1
|
Guasch MB, Krapivsky PL, Antal T. Error-induced extinction in a multi-type critical birth-death process. J Math Biol 2024; 89:36. [PMID: 39222150 PMCID: PMC11369052 DOI: 10.1007/s00285-024-02134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/02/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Extreme mutation rates in microbes and cancer cells can result in error-induced extinction (EEX), where every descendant cell eventually acquires a lethal mutation. In this work, we investigate critical birth-death processes with n distinct types as a birth-death model of EEX in a growing population. Each type-i cell divides independently ( i ) → ( i ) + ( i ) or mutates ( i ) → ( i + 1 ) at the same rate. The total number of cells grows exponentially as a Yule process until a cell of type-n appears, which cell type can only divide or die at rate one. This makes the whole process critical and hence after the exponentially growing phase eventually all cells die with probability one. We present large-time asymptotic results for the general n-type critical birth-death process. We find that the mass function of the number of cells of type-k has algebraic and stationary tail( size ) - 1 - χ k , withχ k = 2 1 - k , for k = 2 , ⋯ , n , in sharp contrast to the exponential tail of the first type. The same exponents describe the tail of the asymptotic survival probability( time ) - ξ k . We present applications of the results for studying extinction due to intolerable mutation rates in biological populations.
Collapse
Affiliation(s)
- Meritxell Brunet Guasch
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, EH9 3FD, UK.
| | - P L Krapivsky
- Department of Physics, Boston University, Boston, MA, 02215, USA
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Tibor Antal
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, EH9 3FD, UK
| |
Collapse
|
2
|
Pužar Dominkuš P, Hudler P. Mutational Signatures in Gastric Cancer and Their Clinical Implications. Cancers (Basel) 2023; 15:3788. [PMID: 37568604 PMCID: PMC10416847 DOI: 10.3390/cancers15153788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Gastric cancer is characterised by high inter- and intratumour heterogeneity. The majority of patients are older than 65 years and the global burden of this disease is increasing due to the aging of the population. The disease is usually diagnosed at advanced stages, which is a consequence of nonspecific symptoms. Few improvements have been made at the level of noninvasive molecular diagnosis of sporadic gastric cancer, and therefore the mortality rate remains high. A new field of mutational signatures has emerged in the past decade with advances in the genome sequencing technology. These distinct mutational patterns in the genome, caused by exogenous and endogenous mutational processes, can be associated with tumour aetiology and disease progression, and could provide novel perception on the treatment possibilities. This review assesses the mutational signatures found in gastric cancer and summarises their potential for use in clinical setting as diagnostic or prognostic biomarkers. Associated treatment options and biomarkers already implemented in clinical use are discussed, together with those that are still being explored or are in clinical studies.
Collapse
Affiliation(s)
- Pia Pužar Dominkuš
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Soriano I, Vazquez E, De Leon N, Bertrand S, Heitzer E, Toumazou S, Bo Z, Palles C, Pai CC, Humphrey TC, Tomlinson I, Cotterill S, Kearsey SE. Expression of the cancer-associated DNA polymerase ε P286R in fission yeast leads to translesion synthesis polymerase dependent hypermutation and defective DNA replication. PLoS Genet 2021; 17:e1009526. [PMID: 34228709 PMCID: PMC8284607 DOI: 10.1371/journal.pgen.1009526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/16/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Somatic and germline mutations in the proofreading domain of the replicative DNA polymerase ε (POLE-exonuclease domain mutations, POLE-EDMs) are frequently found in colorectal and endometrial cancers and, occasionally, in other tumours. POLE-associated cancers typically display hypermutation, and a unique mutational signature, with a predominance of C > A transversions in the context TCT and C > T transitions in the context TCG. To understand better the contribution of hypermutagenesis to tumour development, we have modelled the most recurrent POLE-EDM (POLE-P286R) in Schizosaccharomyces pombe. Whole-genome sequencing analysis revealed that the corresponding pol2-P287R allele also has a strong mutator effect in vivo, with a high frequency of base substitutions and relatively few indel mutations. The mutations are equally distributed across different genomic regions, but in the immediate vicinity there is an asymmetry in AT frequency. The most abundant base-pair changes are TCT > TAT transversions and, in contrast to human mutations, TCG > TTG transitions are not elevated, likely due to the absence of cytosine methylation in fission yeast. The pol2-P287R variant has an increased sensitivity to elevated dNTP levels and DNA damaging agents, and shows reduced viability on depletion of the Pfh1 helicase. In addition, S phase is aberrant and RPA foci are elevated, suggestive of ssDNA or DNA damage, and the pol2-P287R mutation is synthetically lethal with rad3 inactivation, indicative of checkpoint activation. Significantly, deletion of genes encoding some translesion synthesis polymerases, most notably Pol κ, partially suppresses pol2-P287R hypermutation, indicating that polymerase switching contributes to this phenotype.
Collapse
Affiliation(s)
- Ignacio Soriano
- ZRAB, University of Oxford, Oxford, United Kingdom
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Enrique Vazquez
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Nagore De Leon
- ZRAB, University of Oxford, Oxford, United Kingdom
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | | | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Sophia Toumazou
- ZRAB, University of Oxford, Oxford, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Zhihan Bo
- ZRAB, University of Oxford, Oxford, United Kingdom
| | - Claire Palles
- Gastrointestinal Cancer Genetics Laboratory, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chen-Chun Pai
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Timothy C. Humphrey
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ian Tomlinson
- Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Sue Cotterill
- St. George’s, University of London, Cranmer Terrace, Tooting, London, United Kingdom
| | | |
Collapse
|
4
|
Saakian DB, Cheong KH. Weak mixed phase in the mutator model. Phys Rev E 2021; 103:032113. [PMID: 33862733 DOI: 10.1103/physreve.103.032113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/10/2021] [Indexed: 11/07/2022]
Abstract
We consider the mutator model with unidirected transitions from the wild type to the mutator type, with different fitness functions for the wild types and mutator types. We calculate both the fraction of mutator types in the population and the surpluses, i.e., the mean number of mutations in the regular part of genomes for the wild type and mutator type, which have never been derived exactly. We identify the phase structure. Beside the mixed (ordinary evolution phase with finite fraction of wild types at large genome length) and the mutator phase (the absolute majority is mutators), we find another new phase as well-it has the mean fitness of the mixed phase but an exponentially small (in genome length) fraction of wild types. We identify the phase transition point and discuss its implications.
Collapse
Affiliation(s)
- David B Saakian
- Laboratory of Applied Physics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Kang Hao Cheong
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, S487372 Singapore
| |
Collapse
|
5
|
Amengual JE. Can we use epigenetics to prime chemoresistant lymphomas? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:85-94. [PMID: 33275728 PMCID: PMC7727522 DOI: 10.1182/hematology.2020000092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Chemoresistance remains a challenging clinical problem in the treatment of many lymphoma patients. Epigenetic derangements have been implicated in both intrinsic and acquired chemoresistance. Mutations in epigenetic processes shift entire networks of signaling pathways. They influence tumor suppressors, the DNA-damage response, cell-cycle regulators, and apoptosis. Epigenetic alterations have also been implicated in contributing to immune evasion. Although increased DNA methylation at CpG sites is the most widely studied alteration, increased histone methylation and decreased histone acetylation have also been implicated in stem-like characteristics and highly aggressive disease states as demonstrated in both preclinical models of lymphoma and patient studies. These changes are nonrandom, occur in clusters, and are observed across many lymphoma subtypes. Although caution must be taken when combining epigenetic therapies with other antineoplastic agents, epigenetic therapies have rarely induced clinical meaningful responses as single agents. Epigenetic priming of chemotherapy, targeted therapies, and immunotherapies in lymphoma patients may create opportunities to overcome resistance.
Collapse
Affiliation(s)
- Jennifer E Amengual
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
6
|
A new implication of quasispecies dynamics: Broad virus diversification in absence of external perturbations. INFECTION GENETICS AND EVOLUTION 2020; 82:104278. [PMID: 32165244 DOI: 10.1016/j.meegid.2020.104278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022]
Abstract
RNA genetic elements include many important animal and plant pathogens. They share high mutability, a trait that has multiple implications for the interactions with their host organisms. Here we review evidence of a new adaptive feature of RNA viruses that we term "broadly diversifying selection". It constitutes a new type of positive selection without participation of any external selective agent, and which is built upon a progressive increase of the number of different genomes that dominate the population. The evidence was provided by analyses of mutant spectrum composition of two important viral pathogens, foot-and-mouth disease virus (FMDV) and hepatitis C virus (HCV) after prolonged replication in their respective cell culture environment. Despite being fueled by mutations that arise randomly and in absence of an external guiding selective force, this type of selection prepares the viral population for a response to selective forces still to occur. Since current evidence suggests that broadly diversifying selection is favored by elevated mutation rates and population sizes, it may constitute a more general behavior, relevant also to the adaptive dynamics of microbial populations and cancer cells.
Collapse
|
7
|
Dou X, Tong P, Huang H, Zellmer L, He Y, Jia Q, Zhang D, Peng J, Wang C, Xu N, Liao DJ. Evidence for immortality and autonomy in animal cancer models is often not provided, which causes confusion on key issues of cancer biology. J Cancer 2020; 11:2887-2920. [PMID: 32226506 PMCID: PMC7086263 DOI: 10.7150/jca.41324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/08/2020] [Indexed: 11/08/2022] Open
Abstract
Modern research into carcinogenesis has undergone three phases. Surgeons and pathologists started the first phase roughly 250 years ago, establishing morphological traits of tumors for pathologic diagnosis, and setting immortality and autonomy as indispensable criteria for neoplasms. A century ago, medical doctors, biologists and chemists started to enhance "experimental cancer research" by establishing many animal models of chemical-induced carcinogenesis for studies of cellular mechanisms. In this second phase, the two-hit theory and stepwise carcinogenesis of "initiation-promotion" or "initiation-promotion-progression" were established, with an illustrious finding that outgrowths induced in animals depend on the inducers, and thus are not authentically neoplastic, until late stages. The last 40 years are the third incarnation, molecular biologists have gradually dominated the carcinogenesis research fraternity and have established numerous genetically-modified animal models of carcinogenesis. However, evidence has not been provided for immortality and autonomy of the lesions from most of these models. Probably, many lesions had already been collected from animals for analyses of molecular mechanisms of "cancer" before the lesions became autonomous. We herein review the monumental work of many predecessors to reinforce that evidence for immortality and autonomy is essential for confirming a neoplastic nature. We extrapolate that immortality and autonomy are established early during sporadic human carcinogenesis, unlike the late establishment in most animal models. It is imperative to resume many forerunners' work by determining the genetic bases for initiation, promotion and progression, the genetic bases for immortality and autonomy, and which animal models are, in fact, good for identifying such genetic bases.
Collapse
Affiliation(s)
- Xixi Dou
- Shandong Provincial Key Laboratory of Transmucosal and Transdermal Drug Delivery, Shandong Freda Pharmaceutical Group Co., Ltd., Jinan 250101, Shandong Province, P.R. China
| | - Pingzhen Tong
- Department of Pathology, The Second Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou Province, P.R. China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, P.R. China
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, 435 E. River Road, Minneapolis, MN 55455, USA
| | - Yan He
- Key Lab of Endemic and Ethnic Diseases of The Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou Province 550004, P. R. China
| | - Qingwen Jia
- Shandong Provincial Key Laboratory of Transmucosal and Transdermal Drug Delivery, Shandong Freda Pharmaceutical Group Co., Ltd., Jinan 250101, Shandong Province, P.R. China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Transmucosal and Transdermal Drug Delivery, Shandong Freda Pharmaceutical Group Co., Ltd., Jinan 250101, Shandong Province, P.R. China
| | - Jiang Peng
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, P.R. China
| | - Chenguang Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, P.R. China
| | - Ningzhi Xu
- Tianjin LIPOGEN Gene Technology Ltd., #238 Baidi Road, Nankai District, Tianjin 300192, P.R. China
| | - Dezhong Joshua Liao
- Department of Pathology, The Second Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou Province, P.R. China
| |
Collapse
|
8
|
Abstract
Viral quasispecies refers to a population structure that consists of extremely large numbers of variant genomes, termed mutant spectra, mutant swarms or mutant clouds. Fueled by high mutation rates, mutants arise continually, and they change in relative frequency as viral replication proceeds. The term quasispecies was adopted from a theory of the origin of life in which primitive replicons) consisted of mutant distributions, as found experimentally with present day RNA viruses. The theory provided a new definition of wild type, and a conceptual framework for the interpretation of the adaptive potential of RNA viruses that contrasted with classical studies based on consensus sequences. Standard clonal analyses and deep sequencing methodologies have confirmed the presence of myriads of mutant genomes in viral populations, and their participation in adaptive processes. The quasispecies concept applies to any biological entity, but its impact is more evident when the genome size is limited and the mutation rate is high. This is the case of the RNA viruses, ubiquitous in our biosphere, and that comprise many important pathogens. In virology, quasispecies are defined as complex distributions of closely related variant genomes subjected to genetic variation, competition and selection, and that may act as a unit of selection. Despite being an integral part of their replication, high mutation rates have an upper limit compatible with inheritable information. Crossing such a limit leads to RNA virus extinction, a transition that is the basis of an antiviral design termed lethal mutagenesis.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| |
Collapse
|
9
|
Van Hoeck A, Tjoonk NH, van Boxtel R, Cuppen E. Portrait of a cancer: mutational signature analyses for cancer diagnostics. BMC Cancer 2019; 19:457. [PMID: 31092228 PMCID: PMC6521503 DOI: 10.1186/s12885-019-5677-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/03/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In the past decade, systematic and comprehensive analyses of cancer genomes have identified cancer driver genes and revealed unprecedented insight into the molecular mechanisms underlying the initiation and progression of cancer. These studies illustrate that although every cancer has a unique genetic make-up, there are only a limited number of mechanisms that shape the mutational landscapes of cancer genomes, as reflected by characteristic computationally-derived mutational signatures. Importantly, the molecular mechanisms underlying specific signatures can now be dissected and coupled to treatment strategies. Systematic characterization of mutational signatures in a cancer patient's genome may thus be a promising new tool for molecular tumor diagnosis and classification. RESULTS In this review, we describe the status of mutational signature analysis in cancer genomes and discuss the opportunities and relevance, as well as future challenges, for further implementation of mutational signatures in clinical tumor diagnostics and therapy guidance. CONCLUSIONS Scientific studies have illustrated the potential of mutational signature analysis in cancer research. As such, we believe that the implementation of mutational signature analysis within the diagnostic workflow will improve cancer diagnosis in the future.
Collapse
Affiliation(s)
- Arne Van Hoeck
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Niels H. Tjoonk
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Heidelberglaan 25, 3584CS Utrecht, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Hartwig Medical Foundation, Science Park 408, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
10
|
Saakian DB, Cheong KH, Koh JM. Solution of the Crow-Kimura model with changing population size and Allee effect. Phys Rev E 2018; 98:012405. [PMID: 30110762 DOI: 10.1103/physreve.98.012405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 11/07/2022]
Abstract
The Crow-Kimura model is commonly used in the modeling of genetic evolution in the presence of mutations and associated selection pressures. We consider a modified version of the Crow-Kimura model, in which population sizes are not fixed and Allee saturation effects are present. We demonstrate the evolutionary dynamics in this system through an analytical approach, examining both symmetric and single-peak fitness landscape cases. Especially interesting are the dynamics of the populations near extinction. A special version of the model with saturation and degradation on the single-peak fitness landscape is investigated as a candidate of the Allee effect in evolution, revealing reduction tendencies of excessively large populations, and extinction tendencies for small populations. The analytical solutions for these dynamics are presented with accuracy O(1/N), where N is the number of nucleotides in the genome.
Collapse
Affiliation(s)
- David B Saakian
- Theoretical Physics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,A. I. Alikhanyan National Science Laboratory (Yerevan PhysicsInstitute) Foundation, 2 Alikhanian Brothers Street, Yerevan 375036, Armenia
| | - Kang Hao Cheong
- Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Jin Ming Koh
- Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| |
Collapse
|
11
|
Mierke CT, Sauer F, Grosser S, Puder S, Fischer T, Käs JA. The two faces of enhanced stroma: Stroma acts as a tumor promoter and a steric obstacle. NMR IN BIOMEDICINE 2018; 31:e3831. [PMID: 29215759 DOI: 10.1002/nbm.3831] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/24/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
In addition to genetic, morphological and biochemical alterations in cells, a key feature of the malignant progression of cancer is the stroma, including cancer cell motility as well as the emergence of metastases. Our current knowledge with regard to the biophysically driven experimental approaches of cancer progression indicates that mechanical aberrations are major contributors to the malignant progression of cancer. In particular, the mechanical probing of the stroma is of great interest. However, the impact of the tumor stroma on cellular motility, and hence the metastatic cascade leading to the malignant progression of cancer, is controversial as there are two different and opposing effects within the stroma. On the one hand, the stroma can promote and enhance the proliferation, survival and migration of cancer cells through mechanotransduction processes evoked by fiber alignment as a result of increased stroma rigidity. This enables all types of cancer to overcome restrictive biological capabilities. On the other hand, as a result of its structural constraints, the stroma acts as a steric obstacle for cancer cell motility in dense three-dimensional extracellular matrices, when the pore size is smaller than the cell's nucleus. The mechanical properties of the stroma, such as the tissue matrix stiffness and the entire architectural network of the stroma, are the major players in providing the optimal environment for cancer cell migration. Thus, biophysical methods determining the mechanical properties of the stroma, such as magnetic resonance elastography, are critical for the diagnosis and prediction of early cancer stages. Fibrogenesis and cancer are tightly connected, as there is an elevated risk of cancer on cystic fibrosis or, subsequently, cirrhosis. This also applies to the subsequent metastatic process.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Frank Sauer
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| | - Steffen Grosser
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| | - Stefanie Puder
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Tony Fischer
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Josef Alfons Käs
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Soft Matter Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Aguadé‐Gorgorió G, Solé R. Adaptive dynamics of unstable cancer populations: The canonical equation. Evol Appl 2018; 11:1283-1292. [PMID: 30151040 PMCID: PMC6099832 DOI: 10.1111/eva.12625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/15/2018] [Indexed: 12/24/2022] Open
Abstract
In most instances of tumour development, genetic instability plays a role in allowing cancer cell populations to respond to selection barriers, such as physical constraints or immune responses, and rapidly adapt to an always changing environment. Modelling instability is a nontrivial task, since by definition evolving instability leads to changes in the underlying landscape. In this article, we explore mathematically a simple version of unstable tumour progression using the formalism of adaptive dynamics (AD) where selection and mutation are explicitly coupled. Using a set of basic fitness landscapes, the so-called canonical equation for the evolution of genetic instability on a minimal scenario associated with a population of unstable cells is derived. We obtain explicit expressions for the evolution of mutation probabilities, and the implications of the model on further experimental studies and potential mutagenic therapies are discussed.
Collapse
Affiliation(s)
- Guim Aguadé‐Gorgorió
- ICREA‐Complex Systems LabUniversitat Pompeu FabraBarcelonaSpain
- Institut de Biologia Evolutiva (CSIC‐UPF)BarcelonaSpain
| | - Ricard Solé
- ICREA‐Complex Systems LabUniversitat Pompeu FabraBarcelonaSpain
- Institut de Biologia Evolutiva (CSIC‐UPF)BarcelonaSpain
- Santa Fe InstituteSanta FeNMUSA
| |
Collapse
|
13
|
Van Gool IC, Rayner E, Osse EM, Nout RA, Creutzberg CL, Tomlinson IPM, Church DN, Smit VTHBM, de Wind N, Bosse T, Drost M. Adjuvant Treatment for POLE Proofreading Domain-Mutant Cancers: Sensitivity to Radiotherapy, Chemotherapy, and Nucleoside Analogues. Clin Cancer Res 2018; 24:3197-3203. [PMID: 29559562 DOI: 10.1158/1078-0432.ccr-18-0266] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/08/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Pathogenic POLE proofreading domain mutations are found in many malignancies where they are associated with ultramutation and favorable prognosis. The extent to which this prognosis depends on their sensitivity to adjuvant treatment is unknown, as is the optimal therapy for advanced-staged or recurrent POLE-mutant cancers.Experimental Design: We examined the recurrence-free survival of women with POLE-mutant and POLE-wild-type endometrial cancers (EC) in the observation arm of the randomized PORTEC-1 endometrial cancer trial (N = 245 patients with stage I endometrial cancer for analysis). Sensitivity to radiotherapy and selected chemotherapeutics was compared between Pole-mutant mouse-derived embryonic stem (mES) cells, generated using CRISPR-Cas9 (Pole mutations D275A/E275A, and cancer-associated P286R, S297F, V411L) and isogenic wild-type cell lines.Results: In the observation arm of the PORTEC-1 trial (N = 245), women with POLE-mutant endometrial cancers (N = 16) had an improved recurrence-free survival (10-year recurrence-free survival 100% vs. 80.1% for POLE-wild-type; HR, 0.143; 95% confidence interval, 0.001-0.996; P = 0.049). Pole mutations did not increase sensitivity to radiotherapy nor to chemotherapeutics in mES cells. In contrast, Pole-mutant cells displayed significantly increased sensitivity to cytarabine and fludarabine (IC50Pole P286R-mutant vs. wild-type: 0.05 vs. 0.17 μmol/L for cytarabine, 4.62 vs. 11.1 μmol/L for fludarabine; P < 0.001 for both comparisons).Conclusions: The favorable prognosis of POLE-mutant cancers cannot be explained by increased sensitivity to currently used adjuvant treatments. These results support studies exploring minimization of adjuvant therapy for early-stage POLE-mutant cancers, including endometrial and colorectal cancers. Conversely, POLE mutations result in hypersensitivity to nucleoside analogues, suggesting the use of these compounds as a potentially effective targeted treatment for advanced-stage POLE-mutant cancers. Clin Cancer Res; 24(13); 3197-203. ©2018 AACR.
Collapse
Affiliation(s)
- Inge C Van Gool
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Emily Rayner
- Molecular and Population Genetics Laboratory, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Elisabeth M Osse
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Remi A Nout
- Department of Clinical and Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Carien L Creutzberg
- Department of Clinical and Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ian P M Tomlinson
- Molecular and Population Genetics Laboratory, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David N Church
- Molecular and Population Genetics Laboratory, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Cancer Centre, Churchill Hospital, Oxford, United Kingdom
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Mark Drost
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
14
|
Sprouffske K, Aguilar-Rodríguez J, Sniegowski P, Wagner A. High mutation rates limit evolutionary adaptation in Escherichia coli. PLoS Genet 2018; 14:e1007324. [PMID: 29702649 PMCID: PMC5942850 DOI: 10.1371/journal.pgen.1007324] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 05/09/2018] [Accepted: 03/21/2018] [Indexed: 11/19/2022] Open
Abstract
Mutation is fundamental to evolution, because it generates the genetic variation on which selection can act. In nature, genetic changes often increase the mutation rate in systems that range from viruses and bacteria to human tumors. Such an increase promotes the accumulation of frequent deleterious or neutral alleles, but it can also increase the chances that a population acquires rare beneficial alleles. Here, we study how up to 100-fold increases in Escherichia coli's genomic mutation rate affect adaptive evolution. To do so, we evolved multiple replicate populations of asexual E. coli strains engineered to have four different mutation rates for 3000 generations in the laboratory. We measured the ability of evolved populations to grow in their original environment and in more than 90 novel chemical environments. In addition, we subjected the populations to whole genome population sequencing. Although populations with higher mutation rates accumulated greater genetic diversity, this diversity conveyed benefits only for modestly increased mutation rates, where populations adapted faster and also thrived better than their ancestors in some novel environments. In contrast, some populations at the highest mutation rates showed reduced adaptation during evolution, and failed to thrive in all of the 90 alternative environments. In addition, they experienced a dramatic decrease in mutation rate. Our work demonstrates that the mutation rate changes the global balance between deleterious and beneficial mutational effects on fitness. In contrast to most theoretical models, our experiments suggest that this tipping point already occurs at the modest mutation rates that are found in the wild.
Collapse
Affiliation(s)
- Kathleen Sprouffske
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - José Aguilar-Rodríguez
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paul Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
15
|
Sardanyés J, Alarcón T. Noise-induced bistability in the fate of cancer phenotypic quasispecies: a bit-strings approach. Sci Rep 2018; 8:1027. [PMID: 29348614 PMCID: PMC5773630 DOI: 10.1038/s41598-018-19552-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
Abstract
Tumor cell populations are highly heterogeneous. Such heterogeneity, both at genotypic and phenotypic levels, is a key feature during tumorigenesis. How to investigate the impact of this heterogeneity in the dynamics of tumors cells becomes an important issue. Here we explore a stochastic model describing the competition dynamics between a pool of heterogeneous cancer cells with distinct phenotypes and healthy cells. This model is used to explore the role of demographic fluctuations on the transitions involving tumor clearance. Our results show that for large population sizes, when demographic fluctuations are negligible, there exists a sharp transition responsible for tumor cells extinction at increasing tumor cells' mutation rates. This result is consistent with a mean field model developed for the same system. The mean field model reveals only monostability scenarios, in which either the dominance of the tumor cells or the dominance of the healthy cells is found. Interestingly, the stochastic model shows that for small population sizes the monostability behavior disappears, involving the presence of noise-induced bistability. The impact of the initial populations of cells in the fate of the cell populations is investigated, as well as the transient times towards the healthy and the cancer states.
Collapse
Affiliation(s)
- Josep Sardanyés
- Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain.
- Barcelona Graduate School of Mathematics (BGSMath). Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain.
| | - Tomás Alarcón
- Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain.
- Barcelona Graduate School of Mathematics (BGSMath). Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
16
|
Hypermutated tumours in the era of immunotherapy: The paradigm of personalised medicine. Eur J Cancer 2017; 84:290-303. [PMID: 28846956 DOI: 10.1016/j.ejca.2017.07.026] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Immune checkpoint inhibitors have demonstrated unprecedented clinical activity in a wide range of cancers. Significant therapeutic responses have recently been observed in patients presenting mismatch repair-deficient (MMRD) tumours. MMRD cancers exhibit a remarkably high rate of mutations, which can result in the formation of neoantigens, hypothesised to enhance the antitumour immune response. In addition to MMRD tumours, cancers mutated in the exonuclease domain of the catalytic subunit of the DNA polymerase epsilon (POLE) also exhibit an ultramutated genome and are thus likely to benefit from immunotherapy. In this review, we provide an overview of recent data on hypermutated tumours, including MMRD and POLE-mutated cancers, with a focus on their distinctive clinicopathological and molecular characteristics as well as their immune environment. We also discuss the emergence of immune therapy to treat these hypermutated cancers, and we comment on the recent Food and Drug Administration approval of an immune checkpoint inhibitor, the programmed cell death 1 antibody (pembrolizumab, Keytruda), for the treatment of patients with metastatic MMRD cancers regardless of the tumour type. This breakthrough represents a turning point in the management of these hypermutated tumours and paves the way for broader strategies in immunoprecision medicine.
Collapse
|
17
|
Undifferentiated and Dedifferentiated Endometrial Carcinomas With POLE Exonuclease Domain Mutations Have a Favorable Prognosis. Am J Surg Pathol 2017; 41:1121-1128. [DOI: 10.1097/pas.0000000000000873] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Beckman RA, Loeb LA. Evolutionary dynamics and significance of multiple subclonal mutations in cancer. DNA Repair (Amst) 2017; 56:7-15. [PMID: 28652129 DOI: 10.1016/j.dnarep.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
For the last 40 years the authors have collaborated on trying to understand the complexities of human cancer by formulating testable mathematical models that are based on mutation accumulation in human malignancies. We summarize the concepts encompassed by multiple mutations in human cancers in the context of source, accumulation during carcinogenesis and tumor progression, and therapeutic consequences. We conclude that the efficacious treatment of human cancer by targeted therapy will involve individualized, uniquely directed specific agents singly and in simultaneous combinations, and take into account the importance of targeting resistant subclonal mutations, particularly those subclones with alterations in DNA repair genes, DNA polymerase, and other genes required to maintain genetic stability.
Collapse
Affiliation(s)
- Robert A Beckman
- Departments of Oncology and Biostatistics, Bioinformatics, & Biomathematics, Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC 20007 USA
| | - Lawrence A Loeb
- Joseph Gottstein Memorial Cancer Research Laboratory, Departments of Pathology and Biochemistry, University of Washington School of Medicine, Seattle, WA, 98195 USA.
| |
Collapse
|
19
|
Loeb LA. Human Cancers Express a Mutator Phenotype: Hypothesis, Origin, and Consequences. Cancer Res 2017; 76:2057-9. [PMID: 27197248 DOI: 10.1158/0008-5472.can-16-0794] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 11/16/2022]
Abstract
The mutator phenotype hypothesis was postulated more than 40 years ago. It was based on the multiple enzymatic steps required to precisely replicate the 6 billion bases in the human genome each time a normal cell divides. A reduction in this accuracy during tumor progression could be responsible for the striking heterogeneity of malignant cells within a tumor and for the rapidity by which cancers become resistant to therapy. Cancer Res; 76(8); 2057-9. ©2016 AACRSee related article by Loeb et al. Cancer Res. 1974;34:2311-21.
Collapse
Affiliation(s)
- Lawrence A Loeb
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington. Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
20
|
Hu Z, Sun R, Curtis C. A population genetics perspective on the determinants of intra-tumor heterogeneity. Biochim Biophys Acta Rev Cancer 2017; 1867:109-126. [PMID: 28274726 DOI: 10.1016/j.bbcan.2017.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
Cancer results from the acquisition of somatic alterations in a microevolutionary process that typically occurs over many years, much of which is occult. Understanding the evolutionary dynamics that are operative at different stages of progression in individual tumors might inform the earlier detection, diagnosis, and treatment of cancer. Although these processes cannot be directly observed, the resultant spatiotemporal patterns of genetic variation amongst tumor cells encode their evolutionary histories. Such intra-tumor heterogeneity is pervasive not only at the genomic level, but also at the transcriptomic, phenotypic, and cellular levels. Given the implications for precision medicine, the accurate quantification of heterogeneity within and between tumors has become a major focus of current research. In this review, we provide a population genetics perspective on the determinants of intra-tumor heterogeneity and approaches to quantify genetic diversity. We summarize evidence for different modes of evolution based on recent cancer genome sequencing studies and discuss emerging evolutionary strategies to therapeutically exploit tumor heterogeneity. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.
Collapse
Affiliation(s)
- Zheng Hu
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruping Sun
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christina Curtis
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Zhang W, Edwards A, Flemington EK, Zhang K. Significant Prognostic Features and Patterns of Somatic TP53 Mutations in Human Cancers. Cancer Inform 2017; 16:1176935117691267. [PMID: 28469388 PMCID: PMC5392013 DOI: 10.1177/1176935117691267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/02/2017] [Indexed: 01/08/2023] Open
Abstract
TP53 is the most frequently altered gene in human cancers. Numerous retrospective studies have related its mutation and abnormal p53 protein expression to poor patient survival. Nonetheless, the clinical significance of TP53 (p53) status has been a controversial issue. In this work, we aimed to characterize TP53 somatic mutations in tumor cells across multiple cancer types, primarily focusing on several less investigated features of the mutation spectra, and determine their prognostic implications. We performed an integrative study on the clinically annotated genomic data released by The Cancer Genome Atlas. Standard statistical methods, such as the Cox proportional hazards model and logistic regression, were used. This study resulted in several novel findings. They include the following: (1) similar to previously reported cases in breast cancer, the mutations in exons 1 to 4 of TP53 were more lethal than those in exons 5 to 9 for the patients with lung adenocarcinomas; (2) TP53 mutants tended to be negatively selected in mammalian evolution, but the evolutionary conservation had various clinical implications for different cancers; (3) conserved correlation patterns (ie, consistent co-occurrence or consistent mutual exclusivity) between TP53 mutations and the alterations in several other cancer genes (ie, PIK3CA, PTEN, KRAS, APC, CDKN2A, and ATM) were present in several cancers in which prognosis was associated with TP53 status and/or the mutational characteristics; (4) among TP53-mutated tumors, the total mutation burden in other driver genes was a predictive signature (P < .05, false discovery rate <0.11) for better patient survival outcome in several cancer types, including glioblastoma multiforme. Among these findings, the fourth is of special significance as it suggested the potential existence of epistatic interaction effects among the mutations in different cancer driver genes on clinical outcomes.
Collapse
Affiliation(s)
- Wensheng Zhang
- Department of Computer Science and Bioinformatics Facility of Xavier RCMI Center for Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
| | - Andrea Edwards
- Department of Computer Science and Bioinformatics Facility of Xavier RCMI Center for Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
| | - Erik K Flemington
- Tulane Cancer Center, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kun Zhang
- Department of Computer Science and Bioinformatics Facility of Xavier RCMI Center for Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
22
|
Abstract
We propose a modification of the Crow-Kimura and Eigen models of biological molecular evolution to include a mutator gene that causes both an increase in the mutation rate and a change in the fitness landscape. This mutator effect relates to a wide range of biomedical problems. There are three possible phases: mutator phase, mixed phase and non-selective phase. We calculate the phase structure, the mean fitness and the fraction of the mutator allele in the population, which can be applied to describe cancer development and RNA viruses. We find that depending on the genome length, either the normal or the mutator allele dominates in the mixed phase. We analytically solve the model for a general fitness function. We conclude that the random fitness landscape is an appropriate choice for describing the observed mutator phenomenon in the case of a small fraction of mutators. It is shown that the increase in the mutation rates in the regular and the mutator parts of the genome should be set independently; only some combinations of these increases can push the complex biomedical system to the non-selective phase, potentially related to the eradication of tumors.
Collapse
|
23
|
Sardanyés J, Martínez R, Simó C, Solé R. Abrupt transitions to tumor extinction: a phenotypic quasispecies model. J Math Biol 2016; 74:1589-1609. [PMID: 27714432 DOI: 10.1007/s00285-016-1062-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/09/2016] [Indexed: 12/20/2022]
Abstract
The dynamics of heterogeneous tumor cell populations competing with healthy cells is an important topic in cancer research with deep implications in biomedicine. Multitude of theoretical and computational models have addressed this issue, especially focusing on the nature of the transitions governing tumor clearance as some relevant model parameters are tuned. In this contribution, we analyze a mathematical model of unstable tumor progression using the quasispecies framework. Our aim is to define a minimal model incorporating the dynamics of competition between healthy cells and a heterogeneous population of cancer cell phenotypes involving changes in replication-related genes (i.e., proto-oncogenes and tumor suppressor genes), in genes responsible for genomic stability, and in house-keeping genes. Such mutations or loss of genes result into different phenotypes with increased proliferation rates and/or increased genomic instabilities. Despite bifurcations in the classical deterministic quasispecies model are typically given by smooth, continuous shifts (i.e., transcritical bifurcations), we here identify a novel type of bifurcation causing an abrupt transition to tumor extinction. Such a bifurcation, named as trans-heteroclinic, is characterized by the exchange of stability between two distant fixed points (that do not collide) involving tumor persistence and tumor clearance. The increase of mutation and/or the decrease of the replication rate of tumor cells involves this catastrophic shift of tumor cell populations. The transient times near bifurcation thresholds are also characterized, showing a power law dependence of exponent [Formula: see text] of the transients as mutation is changed near the bifurcation value. These results are discussed in the context of targeted cancer therapy as a possible therapeutic strategy to force a catastrophic shift by simultaneously delivering mutagenic and cytotoxic drugs inside tumor cells.
Collapse
Affiliation(s)
- Josep Sardanyés
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain. .,Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| | - Regina Martínez
- Departament de Matemàtiques, Edifici C. Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Carles Simó
- Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain
| | - Ricard Solé
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.,The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
24
|
Schmitt MW, Loeb LA, Salk JJ. The influence of subclonal resistance mutations on targeted cancer therapy. Nat Rev Clin Oncol 2016; 13:335-47. [PMID: 26483300 PMCID: PMC4838548 DOI: 10.1038/nrclinonc.2015.175] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Clinical oncology is being revolutionized by the increasing use of molecularly targeted therapies. This paradigm holds great promise for improving cancer treatment; however, allocating specific therapies to the patients who are most likely to derive a durable benefit continues to represent a considerable challenge. Evidence continues to emerge that cancers are characterized by extensive intratumour genetic heterogeneity, and that patients being considered for treatment with a targeted agent might, therefore, already possess resistance to the drug in a minority of cells. Indeed, multiple examples of pre-existing subclonal resistance mutations to various molecularly targeted agents have been described, which we review herein. Early detection of pre-existing or emerging drug resistance could enable more personalized use of targeted cancer therapy, as patients could be stratified to receive the therapies that are most likely to be effective. We consider how monitoring of drug resistance could be incorporated into clinical practice to optimize the use of targeted therapies in individual patients.
Collapse
Affiliation(s)
- Michael W Schmitt
- Departments of Biochemistry and Pathology, University of Washington, 1959 Northeast Pacific Street, Box 357705, Seattle, WA 98195, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Box 357705, Seattle, WA 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Box 19024, Seattle, WA 98109, USA
| | - Lawrence A Loeb
- Departments of Biochemistry and Pathology, University of Washington, 1959 Northeast Pacific Street, Box 357705, Seattle, WA 98195, USA
| | - Jesse J Salk
- Departments of Biochemistry and Pathology, University of Washington, 1959 Northeast Pacific Street, Box 357705, Seattle, WA 98195, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Box 357705, Seattle, WA 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Box 19024, Seattle, WA 98109, USA
| |
Collapse
|
25
|
Abstract
Herpes simplex virus (HSV), a member of the Herpesviridae family, is a significant human pathogen that results in mucocutaneous lesions in the oral cavity or genital infections. Acyclovir (ACV) and related nucleoside analogues can successfully treat HSV infections, but the emergence of drug resistance to ACV has created a barrier for the treatment of HSV infections, especially in immunocompromised patients. There is an urgent need to explore new and effective tactics to circumvent drug resistance to HSV. This review summarises the current strategies in the development of new targets (the DNA helicase/primase (H/P) complex), new types of molecules (nature products) and new antiviral mechanisms (lethal mutagenesis of Janus-type nucleosides) to fight the drug resistance of HSV.
Collapse
|
26
|
Fox EJ, Salk JJ, Loeb LA. Exploring the implications of distinct mutational signatures and mutation rates in aging and cancer. Genome Med 2016; 8:30. [PMID: 26987311 PMCID: PMC4797182 DOI: 10.1186/s13073-016-0286-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Signatures of mutagenesis provide a powerful tool for dissecting the role of somatic mutations in both normal and pathological processes. Significantly, cancer genomes are dominated by mutation signatures distinct from those that accumulate in normal tissues with age, with potentially important translational implications.
Collapse
Affiliation(s)
- Edward J Fox
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA.
| | - Jesse J Salk
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA.,Department of Medicine, Division of Oncology, University of Washington, Seattle, WA, 98195, USA
| | - Lawrence A Loeb
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA.,Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
27
|
McConechy MK, Talhouk A, Leung S, Chiu D, Yang W, Senz J, Reha-Krantz LJ, Lee CH, Huntsman DG, Gilks CB, McAlpine JN. Endometrial Carcinomas with POLE Exonuclease Domain Mutations Have a Favorable Prognosis. Clin Cancer Res 2016; 22:2865-73. [DOI: 10.1158/1078-0432.ccr-15-2233] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/04/2015] [Indexed: 11/16/2022]
|
28
|
Brovarets' OO, Pérez-Sánchez H, Hovorun DM. Structural grounds for the 2-aminopurine mutagenicity: a novel insight into the old problem of the replication errors. RSC Adv 2016. [DOI: 10.1039/c6ra17787e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutagenic pressure of the 2AP molecule on DNA during its replication is realized via the more intensive generation of the T* mutagenic tautomers through the reaction 2AP·T(WC) → 2AP·T*(w).
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Horacio Pérez-Sánchez
- Computer Science Department
- Bioinformatics and High Performance Computing (BIO-HPC) Research Group
- Universidad Católica San Antonio de Murcia (UCAM)
- Murcia
- Spain
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| |
Collapse
|
29
|
Kadhim MA, Hill MA. Non-targeted effects of radiation exposure: recent advances and implications. RADIATION PROTECTION DOSIMETRY 2015; 166:118-124. [PMID: 25897137 DOI: 10.1093/rpd/ncv167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The target theory of radiation-induced effects has been challenged by numerous studies, which indicate that in addition to biological effects resulting from direct DNA damage within the cell, a variety of non-DNA targeted effects (NTE) may make important contributions to the overall outcome. Ionising radiation induces complex, global cellular responses, such as genomic instability (GI) in both irradiated and never-irradiated 'bystander' cells that receive molecular signals produced by irradiated cells. GI is a well-known feature of many cancers, increasing the probability of cells to acquire the 'hallmarks of cancer' during the development of tumours. Although epidemiological data include contributions of both direct and NTE, they lack (i) statistical power at low dose where differences in dose response for NTE and direct effects are likely to be more important and (ii) heterogeneity of non-targeted responses due to genetic variability between individuals. In this article, NTE focussing on GI and bystander effects were critically examined, the specific principles of NTE were discussed and the potential influence on human health risk assessment from low-dose radiation was considered.
Collapse
Affiliation(s)
- M A Kadhim
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - M A Hill
- CRUK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
30
|
Fernandes J. The study of homology between tumor progression genes and members of retroviridae as a tool to predict target-directed therapy failure. Front Pharmacol 2015; 6:92. [PMID: 25983693 PMCID: PMC4416442 DOI: 10.3389/fphar.2015.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/16/2015] [Indexed: 11/30/2022] Open
Abstract
Oncogenes are the primary candidates for target-directed therapy, given that they are involved directly in the progression and resistance of tumors. However, the appearance of point mutations can hinder the treatment of patients with these new molecules, raising costs and the need to development new analogs that target the novel mutations. Based on an analysis of homologies, the present study discusses the possibility of predicting the failure of a protein as a pharmacological target, due to its similarities with retrovirus sequences, which have extremely high mutation rates. This analysis was based on the molecular evidence available in the literature, and widely-used and well-established PSI-BLAST, with two iterations and maximum of 500 aligned sequences. The possibility of predicting which newly-discovered genes involved in tumor progression would likely result in the failure of targeted therapy, using free, simple and automated bioinformatics tools, could provide substantial savings in the time and financial resources needed for long-term drug development.
Collapse
Affiliation(s)
- Janaina Fernandes
- NUMPEX-BIO, Federal University of Rio de Janeiro, Duque de Caxias , Rio de Janeiro, Brazil ; Institute for Translational Research on Health and Environment in the Amazon Region - INPeTAm, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Solé RV, Valverde S, Rodriguez-Caso C, Sardanyés J. Can a minimal replicating construct be identified as the embodiment of cancer? Bioessays 2015; 36:503-12. [PMID: 24723412 DOI: 10.1002/bies.201300098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Genomic instability is a hallmark of cancer. Cancer cells that exhibit abnormal chromosomes are characteristic of most advanced tumours, despite the potential threat represented by accumulated genetic damage. Carcinogenesis involves a loss of key components of the genetic and signalling molecular networks; hence some authors have suggested that this is part of a trend of cancer cells to behave as simple, minimal replicators. In this study, we explore this conjecture and suggest that, in the case of cancer, genomic instability has an upper limit that is associated with a minimal cancer cell network. Such a network would include (for a given microenvironment) the basic molecular components that allow cells to replicate and respond to selective pressures. However, it would also exhibit internal fragilities that could be exploited by appropriate therapies targeting the DNA repair machinery. The implications of this hypothesis are discussed.
Collapse
Affiliation(s)
- Ricard V Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Barcelona, Spain; Institut de Biologia Evolutiva, CSIC-UPF, Barcelona, Spain; Santa Fe Institute, Santa Fe, NM, USA
| | | | | | | |
Collapse
|
32
|
Kessler DA, Austin RH, Levine H. Resistance to chemotherapy: patient variability and cellular heterogeneity. Cancer Res 2015; 74:4663-70. [PMID: 25183790 DOI: 10.1158/0008-5472.can-14-0118] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The issue of resistance to targeted drug therapy is of pressing concern, as it constitutes a major barrier to progress in managing cancer. One important aspect is the role of stochasticity in determining the nature of the patient response. We examine two particular experiments. The first measured the maximal response of melanoma to targeted therapy before the resistance causes the tumor to progress. We analyze the data in the context of a Delbruck-Luria type scheme, wherein the continued growth of preexistent resistant cells are responsible for progression. We show that, aside from a finite fraction of resistant cell-free patients, the maximal response in such a scenario would be quite uniform. To achieve the measured variability, one is necessarily led to assume a wide variation from patient to patient of the sensitive cells' response to the therapy. The second experiment is an in vitro system of multiple myeloma cells. When subject to a spatial gradient of a chemotherapeutic agent, the cells in the middle of the system acquire resistance on a rapid (two-week) timescale. This finding points to the potential important role of cell-to-cell differences, due to differing local environments, in addition to the patient-to-patient differences encountered in the first part. See all articles in this Cancer Research section, "Physics in Cancer Research."
Collapse
Affiliation(s)
- David A Kessler
- Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
| | - Robert H Austin
- Department of Physics and Physical Science Oncology Center, Princeton University, Princeton, New Jersey
| | - Herbert Levine
- Department of Bioengineering and Center for Theoretical Biological Physics, Rice University, Houston, Texas.
| |
Collapse
|
33
|
Abstract
The quasispecies concept is introduced by means of a simple theoretical model that uses as little chemical kinetics and mathematics as possible but fully in the spirit of Albert Einstein who said: "Things should be made as simple as possible but not simpler." More elaborate treatments follow in the forthcoming chapters. It is shown that the most important results of the theory, in particular the existence of error thresholds, are not dependent on simplifying assumptions concerning the distribution of fitness values. Error thresholds are regularly found on landscapes with large and irregular scatter of fitness. After the introduction to theory, it will be shown how experimental data on the evolution of molecules or viruses may be fit to the theoretical model.
Collapse
|
34
|
Abstract
The mutator phenotype hypothesis proposes that the mutation rate of normal cells is insufficient to account for the large number of mutations found in human cancers. Consequently, human tumors exhibit an elevated mutation rate that increases the likelihood of a tumor acquiring advantageous mutations. The hypothesis predicts that tumors are composed of cells harboring hundreds of thousands of mutations, as opposed to a small number of specific driver mutations, and that malignant cells within a tumor therefore constitute a highly heterogeneous population. As a result, drugs targeting specific mutated driver genes or even pathways of mutated driver genes will have only limited anticancer potential. In addition, because the tumor is composed of such a diverse cell population, tumor cells harboring drug-resistant mutations will exist prior to the administration of any chemotherapeutic agent. We present recent evidence in support of the mutator phenotype hypothesis, major arguments against this concept, and discuss the clinical consequences of tumor evolution fueled by an elevated mutation rate. We also consider the therapeutic possibility of altering the rate of mutation accumulation. Most significantly, we contend that there is a need to fundamentally reconsider current approaches to personalized cancer therapy. We propose that targeting cellular pathways that alter the rate of mutation accumulation in tumors will ultimately prove more effective than attempting to identify and target mutant driver genes or driver pathways.
Collapse
Affiliation(s)
- Edward J Fox
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | | | | |
Collapse
|
35
|
Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations. Sci Rep 2014; 4:4625. [PMID: 24713667 PMCID: PMC3980229 DOI: 10.1038/srep04625] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/21/2014] [Indexed: 11/08/2022] Open
Abstract
The distribution of mutational fitness effects (DMFE) is crucial to the evolutionary fate of quasispecies. In this article we analyze the effect of the DMFE on the dynamics of a large quasispecies by means of a phenotypic version of the classic Eigen's model that incorporates beneficial, neutral, deleterious, and lethal mutations. By parameterizing the model with available experimental data on the DMFE of Vesicular stomatitis virus (VSV) and Tobacco etch virus (TEV), we found that increasing mutation does not totally push the entire viral quasispecies towards deleterious or lethal regions of the phenotypic sequence space. The probability of finding regions in the parameter space of the general model that results in a quasispecies only composed by lethal phenotypes is extremely small at equilibrium and in transient times. The implications of our findings can be extended to other scenarios, such as lethal mutagenesis or genomically unstable cancer, where increased mutagenesis has been suggested as a potential therapy.
Collapse
|
36
|
Singh V, Peng CS, Li D, Mitra K, Silvestre KJ, Tokmakoff A, Essigmann JM. Direct observation of multiple tautomers of oxythiamine and their recognition by the thiamine pyrophosphate riboswitch. ACS Chem Biol 2014; 9:227-36. [PMID: 24252063 DOI: 10.1021/cb400581f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Structural diversification of canonical nucleic acid bases and nucleotide analogues by tautomerism has been proposed to be a powerful on/off switching mechanism allowing regulation of many biological processes mediated by RNA enzymes and aptamers. Despite the suspected biological importance of tautomerism, attempts to observe minor tautomeric forms in nucleic acid or hybrid nucleic acid-ligand complexes have met with challenges due to the lack of sensitive methods. Here, a combination of spectroscopic, biochemical, and computational tools probed tautomerism in the context of an RNA aptamer-ligand complex; studies involved a model ligand, oxythiamine pyrophosphate (OxyTPP), bound to the thiamine pyrophosphate (TPP) riboswitch (an RNA aptamer) as well as its unbound nonphosphorylated form, oxythiamine (OxyT). OxyTPP, similarly to canonical heteroaromatic nucleic acid bases, has a pyrimidine ring that forms hydrogen bonding interactions with the riboswitch. Tautomerism was established using two-dimensional infrared (2D IR) spectroscopy, variable temperature FTIR and NMR spectroscopies, binding isotope effects (BIEs), and computational methods. All three possible tautomers of OxyT, including the minor enol tautomer, were directly identified, and their distributions were quantitated. In the bound form, BIE data suggested that OxyTPP existed as a 4'-keto tautomer that was likely protonated at the N1'-position. These results also provide a mechanistic framework for understanding the activation of riboswitch in response to deamination of the active form of vitamin B1 (or TPP). The combination of methods reported here revealing the fine details of tautomerism can be applied to other systems where the importance of tautomerism is suspected.
Collapse
Affiliation(s)
- Vipender Singh
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center
for Environmental Health Sciences, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, United States
| | - Chunte Sam Peng
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Deyu Li
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center
for Environmental Health Sciences, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, United States
| | | | - Katherine J. Silvestre
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrei Tokmakoff
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John M. Essigmann
- Department
of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center
for Environmental Health Sciences, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Abstract
Genetic defects in DNA polymerase accuracy, proofreading, or mismatch repair (MMR) induce mutator phenotypes that accelerate adaptation of microbes and tumor cells. Certain combinations of mutator alleles synergistically increase mutation rates to levels that drive extinction of haploid cells. The maximum tolerated mutation rate of diploid cells is unknown. Here, we define the threshold for replication error-induced extinction (EEX) of diploid Saccharomyces cerevisiae. Double-mutant pol3 alleles that carry mutations for defective DNA polymerase-δ proofreading (pol3-01) and accuracy (pol3-L612M or pol3-L612G) induce strong mutator phenotypes in heterozygous diploids (POL3/pol3-01,L612M or POL3/pol3-01,L612G). Both pol3-01,L612M and pol3-01,L612G alleles are lethal in the homozygous state; cells with pol3-01,L612M divide up to 10 times before arresting at random stages in the cell cycle. Antimutator eex mutations in the pol3 alleles suppress this lethality (pol3-01,L612M,eex or pol3-01,L612G,eex). MMR defects synergize with pol3-01,L612M,eex and pol3-01,L612G,eex alleles, increasing mutation rates and impairing growth. Conversely, inactivation of the Dun1 S-phase checkpoint kinase suppresses strong pol3-01,L612M,eex and pol3-01,L612G,eex mutator phenotypes as well as the lethal pol3-01,L612M phenotype. Our results reveal that the lethal error threshold in diploids is 10 times higher than in haploids and likely determined by homozygous inactivation of essential genes. Pronounced loss of fitness occurs at mutation rates well below the lethal threshold, suggesting that mutator-driven cancers may be susceptible to drugs that exacerbate replication errors.
Collapse
|
38
|
Seymour CB, Mothersill C. Breast cancer causes and treatment: where are we going wrong? BREAST CANCER (DOVE MEDICAL PRESS) 2013; 5:111-9. [PMID: 24648764 PMCID: PMC3929331 DOI: 10.2147/bctt.s44399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This discussion paper seeks to provoke thoughts about cancer research in general, and why breast cancer in particular is not yet "curable". It asks the question - are we looking at the disease in the right way? Should we regard cancer as a progressive state, which is part of aging? Should we tailor treatment to "reset" the system or slow progression rather than try using toxic and aggressive therapy to kill every cancer cell (and sometimes also the patient)? The thesis is presented that we need to revisit our fundamental beliefs about the disease and then ask why we cling to beliefs that clearly are no longer valid. The paper also questions the role of ethics boards in hampering research and discusses the concept that breast cancer is an industry with vested interests involving profiteering by preventive, diagnostic, and therapeutic players. Finally, the paper suggests some ways forward based on emerging concepts in system biology and epigenetics.
Collapse
Affiliation(s)
- Colin B Seymour
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, ON, Canada
| | - Carmel Mothersill
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
39
|
Ortega-Prieto AM, Sheldon J, Grande-Pérez A, Tejero H, Gregori J, Quer J, Esteban JI, Domingo E, Perales C. Extinction of hepatitis C virus by ribavirin in hepatoma cells involves lethal mutagenesis. PLoS One 2013; 8:e71039. [PMID: 23976977 PMCID: PMC3745404 DOI: 10.1371/journal.pone.0071039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/26/2013] [Indexed: 12/14/2022] Open
Abstract
Lethal mutagenesis, or virus extinction produced by enhanced mutation rates, is under investigation as an antiviral strategy that aims at counteracting the adaptive capacity of viral quasispecies, and avoiding selection of antiviral-escape mutants. To explore lethal mutagenesis of hepatitis C virus (HCV), it is important to establish whether ribavirin, the purine nucleoside analogue used in anti-HCV therapy, acts as a mutagenic agent during virus replication in cell culture. Here we report the effect of ribavirin during serial passages of HCV in human hepatoma Huh-7.5 cells, regarding viral progeny production and complexity of mutant spectra. Ribavirin produced an increase of mutant spectrum complexity and of the transition types associated with ribavirin mutagenesis, resulting in HCV extinction. Ribavirin-mediated depletion of intracellular GTP was not the major contributory factor to mutagenesis since mycophenolic acid evoked a similar decrease in GTP without an increase in mutant spectrum complexity. The intracellular concentration of the other nucleoside-triphosphates was elevated as a result of ribavirin treatment. Mycophenolic acid extinguished HCV without an intervening mutagenic activity. Ribavirin-mediated, but not mycophenolic acid-mediated, extinction of HCV occurred via a decrease of specific infectivity, a feature typical of lethal mutagenesis. We discuss some possibilities to explain disparate results on ribavirin mutagenesis of HCV.
Collapse
Affiliation(s)
- Ana M Ortega-Prieto
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ogino S, Fuchs CS, Giovannucci E. How many molecular subtypes? Implications of the unique tumor principle in personalized medicine. Expert Rev Mol Diagn 2012; 12:621-8. [PMID: 22845482 DOI: 10.1586/erm.12.46] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancers are complex multifactorial diseases. For centuries, conventional organ-based classification system (i.e., breast cancer, lung cancer, colon cancer, colorectal cancer, prostate cancer, lymphoma, leukemia, and so on) has been utilized. Recently, molecular diagnostics has become an essential component in clinical decision-making. However, tumor evolution and behavior cannot accurately be predicted, despite numerous research studies reporting promising tumor biomarkers. To advance molecular diagnostics, a better understanding of intratumor and intertumor heterogeneity is essential. Tumor cells interact with the extracellular matrix and host non-neoplastic cells in the tumor microenvironment, which is influenced by genomic variation, hormones, and dietary, lifestyle and environmental exposures, implicated by molecular pathological epidemiology. Essentially, each tumor possesses its own unique characteristics in terms of molecular make-up, tumor microenvironment and interactomes within and between neoplastic and host cells. Starting from the unique tumor concept and paradigm, we can better classify tumors by molecular methods, and move closer toward personalized cancer medicine and prevention.
Collapse
Affiliation(s)
- Shuji Ogino
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
41
|
Abstract
Cancer initiation, progression, and the emergence of therapeutic resistance are evolutionary phenomena of clonal somatic cell populations. Studies in microbial experimental evolution and the theoretical work inspired by such studies are yielding deep insights into the evolutionary dynamics of clonal populations, yet there has been little explicit consideration of the relevance of this rapidly growing field to cancer biology. Here, we examine how the understanding of mutation, selection, and spatial structure in clonal populations that is emerging from experimental evolution may be applicable to cancer. Along the way, we discuss some significant ways in which cancer differs from the model systems used in experimental evolution. Despite these differences, we argue that enhanced prediction and control of cancer may be possible using ideas developed in the context of experimental evolution, and we point out some prospects for future research at the interface between these traditionally separate areas.
Collapse
Affiliation(s)
- Kathleen Sprouffske
- Institute for Evolutionary Biology and Environmental Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lauren M.F. Merlo
- Lankenau Institute for Medical Research, 100 Lancaster Ave., Wynnewood, PA 19096, USA
| | - Philip J. Gerrish
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA; Centro de Matemática e Aplicaç ôes Fundamentais, Department of Mathematics, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Carlo C. Maley
- Center for Evolution and Cancer, Helen Diller Family Comprehensive Cancer Center, Department of Surgery, University of California, 2340 Sutter Street, PO Box 1351, San Francisco, CA 94115, USA
| | - Paul D. Sniegowski
- Department of Biology, University of Pennsylvania, 415 S. University Avenue, Philadelphia, PA 19104-6018, USA
| |
Collapse
|
42
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
43
|
van Dyk E, Pretorius PJ. Point mutation instability (PIN) mutator phenotype as model for true back mutations seen in hereditary tyrosinemia type 1 - a hypothesis. J Inherit Metab Dis 2012; 35:407-11. [PMID: 22002443 DOI: 10.1007/s10545-011-9401-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/12/2011] [Accepted: 09/15/2011] [Indexed: 12/12/2022]
Abstract
Hereditary tyrosinemia type 1 (HT1) is an autosomal recessive disorder affecting fumarylacetoacetate hydrolase (FAH), the last enzyme in the tyrosine catabolism pathway. The liver mosaicism observed in HT1 patients is due to the reversion to the wild type of one allele of the original point mutation in fah. It is generally accepted that these reversions are true back mutations; however, the mechanism is still unresolved. Previous reports excluded intragenic recombination, mitotic recombination, or homologous recombination with a pseudogene as possible mechanisms of mutation reversion in HT1. Sequence analysis did not reveal DNA motifs, tandem repeats or other sequence peculiarities that may be involved in mutation reversion. We propose the hypothesis that a point mutation instability mutator (PIN) phenotype brought about by the sustained stress environment created by the accumulating metabolites in the cell is the driver of the true back mutations in HT1. The metabolites accumulating in HT1 create a sustained stress environment by activating the extracellular signal-regulated kinase (ERK) and AKT survival pathways, inducing aberrant mitosis and development of death resistant cells, depleting glutathione, and impairing DNA ligase IV and possibly DNA polymerases δ and ε. This continual production of proliferative and stress-related survival signals in the cellular environment coupled with the mutagenicity of FAA, may instigate a mutator phenotype and could end in tumorigenesis and/or mutation reversion. The establishment of a PIN-mutator phenotype therefore not only seems to be a possible mechanism underlying the true back mutations, but also contributes to explaining the clinical heterogeneity seen in hereditary tyrosinemia type 1.
Collapse
Affiliation(s)
- Etresia van Dyk
- Centre for Human Metabonomics, School for Physical and Chemical Sciences, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa.
| | | |
Collapse
|
44
|
Kennedy SR, Loeb LA, Herr AJ. Somatic mutations in aging, cancer and neurodegeneration. Mech Ageing Dev 2012; 133:118-26. [PMID: 22079405 PMCID: PMC3325357 DOI: 10.1016/j.mad.2011.10.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/05/2011] [Accepted: 10/22/2011] [Indexed: 10/15/2022]
Abstract
The somatic mutation theory of aging posits that the accumulation of mutations in the genetic material of somatic cells as a function of time results in a decrease in cellular function. In particular, the accumulation of random mutations may inactivate genes that are important for the functioning of the somatic cells of various organ systems of the adult, result in a decrease in organ function. When the organ function decreases below a critical level, death occurs. A significant amount of research has shown that somatic mutations play an important role in aging and a number of age related pathologies. In this review, we explore evidence for increases in somatic nuclear mutation burden with age and the consequences for aging, cancer, and neurodegeneration. We then review evidence for increases in mitochondrial mutation burden and the consequences for dysfunction in the disease processes.
Collapse
Affiliation(s)
- Scott R. Kennedy
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, 98195-7705
| | - Lawrence A. Loeb
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, 98195-7705
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington, 98195-7705
| | - Alan J. Herr
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, 98195-7705
| |
Collapse
|
45
|
Moreno H, Tejero H, de la Torre JC, Domingo E, Martín V. Mutagenesis-mediated virus extinction: virus-dependent effect of viral load on sensitivity to lethal defection. PLoS One 2012; 7:e32550. [PMID: 22442668 PMCID: PMC3307711 DOI: 10.1371/journal.pone.0032550] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/01/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lethal mutagenesis is a transition towards virus extinction mediated by enhanced mutation rates during viral genome replication, and it is currently under investigation as a potential new antiviral strategy. Viral load and virus fitness are known to influence virus extinction. Here we examine the effect or the multiplicity of infection (MOI) on progeny production of several RNA viruses under enhanced mutagenesis. RESULTS The effect of the mutagenic base analogue 5-fluorouracil (FU) on the replication of the arenavirus lymphocytic choriomeningitis virus (LCMV) can result either in inhibition of progeny production and virus extinction in infections carried out at low multiplicity of infection (MOI), or in a moderate titer decrease without extinction at high MOI. The effect of the MOI is similar for LCMV and vesicular stomatitis virus (VSV), but minimal or absent for the picornaviruses foot-and-mouth disease virus (FMDV) and encephalomyocarditis virus (EMCV). The increase in mutation frequency and Shannon entropy (mutant spectrum complexity) as a result of virus passage in the presence of FU was more accentuated at low MOI for LCMV and VSV, and at high MOI for FMDV and EMCV. We present an extension of the lethal defection model that agrees with the experimental results. CONCLUSIONS (i) Low infecting load favoured the extinction of negative strand viruses, LCMV or VSV, with an increase of mutant spectrum complexity. (ii) This behaviour is not observed in RNA positive strand viruses, FMDV or EMCV. (iii) The accumulation of defector genomes may underlie the MOI-dependent behaviour. (iv) LCMV coinfections are allowed but superinfection is strongly restricted in BHK-21 cells. (v) The dissimilar effects of the MOI on the efficiency of mutagenic-based extinction of different RNA viruses can have implications for the design of antiviral protocols based on lethal mutagenesis, presently under development.
Collapse
Affiliation(s)
- Héctor Moreno
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Héctor Tejero
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
- Dpto. de Bioquímica y Biología Molecular I. Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Carlos de la Torre
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Verónica Martín
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación en Sanidad Animal (CISA-INIA) Instituto Nacional de Investigación Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| |
Collapse
|
46
|
MotherSill C, Seymour C. Changing paradigms in radiobiology. Mutat Res 2012; 750:85-95. [PMID: 22273762 DOI: 10.1016/j.mrrev.2011.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 12/21/2022]
Abstract
The last 25 years have seen a major shift in emphasis in the field of radiobiology from a DNA-centric view of how radiation damage occurs to a much more biological view that appreciates the importance of macro-and micro-environments, hierarchical organization, underlying genetics, evolution, adaptation and signaling at all levels from atoms to ecosystems. The new view incorporates concepts of hormesis, nonlinear systems, bioenergy field theory, uncertainty and homeodynamics. While the mechanisms underlying these effects and responses are still far from clear, it is very apparent that their implications are much wider than the field of radiobiology. This reflection discusses the changing views and considers how they are influencing thought in environmental and medical science and systems biology.
Collapse
Affiliation(s)
- Carmel MotherSill
- McMaster Institute of Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| | - Colin Seymour
- McMaster Institute of Applied Radiation Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| |
Collapse
|
47
|
Abstract
RNA viruses, such as human immunodeficiency virus, hepatitis C virus, influenza virus, and poliovirus replicate with very high mutation rates and exhibit very high genetic diversity. The extremely high genetic diversity of RNA virus populations originates that they replicate as complex mutant spectra known as viral quasispecies. The quasispecies dynamics of RNA viruses are closely related to viral pathogenesis and disease, and antiviral treatment strategies. Over the past several decades, the quasispecies concept has been expanded to provide an adequate framework to explain complex behavior of RNA virus populations. Recently, the quasispecies concept has been used to study other complex biological systems, such as tumor cells, bacteria, and prions. Here, we focus on some questions regarding viral and theoretical quasispecies concepts, as well as more practical aspects connected to pathogenesis and resistance to antiviral treatments. A better knowledge of virus diversification and evolution may be critical in preventing and treating the spread of pathogenic viruses.
Collapse
|
48
|
Perales C, Martín V, Domingo E. Lethal mutagenesis of viruses. Curr Opin Virol 2011; 1:419-22. [PMID: 22440845 DOI: 10.1016/j.coviro.2011.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/05/2011] [Indexed: 02/09/2023]
Abstract
Lethal mutagenesis aims at extinguishing viruses by increased mutagenesis prompted by virus-specific mutagenic agents, mainly nucleoside analogues. It is derived from the error threshold relationship of quasispecies theory, and it is slowly finding its way towards a clinical application. We summarize the current situation of research in this field of antiviral therapy.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049, Madrid, Spain
| | | | | |
Collapse
|
49
|
Quasispecies as a matter of fact: viruses and beyond. Virus Res 2011; 162:203-15. [PMID: 21945638 PMCID: PMC7172439 DOI: 10.1016/j.virusres.2011.09.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 12/13/2022]
Abstract
We review the origins of the quasispecies concept and its relevance for RNA virus evolution, viral pathogenesis and antiviral treatment strategies. We emphasize a critical point of quasispecies that refers to genome collectivities as the unit of selection, and establish parallels between RNA viruses and some cellular systems such as bacteria and tumor cells. We refer also to tantalizing new observations that suggest quasispecies behavior in prions, perhaps as a result of the same quantum-mechanical indeterminations that underlie protein conformation and error-prone replication in genetic systems. If substantiated, these observations with prions could lead to new research on the structure-function relationship of non-nucleic acid biological molecules.
Collapse
|
50
|
Moreno H, Gallego I, Sevilla N, de la Torre JC, Domingo E, Martín V. Ribavirin can be mutagenic for arenaviruses. J Virol 2011; 85:7246-55. [PMID: 21561907 PMCID: PMC3126590 DOI: 10.1128/jvi.00614-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/29/2011] [Indexed: 01/11/2023] Open
Abstract
Arenaviruses include several important human pathogens, and there are very limited options of preventive or therapeutic interventions to combat these viruses. An off-label use of the purine nucleoside analogue ribavirin (1-β-d-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) is the only antiviral treatment currently available for arenavirus infections. However, the ribavirin antiviral mechanism action against arenaviruses remains unknown. Here we document that ribavirin is mutagenic for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) in cell culture. The mutagenic activity of ribavirin on LCMV was observed under single- and multiple-passage regimes and could not be accounted for by a decrease of the intracellular GTP pool promoted by ribavirin-mediated inhibition of inosine monophosphate dehydrogenase (IMPDH). Our findings suggest that the antiviral activity of ribavirin on arenaviruses might be exerted, at least partially, by lethal mutagenesis. Implications for antiarenavirus therapy are discussed.
Collapse
Affiliation(s)
- Héctor Moreno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Neuropharmacology, The Scripps Research Institute, IMM-6, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Isabel Gallego
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Juan Carlos de la Torre
- Department of Neuropharmacology, The Scripps Research Institute, IMM-6, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Esteban Domingo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Verónica Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| |
Collapse
|