1
|
van der Sluis L, van Dieren JM, van der Post RS, Bisseling TM. Current advances and challenges in Managing Hereditary Diffuse Gastric Cancer (HDGC): a narrative review. Hered Cancer Clin Pract 2024; 22:21. [PMID: 39379994 PMCID: PMC11462652 DOI: 10.1186/s13053-024-00293-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
More than 25 years ago, CDH1 pathogenic variants (PVs) were identified as the primary cause of hereditary diffuse gastric cancer (HDGC), an inherited cancer syndrome that increases the lifetime risk of developing diffuse gastric cancer (DGC) and lobular breast cancer (LBC). Since DGC is associated with a poor prognosis, a prophylactic total gastrectomy (PTG) is currently the gold standard for reducing the risk of DGC in CDH1 PV carriers. However, as germline genetic testing becomes more widespread, many CDH1 PV carriers have been identified, including in families with lower penetrance levels or without a history of gastric cancer (GC). When including these families, recent findings suggest that the cumulative lifetime risk of developing advanced DGC is much lower than previously thought and is now estimated to be 13-19%. This lower risk, combined with the fact that around one third of the CDH1 PV carriers decline PTG due to potential lifelong physical and psychological consequences, raises critical questions about the current uniformity in recommending PTG to all CDH1 PV carriers. As a result, there is a growing need to consider alternative strategies, such as endoscopic surveillance. However, despite the currently lower estimated risk of infiltrative (advanced) DGC, almost every PTG specimen shows the presence of small low-stage (pT1a) signet ring cell (SRC) lesions of which the behaviour is unpredictable but often are considered indolent or premalignant stages of DGC. Therefore, the primary goal of surveillance should be to identify atypical, deeper infiltrating lesions rather than every SRC lesion. Understanding the progression from indolent to more infiltrative lesions, and recognizing their endoscopic and histological features, is crucial in deciding the most suitable management option for each individual.
Collapse
Affiliation(s)
- L van der Sluis
- Department of Gastroenterology, Radboud university medical centre, Nijmegen, The Netherlands
- Department of Gastrointestinal Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J M van Dieren
- Department of Gastrointestinal Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - R S van der Post
- Department of Pathology, Radboud university medical centre, Nijmegen, The Netherlands
| | - T M Bisseling
- Department of Gastroenterology, Radboud university medical centre, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Mangeol P, Massey-Harroche D, Sebbagh M, Richard F, Le Bivic A, Lenne PF. The zonula adherens matura redefines the apical junction of intestinal epithelia. Proc Natl Acad Sci U S A 2024; 121:e2316722121. [PMID: 38377188 PMCID: PMC10907237 DOI: 10.1073/pnas.2316722121] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Cell-cell apical junctions of epithelia consist of multiprotein complexes that organize as belts regulating cell-cell adhesion, permeability, and mechanical tension: the tight junction (zonula occludens), the zonula adherens (ZA), and the macula adherens. The prevailing dogma is that at the ZA, E-cadherin and catenins are lined with F-actin bundles that support and transmit mechanical tension between cells. Using super-resolution microscopy on human intestinal biopsies and Caco-2 cells, we show that two distinct multiprotein belts are basal of the tight junctions as the intestinal epithelia mature. The most apical is populated with nectins/afadin and lined with F-actin; the second is populated with E-cad/catenins. We name this dual-belt architecture the zonula adherens matura. We find that the apical contraction apparatus and the dual-belt organization rely on afadin expression. Our study provides a revised description of epithelial cell-cell junctions and identifies a module regulating the mechanics of epithelia.
Collapse
Affiliation(s)
- Pierre Mangeol
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - Dominique Massey-Harroche
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - Michael Sebbagh
- Aix Marseille Université, INSERM, Dynamics and Nanoenvironment of Biological Membrane, DyNaMo, Turing Center for Living Systems, Marseille 13009, France
| | - Fabrice Richard
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - André Le Bivic
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Marseille13009, France
| | - Pierre-François Lenne
- Aix Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, IBDM–UMR7288, Turing Center for Living Systems, Marseille13009, France
| |
Collapse
|
3
|
Dai Y, Zhang X, Ou Y, Zou L, Zhang D, Yang Q, Qin Y, Du X, Li W, Yuan Z, Xiao Z, Wen Q. Anoikis resistance--protagonists of breast cancer cells survive and metastasize after ECM detachment. Cell Commun Signal 2023; 21:190. [PMID: 37537585 PMCID: PMC10399053 DOI: 10.1186/s12964-023-01183-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/04/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast cancer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strategies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mechanisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced by pathological changes in various spatial structures during breast cancer development are also discussed. Additionally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin being the most functionally comprehensive. Video Abstract.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Xinyi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yingjun Ou
- Clinical Medicine School, Southwest Medicial Univercity, Luzhou, China
- Orthopaedics, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuju Du
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Li
- Southwest Medical University, Luzhou, China
| | | | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Tang Y, Thiess L, Weiler SME, Tóth M, Rose F, Merker S, Ruppert T, Schirmacher P, Breuhahn K. α-catenin interaction with YAP/FoxM1/TEAD-induced CEP55 supports liver cancer cell migration. Cell Commun Signal 2023; 21:162. [PMID: 37381005 DOI: 10.1186/s12964-023-01169-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/20/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Adherens junctions (AJs) facilitate cell-cell contact and contribute to cellular communication as well as signaling under physiological and pathological conditions. Aberrant expression of AJ proteins is frequently observed in human cancers; however, how these factors contribute to tumorigenesis is poorly understood. In addition, for some factors such as α-catenin contradicting data has been described. In this study we aim to decipher how the AJ constituent α-catenin contributes to liver cancer formation. METHODS TCGA data was used to detect transcript changes in 23 human tumor types. For the detection of proteins, liver cancer tissue microarrays were analyzed by immunohistochemistry. Liver cancer cell lines (HLF, Hep3B, HepG2) were used for viability, proliferation, and migration analyses after RNAinterference-mediated gene silencing. To investigate the tumor initiating potential, vectors coding for α-catenin and myristoylated AKT were injected in mice by hydrodynamic gene delivery. A BioID assay combined with mass spectrometry was performed to identify α-catenin binding partners. Results were confirmed by proximity ligation and co-immunoprecipitation assays. Binding of transcriptional regulators at gene promoters was investigated using chromatin-immunoprecipitation. RESULTS α-catenin mRNA was significantly reduced in many human malignancies (e.g., colon adenocarcinoma). In contrast, elevated α-catenin expression in other cancer entities was associated with poor clinical outcome (e.g., for hepatocellular carcinoma; HCC). In HCC cells, α-catenin was detectable at the membrane as well as cytoplasm where it supported tumor cell proliferation and migration. In vivo, α-catenin facilitated moderate oncogenic properties in conjunction with AKT overexpression. Cytokinesis regulator centrosomal protein 55 (CEP55) was identified as a novel α-catenin-binding protein in the cytoplasm of HCC cells. The physical interaction between α-catenin and CEP55 was associated with CEP55 stabilization. CEP55 was highly expressed in human HCC tissues and its overexpression correlated with poor overall survival and cancer recurrence. Next to the α-catenin-dependent protein stabilization, CEP55 was transcriptionally induced by a complex consisting of TEA domain transcription factors (TEADs), forkhead box M1 (FoxM1), and yes-associated protein (YAP). Surprisingly, CEP55 did not affect HCC cell proliferation but significantly supported migration in conjunction with α-catenin. CONCLUSION Migration-supporting CEP55 is induced by two independent mechanisms in HCC cells: stabilization through interaction with the AJ protein α-catenin and transcriptional activation via the FoxM1/TEAD/YAP complex.
Collapse
Affiliation(s)
- Yingyue Tang
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lena Thiess
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Merker
- CFMP, Core Facility for Mass Spectrometry & Proteomics at the Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Thomas Ruppert
- CFMP, Core Facility for Mass Spectrometry & Proteomics at the Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
5
|
Rangarajan ES, Smith EW, Izard T. Distinct inter-domain interactions of dimeric versus monomeric α-catenin link cell junctions to filaments. Commun Biol 2023; 6:276. [PMID: 36928388 PMCID: PMC10020564 DOI: 10.1038/s42003-023-04610-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Attachment between cells is crucial for almost all aspects of the life of cells. These inter-cell adhesions are mediated by the binding of transmembrane cadherin receptors of one cell to cadherins of a neighboring cell. Inside the cell, cadherin binds β-catenin, which interacts with α-catenin. The transitioning of cells between migration and adhesion is modulated by α-catenin, which links cell junctions and the plasma membrane to the actin cytoskeleton. At cell junctions, a single β-catenin/α-catenin heterodimer slips along filamentous actin in the direction of cytoskeletal tension which unfolds clustered heterodimers to form catch bonds with F-actin. Outside cell junctions, α-catenin dimerizes and links the plasma membrane to F-actin. Under cytoskeletal tension, α-catenin unfolds and forms an asymmetric catch bond with F-actin. To understand the mechanism of this important α-catenin function, we determined the 2.7 Å cryogenic electron microscopy (cryoEM) structures of filamentous actin alone and bound to human dimeric α-catenin. Our structures provide mechanistic insights into the role of the α-catenin interdomain interactions in directing α-catenin function and suggest a bivalent mechanism. Further, our cryoEM structure of human monomeric α-catenin provides mechanistic insights into α-catenin autoinhibition. Collectively, our structures capture the initial α-catenin interaction with F-actin before the sensing of force, which is a crucial event in cell adhesion and human disease.
Collapse
Affiliation(s)
| | - Emmanuel W Smith
- The Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, 33458, USA
| | - Tina Izard
- The Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, 33458, USA.
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
6
|
Insights into the Structure and Function of TRIP-1, a Newly Identified Member in Calcified Tissues. Biomolecules 2023; 13:biom13030412. [PMID: 36979349 PMCID: PMC10046519 DOI: 10.3390/biom13030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Eukaryotic initiation factor subunit I (EIF3i), also called as p36 or TRIP-1, is a component of the translation initiation complex and acts as a modulator of TGF-β signaling. We demonstrated earlier that this intracellular protein is not only exported to the extracellular matrix via exosomes but also binds calcium phosphate and promotes hydroxyapatite nucleation. To assess other functional roles of TRIP-1, we first examined their phylogeny and showed that it is highly conserved in eukaryotes. Comparing human EIF3i sequence with that of 63 other eukaryotic species showed that more than 50% of its sequence is conserved, suggesting the preservation of its important functional role (translation initiation) during evolution. TRIP-1 contains WD40 domains and predicting its function based on this structural motif is difficult as it is present in a vast array of proteins with a wide variety of functions. Therefore, bioinformatics analysis was performed to identify putative regulatory functions for TRIP-1 by examining the structural domains and post-translational modifications and establishing an interactive network using known interacting partners such as type I collagen. Insight into the function of TRIP-1 was also determined by examining structurally similar proteins such as Wdr5 and GPSß, which contain a ß-propeller structure which has been implicated in the calcification process. Further, proteomic analysis of matrix vesicles isolated from TRIP-1-overexpressing preosteoblastic MC3T3-E1 cells demonstrated the expression of several key biomineralization-related proteins, thereby confirming its role in the calcification process. Finally, we demonstrated that the proteomic signature in TRIP1-OE MVs facilitated osteogenic differentiation of stem cells. Overall, we demonstrated by bioinformatics that TRIP-1 has a unique structure and proteomic analysis suggested that the unique osteogenic cargo within the matrix vesicles facilitates matrix mineralization.
Collapse
|
7
|
Hereditary Diffuse Gastric Cancer: A 2022 Update. J Pers Med 2022; 12:jpm12122032. [PMID: 36556253 PMCID: PMC9783673 DOI: 10.3390/jpm12122032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer is ranked fifth among the most commonly diagnosed cancers, and is the fourth leading cause of cancer-related deaths worldwide. The majority of gastric cancers are sporadic, while only a small percentage, less than 1%, are hereditary. Hereditary diffuse gastric cancer (HDGC) is a rare malignancy, characterized by early-onset, highly-penetrant autosomal dominant inheritance mainly of the germline alterations in the E-cadherin gene (CDH1) and β-catenin (CTNNA1). In the present study, we provide an overview on the molecular basis of HDGC and outline the essential elements of genetic counseling and surveillance. We further provide a practical summary of current guidelines on clinical management and treatment of individuals at risk and patients with early disease.
Collapse
|
8
|
Alvizi L, Brito LA, Kobayashi GS, Bischain B, da Silva CBF, Ramos SLG, Wang J, Passos-Bueno MR. m ir152 hypomethylation as a mechanism for non-syndromic cleft lip and palate. Epigenetics 2022; 17:2278-2295. [PMID: 36047706 PMCID: PMC9665146 DOI: 10.1080/15592294.2022.2115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCLP), the most common human craniofacial malformation, is a complex disorder given its genetic heterogeneity and multifactorial component revealed by genetic, epidemiological, and epigenetic findings. Epigenetic variations associated with NSCLP have been identified; however, functional investigation has been limited. Here, we combined a reanalysis of NSCLP methylome data with genetic analysis and used both in vitro and in vivo approaches to dissect the functional effects of epigenetic changes. We found a region in mir152 that is frequently hypomethylated in NSCLP cohorts (21-26%), leading to mir152 overexpression. mir152 overexpression in human neural crest cells led to downregulation of spliceosomal, ribosomal, and adherens junction genes. In vivo analysis using zebrafish embryos revealed that mir152 upregulation leads to craniofacial cartilage impairment. Also, we suggest that zebrafish embryonic hypoxia leads to mir152 upregulation combined with mir152 hypomethylation and also analogous palatal alterations. We therefore propose that mir152 hypomethylation, potentially induced by hypoxia in early development, is a novel and frequent predisposing factor to NSCLP.
Collapse
Affiliation(s)
- Lucas Alvizi
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | - Luciano Abreu Brito
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | | | - Bárbara Bischain
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | | | | | - Jaqueline Wang
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| |
Collapse
|
9
|
Lessey LR, Robinson SC, Chaudhary R, Daniel JM. Adherens junction proteins on the move—From the membrane to the nucleus in intestinal diseases. Front Cell Dev Biol 2022; 10:998373. [PMID: 36274850 PMCID: PMC9581404 DOI: 10.3389/fcell.2022.998373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The function and structure of the mammalian epithelial cell layer is maintained by distinct intercellular adhesion complexes including adherens junctions (AJs), tight junctions, and desmosomes. The AJ is most integral for stabilizing cell-cell adhesion and conserving the structural integrity of epithelial tissues. AJs are comprised of the transmembrane protein E-cadherin and cytoplasmic catenin cofactors (α, β, γ, and p120-catenin). One organ where malfunction of AJ is a major contributor to disease states is the mammalian intestine. In the intestine, cell-cell adhesion complexes work synergistically to maintain structural integrity and homeostasis of the epithelium and prevent its malfunction. Consequently, when AJ integrity is compromised in the intestinal epithelium, the ensuing homeostatic disruption leads to diseases such as inflammatory bowel disease and colorectal carcinoma. In addition to their function at the plasma membrane, protein components of AJs also have nuclear functions and are thus implicated in regulating gene expression and intracellular signaling. Within the nucleus, AJ proteins have been shown to interact with transcription factors such as TCF/LEF and Kaiso (ZBTB33), which converge on the canonical Wnt signaling pathway. The multifaceted nature of AJ proteins highlights their complexity in modulating homeostasis and emphasizes the importance of their subcellular localization and expression in the mammalian intestine. In this review, we summarize the nuclear roles of AJ proteins in intestinal tissues; their interactions with transcription factors and how this leads to crosstalk with canonical Wnt signaling; and how nuclear AJ proteins are implicated in intestinal homeostasis and disease.
Collapse
|
10
|
Roads to Stat3 Paved with Cadherins. Cells 2022; 11:cells11162537. [PMID: 36010614 PMCID: PMC9406956 DOI: 10.3390/cells11162537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The engagement of cadherins, cell-to-cell adhesion proteins, triggers a dramatic increase in the levels and activity of the Rac/Cdc42 GTPases, through the inhibition of proteasomal degradation. This leads to an increase in transcription and secretion of IL6 family cytokines, activation of their common receptor, gp130, in an autocrine manner and phosphorylation of the signal transducer and activator of transcription-3 (Stat3) on tyrosine-705 by the Jak kinases. Stat3 subsequently dimerizes, migrates to the nucleus and activates the transcription of genes involved in cell division and survival. The Src oncogene also increases Rac levels, leading to secretion of IL6 family cytokines and gp130 activation, which triggers a Stat3-ptyr705 increase. Interestingly, at the same time, Src downregulates cadherins in a quantitative manner, while cadherins are required to preserve gp130 levels for IL6 family signalling. Therefore, a fine balance between Src527F/Rac/IL6 and Src527F/cadherin/gp130 levels is in existence, which is required for Stat3 activation. This further demonstrates the important role of cadherins in the activation of Stat3, through preservation of gp130 function. Conversely, the absence of cadherin engagement correlates with low Stat3 activity: In sparsely growing cells, both gp130 and Stat3-ptyr705 levels are very low, despite the fact that cSrc is active in the FAK (focal adhesion kinase)/cSrc complex, which further indicates that the engagement of cadherins is important for Stat3 activation, not just their presence. Furthermore, the caveolin-1 protein downregulates Stat3 through binding and sequestration of cadherins to the scaffolding domain of caveolin-1. We hypothesize that the cadherins/Rac/gp130 axis may be a conserved pathway to Stat3 activation in a number of systems. This fact could have significant implications in Stat3 biology, as well as in drug testing and development.
Collapse
|
11
|
Lin CY, Hsieh YS, Chu SC, Hsu LS, Huang SC, Chen PN. Reduction of invasion and cell stemness and induction of apoptotic cell death by Cinnamomum cassia extracts on human osteosarcoma cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:1261-1274. [PMID: 35146896 DOI: 10.1002/tox.23481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Cinnamomum cassia possesses antioxidative activity and induces the apoptotic properties of various cancer types. However, its effect on osteosarcoma invasion and cancer stemness remains ambiguous. Here, we examined the molecular evidence of the anti-invasive effects of ethanoic C. cassia extracts (CCE). Invasion and migration were obviously suppressed after the expression of urokinase-type plasminogen activator and matrix metalloprotein 2 in human osteosarcoma 143B cells were downregulated. CCE reversed epithelial-to-mesenchymal transition (EMT) induced by transforming growth factor β1 and downregulated mesenchymal markers, such as snail-1 and RhoA. CCE suppressed self-renewal property and the expression of stemness genes (aldehyde dehydrogenase, Nanog, and CD44) in the 143B cells. CCE suppressed cell viability, reduced the colony formation of osteosarcoma cancer cells, and induced apoptotic cell death in the 143B cells, as indicated by caspase-9 activation. The xenograft tumor model of immunodeficient BALB/c nude mice showed that CCE administered in vivo through oral gavage inhibited the growth of implanted 143B cells. These findings indicated that CCE inhibited the invasion, migration, and cancer stemness of the 143B cells. CCE reduced proliferation of 143B cell possibly because of the activation of caspase-9 and the consequent apoptosis, suggesting that CCE is a potential anticancer supplement for osteosarcoma.
Collapse
Affiliation(s)
- Chin-Yin Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yih-Shou Hsieh
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Chen Chu
- Institute and Department of Food Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Chien Huang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Hereditary diffuse gastric cancer (HDGC). An overview. Clin Res Hepatol Gastroenterol 2022; 46:101820. [PMID: 34656755 DOI: 10.1016/j.clinre.2021.101820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023]
Abstract
It is estimated that up to 10% of gastric carcinomas show familial aggregation. In contrast, around 1-3 % (approximately 33,000 yearly) are genuinely hereditary. Hereditary diffuse gastric cancer (HDGC) is a rare malignancy characterized by autosomal dominant inheritance of pathological variants of the CDH1 and CTNNA1 genes encoding the adhesion molecules E-cadherin and α-catenin, respectively. The multifocal nature of the disease and the difficulty of visualizing precursor lesions by endoscopy underscore the need to be aware of this malignancy as surgical prevention can be fully protective. Here, we provide an overview of the main epidemiological, clinical, genetic, and pathological features of HDGC, as well as updated guidelines for its diagnosis, genetic testing, counseling, surveillance, and management. We conclude that HDGC is a rare, highly penetrant disease that is difficult to diagnose and manage, so it is necessary to correctly identify it to offer patients and their families' adequate management following the recommendations of the IGCL. A critical point is identifying a mutation in HDGC families to determine whether unaffected relatives are at risk for cancer.
Collapse
|
13
|
Wijshake T, Zou Z, Chen B, Zhong L, Xiao G, Xie Y, Doench JG, Bennett L, Levine B. Tumor-suppressor function of Beclin 1 in breast cancer cells requires E-cadherin. Proc Natl Acad Sci U S A 2021; 118:e2020478118. [PMID: 33495338 PMCID: PMC7865132 DOI: 10.1073/pnas.2020478118] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Beclin 1, an autophagy and haploinsufficient tumor-suppressor protein, is frequently monoallelically deleted in breast and ovarian cancers. However, the precise mechanisms by which Beclin 1 inhibits tumor growth remain largely unknown. To address this question, we performed a genome-wide CRISPR/Cas9 screen in MCF7 breast cancer cells to identify genes whose loss of function reverse Beclin 1-dependent inhibition of cellular proliferation. Small guide RNAs targeting CDH1 and CTNNA1, tumor-suppressor genes that encode cadherin/catenin complex members E-cadherin and alpha-catenin, respectively, were highly enriched in the screen. CRISPR/Cas9-mediated knockout of CDH1 or CTNNA1 reversed Beclin 1-dependent suppression of breast cancer cell proliferation and anchorage-independent growth. Moreover, deletion of CDH1 or CTNNA1 inhibited the tumor-suppressor effects of Beclin 1 in breast cancer xenografts. Enforced Beclin 1 expression in MCF7 cells and tumor xenografts increased cell surface localization of E-cadherin and decreased expression of mesenchymal markers and beta-catenin/Wnt target genes. Furthermore, CRISPR/Cas9-mediated knockout of BECN1 and the autophagy class III phosphatidylinositol kinase complex 2 (PI3KC3-C2) gene, UVRAG, but not PI3KC3-C1-specific ATG14 or other autophagy genes ATG13, ATG5, or ATG7, resulted in decreased E-cadherin plasma membrane and increased cytoplasmic E-cadherin localization. Taken together, these data reveal previously unrecognized cooperation between Beclin 1 and E-cadherin-mediated tumor suppression in breast cancer cells.
Collapse
Affiliation(s)
- Tobias Wijshake
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhongju Zou
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Beibei Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lin Zhong
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Lynda Bennett
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
14
|
Abstract
The presence of actin in the nucleus has historically been a highly contentious issue. It is now, however, well accepted that actin has physiologically important roles in the nucleus. In this Review, we describe the evolution of our thinking about actin in the nucleus starting with evidence supporting its involvement in transcription, chromatin remodeling and intranuclear movements. We also review the growing literature on the mechanisms that regulate the import and export of actin and how post-translational modifications of actin could regulate nuclear actin. We end with an extended discussion of the role of nuclear actin in the repair of DNA double stranded breaks.
Collapse
Affiliation(s)
- Leonid Serebryannyy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, United States.
| |
Collapse
|
15
|
Liao X, Zhan W, Zhang J, Cheng Z, Li L, Tian T, Yu L, Li R. Long noncoding RNA LINC01234 promoted cell proliferation and invasion via miR-1284/TRAF6 axis in colorectal cancer. J Cell Biochem 2020; 121:4295-4309. [PMID: 31904146 DOI: 10.1002/jcb.29618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/19/2019] [Indexed: 01/20/2023]
Abstract
Colorectal cancer is one of the most common and leading malignancies globally. Long noncoding RNAs (lncRNAs) function as potentially critical regulator in colorectal cancer. LINC01234, a novel lncRNA in tumor biology, regulates the progression of various tumors. However, the tumorigenic mechanism of LINC01234 in colorectal cancer is still unclear. This study was performed with the aim to prospectively investigate clinical significance, effect, and mechanism of lncRNA LINC01234 in colorectal cancer. First, we found that LINC01234, localized in the cytoplasm, was increased in both colorectal cancer cell lines and tissues. Subsequent functional assays suggested LINC01234 knockdown suppressed cell proliferation, migration, and invasion of colorectal cancer cells, while blocked cell cycle and induced cell apoptosis. Moreover, we identified that miR-1284 was target of LINC01234, we further demonstrated a negative correlation with LINC01234 in colorectal cancer tissues and cells. Furthermore, miR-1284 targeted and suppressed tumor necrosis factor receptor-associated factor 6 (TRAF6). Loss-of-function assay revealed that LINC01234 silencing suppressed colorectal cancer progression through inhibition of miR-1284. In vivo subcutaneous xenotransplanted tumor model indicated LINC01234 knockdown inhibited in vivo tumorigenic ability of colorectal cancer via downregulation of TRAF6. Collectively, this study clarified the biological significance of LINC01234/miR-1284/TRAF6 axis in colorectal cancer progression, providing insights into LINC01234 as novel potential therapeutic target for colorectal cancer therapeutic from bench to clinic.
Collapse
Affiliation(s)
- Xin Liao
- Department of Imaging, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Zhan
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiandong Zhang
- Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhongsheng Cheng
- Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lianghe Li
- Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tian Tian
- Department of Center of Clinical Laboratory, Guiyang Maternal and Child Health Hospital Guiyang, Guiyang, Guizhou, China
| | - Lei Yu
- Department of Pathology, Guiyang Maternal and Child Health Hospital, Guiyang, Guizhou, China
| | - Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
16
|
Sarpal R, Yan V, Kazakova L, Sheppard L, Yu JC, Fernandez-Gonzalez R, Tepass U. Role of α-Catenin and its mechanosensing properties in regulating Hippo/YAP-dependent tissue growth. PLoS Genet 2019; 15:e1008454. [PMID: 31697683 PMCID: PMC6863567 DOI: 10.1371/journal.pgen.1008454] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/19/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023] Open
Abstract
α-catenin is a key protein of adherens junctions (AJs) with mechanosensory properties. It also acts as a tumor suppressor that limits tissue growth. Here we analyzed the function of Drosophila α-Catenin (α-Cat) in growth regulation of the wing epithelium. We found that different α-Cat levels led to a differential activation of Hippo/Yorkie or JNK signaling causing tissue overgrowth or degeneration, respectively. α-Cat can modulate Yorkie-dependent tissue growth through recruitment of Ajuba, a negative regulator of Hippo signaling to AJs but also through a mechanism independent of Ajuba recruitment to AJs. Both mechanosensory regions of α-Cat, the M region and the actin-binding domain (ABD), contribute to growth regulation. Whereas M is dispensable for α-Cat function in the wing, individual M domains (M1, M2, M3) have opposing effects on growth regulation. In particular, M1 limits Ajuba recruitment. Loss of M1 causes Ajuba hyper-recruitment to AJs, promoting tissue-tension independent overgrowth. Although M1 binds Vinculin, Vinculin is not responsible for this effect. Moreover, disruption of mechanosensing of the α-Cat ABD affects tissue growth, with enhanced actin interactions stabilizing junctions and leading to tissue overgrowth. Together, our findings indicate that α-Cat acts through multiple mechanisms to control tissue growth, including regulation of AJ stability, mechanosensitive Ajuba recruitment, and dynamic direct F-actin interactions. We explore the regulation of tissue and organ size which is an important consideration in normal development and health. During development, tissues reach specific sizes in proportion to the rest of the body. Uncontrolled growth can lead to malformations or promote tumor growth. Recent findings have emphasized an important role for mechanical cues in the regulation of tissue growth. Mechanical signals can, for example, arise from cytoskeletal contraction that increases tension, or from compression due to proliferation and a resulting increase in cell density that would lower tension. Mechanosensory molecules that are sensitive to changes in tissue tension can convert mechanical cues into biochemical signals that enhance or slow proliferation or cell death to adjust overall tissue size. One such mechanosensory molecule is α-Catenin which is a key component of cell adhesion structures that physically link cells together and couples these structures to the cytoskeleton within cells. We clarify several molecular parameters of how α-Catenin regulates signalling pathways that control cell proliferation and cell death.
Collapse
Affiliation(s)
- Ritu Sarpal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Victoria Yan
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Lidia Kazakova
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Luka Sheppard
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica C. Yu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
Ashaie MA, Islam RA, Kamaruzman NI, Ibnat N, Tha KK, Chowdhury EH. Targeting Cell Adhesion Molecules via Carbonate Apatite-Mediated Delivery of Specific siRNAs to Breast Cancer Cells In Vitro and In Vivo. Pharmaceutics 2019; 11:pharmaceutics11070309. [PMID: 31269666 PMCID: PMC6680929 DOI: 10.3390/pharmaceutics11070309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
While several treatment strategies are applied to cure breast cancer, it still remains one of the leading causes of female deaths worldwide. Since chemotherapeutic drugs have severe side effects and are responsible for development of drug resistance in cancer cells, gene therapy is now considered as one of the promising options to address the current treatment limitations. Identification of the over-expressed genes accounting for constitutive activation of certain pathways, and their subsequent knockdown with specific small interfering RNAs (siRNAs), could be a powerful tool in inhibiting proliferation and survival of cancer cells. In this study, we delivered siRNAs against mRNA transcripts of over-regulated cell adhesion molecules such as catenin alpha 1 (CTNNA1), catenin beta 1 (CTNNB1), talin-1 (TLN1), vinculin (VCL), paxillin (PXN), and actinin-1 (ACTN1) in human (MCF-7 and MDA-MB-231) and murine (4T1) cell lines as well as in the murine female Balb/c mice model. In order to overcome the barriers of cell permeability and nuclease-mediated degradation, the pH-sensitive carbonate apatite (CA) nanocarrier was used as a delivery vehicle. While targeting CTNNA1, CTNNB1, TLN1, VCL, PXN, and ACTN1 resulted in a reduction of cell viability in MCF-7 and MDA-MB-231 cells, delivery of all these siRNAs via carbonate apatite (CA) nanoparticles successfully reduced the cell viability in 4T1 cells. In 4T1 cells, delivery of CTNNA1, CTNNB1, TLN1, VCL, PXN, and ACTN1 siRNAs with CA caused significant reduction in phosphorylated and total AKT levels. Furthermore, reduced band intensity was observed for phosphorylated and total MAPK upon transfection of 4T1 cells with CTNNA1, CTNNB1, and VCL siRNAs. Intravenous delivery of CTNNA1 siRNA with CA nanoparticles significantly reduced tumor volume in the initial phase of the study, while siRNAs targeting CTNNB1, TLN1, VCL, PXN, and ACTN1 genes significantly decreased the tumor burden at all time points. The tumor weights at the end of the treatments were also notably smaller compared to CA. This successfully demonstrates that targeting these dysregulated genes via RNAi and by using a suitable delivery vehicle such as CA could serve as a promising therapeutic treatment modality for breast cancers.
Collapse
Affiliation(s)
- Maeirah Afzal Ashaie
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Rowshan Ara Islam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nur Izyani Kamaruzman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nabilah Ibnat
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Kyi Kyi Tha
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Health & Wellbeing Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia.
- Health & Wellbeing Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia.
| |
Collapse
|
18
|
Jiang T, Xu G, Chen X, Huang X, Zhao J, Zheng L. Impact of Hydrogel Elasticity and Adherence on Osteosarcoma Cells and Osteoblasts. Adv Healthc Mater 2019; 8:e1801587. [PMID: 30838809 DOI: 10.1002/adhm.201801587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/18/2019] [Indexed: 12/27/2022]
Abstract
Biochemical and physical properties of extracellular matrix (ECM) control cell behaviors, but how they affect osteosarcoma cells that do not require attachment and their normal counterparts (osteoblasts) that are anchorage-dependent has not been reported yet. In this study, the effects of matrix elasticity and adherence on osteosarcoma MG63 cells are investigated using four types of scaffolds (collagen type I, matrigel, alginate, and agarose) with varied adhesion ligands and rigidity, as compared with osteoblast hFOB1.19 cells. MG63 cells on 2D films are sensitive to ECM adherence, similar to the situation of hFOB1.19 cultured in both 2D and 3D. However, osteosarcoma cells in 3D hydrogels are sensitive to ECM elasticity rather than adherence, with tumor proliferation and malignancy varied with matrix rigidity. The results indicate that osteosarcomas cells might adopt unnatural characteristics on flat surfaces. But in 3D culture, they recover their normal state independent of adherence, as regulated mainly by ECM elasticity via the integrin-mediated focal adhesion pathway, which is further confirmed by in vivo studies. In contrast, osteoblasts and 2D cultured osteosarcoma cells are predominantly influenced by ECM bioactivity regulated by integrin-mediated adherens junction pathway. This study might provide new insights into rational design of scaffolds for tumor/tissue engineering.
Collapse
Affiliation(s)
- Tongmeng Jiang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics (Bone and Joint Surgery, Trauma and Hand Surgery, Spine Osteopathia), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Guojie Xu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics (Bone and Joint Surgery, Trauma and Hand Surgery, Spine Osteopathia), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaoming Chen
- Department of Orthopaedics (Bone and Joint Surgery, Trauma and Hand Surgery, Spine Osteopathia), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xianyuan Huang
- Hospital of Traditional Chinese Medicine of Wuzhou City, Wuzhou, 543002, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics (Bone and Joint Surgery, Trauma and Hand Surgery, Spine Osteopathia), The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
19
|
Song J, Zhang P, Liu M, Xie M, Gao Z, Wang X, Wang T, Yin J, Liu R. Novel-miR-4885 Promotes Migration and Invasion of Esophageal Cancer Cells Through TargetingCTNNA2. DNA Cell Biol 2019; 38:151-161. [DOI: 10.1089/dna.2018.4377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jing Song
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, P.R. China
| | - Mengxin Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu, Hebei, P.R. China
| | - Zhikui Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Xianghu Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Tian Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Jiechen Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
20
|
Jiang T, Zhao J, Yu S, Mao Z, Gao C, Zhu Y, Mao C, Zheng L. Untangling the response of bone tumor cells and bone forming cells to matrix stiffness and adhesion ligand density by means of hydrogels. Biomaterials 2019; 188:130-143. [PMID: 30343256 PMCID: PMC6279509 DOI: 10.1016/j.biomaterials.2018.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
How cancer cells and their anchorage-dependent normal counterparts respond to the adhesion ligand density and stiffness of the same extracellular matrix (ECM) is still not very clear. Here we investigated the effects of ECM adhesion ligand density and stiffness on bone tumor cells (osteosarcoma cells) and bone forming cells (osteoblasts) by using poly (ethylene glycol) diacrylate (PEGDA) and methacrylated gelatin (GelMA) hydrogels. By independently changing the PEGDA and GelMA content in the hydrogels, we achieved crosslinked hydrogel matrix with independently tunable stiffness (1.6, 6 and 25 kPa for 5%, 10%, 15% PEDGA, respectively) and adhesion ligand density (low, medium and high for 0.05%, 0.2%, 0.5% GelMA respectively). By using a series of biochemical and cell biological characterizations as well as in vivo studies, we confirmed that osteosarcoma and osteoblastic cells responded differently to the stiffness and adhesion ligand density within 3D ECM. When cultured within the 3D PEGDA/GelMA hydrogel matrix, osteosarcoma cells are highly dependent on the matrix stiffness via regulating the integrin-mediated focal adhesion (FA) pathway, whereas osteoblasts are highly sensitive to the matrix adhesion ligand density through regulating the integrin-mediated adherens junction (AJ) pathway. However, when seeded on the 2D surface of the hydrogels, osteosarcoma cells behaved differently and became sensitive to the matrix adhesion ligand density because they were "forced" to attach to the substrate, similar to anchorage-dependent osteoblasts. This study might provide new insights into rational design of scaffolds for generating in vitro tumor models to test anticancer therapeutics and for regenerating tissue to repair defects.
Collapse
Affiliation(s)
- Tongmeng Jiang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Shan Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38# Zheda Road, Hangzhou, 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38# Zheda Road, Hangzhou, 310027, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38# Zheda Road, Hangzhou, 310027, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Sience and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, USA
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Sience and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, USA; School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
21
|
de Groot JS, Ratze MAK, van Amersfoort M, Eisemann T, Vlug EJ, Niklaas MT, Chin S, Caldas C, van Diest PJ, Jonkers J, de Rooij J, Derksen PWB. αE-catenin is a candidate tumor suppressor for the development of E-cadherin-expressing lobular-type breast cancer. J Pathol 2018; 245:456-467. [PMID: 29774524 PMCID: PMC6055824 DOI: 10.1002/path.5099] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 12/25/2022]
Abstract
Although mutational inactivation of E-cadherin (CDH1) is the main driver of invasive lobular breast cancer (ILC), approximately 10-15% of all ILCs retain membrane-localized E-cadherin despite the presence of an apparent non-cohesive and invasive lobular growth pattern. Given that ILC is dependent on constitutive actomyosin contraction for tumor development and progression, we used a combination of cell systems and in vivo experiments to investigate the consequences of α-catenin (CTNNA1) loss in the regulation of anchorage independence of non-invasive breast carcinoma. We found that inactivating somatic CTNNA1 mutations in human breast cancer correlated with lobular and mixed ducto-lobular phenotypes. Further, inducible loss of α-catenin in mouse and human E-cadherin-expressing breast cancer cells led to atypical localization of E-cadherin, a rounded cell morphology, and anoikis resistance. Pharmacological inhibition experiments subsequently revealed that, similar to E-cadherin-mutant ILC, anoikis resistance induced by α-catenin loss was dependent on Rho/Rock-dependent actomyosin contractility. Finally, using a transplantation-based conditional mouse model, we demonstrate that inducible inactivation of α-catenin instigates acquisition of lobular features and invasive behavior. We therefore suggest that α-catenin represents a bona fide tumor suppressor for the development of lobular-type breast cancer and as such provides an alternative event to E-cadherin inactivation, adherens junction (AJ) dysfunction, and subsequent constitutive actomyosin contraction. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jolien S de Groot
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Max AK Ratze
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Tanja Eisemann
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Eva J Vlug
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Mijanou T Niklaas
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Suet‐Feung Chin
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge Department of OncologyUniversity of Cambridge, Addenbrooke's Hospital, Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical Research CentreCambridgeUK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge Department of OncologyUniversity of Cambridge, Addenbrooke's Hospital, Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical Research CentreCambridgeUK
| | - Paul J van Diest
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jos Jonkers
- Department of Molecular PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Johan de Rooij
- Department of Molecular Cancer ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Patrick WB Derksen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
22
|
Miller PW, Pokutta S, Mitchell JM, Chodaparambil JV, Clarke DN, Nelson WJ, Weis WI, Nichols SA. Analysis of a vinculin homolog in a sponge (phylum Porifera) reveals that vertebrate-like cell adhesions emerged early in animal evolution. J Biol Chem 2018; 293:11674-11686. [PMID: 29880641 PMCID: PMC6066325 DOI: 10.1074/jbc.ra117.001325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/21/2018] [Indexed: 01/27/2023] Open
Abstract
The evolution of cell-adhesion mechanisms in animals facilitated the assembly of organized multicellular tissues. Studies in traditional animal models have revealed two predominant adhesion structures, the adherens junction (AJ) and focal adhesions (FAs), which are involved in the attachment of neighboring cells to each other and to the secreted extracellular matrix (ECM), respectively. The AJ (containing cadherins and catenins) and FAs (comprising integrins, talin, and paxillin) differ in protein composition, but both junctions contain the actin-binding protein vinculin. The near ubiquity of these structures in animals suggests that AJ and FAs evolved early, possibly coincident with multicellularity. However, a challenge to this perspective is that previous studies of sponges-a divergent animal lineage-indicate that their tissues are organized primarily by an alternative, sponge-specific cell-adhesion mechanism called "aggregation factor." In this study, we examined the structure, biochemical properties, and tissue localization of a vinculin ortholog in the sponge Oscarella pearsei (Op). Our results indicate that Op vinculin localizes to both cell-cell and cell-ECM contacts and has biochemical and structural properties similar to those of vertebrate vinculin. We propose that Op vinculin played a role in cell adhesion and tissue organization in the last common ancestor of sponges and other animals. These findings provide compelling evidence that sponge tissues are indeed organized like epithelia in other animals and support the notion that AJ- and FA-like structures extend to the earliest periods of animal evolution.
Collapse
Affiliation(s)
| | - Sabine Pokutta
- From the Departments of Molecular and Cellular Physiology and
- Structural Biology, School of Medicine and
| | - Jennyfer M Mitchell
- the Department of Biological Sciences, University of Denver, Denver, Colorado 80208
| | - Jayanth V Chodaparambil
- From the Departments of Molecular and Cellular Physiology and
- Structural Biology, School of Medicine and
| | - D Nathaniel Clarke
- the Department of Biology, Stanford University, Stanford, California 94305 and
| | - W James Nelson
- From the Departments of Molecular and Cellular Physiology and
- the Department of Biology, Stanford University, Stanford, California 94305 and
| | - William I Weis
- From the Departments of Molecular and Cellular Physiology and
- Structural Biology, School of Medicine and
| | - Scott A Nichols
- the Department of Biological Sciences, University of Denver, Denver, Colorado 80208
| |
Collapse
|
23
|
Abstract
Head and neck cancer presents primarily as head and neck squamous cell carcinoma (HNSCC), a debilitating malignancy fraught with high morbidity, poor survival rates, and limited treatment options. Mounting evidence indicates that the Wnt/β-catenin signaling pathway plays important roles in the pathobiology of HNSCC. Wnt/β-catenin signaling affects multiple cellular processes that endow cancer cells with the ability to maintain and expand immature stem-like phenotypes, proliferate, extend survival, and acquire aggressive characteristics by adopting mesenchymal traits. A central component of canonical Wnt signaling is β-catenin, which balances its role as a structural component of E-cadherin junctions with its function as a transcriptional coactivator of numerous target genes. Recent genomic characterization of head and neck cancer revealed that while β-catenin is not frequently mutated in HNSCC, its activity is unchecked by more common mutations in genes encoding upstream regulators of β-catenin, NOTCH1, FAT1, and AJUBA. Wnt/β-catenin signaling affects a wide range epigenetic and transcriptional activities, mediated by the interaction of β-catenin with different transcription factors and transcriptional coactivators and corepressors. Furthermore, Wnt/β-catenin functions in a network with many signaling and metabolic pathways that modulate its activity. In addition to its effects on tumor epithelia, β-catenin activity regulates the tumor microenvironment by regulating extracellular matrix remodeling, fibrotic processes, and immune response. These multifunctional oncogenic effects of β-catenin make it an attractive bona fide target for HNSCC therapy.
Collapse
Affiliation(s)
- K A Alamoud
- 1 Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| | - M A Kukuruzinska
- 1 Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
24
|
Chiarella SE, Rabin EE, Ostilla LA, Flozak AS, Gottardi CJ. αT-catenin: A developmentally dispensable, disease-linked member of the α-catenin family. Tissue Barriers 2018; 6:e1463896. [PMID: 29746206 PMCID: PMC6179130 DOI: 10.1080/21688370.2018.1463896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
α-Catenins are actin-filament binding proteins and critical subunits of the cadherin-catenin cell-cell adhesive complex. They are found in nominally-defined epithelial (E), neural (N), and testis (T) forms transcribed from three distinct genes. While most of α-catenin research has focused on the developmentally essential founding member, αE-catenin, this review discusses recent studies on αT-catenin (CTNNA3), a developmentally dispensable isoform that is emerging as relevant to cardiac, allergic and neurological diseases.
Collapse
Affiliation(s)
- Sergio E. Chiarella
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Erik E. Rabin
- Department of Medicine
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL
| | - Lorena A. Ostilla
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Annette S. Flozak
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Cara J. Gottardi
- Department of Medicine
- Cellular and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
25
|
Maki K, Han SW, Hirano Y, Yonemura S, Hakoshima T, Adachi T. Real-time TIRF observation of vinculin recruitment to stretched α-catenin by AFM. Sci Rep 2018; 8:1575. [PMID: 29371682 PMCID: PMC5785519 DOI: 10.1038/s41598-018-20115-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
Adherens junctions (AJs) adaptively change their intensities in response to intercellular tension; therefore, they integrate tension generated by individual cells to drive multicellular dynamics, such as morphogenetic change in embryos. Under intercellular tension, α-catenin, which is a component protein of AJs, acts as a mechano-chemical transducer to recruit vinculin to promote actin remodeling. Although in vivo and in vitro studies have suggested that α-catenin-mediated mechanotransduction is a dynamic molecular process, which involves a conformational change of α-catenin under tension to expose a cryptic vinculin binding site, there are no suitable experimental methods to directly explore the process. Therefore, in this study, we developed a novel system by combining atomic force microscopy (AFM) and total internal reflection fluorescence (TIRF). In this system, α-catenin molecules (residues 276-634; the mechano-sensitive M1-M3 domain), modified on coverslips, were stretched by AFM and their recruitment of Alexa-labeled full-length vinculin molecules, dissolved in solution, were observed simultaneously, in real time, using TIRF. We applied a physiologically possible range of tensions and extensions to α-catenin and directly observed its vinculin recruitment. Our new system could be used in the fields of mechanobiology and biophysics to explore functions of proteins under tension by coupling biomechanical and biochemical information.
Collapse
Affiliation(s)
- Koichiro Maki
- Laboratory of Biomechanics, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan.,Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Sung-Woong Han
- National Institute for Nanomaterials Technology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Korea
| | - Yoshinori Hirano
- Structural Biology Laboratory, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Shigenobu Yonemura
- Department of Cell Biology, Graduate School of Medical Science, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 770-8503, Japan
| | - Toshio Hakoshima
- Structural Biology Laboratory, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan. .,Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
26
|
Shao X, Kang H, Loveless T, Lee GR, Seok C, Weis WI, Choi HJ, Hardin J. Cell-cell adhesion in metazoans relies on evolutionarily conserved features of the α-catenin·β-catenin-binding interface. J Biol Chem 2017; 292:16477-16490. [PMID: 28842483 DOI: 10.1074/jbc.m117.795567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/31/2017] [Indexed: 01/26/2023] Open
Abstract
Stable tissue integrity during embryonic development relies on the function of the cadherin·catenin complex (CCC). The Caenorhabditis elegans CCC is a useful paradigm for analyzing in vivo requirements for specific interactions among the core components of the CCC, and it provides a unique opportunity to examine evolutionarily conserved mechanisms that govern the interaction between α- and β-catenin. HMP-1, unlike its mammalian homolog α-catenin, is constitutively monomeric, and its binding affinity for HMP-2/β-catenin is higher than that of α-catenin for β-catenin. A crystal structure shows that the HMP-1·HMP-2 complex forms a five-helical bundle structure distinct from the structure of the mammalian α-catenin·β-catenin complex. Deletion analysis based on the crystal structure shows that the first helix of HMP-1 is necessary for binding HMP-2 avidly in vitro and for efficient recruitment of HMP-1 to adherens junctions in embryos. HMP-2 Ser-47 and Tyr-69 flank its binding interface with HMP-1, and we show that phosphomimetic mutations at these two sites decrease binding affinity of HMP-1 to HMP-2 by 40-100-fold in vitro. In vivo experiments using HMP-2 S47E and Y69E mutants showed that they are unable to rescue hmp-2(zu364) mutants, suggesting that phosphorylation of HMP-2 on Ser-47 and Tyr-69 could be important for regulating CCC formation in C. elegans Our data provide novel insights into how cadherin-dependent cell-cell adhesion is modulated in metazoans by conserved elements as well as features unique to specific organisms.
Collapse
Affiliation(s)
| | | | - Timothy Loveless
- Department of Zoology, and.,Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Gyu Rie Lee
- Chemistry, Seoul National University, Seoul 08826, South Korea, and
| | - Chaok Seok
- Chemistry, Seoul National University, Seoul 08826, South Korea, and
| | - William I Weis
- the Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | | | - Jeff Hardin
- From the Program in Genetics, .,Department of Zoology, and.,Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
27
|
Wang X, Nichols L, Grunz-Borgmann EA, Sun Z, Meininger GA, Domeier TL, Baines CP, Parrish AR. Fascin2 regulates cisplatin-induced apoptosis in NRK-52E cells. Toxicol Lett 2016; 266:56-64. [PMID: 27989596 DOI: 10.1016/j.toxlet.2016.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/01/2016] [Accepted: 11/27/2016] [Indexed: 01/09/2023]
Abstract
Previous studies have shown that the aging kidney has a marked loss of α(E)-catenin in proximal tubular epithelium. α-Catenin, a key regulator of the actin cytoskeleton, interacts with a variety of actin-binding proteins. Cisplatin-induced loss of fascin2, an actin bundling protein, was observed in cells with a stable knockdown of α(E)-catenin (C2 cells), as well as in aging (24 mon), but not young (4 mon), kidney. Fascin2 co-localized with α-catenin and the actin cytoskeleton in NRK-52E cells. Knockdown of fascin2 increased the susceptibility of tubular epithelial cells to cisplatin-induced injury. Overexpression of fascin2 in C2 cells restored actin stress fibers and attenuated the increased sensitivity of C2 cells to cisplatin-induced apoptosis. Interestingly, fascin2 overexpression attenuated cisplatin-induced mitochondrial dysfunction and oxidative stress in C2 cells. These data demonstrate that fascin2, a putative target of α(E)-catenin, may play important role in preventing cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - LaNita Nichols
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Elizabeth A Grunz-Borgmann
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Zhe Sun
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States; Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Gerald A Meininger
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States; Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Timothy L Domeier
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Christopher P Baines
- Dalton Cardiovascular Research Center, School of Medicine, University of Missouri, Columbia, MO 65212, United States; Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, United States.
| |
Collapse
|
28
|
Cheng G, Yang S, Zhang G, Xu Y, Liu X, Sun W, Zhu L. Lipopolysaccharide-induced α-catenin downregulation enhances the motility of human colorectal cancer cells in an NF-κB signaling-dependent manner. Onco Targets Ther 2016; 9:7563-7571. [PMID: 28008274 PMCID: PMC5167382 DOI: 10.2147/ott.s123986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
α-Catenin is an important molecule involved in the maintenance of cell-cell adhesion and a prognostic marker in cancer since its expression is essential for preventing cancer metastasis. However, the mechanism that leads to the downregulation of α-catenin in cancer progression remains unclear. The present study revealed that lipopolysaccharide (LPS)-induced NF-κB signaling activation suppressed α-catenin expression and motility in SW620 colorectal cancer (CRC) cells, using real-time polymerase chain reaction, Western blotting, and transwell migration assays. LPS treatment reduced both the mRNA and protein expression of α-catenin and thereby enhanced cell motility. Conversely, incubating cells with an NF-κB inhibitor disrupted these effects. Furthermore, the ectopic expression of p65 alone mimicked the effects of LPS stimulation. In CRC tissues, the presence of enteric bacterial LPS-related neutrophil-enriched foci was correlated with α-catenin downregulation. Collectively, these findings suggest that LPS-induced NF-κB signaling is related to α-catenin suppression and enhanced cell motility in CRC. Therefore, NF-κB is a novel potential therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Guoping Cheng
- Department of Pathology, Zhejiang Cancer Hospital; Cancer Research Institute, Zhejiang Cancer Hospital and Key laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province
| | - Shifeng Yang
- Department of Pathology, Zhejiang Cancer Hospital
| | - Gu Zhang
- Department of Pathology, Zhejiang Cancer Hospital
| | - Yanxia Xu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoling Liu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| | - Wenyong Sun
- Department of Pathology, Zhejiang Cancer Hospital; Cancer Research Institute, Zhejiang Cancer Hospital and Key laboratory Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province
| | - Liang Zhu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
29
|
Dar MS, Singh P, Singh G, Jamwal G, Hussain SS, Rana A, Akhter Y, Monga SP, Dar MJ. Terminal regions of β-catenin are critical for regulating its adhesion and transcription functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2345-57. [DOI: 10.1016/j.bbamcr.2016.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 11/25/2022]
|
30
|
Li P, Silvis MR, Honaker Y, Lien WH, Arron ST, Vasioukhin V. αE-catenin inhibits a Src-YAP1 oncogenic module that couples tyrosine kinases and the effector of Hippo signaling pathway. Genes Dev 2016; 30:798-811. [PMID: 27013234 PMCID: PMC4826396 DOI: 10.1101/gad.274951.115] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/29/2016] [Indexed: 02/07/2023]
Abstract
Cell-cell adhesion protein αE-catenin inhibits skin squamous cell carcinoma (SCC) development; however, the mechanisms responsible for this function are not completely understood. We report here that αE-catenin inhibits β4 integrin-mediated activation of SRC tyrosine kinase.SRCis the first discovered oncogene, but the protein substrate critical for SRC-mediated transformation has not been identified. We found that YAP1, the pivotal effector of the Hippo signaling pathway, is a direct SRC phosphorylation target, and YAP1 phosphorylation at three sites in its transcription activation domain is necessary for SRC-YAP1-mediated transformation. We uncovered a marked increase in this YAP1 phosphorylation in human and mouse SCC tumors with low/negative expression of αE-catenin. We demonstrate that the tumor suppressor function of αE-catenin involves negative regulation of the β4 integrin-SRC signaling pathway and that SRC-mediated phosphorylation and activation of YAP1 are an alternative to the canonical Hippo signaling pathway that directly connect oncogenic tyrosine kinase signaling with YAP1.
Collapse
Affiliation(s)
- Peng Li
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Mark R Silvis
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Yuchi Honaker
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Wen-Hui Lien
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sarah T Arron
- Department of Dermatology, University of California at San Fricisco, San Francisco, California, 94143, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
31
|
Abstract
The aging kidney undergoes structural and functional alterations which make it more susceptible to drug-induced acute kidney injury (AKI). Previous studies in our lab have shown that the expression of α(E)-catenin is decreased in aged kidney and loss of α(E)-catenin potentiates AKI-induced apoptosis, but not necrosis, in renal tubular epithelial cells (NRK-52E cells). However, the specific apoptotic pathway underlying the increased AKI-induced cell death is not yet understood. In this study, cells were challenged with nephrotoxicant cisplatin to induce AKI. A ~5.5-fold increase in Fas expression in C2 (stable α(E)-catenin knockdown) relative to NT3 (non-targeted control) cells was seen. Increased caspase-8 and -9 activation was induced by cisplatin in C2 as compared to NT3 cells. In addition, decreased Bcl-2 expression and increased BID cleavage and cytochrome C release were detected in C2 cells after cisplatin challenge. Treating the cells with cisplatin, in combination with a Bcl-2 inhibitor, decreased the viability of NT3 cells to the same level as C2 cells after cisplatin. Furthermore, caspase-3/-7 activation is blocked by Fas, caspase-8, caspase-9 and pan-caspase inhibitors. These inhibitors also completely abolished the difference in viability between NT3 and C2 cells in response to cisplatin. These results demonstrate a Fas-mediated apoptotic signaling pathway that is enhanced by the age-dependent loss of α(E)-catenin in renal tubule epithelial cells.
Collapse
Affiliation(s)
- Xinhui Wang
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri, MA 415 Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | | |
Collapse
|
32
|
Sun Y, Zhang J, Ma L. α-catenin. A tumor suppressor beyond adherens junctions. Cell Cycle 2015; 13:2334-9. [PMID: 25483184 DOI: 10.4161/cc.29765] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Yutong Sun
- a Department of Molecular and Cellular Oncology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | | | | |
Collapse
|
33
|
Lu Z, Kim DH, Fan J, Lu Q, Verbanac K, Ding L, Renegar R, Chen YH. A non-tight junction function of claudin-7-Interaction with integrin signaling in suppressing lung cancer cell proliferation and detachment. Mol Cancer 2015; 14:120. [PMID: 26081244 PMCID: PMC4470020 DOI: 10.1186/s12943-015-0387-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 05/18/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Claudins are a family of tight junction (TJ) membrane proteins involved in a broad spectrum of human diseases including cancer. Claudin-7 is a unique TJ membrane protein in that it has a strong basolateral membrane distribution in epithelial cells and in tissues. Therefore, this study aims to investigate the functional significance of this non-TJ localization of claudin-7 in human lung cancer cells. METHODS Claudin-7 expression was suppressed or deleted by lentivirus shRNA or by targeted-gene deletion. Cell cycle analysis and antibody blocking methods were employed to assay cell proliferation and cell attachment, respectively. Electron microscopy and transepthelial electrical resistance measurement were performed to examine the TJ ultrastructure and barrier function. Co-immunolocalization and co-immunoprecipitation was used to study claudin-7 interaction with integrin β1. Tumor growth in vivo were analyzed using athymic nude mice. RESULTS Claudin-7 co-localizes and forms a stable complex with integrin β1. Both suppressing claudin-7 expression by lentivirus shRNA in human lung cancer cells (KD cells) and deletion of claudin-7 in mouse lungs lead to the reduction in integrin β1 and phospho-FAK levels. Suppressing claudin-7 expression increases cell growth and cell cycle progression. More significantly, claudin-7 KD cells have severe defects in cell-matrix interactions and adhere poorly to culture plates with a remarkably reduced integrin β1 expression. When cultured on uncoated glass coverslips, claudin-7 KD cells grow on top of each other and form spheroids while the control cells adhere well and grow as a monolayer. Reintroducing claudin-7 reduces cell proliferation, upregulates integrin β1 expression and increases cell-matrix adhesion. Integrin β1 transfection partially rescues the cell attachment defect. When inoculated into nude mice, claudin-7 KD cells produced significantly larger tumors than control cells. CONCLUSION In this study, we identified a previously unrecognized function of claudin-7 in regulating cell proliferation and maintaining epithelial cell attachment through engaging integrin β1.
Collapse
Affiliation(s)
- Zhe Lu
- School of Medicine, Hangzhou Normal University, Hangzhou, 310036, China.
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| | - Do Hyung Kim
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| | - Junming Fan
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
- Leo Jenkins Cancer Center, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| | - Kathryn Verbanac
- Leo Jenkins Cancer Center, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| | - Lei Ding
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| | - Randall Renegar
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
- Leo Jenkins Cancer Center, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
34
|
Choi HJ, Loveless T, Lynch AM, Bang I, Hardin J, Weis WI. A conserved phosphorylation switch controls the interaction between cadherin and β-catenin in vitro and in vivo. Dev Cell 2015; 33:82-93. [PMID: 25850673 DOI: 10.1016/j.devcel.2015.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/20/2014] [Accepted: 02/05/2015] [Indexed: 10/23/2022]
Abstract
In metazoan adherens junctions, β-catenin links the cytoplasmic tail of classical cadherins to the F-actin-binding protein α-catenin. Phosphorylation of a Ser/Thr-rich region in the cadherin tail dramatically enhances affinity for β-catenin and promotes cell-cell adhesion in cell culture systems, but its importance has not been demonstrated in vivo. Here, we identify a critical phosphorylated serine in the C. elegans cadherin HMR-1 required for strong binding to the β-catenin homolog HMP-2. Ablation of this phosphoserine interaction produces developmental defects that resemble full loss-of-function (Hammerhead and Humpback) phenotypes. Most metazoans possess a single gene for β-catenin, which is also a transcriptional coactivator in Wnt signaling. Nematodes and planaria, however, have a set of paralogous β-catenins; for example, C. elegans HMP-2 functions only in cell-cell adhesion, whereas SYS-1 mediates transcriptional activation through interactions with POP-1/Tcf. Our structural data define critical sequence differences responsible for the unique ligand specificities of these two proteins.
Collapse
Affiliation(s)
- Hee-Jung Choi
- School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea.
| | - Timothy Loveless
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI 53706, USA
| | - Allison M Lynch
- Department of Zoology, University of Wisconsin, Madison, WI 53706, USA
| | - Injin Bang
- School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea
| | - Jeff Hardin
- Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Zoology, University of Wisconsin, Madison, WI 53706, USA
| | - William I Weis
- Departments of Structural Biology and of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Circulating mRNA Profiling in Esophageal Squamous Cell Carcinoma Identifies FAM84B As A Biomarker In Predicting Pathological Response to Neoadjuvant Chemoradiation. Sci Rep 2015; 5:10291. [PMID: 25980316 PMCID: PMC4434848 DOI: 10.1038/srep10291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/09/2015] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer patients with pathological complete response (pCR) to neoadjuvant chemoradiation (CRT) have favorable outcomes. Currently, there was no reliable biomarker predicting the response to CRT. Perioperative circulating mRNA may be associated with prognosis, but its application for predicting treatment response is unclear. We prospectively assessed the value of circulating messenger RNA (mRNA) profiling in predicting pCR for esophageal squamous cell carcinoma (ESCC). Patients with ESCC completing CRT followed by surgery were enrolled for analysis. Venous peripheral blood was obtained before and after CRT, and total RNA was extracted for hybridization-based whole genome expression analysis and quantitative RT-PCR. We found circulating expression profiling was significantly altered after CRT. Altered FAM84B expression was significantly predictive of pCR. The decrease of serum FAM84B protein level after CRT was also associated with pCR. Immunohistochemistry and western blot confirmed that FAM84B protein was overexpressed in the majority of patients and ESCC cell lines. Furthermore, knockdown of FAM84B delayed tumor growth in ectopic xenografts. We demonstrated the decreased of circulating FAM84B mRNA and protein after neoadjuvant CRT may predict pCR, and FAM84B protein is overexpressed in ESCC. The potential of FAM84B as a novel predictive biomarker, and its biological functions deserve further investigation.
Collapse
|
36
|
Zhao C, Zhang M, Liu W, Wang C, Zhang Q, Li W. β-Catenin knockdown inhibits pituitary adenoma cell proliferation and invasion via interfering with AKT and gelatinases expression. Int J Oncol 2015; 46:1643-50. [PMID: 25646597 DOI: 10.3892/ijo.2015.2862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/07/2015] [Indexed: 11/05/2022] Open
Abstract
Pituitary adenomas are among the most prevalent forms of intrinsic brain tumors. Although most pituitary adenomas are benign, some of them may become invasive and cause significant mass effect and hormonal dysfunction. We have previously shown that β-catenin is overexpressed in human pituitary adenomas and its level correlates to tumor grades. In the present study, we further investigated the role of β-catenin in pituitary adenoma cell proliferation and invasion in vitro. Stable β-catenin knockdown pituitary adenoma cell line was created by transfecting mouse growth hormone pituitary adenoma GT1.1 cells with β-catenin shRNA plasmid. Cell proliferation and invasion were assessed using CCK-8 kit and transwell assay, respectively. Our data demonstrated that knockdown of β-catenin with shRNA significantly inhibited the proliferation and invasion of GT1.1 cells. In β-catenin shRNA transfected cells, the expression of AKT, STAT3, cyclin D1 and CDK4 were significantly suppressed, which accounted for the observed growth retardation following β-catenin shRNA transfection. Moreover, β-catenin shRNA transfection led to a drastic reduction in MMP-2/9 secretion into the conditioned media, which might be responsible for the reduced invasiveness of β-catenin shRNA-transfected pituitary adenoma cells. These results indicate that β-catenin may regulate the expression of AKT, STAT3, cyclin D1, CDK4 and MMP-2/9 to promote pituitary adenoma cell proliferation and invasion.
Collapse
Affiliation(s)
- Chengcheng Zhao
- Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Meng Zhang
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Wenlan Liu
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Chuanfang Wang
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Qiusheng Zhang
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Weiping Li
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
37
|
Kumar A, Gupta T, Berzsenyi S, Giangrande A. N-cadherin negatively regulates collective Drosophila glial migration via actin cytoskeleton remodeling. J Cell Sci 2015; 128:900-12. [DOI: 10.1242/jcs.157974] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cell migration is an essential and highly regulated process. During development, glia and neurons migrate over long distances, in most cases collectively, to reach their final destination and build the sophisticated architecture of the nervous system, the most complex tissue of the body. Collective migration is highly stereotyped and efficient, defects in the process leading to severe human diseases that include mental retardation. This dynamic process entails extensive cell communication and coordination, hence the real challenge is to analyze it in the whole organism and at cellular resolution. We here investigate the impact of the N-cadherin adhesion molecule on collective glial migration using the Drosophila developing wing and cell-type specific manipulation of gene expression. We show that N-cadherin timely accumulates in glial cells and that its levels affect migration efficiency. N-cadherin works as a molecular brake in a dosage dependent manner by negatively controlling actin nucleation and cytoskeleton remodeling through α/β catenins. This is the first in vivo evidence for N-cadherin negatively and cell autonomously controlling collective migration.
Collapse
|
38
|
Zhang Y, Calado R, Rao M, Hong JA, Meeker AK, Dumitriu B, Atay S, McCormick PJ, Garfield SH, Wangsa D, Padilla-Nash HM, Burkett S, Zhang M, Kunst TF, Peterson NR, Xi S, Inchauste S, Altorki NK, Casson AG, Beer DG, Harris CC, Ried T, Young NS, Schrump DS. Telomerase variant A279T induces telomere dysfunction and inhibits non-canonical telomerase activity in esophageal carcinomas. PLoS One 2014; 9:e101010. [PMID: 24983628 PMCID: PMC4077737 DOI: 10.1371/journal.pone.0101010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 06/02/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although implicated in the pathogenesis of several chronic inflammatory disorders and hematologic malignancies, telomerase mutations have not been thoroughly characterized in human cancers. The present study was performed to examine the frequency and potential clinical relevance of telomerase mutations in esophageal carcinomas. METHODS Sequencing techniques were used to evaluate mutational status of telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) in neoplastic and adjacent normal mucosa from 143 esophageal cancer (EsC) patients. MTS, flow cytometry, time lapse microscopy, and murine xenograft techniques were used to assess proliferation, apoptosis, chemotaxis, and tumorigenicity of EsC cells expressing either wtTERT or TERT variants. Immunoprecipitation, immunoblot, immunofluorescence, promoter-reporter and qRT-PCR techniques were used to evaluate interactions of TERT and several TERT variants with BRG-1 and β-catenin, and to assess expression of cytoskeletal proteins, and cell signaling. Fluorescence in-situ hybridization and spectral karyotyping techniques were used to examine telomere length and chromosomal stability. RESULTS Sequencing analysis revealed one deletion involving TERC (TERC del 341-360), and two non-synonymous TERT variants [A279T (2 homozygous, 9 heterozygous); A1062T (4 heterozygous)]. The minor allele frequency of the A279T variant was five-fold higher in EsC patients compared to healthy blood donors (p<0.01). Relative to wtTERT, A279T decreased telomere length, destabilized TERT-BRG-1-β-catenin complex, markedly depleted β-catenin, and down-regulated canonical Wnt signaling in cancer cells; these phenomena coincided with decreased proliferation, depletion of additional cytoskeletal proteins, impaired chemotaxis, increased chemosensitivity, and significantly decreased tumorigenicity of EsC cells. A279T expression significantly increased chromosomal aberrations in mouse embryonic fibroblasts (MEFs) following Zeocin™ exposure, as well as Li Fraumeni fibroblasts in the absence of pharmacologically-induced DNA damage. CONCLUSIONS A279T induces telomere dysfunction and inhibits non-canonical telomerase activity in esophageal cancer cells. These findings warrant further analysis of A279T expression in esophageal cancers and premalignant esophageal lesions.
Collapse
Affiliation(s)
- Yuwei Zhang
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Rodrigo Calado
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Mahadev Rao
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Julie A. Hong
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Alan K. Meeker
- Departments of Pathology and Oncology, Johns Hopkins University of Medicine, Baltimore, Maryland, United States of America
| | - Bogdan Dumitriu
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Scott Atay
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Peter J. McCormick
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Susan H. Garfield
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Danny Wangsa
- Section of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hesed M. Padilla-Nash
- Section of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sandra Burkett
- Comparative Molecular Cytogenetics Core Facility, National Cancer Institute, Frederick, Maryland, United States of America
| | - Mary Zhang
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Tricia F. Kunst
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nathan R. Peterson
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Sichuan Xi
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Suzanne Inchauste
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nasser K. Altorki
- Department of Thoracic Surgery, Weill Cornell Medical Center, New York, New York, United States of America
| | - Alan G. Casson
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David G. Beer
- Section of Thoracic Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Thomas Ried
- Section of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Neal S. Young
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - David S. Schrump
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
39
|
Wang X, Grunz-Borgmann EA, Parrish AR. Loss of α(E)-catenin potentiates cisplatin-induced nephrotoxicity via increasing apoptosis in renal tubular epithelial cells. Toxicol Sci 2014; 141:254-62. [PMID: 24973089 DOI: 10.1093/toxsci/kfu130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is one of the most potent and widely used antitumor drugs. However, the use of cisplatin is limited by its side effect, nephrotoxicity. Evidence has shown an increased incidence and severity of acute kidney injury (AKI) in the elderly. Previous studies from our laboratory demonstrate a decrease in α(E)-catenin expression in aged kidney. In this study, we investigated whether the loss of α(E)-catenin may increase cisplatin nephrotoxicity. To study the effects of reduced α(E)-catenin, a cell line with stable knockdown of α(E)-catenin (C2 cells) was used; NT3 is nontargeted control. C2 cells exhibited a significant loss of viability as determined by MTT assay compared with NT3 cells after cisplatin challenge, but showed no difference in lactate dehydrogenase (LDH) leakage. Increased caspase 3/7 activation and PARP cleavage was observed in C2 cells after cisplatin treatment. Z-VAD, a pan-caspase inhibitor, abolished the difference in susceptibility between NT3 and C2 cells. Interestingly, the expression of α(E)-catenin was further decreased after cisplatin treatment. Furthermore, in vivo data demonstrated a significant increase in serum creatinine at 72 h after a single dose of cisplatin in 24-month-old rats, but not in 4-month-old rats. Increased expression of KIM-1 and in situ apoptosis were also detected in aged kidney after cisplatin challenge. Taken together, these data suggest that loss of α(E)-catenin increases apoptosis of tubular epithelial cells which may contribute to the increased nephrotoxicity induced by cisplatin in aged kidney.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Medical Pharmacology and Physiology, School of Medicine, University, of Missouri, Columbia, Missouri 65212
| | - Elizabeth A Grunz-Borgmann
- Department of Medical Pharmacology and Physiology, School of Medicine, University, of Missouri, Columbia, Missouri 65212
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University, of Missouri, Columbia, Missouri 65212
| |
Collapse
|
40
|
Nichols LA, Grunz-Borgmann EA, Wang X, Parrish AR. A role for the age-dependent loss of α(E)-catenin in regulation of N-cadherin expression and cell migration. Physiol Rep 2014; 2:2/6/e12039. [PMID: 24920123 PMCID: PMC4208646 DOI: 10.14814/phy2.12039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aging kidney has a decreased ability to repair following acute kidney injury. Previous studies from our laboratory have demonstrated a loss in α‐catenin expression in the aging rat kidney. We hypothesize that loss of α‐catenin expression in tubular epithelial cells may induce changes that result in a decreased repair capacity. In these studies, we demonstrate that decreased α‐catenin protein expression is detectable as early as 20 months of age in male Fischer 344 rats. Protein loss is also observed in aged nonhuman primate kidneys, suggesting that this is not a species‐specific response. In an effort to elucidate alterations due to the loss of α‐catenin, we generated NRK‐52E cell lines with stable knockdown of α(E)‐catenin (C2 cells). Interestingly, C2 cells had decreased expression of N‐cadherin, decreased cell–cell adhesion, and increased monolayer permeability. C2 had deficits in wound repair, due to alterations in cell migration. Analysis of gene expression in the migrating control cells indicated that expression of N‐cadherin and N‐CAM was increased during repair. In migrating C2 cells, expression of N‐CAM was also increased, but the expression of N‐cadherin was not upregulated. Importantly, a blocking antibody against N‐cadherin inhibited repair in NRK‐52E cells, suggesting an important role in repair. Taken together, these data suggest that loss of α‐catenin, and the subsequent downregulation of N‐cadherin expression, is a mechanism underlying the decreased migration of tubular epithelial cells that contributes to the inability of the aging kidney to repair following injury. Aging is associated with loss of α‐catenin and N‐cadherin expression in the kidney. In these studies, we demonstrate that α‐catenin regulates, in part, N‐cadherin expression and migration in tubular epithelial cells.
Collapse
Affiliation(s)
- LaNita A Nichols
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
| | | | - Xinhui Wang
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Alan R Parrish
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
41
|
Nichols LA, Slusarz A, Grunz-Borgmann EA, Parrish AR. α(E)-catenin regulates BMP-7 expression and migration in renal epithelial cells. Am J Nephrol 2014; 39:409-17. [PMID: 24818804 DOI: 10.1159/000362250] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/11/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND The aging kidney has a decreased ability to repair following injury. We have shown a loss in expression of α-catenin in the aging rat kidney and hypothesize that decreased α-catenin expression in tubular epithelial cells results in diminished repair capacity. METHODS In an effort to elucidate alterations due to the loss of α-catenin, we generated NRK-52E cell lines with stable knockdown of α(E)-catenin. RESULTS α(E)-catenin knockdown resulted in decreased wound repair due to alterations in cell migration. Analysis of gene expression in the α(E)-catenin knockdown cells demonstrated almost a complete loss of bone morphogenetic protein-7 (BMP-7) expression that was associated with decreased phospho-Smad1/5/8 staining. However, addition of exogenous BMP-7 increased phospho-Smad1/5/8, suggesting that the BMP-7 pathway remained intact in C2 cells. Given the potential role of BMP-7 in repair, we investigated its role in wound repair. Inhibition of BMP-7 decreased repair in non-targeted control cells; conversely, exogenous BMP-7 restored repair in α(E)-catenin knockdown cells to control levels. CONCLUSIONS Taken together, the data suggests that the loss of α(E)-catenin expression and subsequent downregulation of BMP-7 is a mechanism underlying the altered migration of tubular epithelial cells that contributes to the inability of the aging kidney to repair following injury.
Collapse
Affiliation(s)
- LaNita A Nichols
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Mo., USA
| | | | | | | |
Collapse
|
42
|
Gurel Z, Zaro BW, Pratt MR, Sheibani N. Identification of O-GlcNAc modification targets in mouse retinal pericytes: implication of p53 in pathogenesis of diabetic retinopathy. PLoS One 2014; 9:e95561. [PMID: 24788674 PMCID: PMC4006792 DOI: 10.1371/journal.pone.0095561] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/28/2014] [Indexed: 12/31/2022] Open
Abstract
Hyperglycemia is the primary cause of the majority of diabetes complications, including diabetic retinopathy (DR). Hyperglycemic conditions have a detrimental effect on many tissues and cell types, especially the retinal vascular cells including early loss of pericytes (PC). However, the mechanisms behind this selective sensitivity of retinal PC to hyperglycemia are undefined. The O-linked β-N-acetylglucosamine (O-GlcNAc) modification is elevated under hyperglycemic condition, and thus, may present an important molecular modification impacting the hyperglycemia-driven complications of diabetes. We have recently demonstrated that the level of O-GlcNAc modification in response to high glucose is variable in various retinal vascular cells. Retinal PC responded with the highest increase in O-GlcNAc modification compared to retinal endothelial cells and astrocytes. Here we show that these differences translated into functional changes, with an increase in apoptosis of retinal PC, not just under high glucose but also under treatment with O-GlcNAc modification inducers, PUGNAc and Thiamet-G. To gain insight into the molecular mechanisms involved, we have used click-It chemistry and LC-MS analysis and identified 431 target proteins of O-GlcNAc modification in retinal PC using an alkynyl-modified GlcNAc analog (GlcNAlk). Among the O-GlcNAc target proteins identified here 115 of them were not previously reported to be target of O-GlcNAc modification. We have identified at least 34 of these proteins with important roles in various aspects of cell death processes. Our results indicated that increased O-GlcNAc modification of p53 was associated with an increase in its protein levels in retinal PC. Together our results suggest that post-translational O-GlcNAc modification of p53 and its increased levels may contribute to selective early loss of PC during diabetes. Thus, modulation of O-GlcNAc modification may provide a novel treatment strategy to prevent the initiation and progression of DR.
Collapse
Affiliation(s)
- Zafer Gurel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States of America; McPherson Eye Research Institute, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Balyn W Zaro
- Departments of Chemistry and Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Matthew R Pratt
- Departments of Chemistry and Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States of America; McPherson Eye Research Institute, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
43
|
Choi SH, Estarás C, Moresco JJ, Yates JR, Jones KA. α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes Dev 2014; 27:2473-88. [PMID: 24240237 PMCID: PMC3841736 DOI: 10.1101/gad.229062.113] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutation of the adenomatous polyposis coli (APC) tumor suppressor stabilizes β-catenin and aberrantly reactivates Wnt/β-catenin target genes in colon cancer. APC mutants in cancer frequently lack the conserved catenin inhibitory domain (CID), which is essential for β-catenin proteolysis. Here we show that the APC CID interacts with α-catenin, a Hippo signaling regulator and heterodimeric partner of β-catenin at cell:cell adherens junctions. Importantly, α-catenin promotes β-catenin ubiquitylation and proteolysis by stabilizing its association with APC and protecting the phosphodegron. Moreover, β-catenin ubiquitylation requires binding to α-catenin. Multidimensional protein identification technology (MudPIT) proteomics of multiple Wnt regulatory complexes reveals that α-catenin binds with β-catenin to LEF-1/TCF DNA-binding proteins in Wnt3a signaling cells and recruits APC in a complex with the CtBP:CoREST:LSD1 histone H3K4 demethylase to regulate transcription and β-catenin occupancy at Wnt target genes. Interestingly, tyrosine phosphorylation of α-catenin at Y177 disrupts binding to APC but not β-catenin and prevents repression of Wnt target genes in transformed cells. Chromatin immunoprecipitation studies further show that α-catenin and APC are recruited with β-catenin to Wnt response elements in human embryonic stem cells (hESCs). Knockdown of α-catenin in hESCs prevents the switch-off of Wnt/β-catenin transcription and promotes endodermal differentiation. Our findings indicate a role for α-catenin in the APC destruction complex and at Wnt target genes.
Collapse
Affiliation(s)
- Seung H Choi
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 USA
| | | | | | | | | |
Collapse
|
44
|
Weis WI, Nelson WJ, Dickinson DJ. Evolution and cell physiology. 3. Using Dictyostelium discoideum to investigate mechanisms of epithelial polarity. Am J Physiol Cell Physiol 2013; 305:C1091-5. [PMID: 24067914 DOI: 10.1152/ajpcell.00233.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In Metazoa, a polarized epithelium forms a single-cell-layered barrier that separates the outside from the inside of the organism. In tubular epithelia, the apical side of the cell is constricted relative to the basal side, forming a wedge-shaped cell that can pack into a tube. Apical constriction is mediated by actomyosin activity. In higher animals, apical actomyosin is connected between cells by specialized cell-cell junctions that contain a classical cadherin, the Wnt signaling protein β-catenin, and the actin-binding protein α-catenin. The molecular mechanisms that lead to selective accumulation of myosin at the apical surface of cells are poorly understood. We found that the nonmetazoan Dictyostelium discoideum forms a polarized epithelium that surrounds the stalk tube at the tip of the multicellular fruiting body. Although D. discoideum lacks a cadherin homolog, it expresses homologs of β- and α-catenin. Both catenins are essential for formation of the tip epithelium, polarized protein secretion, and proper multicellular morphogenesis. Myosin localizes apically in tip epithelial cells, and it appears that constriction of this epithelial tube is required for proper morphogenesis. Localization of myosin II is controlled by the protein IQGAP1 and its binding partners cortexillins I and II, which function downstream of α- and β-catenin to exclude myosin from the basolateral cortex and promote apical accumulation of myosin. These studies show that the function of catenins in cell polarity predates the evolution of Wnt signaling and classical cadherins, and that apical localization of myosin is a morphogenetic mechanism conserved from nonmetazoans to vertebrates.
Collapse
Affiliation(s)
- William I Weis
- Program in Cancer Biology, Stanford University, Stanford, California
| | | | | |
Collapse
|
45
|
Hansen SD, Kwiatkowski AV, Ouyang CY, Liu H, Pokutta S, Watkins SC, Volkmann N, Hanein D, Weis WI, Mullins RD, Nelson WJ. αE-catenin actin-binding domain alters actin filament conformation and regulates binding of nucleation and disassembly factors. Mol Biol Cell 2013; 24:3710-20. [PMID: 24068324 PMCID: PMC3842997 DOI: 10.1091/mbc.e13-07-0388] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
αE-catenin regulates transitions in actin organization between cell migration and cell–cell adhesion by controlling barbed-end polymerization of unbranched actin filaments and inhibiting Arp2/3 complex and cofilin regulation of actin filament branching and disassembly. The actin-binding protein αE-catenin may contribute to transitions between cell migration and cell–cell adhesion that depend on remodeling the actin cytoskeleton, but the underlying mechanisms are unknown. We show that the αE-catenin actin-binding domain (ABD) binds cooperatively to individual actin filaments and that binding is accompanied by a conformational change in the actin protomer that affects filament structure. αE-catenin ABD binding limits barbed-end growth, especially in actin filament bundles. αE-catenin ABD inhibits actin filament branching by the Arp2/3 complex and severing by cofilin, both of which contact regions of the actin protomer that are structurally altered by αE-catenin ABD binding. In epithelial cells, there is little correlation between the distribution of αE-catenin and the Arp2/3 complex at developing cell–cell contacts. Our results indicate that αE-catenin binding to filamentous actin favors assembly of unbranched filament bundles that are protected from severing over more dynamic, branched filament arrays.
Collapse
Affiliation(s)
- Scott D Hansen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, School of Medicine, San Francisco, CA 94158 Department of Biology, Stanford University, Stanford, CA 94305 Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 Bioinformatics and Systems Biology Program, Sanford Burnham Medical Research Institute, La Jolla, CA 92037 Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305 Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Desai R, Sarpal R, Ishiyama N, Pellikka M, Ikura M, Tepass U. Monomeric α-catenin links cadherin to the actin cytoskeleton. Nat Cell Biol 2013; 15:261-73. [PMID: 23417122 DOI: 10.1038/ncb2685] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 01/08/2013] [Indexed: 12/15/2022]
Abstract
The linkage of adherens junctions to the actin cytoskeleton is essential for cell adhesion. The contribution of the cadherin-catenin complex to the interaction between actin and the adherens junction remains an intensely investigated subject that centres on the function of α-catenin, which binds to cadherin through β-catenin and can bind F-actin directly or indirectly. Here, we delineate regions within Drosophila α-Catenin (α-Cat) that are important for adherens junction performance in static epithelia and dynamic morphogenetic processes. Moreover, we address whether persistent α-catenin-mediated physical linkage between cadherin and F-actin is crucial for cell adhesion and characterize the functions of α-catenin monomers and dimers at adherens junctions. Our data support the view that monomeric α-catenin acts as an essential physical linker between the cadherin-β-catenin complex and the actin cytoskeleton, whereas α-catenin dimers are cytoplasmic and form an equilibrium with monomeric junctional α-catenin.
Collapse
Affiliation(s)
- Ridhdhi Desai
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Wik E, Ræder MB, Krakstad C, Trovik J, Birkeland E, Hoivik EA, Mjos S, Werner HMJ, Mannelqvist M, Stefansson IM, Oyan AM, Kalland KH, Akslen LA, Salvesen HB. Lack of estrogen receptor-α is associated with epithelial-mesenchymal transition and PI3K alterations in endometrial carcinoma. Clin Cancer Res 2013; 19:1094-105. [PMID: 23319822 DOI: 10.1158/1078-0432.ccr-12-3039] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We hypothesized that estrogen receptor-α (ER-α) status in endometrial carcinomas, associated with poor prognosis, is reflected in transcriptional signatures suggesting targets for new therapy. EXPERIMENTAL DESIGN Endometrial carcinoma samples in a primary investigation cohort (n = 76) and three independent validation cohorts (n = 155/286/111) were analyzed through integrated molecular profiling. Biomarkers were assessed by immunohistochemistry (IHC), DNA oligonucleotide microarray, quantitative PCR (qPCR), single-nucleotide polymorphism (SNP) array, and Sanger sequencing in the cohorts, annotated for comprehensive histopathologic and clinical data, including follow-up. RESULTS ER-α immunohistochemical staining was strongly associated with mRNA expression of the receptor gene (ESR1) and patient survival (both P < 0.001). ER-α negativity associated with activation of genes involved in Wnt-, Sonic Hedgehog-, and TGF-β signaling in the investigation cohort, indicating epithelial-mesenchymal transition (EMT). The association between low ER-α and EMT was validated in three independent datasets. Furthermore, phosphoinositide 3-kinase (PI3K) and mTOR inhibitors were among the top-ranked drug signatures negatively correlated with the ER-α-negative tumors. Low ER-α was significantly associated with PIK3CA amplifications but not mutations. Also, low ER-α was correlated to high expression of Stathmin, a marker associated with PTEN loss, and a high PI3K activation signature. CONCLUSION Lack of ER-α in endometrial cancer is associated with EMT and reduced survival. We present a rationale for investigating ER-α's potential to predict response to PI3K/mTOR inhibitors in clinical trials and also suggest EMT inhibitors to ER-α-negative endometrial carcinomas.
Collapse
Affiliation(s)
- Elisabeth Wik
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nelson WJ, Dickinson DJ, Weis WI. Roles of cadherins and catenins in cell-cell adhesion and epithelial cell polarity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:3-23. [PMID: 23481188 DOI: 10.1016/b978-0-12-394311-8.00001-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A simple epithelium is the building block of all metazoans and a multicellular stage of a nonmetazoan. It comprises a closed monolayer of quiescent cells that surround a luminal space. Cells are held together by cell-cell adhesion complexes and surrounded by extracellular matrix. These extracellular contacts are required for the formation of a polarized organization of plasma membrane proteins that regulate the directional absorption and secretion of ions, proteins, and other solutes. While advances have been made in understanding how proteins are sorted to different plasma membrane domains, less is known about how cell-cell adhesion is regulated and linked to the development of epithelial cell polarity and regulation of homeostasis.
Collapse
Affiliation(s)
- W James Nelson
- Department of Biology, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
49
|
Miller PW, Clarke DN, Weis WI, Lowe CJ, Nelson WJ. The evolutionary origin of epithelial cell-cell adhesion mechanisms. CURRENT TOPICS IN MEMBRANES 2013; 72:267-311. [PMID: 24210433 PMCID: PMC4118598 DOI: 10.1016/b978-0-12-417027-8.00008-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple epithelium forms a barrier between the outside and the inside of an organism, and is the first organized multicellular tissue found in evolution. We examine the relationship between the evolution of epithelia and specialized cell-cell adhesion proteins comprising the classical cadherin/β-catenin/α-catenin complex (CCC). A review of the divergent functional properties of the CCC in metazoans and non-metazoans, and an updated phylogenetic coverage of the CCC using recent genomic data reveal: (1) The core CCC likely originated before the last common ancestor of unikonts and their closest bikont sister taxa. (2) Formation of the CCC may have constrained sequence evolution of the classical cadherin cytoplasmic domain and β-catenin in metazoa. (3) The α-catenin-binding domain in β-catenin appears to be the favored mutation site for disrupting β-catenin function in the CCC. (4) The ancestral function of the α/β-catenin heterodimer appears to be an actin-binding module. In some metazoan groups, more complex functions of α-catenin were gained by sequence divergence in the non-actin-binding (N-, M-) domains. (5) Allosteric regulation of α-catenin may have evolved for more complex regulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- Phillip W. Miller
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | | | - William I. Weis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | | | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
50
|
Maiden SL, Harrison N, Keegan J, Cain B, Lynch AM, Pettitt J, Hardin J. Specific conserved C-terminal amino acids of Caenorhabditis elegans HMP-1/α-catenin modulate F-actin binding independently of vinculin. J Biol Chem 2012; 288:5694-706. [PMID: 23271732 DOI: 10.1074/jbc.m112.438093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stable intercellular adhesions formed through the cadherin-catenin complex are important determinants of proper tissue architecture and help maintain tissue integrity during morphogenetic movements in developing embryos. A key regulator of this stability is α-catenin, which connects the cadherin-catenin complex to the actin cytoskeleton. Although the C-terminal F-actin-binding domain of α-catenin has been shown to be crucial for its function, a more detailed in vivo analysis of discrete regions and residues required for actin binding has not been performed. Using Caenorhabditis elegans as a model system, we have characterized mutations in hmp-1/α-catenin that identify HMP-1 residues 687-742 and 826-927, as well as amino acid 802, as critical to the localization of junctional proximal actin during epidermal morphogenesis. We also find that the S823F transition in a hypomorphic allele, hmp-1(fe4), decreases actin binding in vitro. Using hmp-1(fe4) animals in a mutagenesis screen, we were then able to identify 11 intragenic suppressors of hmp-1(fe4) that revert actin binding to wild-type levels. Using homology modeling, we show that these amino acids are positioned at key conserved sites within predicted α-helices in the C terminus. Through the use of transgenic animals, we also demonstrate that HMP-1 residues 315-494, which correspond to a putative mechanotransduction domain that binds vinculin in vertebrate αE-catenin, are not required during epidermal morphogenesis but may aid efficient recruitment of HMP-1 to the junction. Our studies are the first to identify key conserved amino acids in the C terminus of α-catenin that modulate F-actin binding in living embryos of a simple metazoan.
Collapse
Affiliation(s)
- Stephanie L Maiden
- Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|