sparing fertility. We submit that CTs and repair genes are general targets for epigenetically initiated adaptive evolution, and propose a model in which human cancers arise in part as an evolutionarily programmed side effect of age- and damage-inducible genetic instability affecting both somatic and germ line lineages.
Collapse
Affiliation(s)
- Yongzhong Zhao
- Laboratory of Computational Oncology, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | |
Collapse
|
44
|
Little MP, Vineis P, Li G. A stochastic carcinogenesis model incorporating multiple types of genomic instability fitted to colon cancer data. J Theor Biol 2008; 254:229-38. [PMID: 18640693 DOI: 10.1016/j.jtbi.2008.05.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 05/02/2008] [Accepted: 05/17/2008] [Indexed: 10/22/2022]
Abstract
A generalization of the two-mutation stochastic carcinogenesis model of Moolgavkar, Venzon and Knudson and certain models constructed by Little [Little, M.P. (1995). Are two mutations sufficient to cause cancer? Some generalizations of the two-mutation model of carcinogenesis of Moolgavkar, Venzon, and Knudson, and of the multistage model of Armitage and Doll. Biometrics 51, 1278-1291] and Little and Wright [Little, M.P., Wright, E.G. (2003). A stochastic carcinogenesis model incorporating genomic instability fitted to colon cancer data. Math. Biosci. 183, 111-134] is developed; the model incorporates multiple types of progressive genomic instability and an arbitrary number of mutational stages. The model is fitted to US Caucasian colon cancer incidence data. On the basis of the comparison of fits to the population-based data, there is little evidence to support the hypothesis that the model with more than one type of genomic instability fits better than models with a single type of genomic instability. Given the good fit of the model to this large dataset, it is unlikely that further information on presence of genomic instability or of types of genomic instability can be extracted from age-incidence data by extensions of this model.
Collapse
Affiliation(s)
- Mark P Little
- Department of Epidemiology and Public Health, Imperial College Faculty of Medicine, London W21PG, UK.
| | | | | |
Collapse
|
45
|
Laconi E, Doratiotto S, Vineis P. The microenvironments of multistage carcinogenesis. Semin Cancer Biol 2008; 18:322-9. [PMID: 18456510 DOI: 10.1016/j.semcancer.2008.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 03/25/2008] [Indexed: 12/19/2022]
Abstract
Overt neoplasia is often the result of a chronic disease process encompassing an extended segment of the lifespan of any species. A common pathway in the natural history of the disease is the appearance of focal proliferative lesions that are known to act as precursors for cancer development. It is becoming increasingly apparent that the emergence of such lesions is not a cell-autonomous phenomenon, but is heavily dependent on microenvironmental cues derived from the surrounding tissue. Specific alterations in the tissue microenvironment that can foster the selective growth of focal lesions are discussed herein. Furthermore, we argue that a fundamental property of focal lesions as it relates to their precancerous nature lies in their altered growth pattern as compared to the tissue where they reside. The resulting altered tissue architecture translates into the emergence of a unique tumor microenvironment inside these lesions, associated with altered blood vessels and/or blood supply which in turn can trigger biochemical and metabolic changes fueling tumor progression. A deeper understanding of the role(s) of tissue and tumor microenvironments in the pathogenesis of cancer is essential to design more effective strategies for the management of this disease.
Collapse
Affiliation(s)
- Ezio Laconi
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Patologia Sperimentale, Università di Cagliari, 09125 Cagliari, Italy.
| | | | | |
Collapse
|
46
|
Komarova NL, Sadovsky AV, Wan FYM. Selective pressures for and against genetic instability in cancer: a time-dependent problem. J R Soc Interface 2008; 5:105-21. [PMID: 17580291 PMCID: PMC2605501 DOI: 10.1098/rsif.2007.1054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Genetic instability in cancer is a two-edge sword. It can both increase the rate of cancer progression (by increasing the probability of cancerous mutations) and decrease the rate of cancer growth (by imposing a large death toll on dividing cells). Two of the many selective pressures acting upon a tumour, the need for variability and the need to minimize deleterious mutations, affect the tumour's 'choice' of a stable or unstable 'strategy'. As cancer progresses, the balance of the two pressures will change. In this paper, we examine how the optimal strategy of cancerous cells is shaped by the changing selective pressures. We consider the two most common patterns in multistage carcinogenesis: the activation of an oncogene (a one-step process) and an inactivation of a tumour-suppressor gene (a two-step process). For these, we formulate an optimal control problem for the mutation rate in cancer cells. We then develop a method to find optimal time-dependent strategies. It turns out that for a wide range of parameters, the most successful strategy is to start with a high rate of mutations and then switch to stability. This agrees with the growing biological evidence that genetic instability, prevalent in early cancers, turns into stability later on in the progression. We also identify parameter regimes where it is advantageous to keep stable (or unstable) constantly throughout the growth.
Collapse
Affiliation(s)
- Natalia L Komarova
- Department of Mathematics, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
47
|
Vineis P, Melnick R. A Darwinian perspective: right premises, questionable conclusion. A commentary on Niall Shanks and Rebecca Pyles' "evolution and medicine: the long reach of "Dr. Darwin"". Philos Ethics Humanit Med 2008; 3:6. [PMID: 18269763 PMCID: PMC2265736 DOI: 10.1186/1747-5341-3-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 02/12/2008] [Indexed: 05/25/2023] Open
Abstract
As Dobzhansky wrote, nothing in biology makes sense outside the context of the evolutionary theory, and this truth has not been sufficiently explored yet by medicine. We comment on Shanks and Pyles' recently published paper, Evolution and medicine: the long reach of "Dr. Darwin", and discuss some recent advancements in the application of evolutionary theory to carcinogenesis. However, we disagree with Shanks and Pyles about the usefulness of animal experiments in predicting human hazards. Based on the darwinian observation of inter-species and inter-individual variation in all biological functions, Shanks and Pyles suggest that animal experiments cannot be used to identify hazards to human health. We claim that while the activity of enzymes may vary among individuals and among species, this does not indicate that critical events in disease processes occurring after exposure to hazardous agents differ qualitatively between animal models and humans. In addition, the goal is to avoid human disease whenever possible and with the means that are available at a given point in time. Epidemics of cancer could have been prevented if experimental data had been used to reduce human exposures or ban carcinogenic chemicals. We discuss examples.
Collapse
Affiliation(s)
- Paolo Vineis
- Department of Epidemiology and Community Health, Imperial College London, St Mary's Campus, Norfolk Place, W2 1PG, London, UK
| | - Ronald Melnick
- Environmental Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
48
|
Saletta F, Matullo G, Manuguerra M, Arena S, Bardelli A, Vineis P. Exposure to the tobacco smoke constituent 4-aminobiphenyl induces chromosomal instability in human cancer cells. Cancer Res 2007; 67:7088-94. [PMID: 17671175 DOI: 10.1158/0008-5472.can-06-4420] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relationships between environmental factors and the genetic abnormalities that drive carcinogenesis are supported by experimental and epidemiologic evidence but their molecular basis has not been fully elucidated. At the genomic level, most human cancers display either chromosomal (CIN) or microsatellite (MIN) instability. The molecular mechanisms through which normal cells acquire these forms of instability are largely unknown. The arylamine 4-aminobiphenyl (4-ABP) is a tobacco smoke constituent, an environmental contaminant, and a well-established carcinogen in humans. Among others, bladder, lung, colon, and breast cancers have been associated with 4-ABP. We have investigated the effects of 4-ABP and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on genetically stable colorectal (HCT116) and bladder (RT112) cancer cells. Cells were treated with carcinogens to generate resistant clones that were then subjected to genetic analysis to assess whether they displayed either CIN or MIN. We found that 50% to 60% of cells treated with 4-ABP developed CIN but none developed MIN as confirmed by their ability to gain and lose chromosomes. In contrast, all MNNG-treated clones (12/12) developed MIN but none developed CIN as shown by the microsatellite assay. The mismatch repair protein expression analysis suggests that the acquired mechanism of MIN resistance in the HCT116 MNNG-treated cells is associated with the reduction or the complete loss of MLH1 expression. By providing a mechanistic link between exposure to a tobacco constituent and the development of CIN, our results contribute to a better understanding of the origins of genetic instability, one of the remaining unsolved problems in cancer research.
Collapse
|
49
|
Oldenburg RA, Meijers-Heijboer H, Cornelisse CJ, Devilee P. Genetic susceptibility for breast cancer: How many more genes to be found? Crit Rev Oncol Hematol 2007; 63:125-49. [PMID: 17498966 DOI: 10.1016/j.critrevonc.2006.12.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 12/01/2006] [Accepted: 12/14/2006] [Indexed: 12/16/2022] Open
Abstract
Today, breast cancer is the most commonly occurring cancer among women. It accounts for 22% of all female cancers and the estimated annual incidence of breast cancer worldwide is about one million cases. Many risk factors have been identified but a positive family history remains among the most important ones established for breast cancer, with first-degree relatives of patients having an approximately two-fold elevated risk. It is currently estimated that approximately 20-25% of this risk is explained by known breast cancer susceptibility genes, mostly those conferring high risks, such as BRCA1 and BRCA2. However, these genes explain less than 5% of the total breast cancer incidence, even though several studies have suggested that the proportion of breast cancer that can be attributed to a genetic factor may be as high as 30%. It is thus likely that there are still breast cancer susceptibility genes to be found. It is presently not known how many such genes there still are, nor how many will fall into the class of rare high-risk (e.g. BRCAx) or of common low-risk susceptibility genes, nor if and how these factors interact with each other to cause susceptibility (a polygenic model). In this review we will address this question and discuss the different undertaken approaches used in identifying new breast cancer susceptibility genes, such as (genome-wide) linkage analysis, CGH, LOH, association studies and global gene expression analysis.
Collapse
Affiliation(s)
- R A Oldenburg
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands. r.oldenburg.@erasmusmc.nl
| | | | | | | |
Collapse
|
50
|
Pastorelli R, Saletta F, Carpi D, Campagna R, dell'Osta C, Schiarea S, Vineis P, Airoldi L, Matullo G. Proteome characterization of a human urothelial cell line resistant to the bladder carcinogen 4-aminobiphenyl. Proteome Sci 2007; 5:6. [PMID: 17477866 PMCID: PMC1871571 DOI: 10.1186/1477-5956-5-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 05/03/2007] [Indexed: 12/16/2022] Open
Abstract
Background The aromatic amine 4-aminobiphenyl (4-ABP) is an environmental and occupational contaminant known to be a major etiological agent of human bladder cancer. 4-ABP metabolites are able to form DNA adducts that may induce mutations and initiate bladder carcinogenesis. Cells exposed to 4-ABP may develop resistance to the carcinogen. The aim of the present study was to detect and identify proteins whose expression is altered in the bladder carcinoma RT112 sub-lines selected for acquired resistance to 4-ABP, in order to disentangle the mechanisms. Results Differential proteome analysis of cell lysates showed an overall perturbation in cell metabolism and energy pathways in the 4-ABP-resistant human urothelial clones, with over-expression of membrane trafficking proteins such as annexin 2. The resistant clones had altered expression of many proteins linked directly (i.e. lamin A/C, programmed cell death 6 interacting protein) or indirectly (i.e. 94 kDa glucose-regulated protein, fatty acid-binding protein) to decreased apoptosis, suggesting that resistance to 4-ABP might be associated with low apoptotic activity. Conclusion Our data provide evidence that deregulation of apoptosis and membrane trafficking proteins might be strongly implicated in the selection of carcinogen resistant cells. Some of these proteins might have potential as biomarkers of resistance and cancer risk.
Collapse
Affiliation(s)
- Roberta Pastorelli
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Federica Saletta
- Section of Life Sciences, Institute for Scientific Interchange Foundation, Torino, Italy
| | - Donatella Carpi
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Roberta Campagna
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Carlo dell'Osta
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Silvia Schiarea
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Paolo Vineis
- Department of Epidemiology and Public Health, Imperial College London, London, UK
- Department of Biomedical Sciences and Human Oncology, University of Torino, Torino, Italy
| | - Luisa Airoldi
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Giuseppe Matullo
- Section of Life Sciences, Institute for Scientific Interchange Foundation, Torino, Italy
- Department of Genetics, University of Torino, Torino, Italy
| |
Collapse
|