1
|
Embaie BT, Sarkar H, Alchahin AM, Otte J, Olsen TK, Tümmler C, Kameneva P, Artemov AV, Akkuratova N, Adameyko I, Stukenborg JB, Wickström M, Kogner P, Johnsen JI, Mei S, Kharchenko PV, Baryawno N. Comparative Single-Cell Transcriptomics of Human Neuroblastoma and Preclinical Models Reveals Conservation of an Adrenergic Cell State. Cancer Res 2025; 85:1015-1034. [PMID: 39808065 PMCID: PMC11907193 DOI: 10.1158/0008-5472.can-24-1507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Transgenic mice and organoid models, such as three-dimensional tumoroid cultures, have emerged as powerful tools for investigating cancer development and targeted therapies. Yet, the extent to which these preclinical models recapitulate the cellular identity of heterogeneous malignancies, like neuroblastoma, remains to be validated. In this study, we characterized the transcriptional landscape of TH-MYCN tumors by single-cell RNA sequencing and developed ex vivo tumoroids. Integrated analysis with murine fetal adrenal samples confirmed that both TH-MYCN tumors and tumoroids closely mirror the cellular profiles of normal embryonic sympathoblasts and chromaffin cells. Comprehensive comparison between tumors from patients with neuroblastoma and TH-MYCN mice demonstrated similarities in adrenergic tumor cell composition. Ex vivo tumoroid cultures displayed histologic resemblance and shared transcriptional profiles with the originating TH-MYCN tumors and human neuroblastoma tumors. Importantly, subpopulations within tumoroids exhibited gene expression associated with poor survival of patients with neuroblastoma. Notably, recurrent observations of a low-proliferative chromaffin phenotype connected to the highly proliferative sympathetic phenotype suggested that pushing sympathoblasts into a chromaffin-like state may offer an interesting therapeutic strategy for neuroblastoma. Together, this study not only deepens our understanding of a widely used transgenic mouse neuroblastoma model but also introduces an ex vivo model that maintains critical adrenergic cell state identity, thereby enhancing its translational potential for neuroblastoma research. Significance: Transgenic mouse models and ex vivo tumoroids, characterized through single-cell RNA sequencing, faithfully recapitulate neuroblastoma cellular identity, offering a useful platform for investigating potential therapeutic strategies.
Collapse
Affiliation(s)
- Bethel Tesfai Embaie
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Hirak Sarkar
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
- Ludwig Princeton Branch, Department of Computer Science, Princeton University, Princeton, New Jersey
- Ludwig Princeton Branch, Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Adele M. Alchahin
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Jörg Otte
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Thale Kristin Olsen
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Conny Tümmler
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Polina Kameneva
- St.Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Artem V. Artemov
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- Division of Neuroimmunology, Department Center for Brain Research, Medical University of Vienna, Wien, Austria
| | - Natalia Akkuratova
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
- Division of Neuroimmunology, Department Center for Brain Research, Medical University of Vienna, Wien, Austria
| | - Jan-Bernd Stukenborg
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Malin Wickström
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Per Kogner
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - John Inge Johnsen
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Peter V. Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
- San Deigo Institute of Science, Altos Labs, San Diego, California
| | - Ninib Baryawno
- Division of Pediatric Oncology and Pediatric Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Rumberger Rivera L, Springer NL, Bailey K, Patel J, Brett C, Barker E. Opportunities in the translational pipeline for pediatric brain cancer therapies. Pediatr Res 2025:10.1038/s41390-025-03847-y. [PMID: 39893288 DOI: 10.1038/s41390-025-03847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/15/2024] [Accepted: 11/02/2024] [Indexed: 02/04/2025]
Abstract
Primary malignant central nervous system (CNS) tumors are the leading cause of cancer-related mortality in the pediatric population. Moreover, survivors often experience significant long-term treatment-related morbidity. Challenges unique to drug delivery to the central nervous system have hampered therapeutic progress. In the past decade, significant advancements in our understanding of molecular biology, genetic alterations, and the tumor microenvironment have allowed us to improve our in vitro and laboratory animal models to better replicate diseases seen in the pediatric population. Recently, a comparative approach using naturally-occurring CNS malignancies in dogs with similar disease progression, histologic presentation, and treatment response has been proposed as an enticing model system. Given these improvements in the translational pipeline, there is an opportunity to identify and implement effective therapies more efficiently to pediatric CNS malignancy populations. IMPACT: Relevant and translational pre-clinical studies are needed to find chemotherapeutics and targeted agents that can reach therapeutic doses within tumors in children without causing systemic adverse effects. A discussion of comparative oncology is provided with the intent to foster veterinary/human oncology collaboration. While the traditional pipeline for translating medications from bench to bedside has been evolving and improving over the last decade, the advances and remaining roadblocks of this pipeline are reviewed and discussed in this article.
Collapse
Affiliation(s)
| | - Nora L Springer
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Katherine Bailey
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Jenny Patel
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Christopher Brett
- University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Elizabeth Barker
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee at Knoxville, Knoxville, TN, USA.
| |
Collapse
|
3
|
Lai X, Yoda H, Qiao Y, Kida Y, Takenaga K, Shinozaki Y, Koshikawa N, Takatori A. Poly (ADP-ribose) polymerase inhibitor sensitized DNA damage caused by an alkylating pyrrole-imidazole polyamide targeting MYCN in neuroblastoma cells. Biochem Biophys Res Commun 2024; 735:150794. [PMID: 39395371 DOI: 10.1016/j.bbrc.2024.150794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
MYCN amplification (MYCN-amp) is a significant prognostic factor and early genetic marker of high-risk neuroblastoma (NB). MYCN induces the DNA damage response (DDR) and modulates the insensitivity of NB cells to Poly (ADP-ribose) polymerase (PARP) inhibitors. We previously reported that CCC-002, a DNA-alkylating agent conjugated with pyrrole-imidazole polyamide targeting MYCN, inhibits NB cell proliferation and induces DNA damage signaling. In this study, we investigated the synergistic effects of CCC-002 and PARP inhibitors on MYCN-amp NB cells. Combination treatment with PARP inhibitors significantly enhanced the sensitivity of MYCN-amp NB cells to CCC-002. DNA damage signals, such as phosphorylation of H2AX and RPA32 elicited after CCC-002 treatment, were further enhanced by PARP inhibitors, as detected through western blotting and immunofluorescence analyses. The potent cytotoxicity of this combination treatment was confirmed by the significant increase in the subG0-G1 phase. Although MYCN knockdown showed no synergistic effect with PARP inhibitors, fluorescence in situ hybridization and quantitative PCR analyses indicated that PARP inhibitors enhanced the effect of CCC-002 to reduce MYCN copy number and suppress its expression. Overall, our study provides novel insights into a therapeutic approach that combines CCC-002 and PARP inhibition to effectively induce DNA damage and apoptosis in MYCN-amp NB cells.
Collapse
Affiliation(s)
- Xiaoyi Lai
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan; Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroyuki Yoda
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yuming Qiao
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan; Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yuki Kida
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Keizo Takenaga
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yoshinao Shinozaki
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Nobuko Koshikawa
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Atsushi Takatori
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan.
| |
Collapse
|
4
|
Doyle K, Hassan AE, Sutter M, Rodriguez M, Kumar P, Brown E. Development of a Simple and Reproducible Cell-derived Orthotopic Xenograft Murine Model for Neuroblastoma. In Vivo 2024; 38:531-538. [PMID: 38418146 PMCID: PMC10905463 DOI: 10.21873/invivo.13471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND/AIM Neuroblastoma is a common childhood cancer with poor survival for children with high-risk disease, and ongoing research to improve outcomes is needed. Patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM) are reliable models for oncologic research; however, they are resource-intensive, expensive, and require significant expertise to develop and maintain. We developed an orthotopic xenograft murine model of neuroblastoma that utilizes cryopreserved banks of human neuroblastoma cell lines, requires minimal equipment, and is easily reproducible. MATERIALS AND METHODS The neuroblastoma cell line NB1643 was obtained from the Children's Oncology Group (COG) Childhood Cancer Repository. Nod-SCID-gamma (NSG) mice underwent orthotopic injection of 2x106 NB1643 cells suspended in 10 μl of collagen hydrogel directly into the adrenal gland via an open retroperitoneal surgical approach. Mice were monitored by ultrasound and in vivo imaging system (IVIS) until the tumor reached the volume of the ipsilateral kidney. Tumor identity was confirmed by necropsy and histologic analysis. RESULTS A total of 55 mice underwent surgery. Eight died due to anesthetic or surgical complications. 39/47 (78%) survivors grew primary adrenal tumors. Average anesthesia time was 30 min. Ultrasound and IVIS successfully characterized tumor growth in all mice. Average time to target tumor size was 5 weeks (range=3-9). Gross pathologic and histologic analysis confirmed adrenal tumors consistent with neuroblastoma in all mice with adrenal masses. CONCLUSION A cell-derived orthotopic xenograft murine model can be successfully used to create an in vivo model of neuroblastoma. This model can be utilized in environments where PDX or GEMM models are not feasible.
Collapse
Affiliation(s)
- Kathleen Doyle
- Department of Surgery, University of California-Davis, Sacramento, CA, U.S.A.;
| | - Abd-Elrahman Hassan
- Department of Surgery, University of California-Davis, Sacramento, CA, U.S.A
| | - Maria Sutter
- Center for Surgical Bioengineering, Department of Surgery, University of California-Davis, Sacramento, CA, U.S.A
| | - Monica Rodriguez
- Center for Surgical Bioengineering, Department of Surgery, University of California-Davis, Sacramento, CA, U.S.A
| | - Priyadarsini Kumar
- Center for Surgical Bioengineering, Department of Surgery, University of California-Davis, Sacramento, CA, U.S.A
| | - Erin Brown
- Department of Surgery, Division of Pediatric Surgery, University of California-Davis, Sacramento, CA, U.S.A
| |
Collapse
|
5
|
Clairmont CD, Gell JJ, Lau CC. Pediatric Tumors as Disorders of Development: The Case for In Vitro Modeling Based on Human Stem Cells. Cancer Control 2024; 31:10732748241270564. [PMID: 39118322 PMCID: PMC11311176 DOI: 10.1177/10732748241270564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Despite improvements in patient outcomes, pediatric cancer remains a leading cause of non-accidental death in children. Recent genetic analysis of patients with pediatric cancers indicates an important role for both germline genetic predisposition and cancer-specific somatic driver mutations. Increasingly, evidence demonstrates that the developmental timepoint at which the cancer cell-of-origin transforms is critical to tumor identity and therapeutic response. Therefore, future therapeutic development would be bolstered by the use of disease models that faithfully recapitulate the genetic context, cell-of-origin, and developmental window of vulnerability in pediatric cancers. Human stem cells have the potential to incorporate all of these characteristics into a pediatric cancer model, while serving as a platform for rapid genetic and pharmacological testing. In this review, we describe how human stem cells have been used to model pediatric cancers and how these models compare to other pediatric cancer model modalities.
Collapse
Affiliation(s)
- Cullen D. Clairmont
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joanna J. Gell
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Connecticut Children’s Medical Center, Center for Cancer and Blood Disorders, Hartford, CT, USA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UConn Health, Farmington, CT, USA
| | - Ching C. Lau
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Connecticut Children’s Medical Center, Center for Cancer and Blood Disorders, Hartford, CT, USA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UConn Health, Farmington, CT, USA
| |
Collapse
|
6
|
Ferguson KM, Gillen SL, Chaytor L, Poon E, Marcos D, Gomez RL, Woods LM, Mykhaylechko L, Elfari L, Martins da Costa B, Jamin Y, Carroll JS, Chesler L, Ali FR, Philpott A. Palbociclib releases the latent differentiation capacity of neuroblastoma cells. Dev Cell 2023; 58:1967-1982.e8. [PMID: 37734383 DOI: 10.1016/j.devcel.2023.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/05/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
Neuroblastoma is the most common extracranial solid tumor in infants, arising from developmentally stalled neural crest-derived cells. Driving tumor differentiation is a promising therapeutic approach for this devastating disease. Here, we show that the CDK4/6 inhibitor palbociclib not only inhibits proliferation but induces extensive neuronal differentiation of adrenergic neuroblastoma cells. Palbociclib-mediated differentiation is manifested by extensive phenotypic and transcriptional changes accompanied by the establishment of an epigenetic program driving expression of mature neuronal features. In vivo palbociclib significantly inhibits tumor growth in mouse neuroblastoma models. Furthermore, dual treatment with retinoic acid resets the oncogenic adrenergic core regulatory circuit of neuroblastoma cells, further suppresses proliferation, and can enhance differentiation, altering gene expression in ways that significantly correlate with improved patient survival. We therefore identify palbociclib as a therapeutic approach to dramatically enhance neuroblastoma differentiation efficacy that could be used in combination with retinoic acid to improve patient outcomes.
Collapse
Affiliation(s)
- Kirsty M Ferguson
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Sarah L Gillen
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Lewis Chaytor
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research (ICR) and Royal Marsden NHS Trust, Sutton SM2 5NG, UK
| | - Daniel Marcos
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Roshna Lawrence Gomez
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, P.O. Box 505055, Dubai, United Arab Emirates
| | - Laura M Woods
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Lidiya Mykhaylechko
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Louis Elfari
- Wellcome-MRC Cambridge Stem Cell Institute Advanced Imaging Facility, Cambridge CB2 0AW, UK
| | - Barbara Martins da Costa
- Division of Clinical Studies, The Institute of Cancer Research (ICR) and Royal Marsden NHS Trust, Sutton SM2 5NG, UK
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research (ICR) and Royal Marsden NHS Trust, Sutton SM2 5NG, UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research (ICR) and Royal Marsden NHS Trust, Sutton SM2 5NG, UK
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, P.O. Box 505055, Dubai, United Arab Emirates
| | - Anna Philpott
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK.
| |
Collapse
|
7
|
Krawczyk E, Kitlińska J. Preclinical Models of Neuroblastoma-Current Status and Perspectives. Cancers (Basel) 2023; 15:3314. [PMID: 37444423 PMCID: PMC10340830 DOI: 10.3390/cancers15133314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Preclinical in vitro and in vivo models remain indispensable tools in cancer research. These classic models, including two- and three-dimensional cell culture techniques and animal models, are crucial for basic and translational studies. However, each model has its own limitations and typically does not fully recapitulate the course of the human disease. Therefore, there is an urgent need for the development of novel, advanced systems that can allow for efficient evaluation of the mechanisms underlying cancer development and progression, more accurately reflect the disease pathophysiology and complexity, and effectively inform therapeutic decisions for patients. Preclinical models are especially important for rare cancers, such as neuroblastoma, where the availability of patient-derived specimens that could be used for potential therapy evaluation and screening is limited. Neuroblastoma modeling is further complicated by the disease heterogeneity. In this review, we present the current status of preclinical models for neuroblastoma research, discuss their development and characteristics emphasizing strengths and limitations, and describe the necessity of the development of novel, more advanced and clinically relevant approaches.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Joanna Kitlińska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
8
|
Bhavsar SP. Metastasis in neuroblastoma: the MYCN question. Front Oncol 2023; 13:1196861. [PMID: 37274289 PMCID: PMC10233040 DOI: 10.3389/fonc.2023.1196861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Oncogenic drivers like MYCN in neuroblastoma subsets continues to present a significant challenge owing to its strong correlation with high-risk metastatic disease and poor prognosis. However, only a limited number of MYCN-regulatory proteins associated with tumor initiation and progression have been elucidated. In this minireview, I summarize the recent progress in understanding the functional role of MYCN and its regulatory partners in neuroblastoma metastasis.
Collapse
|
9
|
Costa A, Thirant C, Kramdi A, Pierre-Eugène C, Louis-Brennetot C, Blanchard O, Surdez D, Gruel N, Lapouble E, Pierron G, Sitbon D, Brisse H, Gauthier A, Fréneaux P, Bohec M, Raynal V, Baulande S, Leclere R, Champenois G, Nicolas A, Meseure D, Bellini A, Marabelle A, Geoerger B, Mechta-Grigoriou F, Schleiermacher G, Menger L, Delattre O, Janoueix-Lerosey I. Single-cell transcriptomics reveals shared immunosuppressive landscapes of mouse and human neuroblastoma. J Immunother Cancer 2022; 10:jitc-2022-004807. [PMID: 36054452 PMCID: PMC9362821 DOI: 10.1136/jitc-2022-004807] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND High-risk neuroblastoma is a pediatric cancer with still a dismal prognosis, despite multimodal and intensive therapies. Tumor microenvironment represents a key component of the tumor ecosystem the complexity of which has to be accurately understood to define selective targeting opportunities, including immune-based therapies. METHODS We combined various approaches including single-cell transcriptomics to dissect the tumor microenvironment of both a transgenic mouse neuroblastoma model and a cohort of 10 biopsies from neuroblastoma patients, either at diagnosis or at relapse. Features of related cells were validated by multicolor flow cytometry and functional assays. RESULTS We show that the immune microenvironment of MYCN-driven mouse neuroblastoma is characterized by a low content of T cells, several phenotypes of macrophages and a population of cells expressing signatures of myeloid-derived suppressor cells (MDSCs) that are molecularly distinct from the various macrophage subsets. We document two cancer-associated fibroblasts (CAFs) subsets, one of which corresponding to CAF-S1, known to have immunosuppressive functions. Our data unravel a complex content in myeloid cells in patient tumors and further document a striking correspondence of the microenvironment populations between both mouse and human tumors. We show that mouse intratumor T cells exhibit increased expression of inhibitory receptors at the protein level. Consistently, T cells from patients are characterized by features of exhaustion, expressing inhibitory receptors and showing low expression of effector cytokines. We further functionally demonstrate that MDSCs isolated from mouse neuroblastoma have immunosuppressive properties, impairing the proliferation of T lymphocytes. CONCLUSIONS Our study demonstrates that neuroblastoma tumors have an immunocompromised microenvironment characterized by dysfunctional T cells and accumulation of immunosuppressive cells. Our work provides a new and precious data resource to better understand the neuroblastoma ecosystem and suggest novel therapeutic strategies, targeting both tumor cells and components of the microenvironment.
Collapse
Affiliation(s)
- Ana Costa
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Cécile Thirant
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Amira Kramdi
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Cécile Pierre-Eugène
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Caroline Louis-Brennetot
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Orphée Blanchard
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Didier Surdez
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Nadege Gruel
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,Department of Translational Research, Institut Curie, Paris, France
| | - Eve Lapouble
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Gaëlle Pierron
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Deborah Sitbon
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Hervé Brisse
- Department of Imaging, PSL Research University, Institut Curie, Paris, France
| | | | - Paul Fréneaux
- Department of Biopathology, Institut Curie, Paris, France
| | - Mylène Bohec
- Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Virginie Raynal
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Sylvain Baulande
- Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Renaud Leclere
- Department of Biopathology, Institut Curie, Paris, France
| | | | - Andre Nicolas
- Department of Biopathology, Institut Curie, Paris, France
| | - Didier Meseure
- Department of Biopathology, Institut Curie, Paris, France
| | - Angela Bellini
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France.,Department of Translational Research, Institut Curie, Paris, France.,Laboratory Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire "Gilles Thomas", Institut Curie, Paris, France
| | - Aurelien Marabelle
- Inserm U1015 & CIC1428, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - Birgit Geoerger
- Inserm U1015, Department of Pediatric and Adolescent Oncology, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Fatima Mechta-Grigoriou
- Inserm U830, Equipe labelisée LNCC, Stress and Cancer Laboratory, PSL Research University, Institut Curie Research Centre, Paris, France
| | - Gudrun Schleiermacher
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France.,Department of Translational Research, Institut Curie, Paris, France.,Laboratory Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire "Gilles Thomas", Institut Curie, Paris, France
| | - Laurie Menger
- Inserm U932, PSL Research University, Institut Curie, Paris, France
| | - Olivier Delattre
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Isabelle Janoueix-Lerosey
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France .,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| |
Collapse
|
10
|
Khazan N, Kim KK, Hansen JN, Singh NA, Moore T, Snyder CWA, Pandita R, Strawderman M, Fujihara M, Takamura Y, Jian Y, Battaglia N, Yano N, Teramoto Y, Arnold LA, Hopson R, Kishor K, Nayak S, Ojha D, Sharon A, Ashton JM, Wang J, Milano MT, Miyamoto H, Linehan DC, Gerber SA, Kawar N, Singh AP, Tabdanov ED, Dokholyan NV, Kakuta H, Jurutka PW, Schor NF, Rowswell-Turner RB, Singh RK, Moore RG. Identification of a Vitamin-D Receptor Antagonist, MeTC7, which Inhibits the Growth of Xenograft and Transgenic Tumors In Vivo. J Med Chem 2022; 65:6039-6055. [PMID: 35404047 PMCID: PMC9059124 DOI: 10.1021/acs.jmedchem.1c01878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 12/02/2022]
Abstract
Vitamin-D receptor (VDR) mRNA is overexpressed in neuroblastoma and carcinomas of lung, pancreas, and ovaries and predicts poor prognoses. VDR antagonists may be able to inhibit tumors that overexpress VDR. However, the current antagonists are arduous to synthesize and are only partial antagonists, limiting their use. Here, we show that the VDR antagonist MeTC7 (5), which can be synthesized from 7-dehydrocholesterol (6) in two steps, inhibits VDR selectively, suppresses the viability of cancer cell-lines, and reduces the growth of the spontaneous transgenic TH-MYCN neuroblastoma and xenografts in vivo. The VDR selectivity of 5 against RXRα and PPAR-γ was confirmed, and docking studies using VDR-LBD indicated that 5 induces major changes in the binding motifs, which potentially result in VDR antagonistic effects. These data highlight the therapeutic benefits of targeting VDR for the treatment of malignancies and demonstrate the creation of selective VDR antagonists that are easy to synthesize.
Collapse
Affiliation(s)
- Negar Khazan
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Kyu Kwang Kim
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Jeanne N. Hansen
- Department
of Pediatrics, University of Rochester Medical
Center, Rochester, New York 14642, United
States
| | - Niloy A. Singh
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Taylor Moore
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Cameron W. A. Snyder
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Ravina Pandita
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Myla Strawderman
- Department
of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York 14624, United States
| | - Michiko Fujihara
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Takamura
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8530, Japan
| | - Ye Jian
- Division
of Surgery and of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14624, United States
| | - Nicholas Battaglia
- Division
of Surgery and of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14624, United States
| | - Naohiro Yano
- Department
of Surgery, Division of Surgical Research, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island 02903, United States
| | - Yuki Teramoto
- Department
of Pathology and Laboratory Medicine, University
of Rochester Medical Center, Rochester, New York 14624, United States
| | - Leggy A. Arnold
- Department
of Chemistry and Biochemistry, University
of Wisconsin Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Russell Hopson
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Keshav Kishor
- Department
of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Sneha Nayak
- Department
of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Debasmita Ojha
- Department
of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Ashoke Sharon
- Department
of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - John M. Ashton
- Genomics Core Facility, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14624, United States
| | - Jian Wang
- Department of Pharmacology and Department of Biochemistry and Molecular
Biology, Penn State College of Medicine, Penn State University, Hershey, Pennsylvania 17036, United States
| | - Michael T. Milano
- Department of Radiation Oncology, University
of Rochester Medical Center, Rochester, New York 16424, United States
| | - Hiroshi Miyamoto
- Department
of Pathology and Laboratory Medicine, University
of Rochester Medical Center, Rochester, New York 14624, United States
| | - David C. Linehan
- Division
of Surgery and of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14624, United States
| | - Scott A. Gerber
- Division
of Surgery and of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14624, United States
- Department of Radiation Oncology, University
of Rochester Medical Center, Rochester, New York 16424, United States
| | - Nada Kawar
- Center for Breast Health and Gynecologic
Oncology, Mercy Medical Center, 271 Carew Street, Springfield, Massachusetts 01104, United States
| | - Ajay P. Singh
- Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08019, United States
| | - Erdem D. Tabdanov
- CytoMechanobiology
Laboratory, Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17036, United States
| | - Nikolay V. Dokholyan
- Department of Pharmacology and Department of Biochemistry and Molecular
Biology, Penn State College of Medicine, Penn State University, Hershey, Pennsylvania 17036, United States
| | - Hiroki Kakuta
- Division
of Pharmaceutical Sciences, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8530, Japan
| | - Peter W. Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Health Futures Center, Phoenix, Arizona 85054, United States
- University of Arizona College of Medicine, Phoenix, Arizona 85004, United States
| | - Nina F. Schor
- Departments of Pediatrics, Neurology, and Neuroscience, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Rachael B. Rowswell-Turner
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Rakesh K. Singh
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| | - Richard G. Moore
- Wilmot
Cancer Institute and Division of Gynecologic Oncology, Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester New York 14624, United States
| |
Collapse
|
11
|
Nijhuis A, Sikka A, Yogev O, Herendi L, Balcells C, Ma Y, Poon E, Eckold C, Valbuena GN, Xu Y, Liu Y, da Costa BM, Gruet M, Wickremesinghe C, Benito A, Kramer H, Montoya A, Carling D, Want EJ, Jamin Y, Chesler L, Keun HC. Indisulam targets RNA splicing and metabolism to serve as a therapeutic strategy for high-risk neuroblastoma. Nat Commun 2022; 13:1380. [PMID: 35296644 PMCID: PMC8927615 DOI: 10.1038/s41467-022-28907-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/11/2022] [Indexed: 01/25/2023] Open
Abstract
Neuroblastoma is the most common paediatric solid tumour and prognosis remains poor for high-risk cases despite the use of multimodal treatment. Analysis of public drug sensitivity data showed neuroblastoma lines to be sensitive to indisulam, a molecular glue that selectively targets RNA splicing factor RBM39 for proteosomal degradation via DCAF15-E3-ubiquitin ligase. In neuroblastoma models, indisulam induces rapid loss of RBM39, accumulation of splicing errors and growth inhibition in a DCAF15-dependent manner. Integrative analysis of RNAseq and proteomics data highlight a distinct disruption to cell cycle and metabolism. Metabolic profiling demonstrates metabolome perturbations and mitochondrial dysfunction resulting from indisulam. Complete tumour regression without relapse was observed in both xenograft and the Th-MYCN transgenic model of neuroblastoma after indisulam treatment, with RBM39 loss, RNA splicing and metabolic changes confirmed in vivo. Our data show that dual-targeting of metabolism and RNA splicing with anticancer indisulam is a promising therapeutic approach for high-risk neuroblastoma.
Collapse
Affiliation(s)
- Anke Nijhuis
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Arti Sikka
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Orli Yogev
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Lili Herendi
- Department of Surgery & Cancer, Imperial College London, London, UK
| | | | - Yurui Ma
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Clare Eckold
- Department of Surgery & Cancer, Imperial College London, London, UK
| | | | - Yuewei Xu
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Yusong Liu
- Department of Surgery & Cancer, Imperial College London, London, UK
| | | | - Michael Gruet
- Department of Surgery & Cancer, Imperial College London, London, UK
| | | | - Adrian Benito
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Holger Kramer
- Medical Research Council London Institute of Medical Science, London, UK
| | - Alex Montoya
- Medical Research Council London Institute of Medical Science, London, UK
| | - David Carling
- Medical Research Council London Institute of Medical Science, London, UK
| | - Elizabeth J Want
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and Royal Marsden NHS Trust, London, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Hector C Keun
- Department of Surgery & Cancer, Imperial College London, London, UK.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
12
|
Alferiev IS, Guerrero DT, Guan P, Nguyen F, Kolla V, Soberman D, Pressly BB, Fishbein I, Brodeur GM, Chorny M. Poloxamer-linked prodrug of a topoisomerase I inhibitor SN22 shows efficacy in models of high-risk neuroblastoma with primary and acquired chemoresistance. FASEB J 2022; 36:e22213. [PMID: 35192728 PMCID: PMC8910785 DOI: 10.1096/fj.202101830rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022]
Abstract
High‐risk solid tumors continue to pose a tremendous therapeutic challenge due to multidrug resistance. Biological mechanisms driving chemoresistance in high‐risk primary and recurrent disease are distinct: in newly diagnosed patients, non‐response to therapy is often associated with a higher level of tumor “stemness” paralleled by overexpression of the ABCG2 drug efflux pump, whereas in tumors relapsing after non‐curative therapy, poor drug sensitivity is most commonly linked to the dysfunction of the tumor suppressor protein, p53. In this study, we used preclinical models of aggressive neuroblastoma featuring these characteristic mechanisms of primary and acquired drug resistance to experimentally evaluate a macromolecular prodrug of a structurally enhanced camptothecin analog, SN22, resisting ABCG2‐mediated export, and glucuronidation. Together with extended tumor exposure to therapeutically effective drug levels via reversible conjugation to Pluronic F‐108 (PF108), these features translated into rapid tumor regression and long‐term survival in models of both ABCG2‐overexpressing and p53‐mutant high‐risk neuroblastomas, in contrast to a marginal effect of the clinically used camptothecin derivative, irinotecan. Our results demonstrate that pharmacophore enhancement, increased tumor uptake, and optimally stable carrier‐drug association integrated into the design of the hydrolytically activatable PF108‐[SN22]2 have the potential to effectively combat multiple mechanisms governing chemoresistance in newly diagnosed (chemo‐naïve) and recurrent forms of aggressive malignancies. As a macromolecular carrier‐based delivery system exhibiting remarkable efficacy against two particularly challenging forms of high‐risk neuroblastoma, PF108‐[SN22]2 can pave the way to a robust and clinically viable therapeutic strategy urgently needed for patients with multidrug‐resistant disease presently lacking effective treatment options.
Collapse
Affiliation(s)
- Ivan S Alferiev
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David T Guerrero
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peng Guan
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ferro Nguyen
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Venkatadri Kolla
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Danielle Soberman
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Benjamin B Pressly
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ilia Fishbein
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Garrett M Brodeur
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael Chorny
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Segura MF, Soriano A, Roma J, Piskareva O, Jiménez C, Boloix A, Fletcher JI, Haber M, Gray JC, Cerdá-Alberich L, Martínez de Las Heras B, Cañete A, Gallego S, Moreno L. Methodological advances in the discovery of novel neuroblastoma therapeutics. Expert Opin Drug Discov 2021; 17:167-179. [PMID: 34807782 DOI: 10.1080/17460441.2022.2002297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Neuroblastoma is a cancer of the sympathetic nervous system that causes up to 15% of cancer-related deaths among children. Among the ~1,000 newly diagnosed cases per year in Europe, more than half are classified as high-risk, with a 5-year survival rate <50%. Current multimodal treatments have improved survival among these patients, but relapsed and refractory tumors remain a major therapeutic challenge. A number of new methodologies are paving the way for the development of more effective and safer therapies to ultimately improve outcomes for high-risk patients. AREAS COVERED The authors provide a critical review on methodological advances aimed at providing new therapeutic opportunities for neuroblastoma patients, including preclinical models of human disease, generation of omics data to discover new therapeutic targets, and artificial intelligence-based technologies to implement personalized treatments. EXPERT OPINION While survival of childhood cancer has improved over the past decades, progress has been uneven. Still, survival is dismal for some cancers, including high-risk neuroblastoma. Embracing new technologies (e.g. molecular profiling of tumors, 3D in vitro models, etc.), international collaborative efforts and the incorporation of new therapies (e.g. RNA-based therapies, epigenetic therapies, immunotherapy) will ultimately lead to more effective and safer therapies for these subgroups of neuroblastoma patients.
Collapse
Affiliation(s)
- Miguel F Segura
- Pediatric Oncology and Hematology Department, Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Aroa Soriano
- Pediatric Oncology and Hematology Department, Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Josep Roma
- Pediatric Oncology and Hematology Department, Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Olga Piskareva
- Cancer Bioengineering Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Department of Anatomy and Regenerative Medicine, Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.,National Children's Research Centre, OLCHC, Dublin, Ireland School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Carlos Jiménez
- Pediatric Oncology and Hematology Department, Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ariadna Boloix
- Pediatric Oncology and Hematology Department, Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, Australia
| | - Juliet C Gray
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton, UK
| | - Leonor Cerdá-Alberich
- Grupo de Investigación Biomédica En Imagen, Instituto de Investigación Sanitaria La Fe, Spain
| | | | - Adela Cañete
- Unidad de Oncohematología Pediátrica, Hospital Universitario y Politécnico La Fe, Spain
| | - Soledad Gallego
- Pediatric Oncology and Hematology Department, Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona. Universitat Autònoma de Barcelona, Bellaterra, Spain.,Pediatric Oncology and Hematology Department, Vall d'Hebron University Hospital-UAB, Barcelona, Spain
| | - Lucas Moreno
- Pediatric Oncology and Hematology Department, Translational Research in Child and Adolescent Cancer, Vall d'Hebron Institut de Recerca (VHIR), Barcelona. Universitat Autònoma de Barcelona, Bellaterra, Spain.,Pediatric Oncology and Hematology Department, Vall d'Hebron University Hospital-UAB, Barcelona, Spain
| |
Collapse
|
14
|
Di Giulio S, Colicchia V, Pastorino F, Pedretti F, Fabretti F, Nicolis di Robilant V, Ramponi V, Scafetta G, Moretti M, Licursi V, Belardinilli F, Peruzzi G, Infante P, Goffredo BM, Coppa A, Canettieri G, Bartolazzi A, Ponzoni M, Giannini G, Petroni M. A combination of PARP and CHK1 inhibitors efficiently antagonizes MYCN-driven tumors. Oncogene 2021; 40:6143-6152. [PMID: 34508175 PMCID: PMC8553625 DOI: 10.1038/s41388-021-02003-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022]
Abstract
MYCN drives aggressive behavior and refractoriness to chemotherapy, in several tumors. Since MYCN inactivation in clinical settings is not achievable, alternative vulnerabilities of MYCN-driven tumors need to be explored to identify more effective and less toxic therapies. We previously demonstrated that PARP inhibitors enhance MYCN-induced replication stress and promote mitotic catastrophe, counteracted by CHK1. Here, we showed that PARP and CHK1 inhibitors synergized to induce death in neuroblastoma cells and in primary cultures of SHH-dependent medulloblastoma, their combination being more effective in MYCN amplified and MYCN overexpressing cells compared to MYCN non-amplified cells. Although the MYCN amplified IMR-32 cell line carrying the p.Val2716Ala ATM mutation showed the highest sensitivity to the drug combination, this was not related to ATM status, as indicated by CRISPR/Cas9-based correction of the mutation. Suboptimal doses of the CHK1 inhibitor MK-8776 plus the PARP inhibitor olaparib led to a MYCN-dependent accumulation of DNA damage and cell death in vitro and significantly reduced the growth of four in vivo models of MYCN-driven tumors, without major toxicities. Our data highlight the combination of PARP and CHK1 inhibitors as a new potential chemo-free strategy to treat MYCN-driven tumors, which might be promptly translated into clinical trials.
Collapse
Affiliation(s)
- Stefano Di Giulio
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy
| | - Valeria Colicchia
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy.,Department of Biology, University Tor Vergata, 00173, Rome, Italy
| | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Flaminia Pedretti
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy.,Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Francesca Fabretti
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy
| | | | - Valentina Ramponi
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy.,Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Giorgia Scafetta
- Pathology Research Laboratory, Sant'Andrea University Hospital, 00189, Rome, Italy
| | - Marta Moretti
- Department of Experimental Medicine, University La Sapienza, 00161, Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnologies "Charles Darwin", University La Sapienza, 00185, Rome, Italy
| | | | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Paola Infante
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | | | - Anna Coppa
- Department of Experimental Medicine, University La Sapienza, 00161, Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, 00161, Rome, Italy
| | - Armando Bartolazzi
- Pathology Research Laboratory, Sant'Andrea University Hospital, 00189, Rome, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy. .,Istituto Pasteur-Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| | - Marialaura Petroni
- Department of Molecular Medicine, University La Sapienza, 00161, Rome, Italy
| |
Collapse
|
15
|
Dubiella C, Pinch BJ, Koikawa K, Zaidman D, Poon E, Manz TD, Nabet B, He S, Resnick E, Rogel A, Langer EM, Daniel CJ, Seo HS, Chen Y, Adelmant G, Sharifzadeh S, Ficarro SB, Jamin Y, Martins da Costa B, Zimmerman MW, Lian X, Kibe S, Kozono S, Doctor ZM, Browne CM, Yang A, Stoler-Barak L, Shah RB, Vangos NE, Geffken EA, Oren R, Koide E, Sidi S, Shulman Z, Wang C, Marto JA, Dhe-Paganon S, Look T, Zhou XZ, Lu KP, Sears RC, Chesler L, Gray NS, London N. Sulfopin is a covalent inhibitor of Pin1 that blocks Myc-driven tumors in vivo. Nat Chem Biol 2021; 17:954-963. [PMID: 33972797 PMCID: PMC9119696 DOI: 10.1038/s41589-021-00786-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
The peptidyl-prolyl isomerase, Pin1, is exploited in cancer to activate oncogenes and inactivate tumor suppressors. However, despite considerable efforts, Pin1 has remained an elusive drug target. Here, we screened an electrophilic fragment library to identify covalent inhibitors targeting Pin1's active site Cys113, leading to the development of Sulfopin, a nanomolar Pin1 inhibitor. Sulfopin is highly selective, as validated by two independent chemoproteomics methods, achieves potent cellular and in vivo target engagement and phenocopies Pin1 genetic knockout. Pin1 inhibition had only a modest effect on cancer cell line viability. Nevertheless, Sulfopin induced downregulation of c-Myc target genes, reduced tumor progression and conferred survival benefit in murine and zebrafish models of MYCN-driven neuroblastoma, and in a murine model of pancreatic cancer. Our results demonstrate that Sulfopin is a chemical probe suitable for assessment of Pin1-dependent pharmacology in cells and in vivo, and that Pin1 warrants further investigation as a potential cancer drug target.
Collapse
Affiliation(s)
- Christian Dubiella
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Benika J Pinch
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Department of Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Kazuhiro Koikawa
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel Zaidman
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Theresa D Manz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Efrat Resnick
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Adi Rogel
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Ellen M Langer
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ying Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shabnam Sharifzadeh
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Xiaolan Lian
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shin Kibe
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shingo Kozono
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zainab M Doctor
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Christopher M Browne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Discovery Biology, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Annan Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Liat Stoler-Barak
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Richa B Shah
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas E Vangos
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ezekiel A Geffken
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roni Oren
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Eriko Koide
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Samuel Sidi
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ziv Shulman
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Pediatric Hematology/Oncology Boston Children's Hospital, Boston, MA, USA
| | - Xiao Zhen Zhou
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kun Ping Lu
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR, USA
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
| | - Nir London
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
16
|
Abstract
Informative and realistic mouse models of high-risk neuroblastoma are central to understanding mechanisms of tumour initiation, progression, and metastasis. They also play vital roles in validating tumour drivers and drug targets, as platforms for assessment of new therapies and in the generation of drug sensitivity data that can inform treatment decisions for individual patients. This review will describe genetically engineered mouse models of specific subsets of high-risk neuroblastoma, the development of patient-derived xenograft models that more broadly represent the diversity and heterogeneity of the disease, and models of primary and metastatic disease. We discuss the research applications, advantages, and limitations of each model type, the importance of model repositories and data standards for supporting reproducible, high-quality research, and potential future directions for neuroblastoma mouse models.
Collapse
Affiliation(s)
- Alvin Kamili
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Caroline Atkinson
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia. .,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
17
|
Franco-Luzón L, González-Murillo Á, Alcántara-Sánchez C, García-García L, Tabasi M, Huertas AL, Chesler L, Ramírez M. Systemic oncolytic adenovirus delivered in mesenchymal carrier cells modulate tumor infiltrating immune cells and tumor microenvironment in mice with neuroblastoma. Oncotarget 2020; 11:347-361. [PMID: 32064039 PMCID: PMC6996901 DOI: 10.18632/oncotarget.27401] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Celyvir (autologous mesenchymal cells -MSCs- that carry an oncolytic adenovirus) is a new therapeutic strategy for metastatic tumors developed by our research group over the last decade. There are limitations for studying the immune effects of human oncolytic adenoviruses in murine models since these viruses do not replicate naturally in these animals. The use of xenografts in immunodeficient mice prevent assessing important clinical aspects of this therapy such as the antiadenoviral immune response or the possible intratumoral immune changes, both of tumor infiltrating leukocytes and of the microenvironment. In our strategy, the presence of MSCs in the medicinal product adds an extra level of complexity. We present here a murine model that overcomes many of these limitations. We found that carrier cells outcompeted intravenous administration of naked particles in delivering the oncolytic virus into the tumor masses. The protection that MSCs could provide to the oncolytic adenovirus did not preclude the development of an antiadenoviral immune response. However, the presence of circulating antiadenoviral antibodies did not prevent changes detected at the tumor masses: increased infiltration and changes in the quality of immune cells per unit of tumor volume, and a less protumoral and more inflammatory profile of the tumor microenvironment. We believe that the model described here will enable the study of crucial events related to the immune responses affecting both the medicinal product and the tumor.
Collapse
Affiliation(s)
| | - África González-Murillo
- Unidad de Terapias Avanzadas, Oncología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | - Lorena García-García
- Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Maryam Tabasi
- Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Ana Luis Huertas
- Servicio de Cirugía, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Louis Chesler
- Paediatric Solid Tumour Biology and Therapeutics Team, Division of Clinical Studies and Cancer Therapeutics Division, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Manuel Ramírez
- Unidad de Terapias Avanzadas, Oncología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| |
Collapse
|
18
|
Yogev O, Almeida GS, Barker KT, George SL, Kwok C, Campbell J, Zarowiecki M, Kleftogiannis D, Smith LM, Hallsworth A, Berry P, Möcklinghoff T, Webber HT, Danielson LS, Buttery B, Calton EA, da Costa BM, Poon E, Jamin Y, Lise S, Veal GJ, Sebire N, Robinson SP, Anderson J, Chesler L. In Vivo Modeling of Chemoresistant Neuroblastoma Provides New Insights into Chemorefractory Disease and Metastasis. Cancer Res 2019; 79:5382-5393. [PMID: 31405846 DOI: 10.1158/0008-5472.can-18-2759] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is a pediatric cancer that is frequently metastatic and resistant to conventional treatment. In part, a lack of natively metastatic, chemoresistant in vivo models has limited our insight into the development of aggressive disease. The Th-MYCN genetically engineered mouse model develops rapidly progressive chemosensitive neuroblastoma and lacks clinically relevant metastases. To study tumor progression in a context more reflective of clinical therapy, we delivered multicycle treatment with cyclophosphamide to Th-MYCN mice, individualizing therapy using MRI, to generate the Th-MYCN CPM32 model. These mice developed chemoresistance and spontaneous bone marrow metastases. Tumors exhibited an altered immune microenvironment with increased stroma and tumor-associated fibroblasts. Analysis of copy number aberrations revealed genomic changes characteristic of human MYCN-amplified neuroblastoma, specifically copy number gains at mouse chromosome 11, syntenic with gains on human chromosome 17q. RNA sequencing revealed enriched expression of genes associated with 17q gain and upregulation of genes associated with high-risk neuroblastoma, such as the cell-cycle regulator cyclin B1-interacting protein 1 (Ccnb1ip1) and thymidine kinase (TK1). The antiapoptotic, prometastatic JAK-STAT3 pathway was activated in chemoresistant tumors, and treatment with the JAK1/JAK2 inhibitor CYT387 reduced progression of chemoresistant tumors and increased survival. Our results highlight that under treatment conditions that mimic chemotherapy in human patients, Th-MYCN mice develop genomic, microenvironmental, and clinical features reminiscent of human chemorefractory disease. The Th-MYCN CPM32 model therefore is a useful tool to dissect in detail mechanisms that drive metastasis and chemoresistance, and highlights dysregulation of signaling pathways such as JAK-STAT3 that could be targeted to improve treatment of aggressive disease. SIGNIFICANCE: An in vivo mouse model of high-risk treatment-resistant neuroblastoma exhibits changes in the tumor microenvironment, widespread metastases, and sensitivity to JAK1/2 inhibition.
Collapse
Affiliation(s)
- Orli Yogev
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Gilberto S Almeida
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Karen T Barker
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Sally L George
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Colin Kwok
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - James Campbell
- CRUK-center Informatics Facility, The Institute of Cancer Research, London, United Kingdom
| | - Magdalena Zarowiecki
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- CRUK-center Informatics Facility, The Institute of Cancer Research, London, United Kingdom
| | | | - Laura M Smith
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Albert Hallsworth
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Philip Berry
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Till Möcklinghoff
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hannah T Webber
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Laura S Danielson
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Bliss Buttery
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Elizabeth A Calton
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Barbara M da Costa
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Stefano Lise
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Gareth J Veal
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Neil Sebire
- Paediatric and Development Pathology, Institute of Child Health, University College London, London, United Kingdom
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - John Anderson
- Cancer Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
19
|
Gonzalez Malagon SG, Liu KJ. ALK and GSK3: Shared Features of Neuroblastoma and Neural Crest Cells. J Exp Neurosci 2018; 12:1179069518792499. [PMID: 30127638 PMCID: PMC6090488 DOI: 10.1177/1179069518792499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/12/2018] [Indexed: 01/04/2023] Open
Abstract
Neuroblastoma is one of the most common and deadly childhood cancers.
Neuroblastoma arises from transformed cells of the neural crest lineage.
Outcomes of the disease vary greatly, ranging from spontaneous regression to
aggressive metastases. While this variability may reflect the inherent migratory
capabilities and multipotency of neural crest cells, there have been few direct
comparisons between neuroblastoma and embryonic neural crest cells, in part
because of the limited in vivo accessibility of the mammalian neural crest
lineage. Our recent studies demonstrate a novel link between anaplastic lymphoma
kinase (ALK) and glycogen synthase kinase 3 (GSK3). Our work suggests that
ALK-dependent regulation of GSK3 via tyrosine phosphorylation may alter the
substrate specificity of GSK3, thus regulating cytoskeletal dynamics in
migrating neural crest cells.
Collapse
Affiliation(s)
- Sandra G Gonzalez Malagon
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK.,Institute of Molecular Biology and Biotechnology, FORTH. Department of Biomedical Research, University of Ioannina, Ioannina, Greece
| | - Karen J Liu
- Centre for Craniofacial & Regenerative Biology, King's College London, London, UK
| |
Collapse
|
20
|
Ooi CY, Carter DR, Liu B, Mayoh C, Beckers A, Lalwani A, Nagy Z, De Brouwer S, Decaesteker B, Hung TT, Norris MD, Haber M, Liu T, De Preter K, Speleman F, Cheung BB, Marshall GM. Network Modeling of microRNA-mRNA Interactions in Neuroblastoma Tumorigenesis Identifies miR-204 as a Direct Inhibitor of MYCN. Cancer Res 2018; 78:3122-3134. [PMID: 29610116 DOI: 10.1158/0008-5472.can-17-3034] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/07/2018] [Accepted: 03/28/2018] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is a pediatric cancer of the sympathetic nervous system where MYCN amplification is a key indicator of poor prognosis. However, mechanisms by which MYCN promotes neuroblastoma tumorigenesis are not fully understood. In this study, we analyzed global miRNA and mRNA expression profiles of tissues at different stages of tumorigenesis from TH-MYCN transgenic mice, a model of MYCN-driven neuroblastoma. On the basis of a Bayesian learning network model in which we compared pretumor ganglia from TH-MYCN+/+ mice to age-matched wild-type controls, we devised a predicted miRNA-mRNA interaction network. Among the miRNA-mRNA interactions operating during human neuroblastoma tumorigenesis, we identified miR-204 as a tumor suppressor miRNA that inhibited a subnetwork of oncogenes strongly associated with MYCN-amplified neuroblastoma and poor patient outcome. MYCN bound to the miR-204 promoter and repressed miR-204 transcription. Conversely, miR-204 directly bound MYCN mRNA and repressed MYCN expression. miR-204 overexpression significantly inhibited neuroblastoma cell proliferation in vitro and tumorigenesis in vivo Together, these findings identify novel tumorigenic miRNA gene networks and miR-204 as a tumor suppressor that regulates MYCN expression in neuroblastoma tumorigenesis.Significance: Network modeling of miRNA-mRNA regulatory interactions in a mouse model of neuroblastoma identifies miR-204 as a tumor suppressor and negative regulator of MYCN. Cancer Res; 78(12); 3122-34. ©2018 AACR.
Collapse
Affiliation(s)
- Chi Yan Ooi
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Daniel R Carter
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia.,School of Women's & Children's Health, University of New South Wales Australia, Randwick, New South Wales, Australia
| | - Bing Liu
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Anneleen Beckers
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Amit Lalwani
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Zsuzsanna Nagy
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Sara De Brouwer
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Bieke Decaesteker
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Tzong-Tyng Hung
- Biological Resource Imaging Laboratory, the University of New South Wales, Kensington, New South Wales, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia.,Centre for Childhood Cancer Research, University of New South Wales, Randwick, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Tao Liu
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Katleen De Preter
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Belamy B Cheung
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia. .,School of Women's & Children's Health, University of New South Wales Australia, Randwick, New South Wales, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia. .,School of Women's & Children's Health, University of New South Wales Australia, Randwick, New South Wales, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
21
|
Origin and initiation mechanisms of neuroblastoma. Cell Tissue Res 2018; 372:211-221. [PMID: 29445860 DOI: 10.1007/s00441-018-2796-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Neuroblastoma is an embryonal malignancy that affects normal development of the adrenal medulla and paravertebral sympathetic ganglia in early childhood. Extensive studies have revealed the molecular characteristics of human neuroblastomas, including abnormalities at genome, epigenome and transcriptome levels. However, neuroblastoma initiation mechanisms and even its origin are long-standing mysteries. In this review article, we summarize the current knowledge about normal development of putative neuroblastoma sources, namely sympathoadrenal lineage of neural crest cells and Schwann cell precursors that were recently identified as the source of adrenal chromaffin cells. A plausible origin of enigmatic stage 4S neuroblastoma is also discussed. With regard to the initiation mechanisms, we review genetic abnormalities in neuroblastomas and their possible association to initiation mechanisms. We also summarize evidences of neuroblastoma initiation observed in genetically engineered animal models, in which epigenetic alterations were involved, including transcriptomic upregulation by N-Myc and downregulation by polycomb repressive complex 2. Finally, several in vitro experimental methods are proposed that hopefully will accelerate our comprehension of neuroblastoma initiation. Thus, this review summarizes the state-of-the-art knowledge about the mechanisms of neuroblastoma initiation, which is critical for developing new strategies to cure children with neuroblastoma.
Collapse
|
22
|
Chen L, Esfandiari A, Reaves W, Vu A, Hogarty MD, Lunec J, Tweddle DA. Characterisation of the p53 pathway in cell lines established from TH-MYCN transgenic mouse tumours. Int J Oncol 2018; 52:967-977. [PMID: 29393340 DOI: 10.3892/ijo.2018.4261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/12/2017] [Indexed: 11/06/2022] Open
Abstract
Cell lines established from the TH-MYCN transgenic murine model of neuroblastoma are a valuable preclinical, immunocompetent, syngeneic model of neuroblastoma, for which knowledge of their p53 pathway status is important. In this study, the Trp53 status and functional response to Nutlin-3 and ionising radiation (IR) were determined in 6 adherent TH-MYCN transgenic cell lines using Sanger sequencing, western blot analysis and flow cytometry. Sensitivity to structurally diverse MDM2 inhibitors (Nutlin-3, MI-63, RG7388 and NDD0005) was determined using XTT proliferation assays. In total, 2/6 cell lines were Trp53 homozygous mutant (NHO2A and 844MYCN+/+) and 1/6 (282MYCN+/-) was Trp53 heterozygous mutant. For 1/6 cell lines (NHO2A), DNA from the corresponding primary tumour was found to be Trp53 wt. In all cases, the presence of a mutation was consistent with aberrant p53 signalling in response to Nutlin-3 and IR. In comparison to TP53 wt human neuroblastoma cells, Trp53 wt murine control and TH-MYCN cell lines were significantly less sensitive to growth inhibition mediated by MI-63 and RG7388. These murine Trp53 wt and mutant TH-MYCN cell lines are useful syngeneic, immunocompetent neuroblastoma models, the former to test p53-dependent therapies in combination with immunotherapies, such as anti-GD2, and the latter as models of chemoresistant relapsed neuroblastoma when aberrations in the p53 pathway are more common. The spontaneous development of Trp53 mutations in 3 cell lines from TH-MYCN mice may have arisen from MYCN oncogenic driven and/or ex vivo selection. The identified species-dependent selectivity of MI-63 and RG7388 should be considered when interpreting in vivo toxicity studies of MDM2 inhibitors.
Collapse
Affiliation(s)
- Lindi Chen
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Arman Esfandiari
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - William Reaves
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Annette Vu
- The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael D Hogarty
- The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John Lunec
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Deborah A Tweddle
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
23
|
De Wilde B, Beckers A, Lindner S, Kristina A, De Preter K, Depuydt P, Mestdagh P, Sante T, Lefever S, Hertwig F, Peng Z, Shi LM, Lee S, Vandermarliere E, Martens L, Menten B, Schramm A, Fischer M, Schulte J, Vandesompele J, Speleman F. The mutational landscape of MYCN, Lin28b and ALKF1174L driven murine neuroblastoma mimics human disease. Oncotarget 2017; 9:8334-8349. [PMID: 29492199 PMCID: PMC5823580 DOI: 10.18632/oncotarget.23614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/28/2017] [Indexed: 12/27/2022] Open
Abstract
Genetically engineered mouse models have proven to be essential tools for unraveling fundamental aspects of cancer biology and for testing novel therapeutic strategies. To optimally serve these goals, it is essential that the mouse model faithfully recapitulates the human disease. Recently, novel mouse models for neuroblastoma have been developed. Here, we report on the further genomic characterization through exome sequencing and DNA copy number analysis of four of the currently available murine neuroblastoma model systems (ALK, Th-MYCN, Dbh-MYCN and Lin28b). The murine tumors revealed a low number of genomic alterations – in keeping with human neuroblastoma - and a positive correlation of the number of genetic lesions with the time to onset of tumor formation was observed. Gene copy number alterations are the hallmark of both murine and human disease and frequently affect syntenic genomic regions. Despite low mutational load, the genes mutated in murine disease were found to be enriched for genes mutated in human disease. Taken together, our study further supports the validity of the tested mouse models for mechanistic and preclinical studies of human neuroblastoma.
Collapse
Affiliation(s)
- Bram De Wilde
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | | | - Sven Lindner
- Department of Pediatric Oncology and Hematology, University Children's Hospital, Essen, Germany
| | - Althoff Kristina
- Department of Pediatric Oncology and Hematology, University Children's Hospital, Essen, Germany
| | - Katleen De Preter
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Pauline Depuydt
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Tom Sante
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Steve Lefever
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Falk Hertwig
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Zhiyu Peng
- BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, Guangdong, China
| | - Le-Ming Shi
- Center for Pharmacogenomics and Fudan-Zhangjiang Center for Clinical Genomics, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Sangkyun Lee
- Department of Computer Science, Artificial Intelligence Group, TU Dortmund, Dortmund, Germany
| | - Elien Vandermarliere
- Medical Biotechnology Center, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Lennart Martens
- Medical Biotechnology Center, VIB, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Alexander Schramm
- Department of Pediatric Oncology and Hematology, University Children's Hospital, Essen, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Johannes Schulte
- Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Abstract
Neuroblastoma is a cancer of the neural crest almost exclusively seen in childhood. While children with single, small primary tumors are often cured with surgery alone, the 65% of children with neuroblastoma whose disease has metastasized have less than a 50% chance of surviving five years after diagnosis. Innovative pharmacological strategies are critically needed for these children. Efforts to identify novel targets that afford ablation of neuroblastoma with minimal toxicity to normal tissues are underway. Developing approaches to neuroblastoma include those that target the catecholamine transporter, ubiquitin E3 ligase, the ganglioside GD2, the retinoic acid receptor, the protein kinases ALK and Aurora, and protein arginine N-methyltransferases. Here, as examples of the use of chemistry to combat neuroblastoma, we describe targeting of the protein arginine N-methyltransferases and their role in prolonging the half-life of the neuroblastoma oncoprotein N-Myc, redox signaling in neuroblastoma, and developmentally regulated proteins expressed in primitive neuroblastoma cells but not in mature neural crest elements.
Collapse
Affiliation(s)
- Jeanne N Hansen
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry , Rochester, New York 14642, United States
| | - Xingguo Li
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry , Rochester, New York 14642, United States
| | - Y George Zheng
- Department of Pharmaceutical and Biochemical Sciences, University of Georgia , Athens, Georgia 30602, United States
| | - Louis T Lotta
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry , Rochester, New York 14642, United States
| | - Abhishek Dedhe
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry , Rochester, New York 14642, United States
| | - Nina F Schor
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry , Rochester, New York 14642, United States
| |
Collapse
|
25
|
Almeida GS, Panek R, Hallsworth A, Webber H, Papaevangelou E, Boult JKR, Jamin Y, Chesler L, Robinson SP. Pre-clinical imaging of transgenic mouse models of neuroblastoma using a dedicated 3-element solenoid coil on a clinical 3T platform. Br J Cancer 2017; 117:791-800. [PMID: 28787429 PMCID: PMC5589996 DOI: 10.1038/bjc.2017.251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The use of clinical MRI scanners to conduct pre-clinical research facilitates comparisons with clinical studies. Here the utility and sensitivity of anatomical and functional MRI data/biomarkers acquired from transgenic mouse models of neuroblastoma using a dedicated radiofrequency (RF) coil on a clinical 3T scanner was evaluated. METHODS Multiparametric MRI of transgenic mice bearing abdominal neuroblastomas was performed at 3T, and data cross-referenced to that acquired from the same mice on a pre-clinical 7T MRI system. T2-weighted imaging, quantitation of the native longitudinal relaxation time (T1) and the transverse relaxation rate (R2*), and dynamic contrast-enhanced (DCE)-MRI, was used to assess tumour volume, phenotype and response to cyclophosphamide or cabozantinib. RESULTS Excellent T2-weighted image contrast enabled clear tumour delineation at 3T. Significant correlations of tumour volume (R=0.98, P<0.0001) and R2* (R=0.87, P<0.002) measured at 3 and 7T were established. Mice with neuroblastomas harbouring the anaplastic lymphoma kinase mutation exhibited a significantly slower R2* (P<0.001), consistent with impaired tumour perfusion. DCE-MRI was performed simultaneously on three transgenic mice, yielding estimates of Ktrans for each tumour (median Ktrans values of 0.202, 0.168 and 0.114 min-1). Cyclophosphamide elicited a significant reduction in both tumour burden (P<0.002) and native T1 (P<0.01), whereas cabozantinib induced significant (P<0.01) tumour growth delay. CONCLUSIONS Simultaneous multiparametric MRI of multiple tumour-bearing animals using this coil arrangement at 3T can provide high efficiency/throughput for both phenotypic characterisation and evaluation of novel therapeutics, and facilitate the introduction of functional MRI biomarkers into aligned imaging-embedded clinical trials.
Collapse
Affiliation(s)
- Gilberto S Almeida
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Rafal Panek
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Albert Hallsworth
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Hannah Webber
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Efthymia Papaevangelou
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Jessica KR Boult
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Yann Jamin
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Simon P Robinson
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
26
|
Andrisic L, Dudzik D, Barbas C, Milkovic L, Grune T, Zarkovic N. Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. Redox Biol 2017; 14:47-58. [PMID: 28866248 PMCID: PMC5583394 DOI: 10.1016/j.redox.2017.08.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022] Open
Abstract
Association of oxidative stress with carcinogenesis is well known, but not understood well, as is pathophysiology of oxidative stress generated during different types of anti-cancer treatments. Moreover, recent findings indicate that cancer associated lipid peroxidation might eventually help defending adjacent nonmalignant cells from cancer invasion. Therefore, untargeted metabolomics studies designed for advanced translational and clinical studies are needed to understand the existing paradoxes in oncology, including those related to controversial usage of antioxidants aiming to prevent or treat cancer. In this short review we have tried to put emphasis on the importance of pathophysiology of oxidative stress and lipid peroxidation in cancer development in relation to metabolic adaptation of particular types of cancer allowing us to conclude that adaptation to oxidative stress is one of the main driving forces of cancer pathophysiology. With the help of metabolomics many novel findings are being achieved thus encouraging further scientific breakthroughs. Combined with targeted qualitative and quantitative methods, especially immunochemistry, further research might reveal bio-signatures of individual patients and respective malignant diseases, leading to individualized treatment approach, according to the concepts of modern integrative medicine.
Collapse
Affiliation(s)
- Luka Andrisic
- CEMBIO (Centre for Metabolomics and Bioanalysis); Facultad de Farmacia; Universidad San Pablo CEU, Campus Montepríncipe, Madrid, Spain; Rudjer Boskovic Institute, Division of Molecular Medicine, Laboratory for Oxidative Stress, Zagreb, Croatia
| | - Danuta Dudzik
- CEMBIO (Centre for Metabolomics and Bioanalysis); Facultad de Farmacia; Universidad San Pablo CEU, Campus Montepríncipe, Madrid, Spain
| | - Coral Barbas
- CEMBIO (Centre for Metabolomics and Bioanalysis); Facultad de Farmacia; Universidad San Pablo CEU, Campus Montepríncipe, Madrid, Spain
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Laboratory for Oxidative Stress, Zagreb, Croatia
| | - Tilman Grune
- German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Laboratory for Oxidative Stress, Zagreb, Croatia.
| |
Collapse
|
27
|
The MYCN Protein in Health and Disease. Genes (Basel) 2017; 8:genes8040113. [PMID: 28358317 PMCID: PMC5406860 DOI: 10.3390/genes8040113] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
MYCN is a member of the MYC family of proto-oncogenes. It encodes a transcription factor, MYCN, involved in the control of fundamental processes during embryonal development. The MYCN protein is situated downstream of several signaling pathways promoting cell growth, proliferation and metabolism of progenitor cells in different developing organs and tissues. Conversely, deregulated MYCN signaling supports the development of several different tumors, mainly with a childhood onset, including neuroblastoma, medulloblastoma, rhabdomyosarcoma and Wilms’ tumor, but it is also associated with some cancers occurring during adulthood such as prostate and lung cancer. In neuroblastoma, MYCN-amplification is the most consistent genetic aberration associated with poor prognosis and treatment failure. Targeting MYCN has been proposed as a therapeutic strategy for the treatment of these tumors and great efforts have allowed the development of direct and indirect MYCN inhibitors with potential clinical use.
Collapse
|
28
|
Burrell JS, Walker-Samuel S, Boult JK, Baker LC, Jamin Y, Halliday J, Waterton JC, Robinson SP. Investigating the Vascular Phenotype of Subcutaneously and Orthotopically Propagated PC3 Prostate Cancer Xenografts Using Combined Carbogen Ultrasmall Superparamagnetic Iron Oxide MRI. Top Magn Reson Imaging 2016; 25:237-243. [PMID: 27748709 PMCID: PMC5068556 DOI: 10.1097/rmr.0000000000000102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this study was to use the combined carbogen-ultrasmall superparamagnetic iron oxide (CUSPIO) magnetic resonance imaging (MRI) method, which uses spatial correlations in independent susceptibility imaging biomarkers, to investigate and compare the impact of tumor size and anatomical site on vascular structure and function in vivo. Mice bearing either subcutaneous or orthotopic PC3 LN3 prostate tumors were imaged at 7 T, using a multi-gradient echo sequence to quantify R2, before and during carbogen (95% O2/5% CO2) breathing, and subsequently following intravenous administration of USPIO particles. Carbogen and USPIO-induced changes in R2 were used to inform on hemodynamic vasculature and fractional blood volume (%), respectively. The CUSPIO imaging data were also segmented to identify and assess five categories of R2 response. Small and large subcutaneous and orthotopic tumor cohorts all exhibited significantly (P < 0.05) different median baseline R2, ΔR2carbogen, and fractional blood volume. CUSPIO imaging showed that small subcutaneous tumors predominantly exhibited a negative ΔR2carbogen followed by a positive ΔR2USPIO, consistent with a well perfused tumor vasculature. Large subcutaneous tumors exhibited a small positive ΔR2carbogen and relatively low fractional blood volume, suggesting less functional vasculature. Orthotopic tumors revealed a large, positive ΔR2carbogen, consistent with vascular steal, and which may indicate that vascular function is more dependent on site of implantation than tumor size. Regions exhibiting significant ΔR2carbogen, but no significant ΔR2USPIO, suggesting transient vascular shutdown over the experimental timecourse, were apparent in all 3 cohorts. CUSPIO imaging can inform on efficient drug delivery via functional vasculature in vivo, and on appropriate tumor model selection for pre-clinical therapy trials.
Collapse
Affiliation(s)
- Jake S. Burrell
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, Surrey
| | - Simon Walker-Samuel
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, Surrey
- Centre for Advanced Biomedical Imaging, Department of Medicine and Institute of Child Health, University College London, London
| | - Jessica K.R. Boult
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, Surrey
| | - Lauren C.J. Baker
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, Surrey
| | - Yann Jamin
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, Surrey
| | - Jane Halliday
- R&D Personalised Healthcare & Biomarkers, AstraZeneca, Alderley Park, Macclesfield, UK
| | - John C. Waterton
- R&D Personalised Healthcare & Biomarkers, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Simon P. Robinson
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, Surrey
| |
Collapse
|
29
|
Carter DR, Murray J, Cheung BB, Gamble L, Koach J, Tsang J, Sutton S, Kalla H, Syed S, Gifford AJ, Issaeva N, Biktasova A, Atmadibrata B, Sun Y, Sokolowski N, Ling D, Kim PY, Webber H, Clark A, Ruhle M, Liu B, Oberthuer A, Fischer M, Byrne J, Saletta F, Thwe LM, Purmal A, Haderski G, Burkhart C, Speleman F, De Preter K, Beckers A, Ziegler DS, Liu T, Gurova KV, Gudkov AV, Norris MD, Haber M, Marshall GM. Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma. Sci Transl Med 2016; 7:312ra176. [PMID: 26537256 DOI: 10.1126/scitranslmed.aab1803] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amplification of the MYCN oncogene predicts treatment resistance in childhood neuroblastoma. We used a MYC target gene signature that predicts poor neuroblastoma prognosis to identify the histone chaperone FACT (facilitates chromatin transcription) as a crucial mediator of the MYC signal and a therapeutic target in the disease. FACT and MYCN expression created a forward feedback loop in neuroblastoma cells that was essential for maintaining mutual high expression. FACT inhibition by the small-molecule curaxin compound CBL0137 markedly reduced tumor initiation and progression in vivo. CBL0137 exhibited strong synergy with standard chemotherapy by blocking repair of DNA damage caused by genotoxic drugs, thus creating a synthetic lethal environment in MYCN-amplified neuroblastoma cells and suggesting a treatment strategy for MYCN-driven neuroblastoma.
Collapse
Affiliation(s)
- Daniel R Carter
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. School of Women's and Children's Health, UNSW Australia, Randwick, New South Wales 2031, Australia
| | - Jayne Murray
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Belamy B Cheung
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. School of Women's and Children's Health, UNSW Australia, Randwick, New South Wales 2031, Australia
| | - Laura Gamble
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Jessica Koach
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Joanna Tsang
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Selina Sutton
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Heyam Kalla
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Sarah Syed
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Andrew J Gifford
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. Department of Anatomical Pathology (SEALS), Prince of Wales Hospital, Randwick, New South Wales 2031, Australia
| | - Natalia Issaeva
- Department of Surgery, Otolaryngology, and Yale Cancer Center, Yale University, New Haven, CT 06511, USA
| | - Asel Biktasova
- Department of Surgery, Otolaryngology, and Yale Cancer Center, Yale University, New Haven, CT 06511, USA
| | - Bernard Atmadibrata
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Yuting Sun
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Nicolas Sokolowski
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Dora Ling
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Patrick Y Kim
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Hannah Webber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Ashleigh Clark
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Michelle Ruhle
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Bing Liu
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - André Oberthuer
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, 50931 Cologne, Germany. Department of Neonatology and Pediatric Intensive Care Medicine, Children's Hospital, University of Cologne, 50931 Cologne, Germany
| | - Matthias Fischer
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, 50931 Cologne, Germany. Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Jennifer Byrne
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia. University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia
| | - Federica Saletta
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia
| | - Le Myo Thwe
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia. University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia
| | | | | | | | - Frank Speleman
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), De Pintelaan 185, 9000 Ghent, Belgium
| | - Katleen De Preter
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), De Pintelaan 185, 9000 Ghent, Belgium
| | - Anneleen Beckers
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), De Pintelaan 185, 9000 Ghent, Belgium
| | - David S Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. School of Women's and Children's Health, UNSW Australia, Randwick, New South Wales 2031, Australia. Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales 2031, Australia
| | - Tao Liu
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), De Pintelaan 185, 9000 Ghent, Belgium
| | - Katerina V Gurova
- Incuron, LLC, Buffalo, NY 14203, USA. Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Andrei V Gudkov
- Incuron, LLC, Buffalo, NY 14203, USA. Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. University of New South Wales Centre for Childhood Cancer Research, Randwick, New South Wales 2031, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia.
| | - Glenn M Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales 2031, Australia.
| |
Collapse
|
30
|
Mao Y, Eissler N, Blanc KL, Johnsen JI, Kogner P, Kiessling R. Targeting Suppressive Myeloid Cells Potentiates Checkpoint Inhibitors to Control Spontaneous Neuroblastoma. Clin Cancer Res 2016; 22:3849-59. [DOI: 10.1158/1078-0432.ccr-15-1912] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/23/2016] [Indexed: 11/16/2022]
|
31
|
Carter DR, Sutton SK, Pajic M, Murray J, Sekyere EO, Fletcher J, Beckers A, De Preter K, Speleman F, George RE, Haber M, Norris MD, Cheung BB, Marshall GM. Glutathione biosynthesis is upregulated at the initiation of MYCN-driven neuroblastoma tumorigenesis. Mol Oncol 2016; 10:866-78. [PMID: 26996379 DOI: 10.1016/j.molonc.2016.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/11/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022] Open
Abstract
The MYCN gene is amplified and overexpressed in a large proportion of high stage neuroblastoma patients and has been identified as a key driver of tumorigenesis. However, the mechanism by which MYCN promotes tumor initiation is poorly understood. Here we conducted metabolic profiling of pre-malignant sympathetic ganglia and tumors derived from the TH-MYCN mouse model of neuroblastoma, compared to non-malignant ganglia from wildtype littermates. We found that metabolites involved in the biosynthesis of glutathione, the most abundant cellular antioxidant, were the most significantly upregulated metabolic pathway at tumor initiation, and progressively increased to meet the demands of tumorigenesis. A corresponding increase in the expression of genes involved in ribosomal biogenesis suggested that MYCN-driven transactivation of the protein biosynthetic machinery generated the necessary substrates to drive glutathione biosynthesis. Pre-malignant sympathetic ganglia from TH-MYCN mice had higher antioxidant capacity and required glutathione upregulation for cell survival, when compared to wildtype ganglia. Moreover, in vivo administration of inhibitors of glutathione biosynthesis significantly delayed tumorigenesis when administered prophylactically and potentiated the anticancer activity of cytotoxic chemotherapy against established tumors. Together these results identify enhanced glutathione biosynthesis as a selective metabolic adaptation required for initiation of MYCN-driven neuroblastoma, and suggest that glutathione-targeted agents may be used as a potential preventative strategy, or as an adjuvant to existing chemotherapies in established disease.
Collapse
Affiliation(s)
- Daniel R Carter
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick 2031, Australia; School of Women's & Children's Health, UNSW Australia, Randwick, New South Wales 2031, Australia
| | - Selina K Sutton
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick 2031, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Cancer Division, Garvan Institute of Medical Research, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Australia
| | - Jayne Murray
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick 2031, Australia
| | - Eric O Sekyere
- Endeavour College of Natural Health, Sydney, 2000, Australia
| | - Jamie Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick 2031, Australia
| | - Anneleen Beckers
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), De Pintelaan 185, 9000 Ghent, Belgium
| | - Katleen De Preter
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), De Pintelaan 185, 9000 Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), De Pintelaan 185, 9000 Ghent, Belgium
| | - Rani E George
- Department of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick 2031, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick 2031, Australia; University of New South Wales, Centre for Childhood Cancer Research, Randwick, New South Wales 2031, Australia
| | - Belamy B Cheung
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick 2031, Australia; School of Women's & Children's Health, UNSW Australia, Randwick, New South Wales 2031, Australia.
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick 2031, Australia; Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, Australia.
| |
Collapse
|
32
|
Zhu S, Thomas Look A. Neuroblastoma and Its Zebrafish Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:451-78. [PMID: 27165366 DOI: 10.1007/978-3-319-30654-4_20] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuroblastoma, an important developmental tumor arising in the peripheral sympathetic nervous system (PSNS), accounts for approximately 10 % of all cancer-related deaths in children. Recent genomic analyses have identified a spectrum of genetic alterations in this tumor. Amplification of the MYCN oncogene is found in 20 % of cases and is often accompanied by mutational activation of the ALK (anaplastic lymphoma kinase) gene, suggesting their cooperation in tumor initiation and spread. Understanding how complex genetic changes function together in oncogenesis has been a continuing and daunting task in cancer research. This challenge was addressed in neuroblastoma by generating a transgenic zebrafish model that overexpresses human MYCN and activated ALK in the PSNS, leading to tumors that closely resemble human neuroblastoma and new opportunities to probe the mechanisms that underlie the pathogenesis of this tumor. For example, coexpression of activated ALK with MYCN in this model triples the penetrance of neuroblastoma and markedly accelerates tumor onset, demonstrating the interaction of these modified genes in tumor development. Further, MYCN overexpression induces adrenal sympathetic neuroblast hyperplasia, blocks chromaffin cell differentiation, and ultimately triggers a developmentally-timed apoptotic response in the hyperplastic sympathoadrenal cells. In the context of MYCN overexpression, activated ALK provides prosurvival signals that block this apoptotic response, allowing continued expansion and oncogenic transformation of hyperplastic neuroblasts, thus promoting progression to neuroblastoma. This application of the zebrafish model illustrates its value in rational assessment of the multigenic changes that define neuroblastoma pathogenesis and points the way to future studies to identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Cancer Center and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55902, USA.
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
33
|
Gessi M, von Bueren AO, Treszl A, zur Mühlen A, Hartmann W, Warmuth-Metz M, Rutkowski S, Pietsch T. MYCN amplification predicts poor outcome for patients with supratentorial primitive neuroectodermal tumors of the central nervous system . Neuro Oncol 2015; 16:924-32. [PMID: 24470553 DOI: 10.1093/neuonc/not302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are a rare group of neoplasms occurring in the CNS that includes supratentorial CNS-PNETs, medulloepitheliomas, and ependymoblastomas. While ependymoblastomas frequently carry chromosome 19q13.41 amplification and show aggressive clinical behavior, the biological mechanisms and molecular alterations contributing to the pathogenesis of supratentorial CNS-PNETs remain poorly understood. Moreover, genetic alterations suitable for molecular risk stratification are undefined to date. METHODS In order to identify possible molecular markers, we performed multiplex ligation-dependent probe amplification (MLPA) and molecular inversion probe (MIP) analysis on DNA samples of 25 supratentorial CNS-PNETs (median age, 5.35 years; range, 2.41–17.28 years). Tumors with ependymoblastic rosettes (ependymoblastoma/ETANTR) and LIN28A positivity were excluded. RESULTS MLPA and MIP analysis revealed large losses of genomic material of chromosomes 3, 4, 5, and 13, while frequent gains affected chromosomes 1, 17, 19, 20, and 22. High copy number gains (amplifications) were found in particular at chromosomes 2p24.3 (MYCN, n = 6 cases) and 4q12 (n = 2 cases). Patients with tumors harboring 2p gain or MYCN amplification showed unfavorable overall survival (P = .003 and P = .001, respectively).These markers were independent of the presence of metastases, which was indeed a clinical factor associated with poor overall survival (P = .01) in this series. CONCLUSIONS In the era of the personalized neuro-oncology, the identification of these molecular prognostic markers associated with patient outcome may represent a significant step towards improved patient stratification and risk-adapted therapeutic strategies for patients suffering from supratentorial CNS-PNETs.
Collapse
|
34
|
Holzmann J, Hennchen M, Rohrer H. Prox1 identifies proliferating neuroblasts and nascent neurons during neurogenesis in sympathetic ganglia. Dev Neurobiol 2015; 75:1352-67. [PMID: 25788138 DOI: 10.1002/dneu.22289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/12/2015] [Indexed: 12/28/2022]
Abstract
Neurogenesis in embryonic sympathetic ganglia involves neuroblasts that resume proliferation following neuronal differentiation. As cell cycle exit is not associated with neuronal differentiation, the identity of proliferating neuroblasts is incompletely understood. Here, we use sympathetic ganglia of chick embryos to define the timing of neurogenesis and neuroblast identity focusing on the expression and function of the transcription factor Prox1. We show that a large fraction of neuroblasts has initially withdrawn from the cell cycle at embryonic day 3 (E3), which is reflected by a high proportion of p27(+)/Islet1(+) neuroblasts (63%) and low numbers of EdU(+)/Islet1(+) cells (12%). The proportion of proliferating Islet1(+) neuroblasts, identified by EdU pulse labeling and by the absence of the postmitotic marker p27 increases to reach maximal levels at E5, when virtually all neuroblasts are in the cell cycle (95%). Subsequently, the proportion of EdU-labeled and p27(-) neuroblasts is reduced to reach low levels at E11. Interestingly, the expression of the transcription factor Prox1 is restricted to the neuronal lineage, that is, Sox10(+)/Phox2b(+) neuron progenitors, proliferating p27(-)/Islet1(+) neuroblasts and nascent neurons but is rapidly lost in postmitotic neurons. In vitro and in vivo knockdown and overexpression experiments demonstrate effects of Prox1 in the support of neuroblast proliferation and survival. Taken together, these results define the neurogenesis period in the chick paravertebral sympathetic ganglia including an initial cell cycle withdrawal and identify Prox1 as a marker and regulator of proliferating sympathetic neuroblasts.
Collapse
Affiliation(s)
- Julia Holzmann
- Max-Planck-Institute for Brain Research; Research Group Developmental Neurobiology, Max-von-Laue-Str. 4, 60438 Frankfurt/Main, Germany
| | - Melanie Hennchen
- Max-Planck-Institute for Brain Research; Research Group Developmental Neurobiology, Max-von-Laue-Str. 4, 60438 Frankfurt/Main, Germany
| | - Hermann Rohrer
- Max-Planck-Institute for Brain Research; Research Group Developmental Neurobiology, Max-von-Laue-Str. 4, 60438 Frankfurt/Main, Germany.,Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| |
Collapse
|
35
|
Jamin Y, Glass L, Hallsworth A, George R, Koh DM, Pearson ADJ, Chesler L, Robinson SP. Intrinsic susceptibility MRI identifies tumors with ALKF1174L mutation in genetically-engineered murine models of high-risk neuroblastoma. PLoS One 2014; 9:e92886. [PMID: 24667968 PMCID: PMC3965493 DOI: 10.1371/journal.pone.0092886] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/26/2014] [Indexed: 11/18/2022] Open
Abstract
The early identification of children presenting ALK(F1174L)-mutated neuroblastoma, which are associated with resistance to the promising ALK inhibitor crizotinib and a marked poorer prognosis, has become a clinical priority. In comparing the radiology of the novel Th-ALK(F1174L)/Th-MYCN and the well-established Th-MYCN genetically-engineered murine models of neuroblastoma using MRI, we have identified a marked ALK(F1174L)-driven vascular phenotype. We demonstrate that quantitation of the transverse relaxation rate R2* (s(-1)) using intrinsic susceptibility-MRI under baseline conditions and during hyperoxia, can robustly discriminate this differential vascular phenotype, and identify MYCN-driven tumors harboring the ALK(F1174L) mutation with high specificity and selectivity. Intrinsic susceptibility-MRI could thus potentially provide a non-invasive and clinically-exploitable method to help identifying children with MYCN-driven neuroblastoma harboring the ALK(F1174L) mutation at the time of diagnosis.
Collapse
Affiliation(s)
- Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Laura Glass
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Albert Hallsworth
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Rani George
- Department of Pediatric Haematology and Oncology, Dana-Farber Cancer Institute and Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Andrew D. J. Pearson
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Louis Chesler
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Simon P. Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
36
|
USP7 inhibitor P22077 inhibits neuroblastoma growth via inducing p53-mediated apoptosis. Cell Death Dis 2013; 4:e867. [PMID: 24136231 PMCID: PMC3920959 DOI: 10.1038/cddis.2013.400] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/23/2013] [Accepted: 09/02/2013] [Indexed: 01/06/2023]
Abstract
Neuroblastoma (NB) is a common pediatric cancer and contributes to more than 15% of all pediatric cancer-related deaths. Unlike adult tumors, recurrent somatic mutations in NB, such as tumor protein 53 (p53) mutations, occur with relative paucity. In addition, p53 downstream function is intact in NB cells with wild-type p53, suggesting that reactivation of p53 may be a viable therapeutic strategy for NB treatment. Herein, we report that the ubiquitin-specific protease 7 (USP7) inhibitor, P22077, potently induces apoptosis in NB cells with an intact USP7-HDM2-p53 axis but not in NB cells with mutant p53 or without human homolog of MDM2 (HDM2) expression. In this study, we found that P22077 stabilized p53 by inducing HDM2 protein degradation in NB cells. P22077 also significantly augmented the cytotoxic effects of doxorubicin (Dox) and etoposide (VP-16) in NB cells with an intact USP7-HDM2-p53 axis. Moreover, P22077 was found to be able to sensitize chemoresistant LA-N-6 NB cells to chemotherapy. In an in vivo orthotopic NB mouse model, P22077 significantly inhibited the xenograft growth of three NB cell lines. Database analysis of NB patients shows that high expression of USP7 significantly predicts poor outcomes. Together, our data strongly suggest that targeting USP7 is a novel concept in the treatment of NB. USP7-specific inhibitors like P22077 may serve not only as a stand-alone therapy but also as an effective adjunct to current chemotherapeutic regimens for treating NB with an intact USP7-HDM2-p53 axis.
Collapse
|
37
|
Abstract
Neuroblastoma is a solid tumour that arises from the developing sympathetic nervous system. Over the past decade, our understanding of this disease has advanced tremendously. The future challenge is to apply the knowledge gained to developing risk-based therapies and, ultimately, improving outcome. In this Review we discuss the key discoveries in the developmental biology, molecular genetics and immunology of neuroblastoma, as well as new translational tools for bringing these promising scientific advances into the clinic.
Collapse
Affiliation(s)
- Nai-Kong V. Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Michael A. Dyer
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
38
|
Vassal G, Zwaan CM, Ashley D, Le Deley MC, Hargrave D, Blanc P, Adamson PC. New drugs for children and adolescents with cancer: the need for novel development pathways. Lancet Oncol 2013; 14:e117-24. [PMID: 23434337 DOI: 10.1016/s1470-2045(13)70013-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite major progress in the past 40 years, 20% of children with cancer die from the disease, and 40% of survivors have late adverse effects. Innovative, safe, and effective medicines are needed. Although regulatory initiatives in the past 15 years in the USA and Europe have been introduced, new drug development for children with cancer is insufficient. Children and families face major inequity between countries in terms of access to innovative drugs in development. Hurdles and bottlenecks are well known-eg, small numbers of patients, the complexity of developing targeted agents and their biomarkers for selected patients, limitations of US and EU regulations for paediatric medicines, insufficient return on investment, and the global economic crisis facing drug companies. New drug development pathways could efficiently address the challenges with innovative methods and trial designs, investment in biology and preclinical research, new models of partnership and funding including public-private partnerships and precompetitive research consortia, improved regulatory requirements, initiatives and incentives that better address these needs, and increased collaboration between paediatric oncology cooperative groups worldwide. Increased cooperation between all stakeholders-academia, parents' organisations and advocacy groups, regulatory bodies, pharmaceutical companies, philanthropic organisations, and government-will be essential.
Collapse
Affiliation(s)
- Gilles Vassal
- Division of Clinical Research, Institut Gustave Roussy, Paris-Sud University, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Moreno L, Pearson ADJ. How can attrition rates be reduced in cancer drug discovery? Expert Opin Drug Discov 2013; 8:363-8. [PMID: 23373702 DOI: 10.1517/17460441.2013.768984] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Attrition is a major issue in anticancer drug development with up to 95% of drugs tested in Phase I trials not reaching a marketing authorisation making the drug development process enormously costly and inefficient. It is essential that this problem is addressed throughout the whole drug development process to improve efficiency which will ultimately result in increased patient benefit with more profitable drugs. The approach to reduce cancer drug attrition rates must be based on three pillars. The first of these is that there is a need for new pre-clinical models which can act as better predictors of success in clinical trials. Furthermore, clinical trials driven by tumour biology with the incorporation of predictive and pharmacodynamic biomarkers would be beneficial in drug development. Finally, there is a need for increased collaboration to combine the unique strengths between industry, academia and regulators to ensure that the needs of all stakeholders are met.
Collapse
|
40
|
Kumps C, Fieuw A, Mestdagh P, Menten B, Lefever S, Pattyn F, De Brouwer S, Sante T, Schulte JH, Schramm A, Van Roy N, Van Maerken T, Noguera R, Combaret V, Devalck C, Westermann F, Laureys G, Eggert A, Vandesompele J, De Preter K, Speleman F. Focal DNA copy number changes in neuroblastoma target MYCN regulated genes. PLoS One 2013; 8:e52321. [PMID: 23308108 PMCID: PMC3537730 DOI: 10.1371/journal.pone.0052321] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/16/2012] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is an embryonic tumor arising from immature sympathetic nervous system cells. Recurrent genomic alterations include MYCN and ALK amplification as well as recurrent patterns of gains and losses of whole or large partial chromosome segments. A recent whole genome sequencing effort yielded no frequently recurring mutations in genes other than those affecting ALK. However, the study further stresses the importance of DNA copy number alterations in this disease, in particular for genes implicated in neuritogenesis. Here we provide additional evidence for the importance of focal DNA copy number gains and losses, which are predominantly observed in MYCN amplified tumors. A focal 5 kb gain encompassing the MYCN regulated miR-17∼92 cluster as sole gene was detected in a neuroblastoma cell line and further analyses of the array CGH data set demonstrated enrichment for other MYCN target genes in focal gains and amplifications. Next we applied an integrated genomics analysis to prioritize MYCN down regulated genes mediated by MYCN driven miRNAs within regions of focal heterozygous or homozygous deletion. We identified RGS5, a negative regulator of G-protein signaling implicated in vascular normalization, invasion and metastasis, targeted by a focal homozygous deletion, as a new MYCN target gene, down regulated through MYCN activated miRNAs. In addition, we expand the miR-17∼92 regulatory network controlling TGFß signaling in neuroblastoma with the ring finger protein 11 encoding gene RNF11, which was previously shown to be targeted by the miR-17∼92 member miR-19b. Taken together, our data indicate that focal DNA copy number imbalances in neuroblastoma (1) target genes that are implicated in MYCN signaling, possibly selected to reinforce MYCN oncogene addiction and (2) serve as a resource for identifying new molecular targets for treatment.
Collapse
Affiliation(s)
- Candy Kumps
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Annelies Fieuw
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Steve Lefever
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Filip Pattyn
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sara De Brouwer
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Tom Sante
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Johannes Hubertus Schulte
- Department of Pediatric Oncology and Haematology, University Children's Hospital Essen, Essen, Germany
| | - Alexander Schramm
- Department of Pediatric Oncology and Haematology, University Children's Hospital Essen, Essen, Germany
| | - Nadine Van Roy
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Tom Van Maerken
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Valérie Combaret
- Centre Léon Bérard, FNCLCC, Laboratoire de Recherche Translationnelle, Lyon, France
| | - Christine Devalck
- Children's University Hospital, Hematology-Oncology, Brussels, Belgium
| | - Frank Westermann
- Department of Tumor Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Geneviève Laureys
- Department of Pediatric Hematology-Oncology, Ghent University Hospital, Ghent, Belgium
| | - Angelika Eggert
- Department of Pediatric Oncology and Haematology, University Children's Hospital Essen, Essen, Germany
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Katleen De Preter
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
41
|
Jamin Y, Tucker ER, Poon E, Popov S, Vaughan L, Boult JKR, Webber H, Hallsworth A, Baker LCJ, Jones C, Koh DM, Pearson ADJ, Chesler L, Robinson SP. Evaluation of clinically translatable MR imaging biomarkers of therapeutic response in the TH-MYCN transgenic mouse model of neuroblastoma. Radiology 2013; 266:130-40. [PMID: 23169794 PMCID: PMC4298658 DOI: 10.1148/radiol.12120128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate noninvasive and clinically translatable magnetic resonance (MR) imaging biomarkers of therapeutic response in the TH-MYCN transgenic mouse model of aggressive, MYCN-amplified neuroblastoma. MATERIALS AND METHODS All experiments were performed in accordance with the local ethical review panel and the UK Home Office Animals Scientific Procedures Act 1986 and with the UK National Cancer Research Institute guidelines for the welfare of animals in cancer research. Multiparametric MR imaging was performed of abdominal tumors found in the TH-MYCN model. T2-weighted MR imaging, quantitation of native relaxation times T1 and T2, the relaxation rate R2*, and dynamic contrast-enhanced MR imaging were used to monitor tumor response to cyclophosphamide (25 mg/kg), the vascular disrupting agent ZD6126 (200 mg/kg), or the antiangiogenic agent cediranib (6 mg/kg, daily). Any significant changes in the measured parameters, and in the magnitude of the changes after treatment between treated and control cohorts, were identified by using Student two-tailed paired and unpaired t test, respectively, with a 5% level of significance. RESULTS Treatment with cyclophosphamide or cediranib induced a 54% or 20% reduction in tumor volume at 48 hours, respectively (P < .005 and P < .005, respectively; P < .005 and P < .005 versus control, respectively). Treatment with ZD6126 induced a 45% reduction in mean tumor volume 24 hours after treatment (P < .005; P < .005 versus control). The antitumor activity of cyclophosphamide, cediranib, and ZD6126 was consistently associated with a decrease in tumor T1 (P < .005, P < .005, and P < .005, respectively; P < .005, P < .005, and P < .005 versus control, respectively) and with a correlation between therapy-induced changes in native T1 and changes in tumor volume (r = 0.56; P < .005). Tumor response to cediranib was also associated with a decrease in the dynamic contrast-enhanced MR imaging-derived volume transfer constant (P = .07; P < .05 versus control) and enhancing fraction (P < .05; P < .01 versus control), and an increase in R2* (P < .005; P < .05 versus control). CONCLUSION The T1 relaxation time is a robust noninvasive imaging biomarker of response to therapy in tumors in TH-MYCN mice, which emulate high-risk neuroblastoma in children. T1 measurements can be readily implemented on clinical MR systems and should be investigated in translational clinical trials of new targeted therapies for pediatric neuroblastoma. SUPPLEMENTAL MATERIAL http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12120128/-/DC1.
Collapse
Affiliation(s)
- Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, 15 Cotswold Road, Sutton, Surrey SM2 5NG, England.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rasmuson A, Segerström L, Nethander M, Finnman J, Elfman LHM, Javanmardi N, Nilsson S, Johnsen JI, Martinsson T, Kogner P. Tumor development, growth characteristics and spectrum of genetic aberrations in the TH-MYCN mouse model of neuroblastoma. PLoS One 2012; 7:e51297. [PMID: 23284678 PMCID: PMC3524187 DOI: 10.1371/journal.pone.0051297] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/01/2012] [Indexed: 01/24/2023] Open
Abstract
Background The TH-MYCN transgenic neuroblastoma model, with targeted MYCN expression to the developing neural crest, has been used to study neuroblastoma development and evaluate novel targeted tumor therapies. Methods We followed tumor development in 395 TH-MYCN (129X1/SvJ) mice (125 negative, 206 hemizygous and 64 homozygous mice) by abdominal palpations up to 40 weeks of age. DNA sequencing of MYCN in the original plasmid construct and mouse genomic DNA was done to verify the accuracy. Copy number analysis with Affymetrix® Mouse Diversity Genotyping Arrays was used to characterize acquired genetic aberrations. Results DNA sequencing confirmed presence of human MYCN cDNA in genomic TH-MYCN DNA corresponding to the original plasmid construct. Tumor incidence and growth correlated significantly to transgene status with event-free survival for hemizygous mice at 50%, and 0% for homozygous mice. Hemizygous mice developed tumors at 5.6–19 weeks (median 9.1) and homozygous mice at 4.0–6.9 weeks (5.4). The mean treatment window, time from palpable tumor to sacrifice, for hemizygous and homozygous mice was 15 and 5.2 days, respectively. Hemizygous mice developing tumors as early as homozygous mice had a longer treatment window. Age at tumor development did not influence treatment window for hemizygous mice, whereas treatment window in homozygous mice decreased significantly with increasing age. Seven out of 10 analysed tumors had a flat DNA profile with neither segmental nor numerical chromosomal aberrations. Only three tumors from hemizygous mice showed acquired genetic features with one or more numerical aberrations. Of these, one event corresponded to gain on the mouse equivalent of human chromosome 17. Conclusion Hemizygous and homozygous TH-MYCN mice have significantly different neuroblastoma incidence, tumor growth characteristics and treatment windows but overlap in age at tumor development making correct early genotyping essential to evaluate therapeutic interventions. Contrasting previous studies, our data show that TH-MYCN tumors have few genetic aberrations.
Collapse
Affiliation(s)
- Agnes Rasmuson
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (AR); (PK)
| | - Lova Segerström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Maria Nethander
- Genomics Core Facility, Gothenburg University, Gothenburg, Sweden
| | - Jennie Finnman
- Department of Clinical Genetics, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lotta H. M. Elfman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Niloufar Javanmardi
- Department of Clinical Genetics, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Mathematical Statistics, Chalmers University of Technology, Gothenburg, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Martinsson
- Department of Clinical Genetics, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (AR); (PK)
| |
Collapse
|
43
|
Abstract
Neuroblastoma is a pediatric tumor of the sympathetic nervous system. Amplification and overexpression of the MYCN proto-oncogene occurs in approximately 20% of neuroblastomas and is associated with advanced stage disease, rapid tumor progression, and poor prognosis. MYCN encodes the transcriptional regulator N-myc, which has been shown to both up- and downregulate many target genes involved in cell cycle, DNA damage, differentiation, and apoptosis in neuroblastoma. During the last years, it has become clear that N-myc also modulates the expression of several classes of noncoding RNAs, in particular microRNAs. MicroRNAs are the most widely studied noncoding RNA molecules in neuroblastoma. They function as negative regulators of gene expression at the posttranscriptional level in diverse cellular processes. Aberrant regulation of miRNA expression has been implicated in the pathogenesis of neuroblastoma. While the N-myc protein is established as an important regulator of several miRNAs involved in neuroblastoma tumorigenesis, tumor suppressor miRNAs have also been documented to repress MYCN expression and inhibit cell proliferation of MYCN-amplified neuroblastoma cells. It is now becoming increasingly evident that N-myc also regulates the expression of long noncoding RNAs such as T-UCRs and ncRAN. This review summarizes the current knowledge about the interplay between N-myc and noncoding RNAs in neuroblastoma and how this contributes to neuroblastoma tumorigenesis.
Collapse
Affiliation(s)
- Jochen Buechner
- Department of Pediatrics, University Hospital of North Norway, Tromsø, Norway
| | | |
Collapse
|
44
|
Abstract
Despite improvements in cancer therapies in the past 50 years, neuroblastoma remains a devastating clinical problem and a leading cause of childhood cancer deaths. Advances in treatments for children with high-risk neuroblastoma have, until recently, involved addition of cytotoxic therapy to dose-intensive regimens. In this era of targeted therapies, substantial efforts have been made to identify optimal targets for different types of cancer. The discovery of hereditary and somatic activating mutations in the oncogene ALK has now placed neuroblastoma among other cancers, such as melanoma and non-small-cell lung cancer (NSCLC), which benefit from therapies with oncogene-specific small-molecule tyrosine kinase inhibitors. Crizotinib, a small-molecule inhibitor of ALK, has transformed the landscape for the treatment of NSCLC harbouring ALK translocations and has demonstrated activity in preclinical models of ALK-driven neuroblastomas. However, inhibition of mutated ALK is complex when compared with translocated ALK and remains a therapeutic challenge. This Review discusses the biology of ALK in the development of neuroblastoma, preclinical and clinical progress with the use of ALK inhibitors and immunotherapy, challenges associated with resistance to such therapies and the steps being taken to overcome some of these hurdles.
Collapse
|
45
|
Zhu S, Lee JS, Guo F, Shin J, Perez-Atayde AR, Kutok JL, Rodig SJ, Neuberg DS, Helman D, Feng H, Stewart RA, Wang W, George RE, Kanki JP, Look AT. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 2012; 21:362-73. [PMID: 22439933 PMCID: PMC3315700 DOI: 10.1016/j.ccr.2012.02.010] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 11/23/2011] [Accepted: 02/07/2012] [Indexed: 12/14/2022]
Abstract
Amplification of the MYCN oncogene in childhood neuroblastoma is often accompanied by mutational activation of ALK (anaplastic lymphoma kinase), suggesting their pathogenic cooperation. We generated a transgenic zebrafish model of neuroblastoma in which MYCN-induced tumors arise from a subpopulation of neuroblasts that migrate into the adrenal medulla analog following organogenesis. Coexpression of activated ALK with MYCN in this model triples the disease penetrance and markedly accelerates tumor onset. MYCN overexpression induces adrenal sympathetic neuroblast hyperplasia, blocks chromaffin cell differentiation, and ultimately triggers a developmentally-timed apoptotic response in the hyperplastic sympathoadrenal cells. Coexpression of activated ALK with MYCN provides prosurvival signals that block this apoptotic response and allow continued expansion and oncogenic transformation of hyperplastic neuroblasts, thus promoting progression to neuroblastoma.
Collapse
Affiliation(s)
- Shizhen Zhu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Jeong-Soo Lee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Feng Guo
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Jimann Shin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Antonio R. Perez-Atayde
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston MA, 02115, USA
| | - Jeffery L. Kutok
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston MA, 02115, USA
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston MA, 02115, USA
| | - Donna S. Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Daniel Helman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Hui Feng
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Rodney A. Stewart
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Wenchao Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Rani E. George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - John P. Kanki
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
- Correspondence: (A.T.L.)
| |
Collapse
|