1
|
Urbanczyk M, Abuhelou A, Köninger M, Jeyagaran A, Carvajal-Berrio D, Kim E, Marzi J, Loskill P, Layland SL, Schenke-Layland K. Heterogeneity of Endothelial Cells Impacts the Functionality of Human Pancreatic In Vitro Models. Tissue Eng Part A 2024. [PMID: 39453887 DOI: 10.1089/ten.tea.2024.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024] Open
Abstract
Endothelial cells (ECs) play a crucial role in maintaining tissue homeostasis and functionality. Depending on their tissue of origin, ECs can be highly heterogeneous regarding their morphology, gene and protein expression, functionality, and signaling pathways. Understanding the interaction between organ-specific ECs and their surrounding tissue is therefore critical when investigating tissue homeostasis, disease development, and progression. In vitro models often lack organ-specific ECs, potentially limiting the translatability and validity of the obtained results. The goal of this study was to assess the differences between commonly used EC sources in tissue engineering applications, including human umbilical vein ECs (HUVECs), human dermal microvascular ECs (hdmvECs), and human foreskin microvascular ECs (hfmvECs), and organ-specific human pancreatic microvascular ECs (hpmvECs), and test their impact on functionality within an in vitro pancreas test system used for diabetes research. Utilizing high-resolution Raman microspectroscopy and Raman imaging in combination with established protein and gene expression analyses and exposure to defined physical signals within microfluidic cultures, we identified that ECs exhibit significant differences in their biochemical composition, relevant protein expression, angiogenic potential, and response to the application of mechanical shear stress. Proof-of-concept results showed that the coculture of isolated human islets of Langerhans with hpmvECs significantly increased the functionality when compared with control islets and islets cocultured with HUVECs. Our study demonstrates that the choice of EC type significantly impacts the experimental results, which needs to be considered when implementing ECs into in vitro models.
Collapse
Affiliation(s)
- Max Urbanczyk
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Athar Abuhelou
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marie Köninger
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Daniel Carvajal-Berrio
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ellie Kim
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany, Reutlingen, Germany
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany, Reutlingen, Germany
- Institute of Biomedical Engineering, Department for Microphysiological Systems, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R Center Tübingen for In Vitro Models and Alternatives to Animal Testing, Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Women's Health Tübingen, University of Tübingen, Tübingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany, Reutlingen, Germany
| |
Collapse
|
2
|
Saha S, Khanppnavar B, Maharana J, Kim H, Carino CMC, Daly C, Houston S, Sharma S, Zaidi N, Dalal A, Mishra S, Ganguly M, Tiwari D, Kumari P, Jhingan GD, Yadav PN, Plouffe B, Inoue A, Chung KY, Banerjee R, Korkhov VM, Shukla AK. Molecular mechanism of distinct chemokine engagement and functional divergence of the human Duffy antigen receptor. Cell 2024; 187:4751-4769.e25. [PMID: 39089252 DOI: 10.1016/j.cell.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/13/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024]
Abstract
The Duffy antigen receptor is a seven-transmembrane (7TM) protein expressed primarily at the surface of red blood cells and displays strikingly promiscuous binding to multiple inflammatory and homeostatic chemokines. It serves as the basis of the Duffy blood group system in humans and also acts as the primary attachment site for malarial parasite Plasmodium vivax and pore-forming toxins secreted by Staphylococcus aureus. Here, we comprehensively profile transducer coupling of this receptor, discover potential non-canonical signaling pathways, and determine the cryoelectron microscopy (cryo-EM) structure in complex with the chemokine CCL7. The structure reveals a distinct binding mode of chemokines, as reflected by relatively superficial binding and a partially formed orthosteric binding pocket. We also observe a dramatic shortening of TM5 and 6 on the intracellular side, which precludes the formation of the docking site for canonical signal transducers, thereby providing a possible explanation for the distinct pharmacological and functional phenotype of this receptor.
Collapse
Affiliation(s)
- Shirsha Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Basavraj Khanppnavar
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland; Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Heeryung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Carlo Marion C Carino
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Carole Daly
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Shane Houston
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Saloni Sharma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nashrah Zaidi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Annu Dalal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sudha Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Manisankar Ganguly
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Divyanshu Tiwari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Poonam Kumari
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Prem N Yadav
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Volodymyr M Korkhov
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland; Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
3
|
Affiliation(s)
- Danny R Welch
- Departments of Cancer Biology, The University of Kansas, Medical Center, Kansas City, KS, 66160, USA.
- Pathology & Laboratory Medicine, The University of Kansas, Medical Center, Kansas City, KS, 66160, USA.
- Internal Medicine - Hematology/Oncology, The University of Kansas, Medical Center, Kansas City, KS, 66160, USA.
- The University of Kansas Cancer Center, The University of Kansas, Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
4
|
Megino-Luque C, Bravo-Cordero JJ. Metastasis suppressor genes and their role in the tumor microenvironment. Cancer Metastasis Rev 2023; 42:1147-1154. [PMID: 37982987 PMCID: PMC10842895 DOI: 10.1007/s10555-023-10155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
The metastatic cascade is a complex process with multiple factors contributing to the seeding and growth of cancer cells at metastatic sites. Within this complex process, several genes have been identified as metastasis suppressors, playing a role in the inhibition of metastasis. Interestingly, some of these genes have been shown to also play a role in regulating the tumor microenvironment. In this review, we comment on the recent developments in the biology of metastasis suppressor genes and their crosstalk with the microenvironment.
Collapse
Affiliation(s)
- Cristina Megino-Luque
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Supuramanian SS, Dsa S, Harihar S. Molecular interaction of metastasis suppressor genes and tumor microenvironment in breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:912-932. [PMID: 37970212 PMCID: PMC10645471 DOI: 10.37349/etat.2023.00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/03/2023] [Indexed: 11/17/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths in women worldwide where the process of metastasis is a major contributor to the mortality associated with this disease. Metastasis suppressor genes are a group of genes that play a crucial role in preventing or inhibiting the spread of cancer cells. They suppress the metastasis process by inhibiting colonization and by inducing dormancy. These genes function by regulating various cellular processes in the tumor microenvironment (TME), such as cell adhesion, invasion, migration, and angiogenesis. Dysregulation of metastasis suppressor genes can lead to the acquisition of an invasive and metastatic phenotype and lead to poor prognostic outcomes. The components of the TME generally play a necessary in the metastasis progression of tumor cells. This review has identified and elaborated on the role of a few metastatic suppressors associated with the TME that have been shown to inhibit metastasis in BC by different mechanisms, such as blocking certain cell signaling molecules involved in cancer cell migration, invasion, enhancing immune surveillance of cancer cells, and promoting the formation of a protective extracellular matrix (ECM). Understanding the interaction of metastatic suppressor genes and the components of TME has important implications for the development of novel therapeutic strategies to target the metastatic cascade. Targeting these genes or their downstream signaling pathways offers a promising approach to inhibiting the spread of cancer cells and improves patient outcomes.
Collapse
Affiliation(s)
| | - Sid Dsa
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
6
|
Flores RMA, Pantaleão SQ, Araujo SC, Malpartida HMG, Honorio KM. Structural analysis of factors related to FAM3C/ILEI dimerization and identification of inhibitor candidates targeting cancer treatment. Comput Biol Chem 2023; 104:107869. [PMID: 37068312 DOI: 10.1016/j.compbiolchem.2023.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
FAM3 is a superfamily of four cytokines that maintain a single globular structure β -β -α of three classes: FAM3A, B, C and D. FAM3C was the first member of this family related to cancer and is functionally characterized as an essential factor for the epithelial-mesenchymal transition (EMT), leading to late delays in tumor progression. Due to its crucial role in EMT and metastasis, FAM3C has been termed an interleukin-like EMT (ILEI) inducer. There are several studies on the part of FAM3C in the progression of cancer and other diseases. However, little is known about its cellular receptors and possible inhibitors. In this study, based on in silico approaches, we performed structural analyses of factors related to FAM3C/ILEI dimerization. We also identified four possible inhibitor candidates, expected to be exciting prototypes and could be submitted to future biological tests targeting cancer treatment.
Collapse
Affiliation(s)
| | - Simone Queiroz Pantaleão
- Center for Mathematics, Computing, and Cognition, Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | - Sheila Cruz Araujo
- Center for Sciences Natural and Human, Federal University of ABC, 09210-170 Santo André, SP, Brazil
| | | | - Kathia Maria Honorio
- Center for Sciences Natural and Human, Federal University of ABC, 09210-170 Santo André, SP, Brazil; School of Arts, Sciences and Humanities, University of São Paulo, 03828-0000 São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Gabriela-Freitas M, Pinheiro J, Raquel-Cunha A, Cardoso-Carneiro D, Martinho O. RKIP as an Inflammatory and Immune System Modulator: Implications in Cancer. Biomolecules 2019; 9:biom9120769. [PMID: 31766768 PMCID: PMC6995551 DOI: 10.3390/biom9120769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Raf kinase inhibitor protein (RKIP), an important modulator of intracellular signalling pathways, is commonly downregulated in multiple cancers. This reduction, or loss of expression, is correlated not only with the presence of metastasis, contributing to RKIP’s classification as a metastasis suppressor, but also with tumour aggressiveness and poor prognosis. Recent findings suggest a strong involvement of RKIP in the modulation of tumour microenvironment components, particularly by controlling the infiltration of specific immune cells and secretion of pro-metastatic factors. Additionally, RKIP interaction with multiple signalling molecules seems to potentiate its function as a regulator of inflammatory processes, mainly through stimulation of anti- or pro-inflammatory cytokines. Furthermore, RKIP is involved in the modulation of immunotherapeutic drugs response, through diverse mechanisms that sensitize cells to apoptosis. In the present review, we will provide updated information about the role of RKIP as an inflammatory and immune modulator and its potential implications in cancer will be addressed.
Collapse
Affiliation(s)
- Maria Gabriela-Freitas
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Joana Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Ana Raquel-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Diana Cardoso-Carneiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.G.-F.); (J.P.); (A.R.-C.); (D.C.-C.)
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784 400, Brazil
- Correspondence: ; Tel.: +351-253604868
| |
Collapse
|
8
|
Qiu R, Shi H, Wang S, Leng S, Liu R, Zheng Y, Huang W, Zeng Y, Gao J, Zhang K, Hou Y, Feng D, Yang Y. BRMS1 coordinates with LSD1 and suppresses breast cancer cell metastasis. Am J Cancer Res 2018; 8:2030-2045. [PMID: 30416854 PMCID: PMC6220148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023] Open
Abstract
Breast carcinoma metastasis suppressor gene 1 (BRMS1) encodes an inhibitor of metastasis and is reported in many types of tumor metastasis. However, the mechanism of BRMS1-mediated inhibition of breast cancer metastasis at the transcriptional level remains elusive. Here, we identified using affinity purification and mass spectrometry (MS) that BRMS1 is an integral component of the LSD1/CoREST corepressor complex. Analysis of the BRMS1/LSD1 complex using high-throughput RNA deep sequencing (RNA-seq) identified a cohort of target genes such as VIM, INSIG2, KLK11, MRPL33, COL5A2, OLFML3 and SLC1A1, some of which are metastasis-related. Our results have showed that BRMS1 together with LSD1 are required for inhibition of breast cancer cell migration and invasion. Collectively, these findings demonstrate that BRMS1 executes transcriptional suppression of breast cancer metastasis by associating with the LSD1 and thus can be targeted for breast cancer therapy.
Collapse
Affiliation(s)
- Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Hang Shi
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Shuang Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Shuai Leng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Ruiqiong Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Yu Zheng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Wei Huang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Yi Zeng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Jie Gao
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Yongqiang Hou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Dandan Feng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| |
Collapse
|
9
|
Ćetković H, Harcet M, Roller M, Bosnar MH. A survey of metastasis suppressors in Metazoa. J Transl Med 2018; 98:554-570. [PMID: 29453400 DOI: 10.1038/s41374-018-0024-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 01/04/2018] [Accepted: 01/18/2018] [Indexed: 01/29/2023] Open
Abstract
Metastasis suppressors are genes/proteins involved in regulation of one or more steps of the metastatic cascade while having little or no effect on tumor growth. The list of putative metastasis suppressors is constantly increasing although thorough understanding of their biochemical mechanism(s) and evolutionary history is still lacking. Little is known about tumor-related genes in invertebrates, especially non-bilaterians and unicellular relatives of animals. However, in the last few years we have been witnessing a growing interest in this subject since it has been shown that many disease-related genes are already present in simple non-bilateral animals and even in their unicellular relatives. Studying human diseases using simpler organisms that may better represent the ancestral conditions in which the specific disease-related genes appeared could provide better understanding of how those genes function. This review represents a compilation of published literature and our bioinformatics analysis to gain a general insight into the evolutionary history of metastasis-suppressor genes in animals (Metazoa). Our survey suggests that metastasis-suppressor genes emerged in three different periods in the evolution of Metazoa: before the origin of metazoans, with the emergence of first animals and at the origin of vertebrates.
Collapse
Affiliation(s)
- Helena Ćetković
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Matija Harcet
- Laboratory for Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Maša Roller
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, Zagreb, Croatia
| | - Maja Herak Bosnar
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
| |
Collapse
|
10
|
Lichtenstein AV. Genetic Mosaicism and Cancer: Cause and Effect. Cancer Res 2018; 78:1375-1378. [DOI: 10.1158/0008-5472.can-17-2769] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/14/2017] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
|
11
|
Muramatsu M, Gao L, Peresie J, Balderman B, Akakura S, Gelman IH. SSeCKS/AKAP12 scaffolding functions suppress B16F10-induced peritoneal metastasis by attenuating CXCL9/10 secretion by resident fibroblasts. Oncotarget 2017; 8:70281-70298. [PMID: 29050279 PMCID: PMC5642554 DOI: 10.18632/oncotarget.20092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
SSeCKS/Gravin/AKAP12 (SSeCKS) is a kinase scaffolding protein known to suppress metastasis by attenuating tumor-intrinsic PKC- and Src-mediated signaling pathways [1]. In addition to downregulation in metastatic cells, in silico analyses identified SSeCKS downregulation in prostate or breast cancer-derived stroma, suggesting a microenvironmental cell role in controlling malignancy. Although orthotopic B16F10 and SM1WT1[BrafV600E] mouse melanoma tumors grew similarly in syngeneic WT or SSeCKS-null (KO) mice, KO hosts exhibited 5- to 10-fold higher levels of peritoneal metastasis, and this enhancement could be adoptively transferred by pre-injecting naïve WT mice with peritoneal fluid (PF), but not non-adherent peritoneal cells (PC), from naïve KO mice. B16F10 and SM1WT1 cells showed increased chemotaxis to KO-PF compared to WT-PF, corresponding to increased PF levels of multiple inflammatory mediators, including the Cxcr3 ligands, Cxcl9 and 10. Cxcr3 knockdown abrogated enhanced chemotaxis to KO-PF and peritoneal metastasis in KO hosts. Conditioned media from KO peritoneal membrane fibroblasts (PMF), but not from KO-PC, induced increased B16F10 chemotaxis over controls, which could be blocked with Cxcl10 neutralizing antibody. KO-PMF exhibited increased levels of the senescence markers, SA-β-galactosidase, p21waf1 and p16ink4a, and enhanced Cxcl10 secretion induced by inflammatory mediators, lipopolysaccharide, TNFα, IFNα and IFNγ. SSeCKS scaffolding-site mutants and small molecule kinase inhibitors were used to show that the loss of SSeCKS-regulated PKC, PKA and PI3K/Akt pathways are responsible for the enhanced Cxcl10 secretion. These data mark the first description of a role for stromal SSeCKS/AKAP12 in suppressing metastasis, specifically by attenuating signaling pathways that promote secretion of tumor chemoattractants in the peritoneum.
Collapse
Affiliation(s)
- Masashi Muramatsu
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Lingqiu Gao
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| | - Jennifer Peresie
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| | - Benjamin Balderman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| | - Shin Akakura
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine 92618, CA, USA
| | - Irwin H Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo 14263, NY, USA
| |
Collapse
|
12
|
Flister MJ, Tsaih SW, Stoddard A, Plasterer C, Jagtap J, Parchur AK, Sharma G, Prisco AR, Lemke A, Murphy D, Al-Gizawiy M, Straza M, Ran S, Geurts AM, Dwinell MR, Greene AS, Bergom C, LaViolette PS, Joshi A. Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer. Breast Cancer Res Treat 2017; 165:53-64. [PMID: 28567545 PMCID: PMC6404538 DOI: 10.1007/s10549-017-4311-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/23/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE Multiple aspects of the tumor microenvironment (TME) impact breast cancer, yet the genetic modifiers of the TME are largely unknown, including those that modify tumor vascular formation and function. METHODS To discover host TME modifiers, we developed a system called the Consomic/Congenic Xenograft Model (CXM). In CXM, human breast cancer cells are orthotopically implanted into genetically engineered consomic xenograft host strains that are derived from two parental strains with different susceptibilities to breast cancer. Because the genetic backgrounds of the xenograft host strains differ, whereas the inoculated tumor cells are the same, any phenotypic variation is due to TME-specific modifier(s) on the substituted chromosome (consomic) or subchromosomal region (congenic). Here, we assessed TME modifiers of growth, angiogenesis, and vascular function of tumors implanted in the SSIL2Rγ and SS.BN3IL2Rγ CXM strains. RESULTS Breast cancer xenografts implanted in SS.BN3IL2Rγ (consomic) had significant tumor growth inhibition compared with SSIL2Rγ (parental control), despite a paradoxical increase in the density of blood vessels in the SS.BN3IL2Rγ tumors. We hypothesized that decreased growth of SS.BN3IL2Rγ tumors might be due to nonproductive angiogenesis. To test this possibility, SSIL2Rγ and SS.BN3IL2Rγ tumor vascular function was examined by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), micro-computed tomography (micro-CT), and ex vivo analysis of primary blood endothelial cells, all of which revealed altered vascular function in SS.BN3IL2Rγ tumors compared with SSIL2Rγ. Gene expression analysis also showed a dysregulated vascular signaling network in SS.BN3IL2Rγ tumors, among which DLL4 was differentially expressed and co-localized to a host TME modifier locus (Chr3: 95-131 Mb) that was identified by congenic mapping. CONCLUSIONS Collectively, these data suggest that host genetic modifier(s) on RNO3 induce nonproductive angiogenesis that inhibits tumor growth through the DLL4 pathway.
Collapse
Affiliation(s)
- Michael J Flister
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA.
| | - Shirng-Wern Tsaih
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Alexander Stoddard
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cody Plasterer
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Jaidip Jagtap
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Abdul K Parchur
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gayatri Sharma
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anthony R Prisco
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Angela Lemke
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Dana Murphy
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Mona Al-Gizawiy
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael Straza
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sophia Ran
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Aron M Geurts
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Melinda R Dwinell
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Andrew S Greene
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Carmen Bergom
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Peter S LaViolette
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amit Joshi
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
13
|
Zhang J, Liu Y, Yang H, Zhang H, Tian X, Fang W. ATP-P2Y2-β-catenin axis promotes cell invasion in breast cancer cells. Cancer Sci 2017; 108:1318-1327. [PMID: 28474758 PMCID: PMC5497932 DOI: 10.1111/cas.13273] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/23/2017] [Accepted: 05/01/2017] [Indexed: 12/11/2022] Open
Abstract
Extracellular adenosine 5'-triphosphate (ATP), secreted by living cancer cells or released by necrotic tumor cells, plays an important role in tumor invasion and metastasis. Our previous study demonstrated that ATP treatment in vitro could promote invasion in human prostate cancer cells via P2Y2, a preferred receptor for ATP, by enhancing EMT process. However, the pro-invasion mechanisms of ATP and P2Y2 are still poorly studied in breast cancer. In this study, we found that P2Y2 was highly expressed in breast cancer cells and associated with human breast cancer metastasis. ATP could promote the in vitro invasion of breast cancer cells and enhance the expression of β-catenin as well as its downstream target genes CD44, c-Myc and cyclin D1, while P2Y2 knockdown attenuated above ATP-driven events in vitro and in vivo. Furthermore, iCRT14, a β-catenin/TCF complex inhibitor, could also suppress ATP-driven migration and invasion in vitro. These results suggest that ATP promoted breast cancer cell invasion via P2Y2-β-catenin axis. Thus blockade of the ATP-P2Y2-β-catenin axis could suppress the invasive and metastatic potential of breast cancer cells and may serve as potential targets for therapeutic interventions of breast cancer.
Collapse
Affiliation(s)
- Jiang‐Lan Zhang
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| | - Ying Liu
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| | - Hui Yang
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| | - Hong‐Quan Zhang
- Department of Anatomy, Histology and EmbryologyPeking University Health Science CenterBeijingChina
| | - Xin‐Xia Tian
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| | - Wei‐Gang Fang
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| |
Collapse
|
14
|
Yeong J, Thike AA, Lim JCT, Lee B, Li H, Wong SC, Hue SSS, Tan PH, Iqbal J. Higher densities of Foxp3+ regulatory T cells are associated with better prognosis in triple-negative breast cancer. Breast Cancer Res Treat 2017; 163:21-35. [DOI: 10.1007/s10549-017-4161-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/13/2017] [Indexed: 01/29/2023]
|
15
|
CXCR3 as a molecular target in breast cancer metastasis: inhibition of tumor cell migration and promotion of host anti-tumor immunity. Oncotarget 2016; 6:43408-19. [PMID: 26485767 PMCID: PMC4791240 DOI: 10.18632/oncotarget.6125] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/10/2015] [Indexed: 02/05/2023] Open
Abstract
Chemokines and chemokine receptors have critical roles in cancer metastasis and have emerged as one of the targeting options in cancer therapy. However, the treatment efficacy on both tumor and host compartments needs to be carefully evaluated. Here we report that targeting CXCR3 decreased tumor cell migration and at the same time improved host anti-tumor immunity. We observed an increased expression of CXCR3 in metastatic tumor cells compared to those from non-metastatic tumor cells. Knockdown (KD) of CXCR3 in metastatic tumor cells suppressed tumor cell migration and metastasis. Importantly, CXCR3 expression in clinical breast cancer samples correlated with progression and metastasis. For the host compartment, deletion of CXCR3 in all host cells in 4T1 mammary tumor model significantly decreased metastasis. The underlying mechanisms involve a decreased expression of IL-4, IL-10, iNOs, and Arg-1 in myeloid cells and an increased T cell response. IFN-γ neutralization diminished the metastasis inhibition in the CXCR3 knockout (KO) mice bearing 4T1 tumors, suggesting a critical role of host CXCR3 in immune suppression. Consistently, targeting CXCR3 using a small molecular inhibitor (AMG487) significantly suppressed metastasis and improved host anti-tumor immunity. Our findings demonstrate that targeting CXCR3 is effective in both tumor and host compartments, and suggest that CXCR3 inhibition is likely to avoid adverse effects on host cells.
Collapse
|
16
|
Branco da Cunha C, Klumpers DD, Koshy ST, Weaver JC, Chaudhuri O, Seruca R, Carneiro F, Granja PL, Mooney DJ. CD44 alternative splicing in gastric cancer cells is regulated by culture dimensionality and matrix stiffness. Biomaterials 2016; 98:152-62. [DOI: 10.1016/j.biomaterials.2016.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022]
|
17
|
The KISS1 Receptor as an In Vivo Microenvironment Imaging Biomarker of Multiple Myeloma Bone Disease. PLoS One 2016; 11:e0155087. [PMID: 27158817 PMCID: PMC4861277 DOI: 10.1371/journal.pone.0155087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/22/2016] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma is one of the most common hematological diseases and is characterized by an aberrant proliferation of plasma cells within the bone marrow. As a result of crosstalk between cancer cells and the bone microenvironment, bone homeostasis is disrupted leading to osteolytic lesions and poor prognosis. Current diagnostic strategies for myeloma typically rely on detection of excess monoclonal immunoglobulins or light chains in the urine or serum. However, these strategies fail to localize the sites of malignancies. In this study we sought to identify novel biomarkers of myeloma bone disease which could target the malignant cells and/or the surrounding cells of the tumor microenvironment. From these studies, the KISS1 receptor (KISS1R), a G-protein-coupled receptor known to play a role in the regulation of endocrine functions, was identified as a target gene that was upregulated on mesenchymal stem cells (MSCs) and osteoprogenitor cells (OPCs) when co-cultured with myeloma cells. To determine the potential of this receptor as a biomarker, in vitro and in vivo studies were performed with the KISS1R ligand, kisspeptin, conjugated with a fluorescent dye. In vitro microscopy showed binding of fluorescently-labeled kisspeptin to both myeloma cells as well as MSCs under direct co-culture conditions. Next, conjugated kisspeptin was injected into immune-competent mice containing myeloma bone lesions. Tumor-burdened limbs showed increased peak fluorescence compared to contralateral controls. These data suggest the utility of the KISS1R as a novel biomarker for multiple myeloma, capable of targeting both tumor cells and host cells of the tumor microenvironment.
Collapse
|
18
|
Shin WJ, Cho YA, Kang KR, Kim JH, Hong SD, Lee JI, Hong SP, Yoon HJ. KiSS-1 expression in oral squamous cell carcinoma and its prognostic significance. APMIS 2016; 124:291-8. [DOI: 10.1111/apm.12507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/06/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Wui-Jung Shin
- Department of Oral Pathology; School of Dentistry; Seoul National University; Seoul Korea
| | - Young-Ah Cho
- Department of Oral and Maxillofacial Pathology; School of Dentistry; Kyung Hee University; Seoul Korea
| | - Kyung-Rim Kang
- Department of Oral Pathology; School of Dentistry; Seoul National University; Seoul Korea
| | - Ji-Hoon Kim
- Department of Oral Pathology; School of Dentistry; Seoul National University; Seoul Korea
- Dental Research Institute; School of Dentistry; Seoul National University; Seoul Korea
| | - Seong-Doo Hong
- Department of Oral Pathology; School of Dentistry; Seoul National University; Seoul Korea
- Dental Research Institute; School of Dentistry; Seoul National University; Seoul Korea
| | - Jae-Il Lee
- Department of Oral Pathology; School of Dentistry; Seoul National University; Seoul Korea
- Dental Research Institute; School of Dentistry; Seoul National University; Seoul Korea
| | - Sam-Pyo Hong
- Department of Oral Pathology; School of Dentistry; Seoul National University; Seoul Korea
- Dental Research Institute; School of Dentistry; Seoul National University; Seoul Korea
| | - Hye-Jung Yoon
- Department of Oral Pathology; School of Dentistry; Seoul National University; Seoul Korea
- Dental Research Institute; School of Dentistry; Seoul National University; Seoul Korea
| |
Collapse
|
19
|
Yan HH, Jiang J, Pang Y, Achyut BR, Lizardo M, Liang X, Hunter K, Khanna C, Hollander C, Yang L. CCL9 Induced by TGFβ Signaling in Myeloid Cells Enhances Tumor Cell Survival in the Premetastatic Organ. Cancer Res 2015; 75:5283-98. [PMID: 26483204 DOI: 10.1158/0008-5472.can-15-2282-t] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/07/2015] [Indexed: 01/06/2023]
Abstract
Tumor cell survival in the hostile distant organ is a rate-limiting step in cancer metastasis. Bone marrow-derived myeloid cells can form a premetastatic niche and provide a tumor-promoting microenvironment. However, it is unclear whether these myeloid cells in the premetastatic site have any direct effect on tumor cell survival. Here, we report that chemokine CCL9 was highly induced in Gr-1(+)CD11b(+) immature myeloid cells and in premetastatic lung in tumor-bearing mice. Knockdown of CCL9 in myeloid cells decreased tumor cell survival and metastasis. Importantly, CCL9 overexpression in myeloid cells lacking TGFβ signaling rescued the tumor metastasis defect observed in mice with myeloid-specific Tgfbr2 deletion. The expression level of CCL23, the human orthologue for CCL9, in peripheral blood mononuclear cells correlated with progression and survival of cancer patients. Our study demonstrates that CCL9 could serve as a good candidate for anti-metastasis treatment by targeting the rate-limiting step of cancer cell survival. In addition, targeting CCL9 may avoid the adverse effects of TGFβ-targeted therapy.
Collapse
Affiliation(s)
- Hangyi H Yan
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jian Jiang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland. State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yanli Pang
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing, P.R. China
| | - B R Achyut
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Michael Lizardo
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Xinhua Liang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Kent Hunter
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Chand Khanna
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Christine Hollander
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Li Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
20
|
Abstract
Breast cancer metastasis suppressor gene-1 (BRMS1) is newly discovered tumor metastasis gene, which has been reported to play an important role in the progression of human tumor. However, its role in rectal cancer has never been investigated. In this present study, we evaluated the associated of BRMS1 with colorectal cancer, its value in prognosis, and its role in metastasis of rectal cancer. BRMS1 expression examined in 80 patients and the role of BRMS1 in metastasis was studied using mice model. Our results showed that BRMS1 expression was significantly associated with clinicopathological parameters in rectal cancer patients and overexpression of BRMS1 in rectal cancer xenograft led to decreased growth, invasiveness and metastasis. Our findings indicate that high expression of BRSM1 in rectal cancer plays an essential role in tumor progression.
Collapse
|
21
|
Sonnenschein C, Soto AM. Cancer Metastases: So Close and So Far. J Natl Cancer Inst 2015; 107:djv236. [PMID: 26283653 DOI: 10.1093/jnci/djv236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/24/2015] [Indexed: 12/25/2022] Open
Abstract
Metastases are tumors that develop at a distance from their primary origin and are responsible for the death of 90% of cancer patients. For over a century the notion of seed (migrating cells) and soil (the locus where those cells anchor) provided an accurate account of which were the protagonists in their genesis. Despite aggressive efforts to unravel the dynamics involving migrating cells and the niche in which they anchor, explanations of this process remain ill-defined and controversial. The controversy is generated by the different premises that researchers adopt to integrate the vast amount of data collected at different levels of biological organization. The so-far hegemonic theory of cancer and its metastases has been the somatic mutation theory (SMT) and a number of its variants: They consider that cancers and their metastases represent a cell-based, genetic and molecular disease. This interpretation has been challenged by the tissue organization field theory (TOFT), which considers instead that cancer is a tissue-based disease, akin to development gone awry. In this Commentary, the merits of both theories are compared now in the context of metastases. Based on the epistemological shortcomings of the SMT and the acknowledged failure of therapeutic approaches based on this theory, we conclude that TOFT explains comprehensibly carcinogenesis and the appearance of metastases.
Collapse
Affiliation(s)
- Carlos Sonnenschein
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA (CS, AMS)
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA (CS, AMS).
| |
Collapse
|
22
|
PIWIL2 induces c-Myc expression by interacting with NME2 and regulates c-Myc-mediated tumor cell proliferation. Oncotarget 2015; 5:8466-77. [PMID: 25193865 PMCID: PMC4226697 DOI: 10.18632/oncotarget.2327] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
c-Myc serves as a crucial regulator in multiple cellular events. Cumulative evidences demonstrate that anomalous c-Myc overexpression correlates with proliferation, invasion and metastasis in various human tumors. However, the transcriptionally activating mechanisms responsible for c-Myc overexpression are complex and continue to be intangible. Here we showed that Piwi-Like RNA-Mediated Gene Silencing 2 (PIWIL2) can upregulate c-Myc via binding with NME/NM23 nucleoside diphosphate kinase 2 (NME2). PIWIL2 promotes c-Myc transcription by interacting with and facilitating NME2 to bind to G4-motif region within c-Myc promoter. Interestingly, in a c-Myc-mediated manner, PIWIL2 upregulates RhoA, which in turn induces filamentary F-actin. Deficiency of PIWIL2 results in obstacle for c-Myc expression, cell cycle progress and cell proliferation. Taken together, our present work demonstrates that PIWIL2 modulates tumor cell proliferation and F-actin filaments via promoting c-Myc expression.
Collapse
|
23
|
Ai X, Jia ZM, Wang J, DI GP, Zhang XU, Sun F, Zang T, Liao X. Bioinformatics analysis of the target gene of fibroblast growth factor receptor 3 in bladder cancer and associated molecular mechanisms. Oncol Lett 2015; 10:543-549. [PMID: 26171066 DOI: 10.3892/ol.2015.3231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 04/24/2015] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to elucidate the molecular mechanisms of fibroblast growth factor receptor 3 (FGFR3) activation via overexpression or mutation of the FGFR3 target gene in bladder cancer (BC). The transcription profile data GSE41035, which included 18 BC samples, containing 3 independent FGFR3 short hairpin (sh)RNA, and 6 control samples, containing enhanced green fluorescent protein (EGFP) shRNA, were obtained from the National Center of Biotechnology Information Gene Expression Omnibus database. The Limma package with multiple testing correction was used to identify differentially expressed genes (DEGs) between FGFR3 knockdown and control samples. Gene ontology (GO) and pathway enrichment analysis were conducted in order to investigate the DEGs at the functional level. In addition, differential co-expression analysis was employed to construct a gene co-expression network. A total of 196 DEGs were acquired, of which 101 were downregulated and 95 were upregulated. In addition, a gene signature was identified linking FGFR3 signaling with de novo sterol biosynthesis and metabolism using GO and pathway enrichment analysis. Furthermore, the present study demonstrated that the genes NME2, CCNB1 and H2AFZ were significantly associated with BC, as determined by the protein-protein interaction network of DEGs and co-expressed genes. In conclusion, the present study revealed the involvement of FGFR3 in the regulation of sterol biosynthesis and metabolism in the maintenance of BC; in addition, the present study provided a novel insight into the molecular mechanisms of FGFR3 in BC. These results may therefore contribute to the theoretical guidance into the detection and therapy of BC.
Collapse
Affiliation(s)
- Xing Ai
- Department of Urology, Military General Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Zhuo-Min Jia
- Department of Urology, Military General Hospital of Beijing PLA, Beijing 100700, P.R. China ; Department of Urology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Juan Wang
- Department of Medicine, Military General Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Gui-Ping DI
- Department of Urology, Military General Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - X U Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Fengling Sun
- Department of Urology, Military General Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Tong Zang
- Department of Urology, Military General Hospital of Beijing PLA, Beijing 100700, P.R. China
| | - Xiumei Liao
- Department of Urology, Military General Hospital of Beijing PLA, Beijing 100700, P.R. China
| |
Collapse
|
24
|
Smith RW, Cash P, Hogg DW, Buck LT. Proteomic changes in the brain of the western painted turtle (Chrysemys picta bellii) during exposure to anoxia. Proteomics 2015; 15:1587-97. [PMID: 25583675 DOI: 10.1002/pmic.201300229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/03/2014] [Accepted: 01/09/2015] [Indexed: 01/10/2023]
Abstract
During anoxia, overall protein synthesis is almost undetectable in the brain of the western painted turtle. The aim of this investigation was to address the question of whether there are alterations to specific proteins by comparing the normoxic and anoxic brain proteomes. Reductions in creatine kinase, hexokinase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase reflected the reduced production of adenosine triphosphate (ATP) during anoxia while the reduction in transitional endoplasmic reticulum ATPase reflected the conservation of ATP or possibly a decrease in intracellular Ca(2+). In terms of neural protection programed cell death 6 interacting protein (PDCD6IP; a protein associated with apoptosis), dihydropyrimidinase-like protein, t-complex protein, and guanine nucleotide protein G(o) subunit alpha (Go alpha; proteins associated with neural degradation and impaired cognitive function) also declined. A decline in actin, gelsolin, and PDCD6IP, together with an increase in tubulin, also provided evidence for the induction of a neurological repair response. Although these proteomic alterations show some similarities with the crucian carp (another anoxia-tolerant species), there are species-specific responses, which supports the theory of no single strategy for anoxia tolerance. These findings also suggest the anoxic turtle brain could be an etiological model for investigating mammalian hypoxic damage and clinical neurological disorders.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
25
|
Popescu NC, Goodison S. Deleted in liver cancer-1 (DLC1): an emerging metastasis suppressor gene. Mol Diagn Ther 2015; 18:293-302. [PMID: 24519699 DOI: 10.1007/s40291-014-0086-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
While significant progress continues to be made in the early detection and therapeutic management of primary tumors, the incidence of metastatic disease remains the major cause of mortality. Accordingly, the development of novel effective therapies that can ameliorate dissemination and secondary tumor growth are a clinical priority. The identification of genetic and functional alterations in cancer cells that affect factors implicated in the metastatic process is critical for designing preventive and therapeutic strategies. Evidence implicating the protein deleted in liver cancer-1 (DLC1), a Rho GTPase activator, in metastasis has accumulated to a point where DLC1 may be considered as a metastasis suppressor gene. This review presents evidence supporting an anti-metastatic role for DLC1 in several human cancers and discusses the mechanisms contributing to its inhibitory effects. In addition, promising opportunities for therapeutic interventions based on DLC1 function and downstream pathways involved in the metastatic process are considered.
Collapse
Affiliation(s)
- Nicholas C Popescu
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, Building 37, Room 4140, 37 Convent Dr., MSC 4262, Bethesda, MD, 20892-4262, USA,
| | | |
Collapse
|
26
|
Shriver CD, Hueman MT, Ellsworth RE. Molecular signatures of lymph node status by intrinsic subtype: gene expression analysis of primary breast tumors from patients with and without metastatic lymph nodes. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:116. [PMID: 25551369 PMCID: PMC4322560 DOI: 10.1186/s13046-014-0116-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/19/2014] [Indexed: 12/05/2022]
Abstract
Background Identification of a gene expression signature in primary breast tumors that could classify patients by lymph node status would allow patients to avoid the morbidities of surgical disruption of the lymph nodes. Attempts to identify such a signature have, to date, been unsuccessful. Because breast tumor subtypes have unique molecular characteristics and different sites of metastasis, molecular signatures for lymph node involvement may vary by subtype. Methods Gene expression data was generated from HG U133A 2.0 arrays for 135 node positive and 210 node negative primary breast tumors. Intrinsic subtype was assigned using the BreastPRS. Differential gene expression analysis was performed using one-way ANOVA using lymph node status as the variable with a False-discovery rate <0.05, to define significance. Results Luminal A tumors were most common (51%) followed by basal-like (27%), HER2-enriched (14%) luminal B (7%) and normal-like (1%). Basal-like and luminal A tumors were less likely to have metastatic lymph nodes (35% and 37%, respectively) compared to luminal B or HER2-enriched (52% and 51%, respectively). No differentially expressed genes associated with lymph node status were detected when all tumors were considered together or within each subtype. Conclusions Gene expression patterns from the primary tumor are not able to stratify patients by lymph node status. Although the primary breast tumor may influence tumor cell dissemination, once metastatic cells enter the lymphatics, it is likely that characteristics of the lymph node microenvironment, such as establishment of a pre-metastatic niche and release of pro-survival factors, determine which cells are able to colonize. The inability to utilize molecular profiles from the primary tumor to determine lymph node status suggest that other avenues of investigation, such as how systemic factors including diminished immune response or genetic susceptibility contribute to metastasis, may be critical in the development of tools for non-surgical assessment of lymph node status with a corresponding reduction in downstream sequelae associated with disruption of the lymphatics.
Collapse
Affiliation(s)
- Craig D Shriver
- Clinical Breast Care Project, Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD, 20889, USA.
| | - Matthew T Hueman
- Clinical Breast Care Project, Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD, 20889, USA.
| | - Rachel E Ellsworth
- Clinical Breast Care Project, Murtha Cancer Center, 620 Seventh Street, Windber, PA, 15963, USA.
| |
Collapse
|
27
|
Bozdogan O, Yulug IG, Vargel I, Cavusoglu T, Karabulut AA, Karahan G, Sayar N. Differential expression patterns of metastasis suppressor proteins in basal cell carcinoma. Int J Dermatol 2014; 54:905-15. [DOI: 10.1111/ijd.12581] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/26/2013] [Accepted: 11/13/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Onder Bozdogan
- Department of Molecular Biology and Genetics; Faculty of Science; Bilkent University; Ankara Turkey
- Department of Pathology; Medical Faculty; Kırıkkale University; Kırıkkale Turkey
| | - Isik G. Yulug
- Department of Molecular Biology and Genetics; Faculty of Science; Bilkent University; Ankara Turkey
| | - Ibrahim Vargel
- Department of Plastic Surgery; Medical Faculty; Hacettepe University; Ankara Turkey
| | - Tarik Cavusoglu
- Department of Plastic Surgery; Medical Faculty; Kırıkkale University; Kırıkkale Turkey
| | - Ayse A. Karabulut
- Department of Dermatology; Medical Faculty; Kırıkkale University; Kırıkkale Turkey
| | - Gurbet Karahan
- Department of Molecular Biology and Genetics; Faculty of Science; Bilkent University; Ankara Turkey
| | - Nilufer Sayar
- Department of Molecular Biology and Genetics; Faculty of Science; Bilkent University; Ankara Turkey
| |
Collapse
|
28
|
E-cadherin expression in Barrett’s esophagus and esophageal carcinoma. Esophagus 2014. [DOI: 10.1007/s10388-014-0424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
29
|
Coccia A, Bastianelli D, Mosca L, Monticolo R, Panuccio I, Carbone A, Calogero A, Lendaro E. Extra virgin olive oil phenols suppress migration and invasion of T24 human bladder cancer cells through modulation of matrix metalloproteinase-2. Nutr Cancer 2014; 66:946-54. [PMID: 24918476 DOI: 10.1080/01635581.2014.922204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The consumption of extra virgin olive oil (EVOO), a common dietary habit of the Mediterranean people, seems to be related to a lower incidence of certain types of cancer including bladder neoplasm. Metastases are the major cause of bladder cancer-related deaths and targeting cell motility has been proposed as a therapeutic strategy to prevent cancer spread. This study aimed to investigate the potential antimetastatic effect of total phenols extracted from EVOO against the human transitional bladder carcinoma cell line T24. We also aimed at verifying that EVOO extract exerts cytotoxic effect on tumor cells without affecting normal urothelial fibroblasts. Our results show that EVOO extract can significantly inhibit the proliferation and motility of T24 bladder cells in a dose-dependent manner. In the same experimental conditions fibroblast proliferation and motility were not significantly modified. Furthermore the enzymatic activity of MMP-2 was inhibited at nontoxic EVOO extract doses only in T24 cells. The qRT-PCR revealed a decrease of the MMP-2 expression and a simultaneous increase of the tissue inhibitors of metalloproteinases expression. Our results may support the epidemiological evidences that link olive oil consumption to health benefits and may represent a starting point for the development of new anticancer strategies.
Collapse
Affiliation(s)
- Andrea Coccia
- a Department of Medical-Surgical Sciences and Biotechnologies , "Sapienza" University of Rome , Latina , Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Håkanson M, Cukierman E, Charnley M. Miniaturized pre-clinical cancer models as research and diagnostic tools. Adv Drug Deliv Rev 2014; 69-70:52-66. [PMID: 24295904 PMCID: PMC4019677 DOI: 10.1016/j.addr.2013.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/09/2013] [Accepted: 11/24/2013] [Indexed: 12/14/2022]
Abstract
Cancer is one of the most common causes of death worldwide. Consequently, important resources are directed towards bettering treatments and outcomes. Cancer is difficult to treat due to its heterogeneity, plasticity and frequent drug resistance. New treatment strategies should strive for personalized approaches. These should target neoplastic and/or activated microenvironmental heterogeneity and plasticity without triggering resistance and spare host cells. In this review, the putative use of increasingly physiologically relevant microfabricated cell-culturing systems intended for drug development is discussed. There are two main reasons for the use of miniaturized systems. First, scaling down model size allows for high control of microenvironmental cues enabling more predictive outcomes. Second, miniaturization reduces reagent consumption, thus facilitating combinatorial approaches with little effort and enables the application of scarce materials, such as patient-derived samples. This review aims to give an overview of the state-of-the-art of such systems while predicting their application in cancer drug development.
Collapse
Affiliation(s)
- Maria Håkanson
- CSEM SA, Section for Micro-Diagnostics, 7302 Landquart, Switzerland
| | - Edna Cukierman
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | - Mirren Charnley
- Centre for Micro-Photonics and Industrial Research Institute Swinburne, Swinburne University of Technology, Victoria 3122, Australia.
| |
Collapse
|
31
|
Wan L, Pantel K, Kang Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med 2014; 19:1450-64. [PMID: 24202397 DOI: 10.1038/nm.3391] [Citation(s) in RCA: 600] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/04/2013] [Indexed: 02/07/2023]
Abstract
As the culprit behind most cancer-related deaths, metastasis is the ultimate challenge in our effort to fight cancer as a life-threatening disease. The explosive growth of metastasis research in the past decade has yielded an unprecedented wealth of information about the tumor-intrinsic and tumor-extrinsic mechanisms that dictate metastatic behaviors, the molecular and cellular basis underlying the distinct courses of metastatic progression in different cancers and what renders metastatic cancer refractory to available therapies. However, integration of such new knowledge into an improved, metastasis-oriented oncological drug development strategy is needed to thwart the development of metastatic disease at every stage of progression.
Collapse
Affiliation(s)
- Liling Wan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | | | |
Collapse
|
32
|
Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. EMBO J 2013; 32:2672-84. [PMID: 23974796 DOI: 10.1038/emboj.2013.188] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/29/2013] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a novel class of regulatory genes that play critical roles in various processes ranging from normal development to human diseases such as cancer progression. Recent studies have shown that lncRNAs regulate the gene expression by chromatin remodelling, transcription, splicing and RNA decay control, enhancer function, and epigenetic regulation. However, little is known about translation regulation by lncRNAs. We identified a translational regulatory lncRNA (treRNA) through genome-wide computational analysis. We found that treRNA is upregulated in paired clinical breast cancer primary and lymph-node metastasis samples, and that its expression stimulates tumour invasion in vitro and metastasis in vivo. Interestingly, we found that treRNA downregulates the expression of the epithelial marker E-cadherin by suppressing the translation of its mRNA. We identified a novel ribonucleoprotein (RNP) complex, consisting of RNA-binding proteins (hnRNP K, FXR1, and FXR2), PUF60 and SF3B3, that is required for this treRNA functions. Translational suppression by treRNA is dependent on the 3'UTR of the E-cadherin mRNA. Taken together, our study indicates a novel mechanism of gene regulation by lncRNAs in cancer progression.
Collapse
|
33
|
Abstract
KiSS1 and its cognate G-protein-coupled receptor, GPR54, have diverse functions. While KiSS1 and GPR54 have been intensively studied in physiology, their role in cancer is still unclear. In cancer, KiSS1 and GPR54 have been known to suppress metastasis by inhibiting cancer cell motility. However, recent studies suggest that KiSS1 and GPR54 have varied roles even in cancer development and metastasis. Here, we examine recent advances in understanding the roles of KiSS1 and GPR54 in cancer development and metastasis.
Collapse
|
34
|
Martinez E, Trevino V. Modelling gene expression profiles related to prostate tumor progression using binary states. Theor Biol Med Model 2013; 10:37. [PMID: 23721350 PMCID: PMC3691825 DOI: 10.1186/1742-4682-10-37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 05/21/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cancer is a complex disease commonly characterized by the disrupted activity of several cancer-related genes such as oncogenes and tumor-suppressor genes. Previous studies suggest that the process of tumor progression to malignancy is dynamic and can be traced by changes in gene expression. Despite the enormous efforts made for differential expression detection and biomarker discovery, few methods have been designed to model the gene expression level to tumor stage during malignancy progression. Such models could help us understand the dynamics and simplify or reveal the complexity of tumor progression. METHODS We have modeled an on-off state of gene activation per sample then per stage to select gene expression profiles associated to tumor progression. The selection is guided by statistical significance of profiles based on random permutated datasets. RESULTS We show that our method identifies expected profiles corresponding to oncogenes and tumor suppressor genes in a prostate tumor progression dataset. Comparisons with other methods support our findings and indicate that a considerable proportion of significant profiles is not found by other statistical tests commonly used to detect differential expression between tumor stages nor found by other tailored methods. Ontology and pathway analysis concurred with these findings. CONCLUSIONS Results suggest that our methodology may be a valuable tool to study tumor malignancy progression, which might reveal novel cancer therapies.
Collapse
Affiliation(s)
- Emmanuel Martinez
- Tecnológico de Monterrey, Campus Monterrey, Cátedra de Bioinformática, Monterrey, Nuevo León 64849, México
| | - Victor Trevino
- Tecnológico de Monterrey, Campus Monterrey, Cátedra de Bioinformática, Monterrey, Nuevo León 64849, México
| |
Collapse
|
35
|
Catena R, Bhattacharya N, El Rayes T, Wang S, Choi H, Gao D, Ryu S, Joshi N, Bielenberg D, Lee SB, Haukaas SA, Gravdal K, Halvorsen OJ, Akslen LA, Watnick RS, Mittal V. Bone marrow-derived Gr1+ cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov 2013; 3:578-89. [PMID: 23633432 DOI: 10.1158/2159-8290.cd-12-0476] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED Metastatic tumors have been shown to establish permissive microenvironments for metastases via recruitment of bone marrow-derived cells. Here, we show that metastasis-incompetent tumors are also capable of generating such microenvironments. However, in these situations, the otherwise prometastatic Gr1(+) myeloid cells create a metastasis-refractory microenvironment via the induction of thrombospondin-1 (Tsp-1) by tumor-secreted prosaposin. Bone marrow-specific genetic deletion of Tsp-1 abolished the inhibition of metastasis, which was restored by bone marrow transplant from Tsp-1(+) donors. We also developed a 5-amino acid peptide from prosaposin as a pharmacologic inducer of Tsp-1 in Gr1(+) bone marrow cells, which dramatically suppressed metastasis. These results provide mechanistic insights into why certain tumors are deficient in metastatic potential and implicate recruited Gr1(+) myeloid cells as the main source of Tsp-1. The results underscore the plasticity of Gr1(+) cells, which, depending on the context, promote or inhibit metastasis, and suggest that the peptide could be a potential therapeutic agent against metastatic cancer. SIGNIFICANCE The mechanisms of metastasis suppression are poorly understood. Here, we have identified a novel mechanism whereby metastasis-incompetent tumors generate metastasis-suppressive microenvironments in distant organs by inducing Tsp-1 expression in the bone marrow–derived Gr1+myeloid cells. A 5-amino acid peptide with Tsp-1–inducing activity was identified as a therapeutic agent against metastatic cancer.
Collapse
Affiliation(s)
- Raúl Catena
- Department of Cardiothoracic Surgery, College of Cornell University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vasconcelos-Nóbrega C, Costa C, Vala H, Colaço A, Santos L, Lopes C, Oliveira PA. E-cadherin and β-catenin expression during urothelial carcinogenesis induced by N-butyl-N-(4-hydroxybutyl) nitrosamine in mice. Urol Int 2013; 91:462-6. [PMID: 23548313 DOI: 10.1159/000348329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 01/17/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND E-cadherin and β-catenin are adhesion molecules that promote integrity and stability of the urothelium. A decrease in their expression is associated with more aggressive tumour phenotypes with the ability to invade and metastasize. MATERIAL AND METHODS 45 ICR male mice were used, of which 25 received N-butyl-N-(4-hydroxybutyl)nitrosamine (0.05%) in drinking water for a period of 12 weeks. Immunohistochemical expression was evaluated in all urinary bladder preparations for E-cadherin and for β-catenin. RESULTS Preneoplastic lesions showed staining patterns similar to normal urothelium. In simple and nodular hyperplasia, membrane staining was dominant (66.7-78.6 and 50-100%, respectively). In dysplasia a cytoplasmic pattern was prevalent (86.7-100%). Neoplastic lesions exhibit an abnormal staining pattern (100%) with heterogeneous staining (cytoplasmic, nuclear and membrane staining). A strong correlation was observed between both adhesion molecule staining patterns (r = 0.83; p = 0.039). CONCLUSIONS In mice, as in humans, E-cadherin and β-catenin are valuable tools to investigate cellular adhesion status of urothelium and can be considered as indicators of tumour aggressiveness and evolution.
Collapse
|
37
|
Mechanisms of ovarian cancer metastasis: biochemical pathways. Int J Mol Sci 2012; 13:11705-11717. [PMID: 23109879 PMCID: PMC3472771 DOI: 10.3390/ijms130911705] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. Despite advances in chemotherapy, the five-year survival rate of advanced ovarian cancer patients with peritoneal metastasis remains around 30%. The most significant prognostic factor is stage, and most patients present at an advanced stage with peritoneal dissemination. There is often no clearly identifiable precursor lesion; therefore, the events leading to metastatic disease are poorly understood. This article reviews metastatic suppressor genes, the epithelial-mesenchymal transition (EMT), and the tumor microenvironment as they relate to ovarian cancer metastasis. Additionally, novel chemotherapeutic agents targeting the metastasis-related biochemical pathways are discussed.
Collapse
|
38
|
Diego D, Calvo GF, Pérez-García VM. Modeling the connection between primary and metastatic tumors. J Math Biol 2012; 67:657-92. [PMID: 22829353 DOI: 10.1007/s00285-012-0565-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/26/2012] [Indexed: 01/28/2023]
Abstract
We put forward a model for cancer metastasis as a migration phenomenon between tumor cell populations coexisting and evolving in two different habitats. One of them is a primary tumor and the other one is a secondary or metastatic tumor. The evolution of the different cell phenotype populations in each habitat is described by means of a simple quasispecies model allowing for a cascade of mutations between the different phenotypes in each habitat. The cell migration event is supposed to be unidirectional and take place continuously in time. The possible clinical outcomes of the model depending on the parameter space are analyzed and the effect of the resection of the primary tumor is studied.
Collapse
Affiliation(s)
- David Diego
- Departamento de Matemáticas, E.T.S.I. Industriales and Instituto de Matemática Aplicada a la Ciencia y la Ingeniería, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | | | | |
Collapse
|
39
|
Sun DZ, Jiao JP, Ju DW, Ye M, Zhang X, Xu JY, Lu Y, He J, Wei PK, Yang MH. Tumor interstitial fluid and gastric cancer metastasis: an experimental study to verify the hypothesis of "tumor-phlegm microenvironment". Chin J Integr Med 2012; 18:350-358. [PMID: 22549391 DOI: 10.1007/s11655-012-1085-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To extract tumor interstitial fluid (TIF) from MKN-45 gastric cancer which is similar to "muddy phlegm" in Chinese medicine and observe influences of MKN-45 tumor interstitial fluid (MKN-45 TIF) intervention on metastasis of gastric cancer and on the expressions of vascular endothelial growth factor (VEGF), kinase insert domain containing receptor (KDR), epithelial-cadherin (E-cad), cyclooxygenase-2 (COX-2), intercellular adhesion molecule-1 (ICAM-1) and telomerase genes and proteins in primary tumor tissue. METHODS An MKN-45 tumor-bearing model was established in 50 nude mice. The modeled animals were equally randomized to 5 groups: the simple tumor-bearing group (model group), the normal saline (NS) via tail vein injection (i.v.) group (NS i.v. group), MKN-45 TIF i.v. group (TIF i.v. group), NS intraperitoneal injection (i.p.) group (NS i.p. group), and MKN-45 TIF i.p. group (TIF i.p. group). The TIF and NS intervention groups received injection (i.p. or i.v.) of MKN-45 TIF or NS twice a week, 0.2 mL at a time. After 8 weeks, the primary tumors were removed, weighed and HE stained to observe tumor metastasis. The primary tumor tissues were analyzed by immunohistochemistry and real-time quantitative PCR to detect expressions of VEGF, KDR, E-cad, COX-2, ICAM-1, and telomerase genes and proteins in different groups. RESULTS There were significant differences in tumor weight between TIF intervention groups and the model and NS intervention groups. Tumor metastasis was observed in all 5 groups, but the tumor metastasis rate in TIF intervention groups was significantly higher than those in the model and NS intervention groups. The gene and protein expressions of gastric cancer-related factors VEGF, KDR, COX-2, ICAM-1 and telomerase were unregulated while the gene and protein expressions of E-cad were downregulated in TIF intervention groups. CONCLUSIONS TIF promotes tumor growth, invasion and metastasis of gastric cancer. These findings provide preliminary experimental clues for verifying the hypothesis of "tumor-phlegm microenvironment".
Collapse
Affiliation(s)
- Da-zhi Sun
- Institute of Traditional Chinese Medicine Research, Chinese People's Liberation Army General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Standard chemotherapy for adrenocortical cancer currently is under evaluation in the context of the recently completed FIRM-ACT evaluating the combination of mitotane with either streptozocin or etoposide, cisplatin, and doxorubicin. New agents are eagerly sought by the ACC community that hopes to make progress against this deadly disease. Investigators have begun to dissect the molecular and genomic context of ACC with a goal of identifying potential novel therapeutic agents. One gene consistently overexpressed in ACC is insulin growth factor type 2. Targeting its receptor IGF1R has shown encouraging results in ACC cell lines and against murine xenografts. As a result, clinical trials to evaluate agents targeting the IGF1R have been done including mitotane and IMC-A12 (a monoclonal antibody) and the GALACCTIC trial that has just completed accrual to evaluate OSI-906, a small molecule IGF1R antagonist. On the horizon are other agents targeting other tyrosine kinases, including EGF and FGF, and novel strategies such as individualized tumor analysis to select treatment.
Collapse
|
41
|
Slipicevic A, Holm R, Emilsen E, Ree Rosnes AK, Welch DR, Mælandsmo GM, Flørenes VA. Cytoplasmic BRMS1 expression in malignant melanoma is associated with increased disease-free survival. BMC Cancer 2012; 12:73. [PMID: 22356677 PMCID: PMC3341185 DOI: 10.1186/1471-2407-12-73] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/22/2012] [Indexed: 12/31/2022] Open
Abstract
Background/aims Breast cancer metastasis suppressor 1 (BRMS1) blocks metastasis in melanoma xenografts; however, its usefulness as a biomarker in human melanomas has not been widely studied. The goal was to measure BRMS1 expression in benign nevi, primary and metastatic melanomas and evaluate its impact on disease progression and prognosis. Methods Paraffin-embedded tissue from 155 primary melanomas, 69 metastases and 15 nevi was examined for BRMS1 expression using immunohistochemistry. siRNA mediated BRMS1 down-regulation was used to study impact on invasion and migration in melanoma cell lines. Results A significantly higher percentage of nevi (87%), compared to primary melanomas (20%) and metastases (48%), expressed BRMS1 in the nucelus (p < 0.0001). Strong nuclear staining intensity was observed in 67% of nevi, and in 9% and 24% of the primary and metastatic melanomas, respectively (p < 0.0001). Comparable cytoplasmic expression was observed (nevi; 87%, primaries; 86%, metastases; 72%). However, a decline in cytoplasmic staining intensity was observed in metastases compared to nevi and primary tumors (26%, 47%, and 58%, respectively, p < 0.0001). Score index (percentage immunopositive celles multiplied with staining intensity) revealed that high cytoplasmic score index (≥ 4) was associated with thinner tumors (p = 0.04), lack of ulceration (p = 0.02) and increased disease-free survival (p = 0.036). When intensity and percentage BRMS1 positive cells were analyzed separately, intensity remained associated with tumor thickness (p = 0.024) and ulceration (p = 0.004) but was inversely associated with expression of proliferation markers (cyclin D3 (p = 0.008), cyclin A (p = 0.007), and p21Waf1/Cip1 (p = 0.009)). Cytoplasmic score index was inversely associated with nuclear p-Akt (p = 0.013) and positively associated with cytoplasmic p-ERK1/2 expression (p = 0.033). Nuclear BRMS1 expression in ≥ 10% of primary melanoma cells was associated with thicker tumors (p = 0.016) and decreased relapse-free period (p = 0.043). Nuclear BRMS1 was associated with expression of fatty acid binding protein 7 (FABP7; p = 0.011), a marker of invasion in melanomas. In line with this, repression of BRMS1 expression reduced the ability of melanoma cells to migrate and invade in vitro. Conclusion Our data suggest that BRMS1 is localized in cytoplasm and nucleus of melanocytic cells and that cellular localization determines its in vivo effect. We hypothesize that cytoplasmic BRMS1 restricts melanoma progression while nuclear BRMS1 possibly promotes melanoma cell invasion. Please see related article: http://www.biomedcentral.com/1741-7015/10/19
Collapse
Affiliation(s)
- Ana Slipicevic
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
42
|
Jarząbek K, Kozłowski L, Milewski R, Wołczyński S. KiSS1/GPR54 and estrogen-related gene expression profiles in primary breast cancer. Oncol Lett 2012; 3:930-934. [PMID: 22741021 DOI: 10.3892/ol.2012.582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/18/2012] [Indexed: 01/19/2023] Open
Abstract
The estrogen receptor α (ERα)-mediated pathway plays a critical role in breast cancer development and progression. KiSS1 was previously described as a metastasis suppressor gene in certain carcinomas. However, the role of KiSS1/GPR54 in breast cancer remains controversial. Whether the function of the KiSS1/GPR54 system depends on estrogen signaling in the breast cancer cell remains to be determined. This study aimed to determine the expression profiles of the KiSS1/GPR54, ERα, ERβ, aromatase and cyclin D1 genes in human breast cancer tissues, and to identify a possible link between the expression levels of the studied genes and the selected clinical and pathological features. The study subjects comprised 59 females treated surgically for primary breast cancer. Total RNA was extracted from frozen breast cancer tissues, and expression levels were examined to determine any correlations. We observed strong positive correlations between the expression levels of the studied genes. The expression of ERα correlated positively with progesterone receptors (PRs), and in these tumors we also observed positive correlations between KiSS1, GPR54 and cyclin D1 mRNAs and the ERα protein. ER-positive breast tumors exhibited higher KiSS1 and GPR54 levels than the ER-negative tumors. The expression levels of the ERα and GPR54 transcripts were higher in the moderately differentiated tumors (G2) compared to the poorly differentiated high-grade (G3) cancers. We also found that HER-2/neu status in breast cancer is negatively associated with GPR54 mRNA expression. Decreasing GPR54 mRNA expression levels in HER-2/neu (+) tumors may be associated with the deregulation of the classical estrogen-mediated signaling pathway in breast tumors, and therefore, with promotion of tumor invasiveness. Our findings indicate that genes involved in the KiSS1/GPR54 system, as well as in the estrogen signaling pathway, may be utilizable molecular factors in pathogenesis studies of breast cancer.
Collapse
Affiliation(s)
- Katarzyna Jarząbek
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | | | | | | |
Collapse
|
43
|
Ubiquitous Brms1 expression is critical for mammary carcinoma metastasis suppression via promotion of apoptosis. Clin Exp Metastasis 2012; 29:315-25. [PMID: 22241150 DOI: 10.1007/s10585-012-9452-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/02/2012] [Indexed: 12/30/2022]
Abstract
Morbidity and mortality of breast cancer patients are drastically increased when primary tumor cells are able to spread to distant sites and proliferate to become secondary lesions. Effective treatment of metastatic disease has been limited; therefore, an increased molecular understanding to identify biomarkers and therapeutic targets is needed. Breast cancer metastasis suppressor 1 (BRMS1) suppresses development of pulmonary metastases when expressed in a variety of cancer types, including metastatic mammary carcinoma. Little is known of Brms1 function throughout the initiation and progression of mammary carcinoma. The goal of this study was to investigate mechanisms of Brms1-mediated metastasis suppression in transgenic mice that express Brms1 using polyoma middle T oncogene-induced models. Brms1 expression did not significantly alter growth of the primary tumors. When expressed ubiquitously using a β-actin promoter, Brms1 suppressed pulmonary metastasis and promoted apoptosis of tumor cells located in the lungs but not in the mammary glands. Surprisingly, selective expression of Brms1 in the mammary gland using the MMTV promoter did not significantly block metastasis nor did it promote apoptosis in the mammary glands or lung, despite MMTV-induced expression within the lungs. These results strongly suggest that cell type-specific over-expression of Brms1 is important for Brms1-mediated metastasis suppression.
Collapse
|
44
|
Abstract
Despite recognizing the devastating consequences of metastasis, we are not yet able to effectively treat cancer that has spread to vital organs. The inherent complexity of genomic alterations in late-stage cancers, coupled with numerous heterotypic interactions that occur between tumour and stromal cells, represent fundamental challenges in our quest to understand and control metastatic disease. The incorporation of genomic and other systems level approaches, as well as technological breakthroughs in imaging and animal modelling, have galvanized the effort to overcome gaps in our understanding of metastasis. Future research carries with it the potential to translate the wealth of new knowledge and conceptual advances into effective targeted therapies.
Collapse
Affiliation(s)
- Nilay Sethi
- Department of Molecular Biology, Washington Road, LTL 255, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|