1
|
Huang Z, Mandelkow T, Debatin NF, Lurati MCJ, Ebner J, Raedler JB, Bady E, Müller JH, Simon R, Vettorazzi E, Menz A, Möller K, Gorbokon N, Sauter G, Lennartz M, Luebke AM, Höflmayer D, Krech T, Lebok P, Fraune C, Hinsch A, Jacobsen F, Marx AH, Steurer S, Minner S, Dum D, Weidemann S, Bernreuther C, Clauditz TS, Burandt E, Blessin NC. A Tc1- and Th1-T-lymphocyte-rich tumor microenvironment is a hallmark of MSI colorectal cancer. J Pathol 2025; 266:192-203. [PMID: 40181205 PMCID: PMC12056287 DOI: 10.1002/path.6415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 04/05/2025]
Abstract
Microsatellite instability is a strong predictor of response to immune checkpoint therapy and patient outcome in colorectal cancer. Although enrichment of distinct T-cell subpopulations has been determined to impact the response to immune checkpoint therapy and patient outcome, little is known about the underlying changes in the composition of the immune tumor microenvironment. To assess the density, composition, degree of functional marker expression, and spatial interplay of T-cell subpopulations, 79 microsatellite instable (MSI) and 1,045 microsatellite stable (MSS) colorectal cancers were analyzed. A tissue microarray and large sections were stained with 19 antibodies directed against T cells, antigen-presenting cells, functional markers, and structural proteins using our BLEACH&STAIN multiplex-fluorescence immunohistochemistry approach. A deep learning-based framework comprising >20 different convolutional neuronal networks was developed for image analysis. The composition of Type 1 (T-bet+), Type 2 (GATA3+), Type 17 (RORγT+), NKT-like (CD56+), regulatory (FOXP3+), follicular (BCL6+), and cytotoxic (CD3+CD8+) or helper (CD3+CD4+) T cells showed marked differences between MSI and MSS patients. For instance, the fraction of Tc1 and Th1 was significantly higher (p < 0.001 each), while the fraction of Tregs, Th2, and Th17 T cells was significantly lower (p < 0.05) in MSI compared to MSS patients. The degree of TIM3, CTLA-4, and PD-1 expression on most T-cell subpopulations was significantly higher in MSI compared to MSS patients (p < 0.05 each). Spatial analysis revealed increased interactions between Th1, Tc1, and dendritic cells in MSI patients, while in MSS patients the strongest interactions were found between Tregs, Th17, Th2, and dendritic cells. The additional analysis of 12 large sections revealed a divergent immune composition at the invasive margin. In summary, this study identified a higher fraction of Tc1 and Th1 T cells accompanied by a paucity of regulatory T-cell, Th17, and Th2 T-cell subpopulations, along with a distinct interaction profile, as a hallmark of MSI compared to MSS colorectal cancers. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zhihao Huang
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Tim Mandelkow
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Nicolaus F Debatin
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Magalie C J Lurati
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Julia Ebner
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jonas B Raedler
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- College of Arts and SciencesBoston UniversityBostonMAUSA
| | - Elena Bady
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jan H Müller
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Ronald Simon
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Eik Vettorazzi
- Department of Medical Biometry and EpidemiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Anne Menz
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Katharina Möller
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Natalia Gorbokon
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Guido Sauter
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Maximilian Lennartz
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Andreas M Luebke
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Doris Höflmayer
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Till Krech
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of PathologyClinical Center OsnabrückOsnabrückGermany
| | - Patrick Lebok
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of PathologyClinical Center OsnabrückOsnabrückGermany
| | - Christoph Fraune
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of PathologyClinical Center OsnabrückOsnabrückGermany
| | - Andrea Hinsch
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Frank Jacobsen
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Stefan Steurer
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sarah Minner
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - David Dum
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sören Weidemann
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Till S Clauditz
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Eike Burandt
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Niclas C Blessin
- Institute of PathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of Pathology, Arnold‐Heller‐Straße 3University Medical Center Schleswig‐HolsteinKielGermany
| |
Collapse
|
2
|
Wang Y, Zhu N, Liu J, Chen F, Song Y, Ma Y, Yang Z, Wang D. Role of tumor microenvironment in ovarian cancer metastasis and clinical advancements. J Transl Med 2025; 23:539. [PMID: 40369674 PMCID: PMC12079989 DOI: 10.1186/s12967-025-06508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy worldwide, characterized by heterogeneity at the molecular, cellular and anatomical levels. Most patients are diagnosed at an advanced stage, characterized by widespread peritoneal metastasis. Despite optimal cytoreductive surgery and platinum-based chemotherapy, peritoneal spread and recurrence of OC are common, resulting in poor prognoses. The overall survival of patients with OC has not substantially improved over the past few decades, highlighting the urgent necessity of new treatment options. Unlike the classical lymphatic and hematogenous metastasis observed in other malignancies, OC primarily metastasizes through widespread peritoneal seeding. Tumor cells (the "seeds") exhibit specific affinities for certain organ microenvironments (the "soil"), and metastatic foci can only form when there is compatibility between the "seeds" and "soil." Recent studies have highlighted the tumor microenvironment (TME) as a critical factor influencing the interactions between the "seeds" and "soil," with ascites and the local peritoneal microenvironment playing pivotal roles in the initiation and progression of OC. Prior to metastasis, the interplay among tumor cells, immunosuppressive cells, and stromal cells leads to the formation of an immunosuppressive pre-metastatic niche in specific sites. This includes characteristic alterations in tumor cells, recruitment and functional anomalies of immune cells, and dysregulation of stromal cell distribution and function. TME-mediated crosstalk between cancer and stromal cells drives tumor progression, therapy resistance, and metastasis. In this review, we summarize the current knowledge on the onset and metastatic progression of OC. We provide a comprehensive discussion of the characteristics and functions of TME related to OC metastasis, as well as its association with peritoneal spread. We also outline ongoing relevant clinical trials, aiming to offer new insights for identifying potential effective biomarkers and therapeutic targets in future clinical practice.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Na Zhu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Jing Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Fang Chen
- Department of Gynecology, People's Hospital of Liaoning Province, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Yang Song
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yue Ma
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Zhuo Yang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| |
Collapse
|
3
|
Huang Z, Liu D, Zhang Y, Lu W, Hu L, Zhang J, Xie L, Chen S. PITX1 as a grading, prognostic and tumor-infiltrating immune cells marker for chondrosarcoma: a public database-based immunoassay and tissue sample analysis. Front Oncol 2025; 15:1477649. [PMID: 40342824 PMCID: PMC12060168 DOI: 10.3389/fonc.2025.1477649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/24/2025] [Indexed: 05/11/2025] Open
Abstract
Background Chondrosarcoma (CHS) is a rare bone cancer originating from chondrocytes, with high-grade cases associated with high mortality rates. However, the prognostic factors and therapeutic targets for CHS have not been studied. Methods Graded gene differential analysis was conducted on 97 CHS tissues to identify genes associated with CHS grading. Additionally, we performed GO and KEGG enrichment analyses of the differentially-expressed genes (DEGs), as well as GSEA analysis, differential expression analysis, survival analysis, and univariable and multifactorial COX analysis of paired-like homology structural domain transcription factor 1 (PITX1). Furthermore, our findings investigated the relationship between tumor-infiltrating immune cells (TICs) in CHS tumors using CIBERSORT to calculate proportions and differences. Our findings also explored the associations among gene expression patterns, survival prognosis, TICs, and immune checkpoints across various cancer types. Finally, immunohistochemical staining was carried out on self-collected clinical samples to assess PITX1 expression levels and correlate them with clinical information. Results Gene differential expression analysis revealed a strong correlation between PITX1 expression and tumor grade. GO, KEGG enrichment, and GSEA analysis demonstrated the association of PITX1 with cell proliferation-related processes, such as cell cycle regulation and mitosis, and differentiation-related processes, such as RNA processing. PITX1 expression was associated with tumor stage and survival outcomes. Immunoassay indicated a positive correlation between PITX1 levels and TICs, immune checkpoints, and graded TICs. Pan-cancer analysis confirmed the differential expression of the PITX1 gene across multiple cancers, impacting survival prognosis, TIC patterns, and immune checkpoint regulation. Lastly, our 75 collection of clinical patient tissue samples exhibited varying levels of PITX1 expression across different cancer grades while also demonstrating a significant association with tumor differentiation and metastasis. Conclusion PITX1 is a novel biomarker for distinguishing between high-grade and low-grade CHS, serving as a prognostic indicator for patients with this condition and presenting a promising target for immunotherapy. These findings offer innovative insights into the treatment of CHS.
Collapse
Affiliation(s)
- Zikun Huang
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Dongchen Liu
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ying Zhang
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Weiqing Lu
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lan Hu
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jinghao Zhang
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Lei Xie
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Sport Medicine Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shubiao Chen
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Sport Medicine Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
4
|
Zhang Y, Liu W, Liu D, Li X, Zhuang Q, Sun Q, Wu X, Li F. Multi-omics analysis of copper metabolism-related molecular subtypes and risk stratification for osteosarcoma. Discov Oncol 2025; 16:480. [PMID: 40192894 PMCID: PMC11977037 DOI: 10.1007/s12672-025-02273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND As the most common primary malignant bone tumor, further investigation into risk stratification for osteosarcoma (OS) prognosis is of significant clinical importance. Copper is essential for bone metabolism; however, its specific role in OS remains unclear. METHODS The expression characteristics of copper metabolism related genes (CORGs) in OS were revealed by single cell sequencing. Prognosis-associated CORGs were identified, and a CORG-related scoring system and risk model were established using bioinformatics approaches, including univariate and multivariate Cox regression analyses and LASSO analysis. We further analyzed immune microenvironment infiltration, molecular subtypes and clinicopathological characteristics. The impact of selected CORG with high-risk coefficient on OS cells was tested by qRT-PCR, western blot, siRNA, colony formation analysis and Transwell in vitro. RESULTS We successfully developed an OS scoring system related to copper metabolism and validated its independent prognostic value in patients with OS. The potential clinical value of CORG scoring system was analyzed. APOA4 was selected for in vitro experiments and its effect on the proliferation and invasion ability of OS cells was verified. CONCLUSION We established a copper metabolism-related scoring system to effectively stratify the risk of OS patients. Our results provide a new basis for the role of copper metabolism in OS and provide new potential targets for the treatment of OS.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Minimally Invasive Spine Surgery, Weifang People's Hospital, Weifang, China
| | - Wen Liu
- Department of Minimally Invasive Spine Surgery, Weifang People's Hospital, Weifang, China
| | - Dayong Liu
- Department of Minimally Invasive Spine Surgery, Weifang People's Hospital, Weifang, China
| | - Xiaopeng Li
- Department of Minimally Invasive Spine Surgery, Weifang People's Hospital, Weifang, China
| | - Qingshan Zhuang
- Department of Minimally Invasive Spine Surgery, Weifang People's Hospital, Weifang, China
| | - Quan Sun
- Department of Minimally Invasive Spine Surgery, Weifang People's Hospital, Weifang, China
| | - Xiaolin Wu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
- Cancer Institute, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China.
| | - Feng Li
- Department of Minimally Invasive Spine Surgery, Weifang People's Hospital, Weifang, China.
| |
Collapse
|
5
|
Fatima S. Tumor Microenvironment: A Complex Landscape of Cancer Development and Drug Resistance. Cureus 2025; 17:e82090. [PMID: 40351953 PMCID: PMC12066109 DOI: 10.7759/cureus.82090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
Cancer is responsible for nearly one in six global fatalities, making it a major health issue worldwide. Despite advancements in early detection, surgery, and targeted therapies, effective treatment remains challenging due to the complexity and heterogeneity of the disease. A key factor in cancer progression and resistance to treatment is the tumor microenvironment (TME). It is a complex ecosystem comprising cancer cells, stromal cells, immune cells, extracellular matrix (ECM), and soluble factors like cytokines and chemokines. These components interact dynamically to influence tumor growth, metastasis, immune evasion, and treatment resistance. Cancer cells drive the formation of the TME by releasing signaling molecules, while stromal cells, such as fibroblasts and endothelial cells, support tumor metabolism, angiogenesis, and invasion. Immune cells within the TME can either suppress or promote tumor progression, depending on their activation state. Additionally, the TME can promote the growth of immunosuppressive cells that aid cancer cells in evading immune surveillance, such as regulatory T-cells and myeloid-derived suppressor cells. The TME also impedes drug delivery by creating defective blood vessels, contributing to drug resistance. Recent technological advancements have deepened our understanding of the TME, revealing its role in immune modulation, metabolism, and extracellular matrix remodeling. As a result, targeting the TME has become a promising strategy to overcome treatment resistance and improve cancer therapy outcomes.
Collapse
Affiliation(s)
- Sohaila Fatima
- Pathology, College of Medicine, King Khalid University, Abha, SAU
| |
Collapse
|
6
|
Lu Y, Zhang Y, Li W, Jiang H, Wang J, Guo X. Tumor Cell-Expressed Herpesvirus Entry Mediator Regulates Proliferation and Adaptive Immunity in Ovarian Cancer. Immun Inflamm Dis 2025; 13:e70175. [PMID: 40105652 PMCID: PMC11921469 DOI: 10.1002/iid3.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Ovarian cancer (OvCa) is a prevalent gynecological malignancy with an increasing incidence and high mortality rate. Although the role of the herpesvirus entry mediator (HVEM), encoded by the TNFRSF14 gene, is currently considered pivotal in various types of cancer, the regulation of tumor cell-expressed HVEM in OvCa remains inadequately understood. METHODS Specimens were used to detect HVEM expression via quantitative RT-PCR and flow cytometry. The proliferation of the murine OvCa cell line ID8 was determined using the Cell Counting Kit-8, colony formation, and EdU staining assays. The immune constituents within the ascites fluid and spleen of tumor-bearing mice were analyzed by flow cytometry. Bioinformatics analysis was performed to explore cytokines, chemokines, and signaling pathways regulated by HVEM, and differential expression levels were confirmed via quantitative RT-PCR and western blot analysis. RESULTS Herein, we identified a significant upregulation of HVEM in OvCa tissues compared with that in benign tissues and observed dominant expression of HVEM in CD45⁻EpCAM⁺ subsets in OvCa specimens. Tumor cell-expressed HVEM was found to promote OvCa cell proliferation by partly activating spliced X-box-binding protein 1 (XBP1s)-c-Myc signaling. In mouse models, knockdown of Tnfrsf14 in ID8 cells alleviated OvCa progression and specifically affected the frequency and function of T cells in the ascites fluid and spleen. In addition, tumor cell-expressed HVEM altered chemokine expression (CXCL1/9/10/11 and CCL2/4/5) and STAT signal activation (STAT5 and STAT6) in ID8 cells. CONCLUSION This study investigated the effects of HVEM on OvCa and validated its potential as a therapeutic marker for treating OvCa.
Collapse
Affiliation(s)
- Yun Lu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yijun Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Wenxuan Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Haonan Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jiapo Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiaoqing Guo
- Department of Gynecological Oncology, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
7
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Mohammad Mirzaei N, Kevrekidis PG, Shahriyari L. Oxygen, angiogenesis, cancer and immune interplay in breast tumour microenvironment: a computational investigation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240718. [PMID: 39665095 PMCID: PMC11631512 DOI: 10.1098/rsos.240718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer is a challenging global health problem among women. This study investigates the intricate breast tumour microenvironment (TME) dynamics utilizing data from mammary-specific polyomavirus middle T antigen overexpression mouse models (MMTV-PyMT). It incorporates endothelial cells (ECs), oxygen and vascular endothelial growth factors (VEGF) to examine the interplay of angiogenesis, hypoxia, VEGF and immune cells in cancer progression. We introduce an approach to impute immune cell fractions within the TME using single-cell RNA-sequencing (scRNA-seq) data from MMTV-PyMT mice. We quantify our analysis by estimating cell counts using cell size data and laboratory findings from existing literature. We perform parameter estimation via a Hybrid Genetic Algorithm (HGA). Our simulations reveal various TME behaviours, emphasizing the critical role of adipocytes, angiogenesis, hypoxia and oxygen transport in driving immune responses and cancer progression. Global sensitivity analyses highlight potential therapeutic intervention points, such as VEGFs' role in EC growth and oxygen transportation and severe hypoxia's effect on cancer and the total number of cells. The VEGF-mediated production rate of ECs shows an essential time-dependent impact, highlighting the importance of early intervention in slowing cancer progression. These findings align with clinical observations demonstrating the VEGF inhibitors' efficacy and suggest a timely intervention for better outcomes.
Collapse
Affiliation(s)
- Navid Mohammad Mirzaei
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York10032, USA
| | - Panayotis G. Kevrekidis
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA01003-4515, USA
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA01003-4515, USA
| |
Collapse
|
9
|
Thomas CJ, Delgado K, Sawant K, Roy J, Gupta U, Song CS, Poojary R, de Figueiredo P, Song J. Harnessing Bacterial Agents to Modulate the Tumor Microenvironment and Enhance Cancer Immunotherapy. Cancers (Basel) 2024; 16:3810. [PMID: 39594765 PMCID: PMC11593222 DOI: 10.3390/cancers16223810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer immunotherapy has revolutionized cancer treatment by leveraging the immune system to attack tumors. However, its effectiveness is often hindered by the immunosuppressive tumor microenvironment (TME), where a complex interplay of tumor, stromal, and immune cells undermines antitumor responses and allows tumors to evade immune detection. This review explores innovative strategies to modify the TME and enhance immunotherapy outcomes, focusing on the therapeutic potential of engineered bacteria. These bacteria exploit the unique characteristics of the TME, such as abnormal vasculature and immune suppression, to selectively accumulate in tumors. Genetically modified bacteria can deliver therapeutic agents, including immune checkpoint inhibitors and cytokines, directly to tumor sites. This review highlights how bacterial therapeutics can target critical immune cells within the TME, such as myeloid-derived suppressor cells and tumor-associated macrophages, thereby promoting antitumor immunity. The combination of bacterial therapies with immune checkpoint inhibitors or adoptive cell transfer presents a promising strategy to counteract immune suppression. Continued research in this area could position bacterial agents as a powerful new modality to reshape the TME and enhance the efficacy of cancer immunotherapy, particularly for tumors resistant to conventional treatments.
Collapse
Affiliation(s)
- Christina James Thomas
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Kaylee Delgado
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Kamlesh Sawant
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Jacob Roy
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Udit Gupta
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Carly Shaw Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Rayansh Poojary
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Paul de Figueiredo
- Department of Molecular Microbiology and Immunology, The University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| |
Collapse
|
10
|
Feng Z, Kuang Y, Qi Y, Wang X, Xu P, Chen X. Exogenous IL-33 promotes tumor immunity via macroscopic regulation of ILC2s. Sci Rep 2024; 14:26140. [PMID: 39478174 PMCID: PMC11525627 DOI: 10.1038/s41598-024-77751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Interleukin-33 (IL-33) is a pleiotropic molecule that plays various roles in the body. However, how exogenous IL-33 changes the tumor immune microenvironment remains unclear. Our study revealed that exogenous IL-33 exerts anti-tumor effects and effectively suppresses the progression of subcutaneous melanoma. scRNA-seq analysis revealed that exogenous IL-33 reduced neutrophils accumulation, thereby improving the inhibitory immune environment. Flow cytometry analysis revealed that exogenous IL-33 significantly increased the proportion of eosinophils and group 2 innate lymphoid cells (ILC2s). In addition, we identified genes encoding major histocompatibility complex (MHC) class II molecules in this group of ILC2s, suggesting that ILC2s may play a role in antigen presentation. In Il7rCreArg1flox/flox mice, the decrease of ILC2s led to a reduction in the proportion of eosinophils. Furthermore, we found that exogenous IL-33 effectively promoted the differentiation of ILC2s and their accumulation in tumors, thereby enhancing the anti-tumor immune response. These findings may pave the way for developing new cancer immunotherapies that use IL-33 as an activator to enhance anti-tumor immune responses.
Collapse
Affiliation(s)
- Zhenchu Feng
- Department of Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Ye Kuang
- Department of Gynecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yuan Qi
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Wang
- Department of Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Peng Xu
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin, 150086, China.
| | - Xi Chen
- Department of Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China.
| |
Collapse
|
11
|
Zheng X, Sun R, Wei T. Immune microenvironment in papillary thyroid carcinoma: roles of immune cells and checkpoints in disease progression and therapeutic implications. Front Immunol 2024; 15:1438235. [PMID: 39290709 PMCID: PMC11405226 DOI: 10.3389/fimmu.2024.1438235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of primary thyroid cancer. Despite the low malignancy and relatively good prognosis, some PTC cases are highly aggressive and even develop refractory cancer in the thyroid. Growing evidence suggested that microenvironment in tumor affected PTC biological behavior due to different immune states. Different interconnected components in the immune system influence and participate in tumor invasion, and are closely related to PTC metastasis. Immune cells and molecules are widely distributed in PTC tissues. Their quantity and proportion vary with the host's immune status, which suggests that immunotherapy may be a very promising therapeutic modality for PTC. In this paper, we review the role of immune cells and immune checkpoints in PTC immune microenvironment based on the characteristics of the PTC tumor microenvironment.
Collapse
Affiliation(s)
- Xun Zheng
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ruonan Sun
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tao Wei
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Miraki Feriz A, Khosrojerdi A, Erfanian N, Azarkar S, Sajjadi SM, Shojaei MJ, Vaferi MJ, Safarpour H, Racanelli V. Targeting the dynamic transcriptional landscape of Treg subpopulations in pancreatic ductal adenocarcinoma: Insights from single-cell RNA sequencing analysis with a focus on CTLA4 and TIGIT. Immunobiology 2024; 229:152822. [PMID: 38852289 DOI: 10.1016/j.imbio.2024.152822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that represents a significant challenge in cancer research and clinical management. In this study, we reanalyzed a published single-cell RNA sequencing (scRNA-seq) dataset from PDAC and adjacent tissues to investigate the heterogeneity of tumor and normal tissue, specifically focusing on the regulatory T cells (Tregs) and their interactions with other cells in the tumor microenvironment (TME). Treg cells were identified and clustered into natural Tregs (nTreg) and induced Tregs (iTreg) based on the expression of specific genes. It was found that the number of iTregs was higher in the tumor than in healthy tissues, while the number of n Tregs was higher in healthy tissues. Differential gene expression analysis was performed, and biological process analysis revealed that the Tregs in PDAC were mostly involved in protein targeting and translation pathways. In addition, ligand-receptor pairs between Tregs and other cell types were identified, and the critical communication pathways between Tregs and endothelial and ductal cells were revealed, which could potentially contribute to the immunosuppressive TME of PDAC. These findings provide insights into the role of Tregs in PDAC and their interactions with other cell types in the TME, highlighting potential targets for immunotherapy, such as the inhibitory immune checkpoint receptors CTLA4 and TIGIT, which are known to be expressed on Tregs and have been shown to play a role in suppressing anti-tumor immune responses.
Collapse
Affiliation(s)
- Adib Miraki Feriz
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Nafiseh Erfanian
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | | | - Mohammad Javad Vaferi
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Vito Racanelli
- Centre for Medical Sciences (CISMed), University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), 38122, Trento, Italy.
| |
Collapse
|
13
|
Wang L, Zhang J, Zhang W, Zheng M, Guo H, Pan X, Li W, Yang B, Ding L. The inhibitory effect of adenosine on tumor adaptive immunity and intervention strategies. Acta Pharm Sin B 2024; 14:1951-1964. [PMID: 38799637 PMCID: PMC11119508 DOI: 10.1016/j.apsb.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 05/29/2024] Open
Abstract
Adenosine (Ado) is significantly elevated in the tumor microenvironment (TME) compared to normal tissues. It binds to adenosine receptors (AdoRs), suppressing tumor antigen presentation and immune cell activation, thereby inhibiting tumor adaptive immunity. Ado downregulates major histocompatibility complex II (MHC II) and co-stimulatory factors on dendritic cells (DCs) and macrophages, inhibiting antigen presentation. It suppresses anti-tumor cytokine secretion and T cell activation by disrupting T cell receptor (TCR) binding and signal transduction. Ado also inhibits chemokine secretion and KCa3.1 channel activity, impeding effector T cell trafficking and infiltration into the tumor site. Furthermore, Ado diminishes T cell cytotoxicity against tumor cells by promoting immune-suppressive cytokine secretion, upregulating immune checkpoint proteins, and enhancing immune-suppressive cell activity. Reducing Ado production in the TME can significantly enhance anti-tumor immune responses and improve the efficacy of other immunotherapies. Preclinical and clinical development of inhibitors targeting Ado generation or AdoRs is underway. Therefore, this article will summarize and analyze the inhibitory effects and molecular mechanisms of Ado on tumor adaptive immunity, as well as provide an overview of the latest advancements in targeting Ado pathways in anti-tumor immune responses.
Collapse
Affiliation(s)
- Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| |
Collapse
|
14
|
Zhang XJ, Yu Y, Zhao HP, Guo L, Dai K, Lv J. Mechanisms of tumor immunosuppressive microenvironment formation in esophageal cancer. World J Gastroenterol 2024; 30:2195-2208. [PMID: 38690024 PMCID: PMC11056912 DOI: 10.3748/wjg.v30.i16.2195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
As a highly invasive malignancy, esophageal cancer (EC) is a global health issue, and was the eighth most prevalent cancer and the sixth leading cause of cancer-related death worldwide in 2020. Due to its highly immunogenic nature, emer-ging immunotherapy approaches, such as immune checkpoint blockade, have demonstrated promising efficacy in treating EC; however, certain limitations and challenges still exist. In addition, tumors may exhibit primary or acquired resistance to immunotherapy in the tumor immune microenvironment (TIME); thus, understanding the TIME is urgent and crucial, especially given the im-portance of an immunosuppressive microenvironment in tumor progression. The aim of this review was to better elucidate the mechanisms of the suppressive TIME, including cell infiltration, immune cell subsets, cytokines and signaling pathways in the tumor microenvironment of EC patients, as well as the downregulated expression of major histocompatibility complex molecules in tumor cells, to obtain a better understanding of the differences in EC patient responses to immunotherapeutic strategies and accurately predict the efficacy of immunotherapies. Therefore, personalized treatments could be developed to maximize the advantages of immunotherapy.
Collapse
Affiliation(s)
- Xiao-Jun Zhang
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Lei Guo
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Kun Dai
- Department of Clinical Laboratory, Yanliang Railway Hospital of Xi’an, Xi’an 710089, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
15
|
Jin D, Hui Y, Liu D, Li N, Leng J, Wang G, Wang Q, Lu Z. LINC00942 inhibits ferroptosis and induces the immunosuppression of regulatory T cells by recruiting IGF2BP3/SLC7A11 in hepatocellular carcinoma. Funct Integr Genomics 2024; 24:29. [PMID: 38353724 PMCID: PMC10867055 DOI: 10.1007/s10142-024-01292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with a high recurrence rate and a poor prognosis. Long intergenic nonprotein coding RNA 942 (LINC00942) is reported to be related to ferroptosis and the immune response in HCC and serves as an oncogene in various cancers. This research aimed to explore the contribution of LINC00942 in HCC progression. Functional assays were used to evaluate the functional role of LINC00942 in vitro and in vivo. Mechanistic assays were conducted to assess the association of LINC00942 with insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) and solute carrier family 7 member 11 (SLC7A11) and the regulatory pattern of LINC00942 in HCC cells. LINC00942 was found to exhibit upregulation in HCC tissue and cells. LINC00942 facilitated HCC cell proliferation, suppressed ferroptosis, and converted naive CD4+ T cells to inducible Treg (iTreg) cells by regulating SLC7A11. Furthermore, SLC7A11 expression was positively modulated by LINC00942 in HCC cells. IGF2BP3 was a shared RNA-binding protein (RBP) for LINC00942 and SLC7A11. The binding between the SLC7A11 3' untranslated region and IGF2BP3 was verified, and LINC00942 was found to recruit IGF2BP3 to promote SLC7A11 mRNA stability in an m6A-dependent manner. Moreover, mouse tumor growth and proliferation were inhibited, and the number of FOXP3+CD25+ T cells was increased, while ferroptosis was enhanced after LINC00942 knockdown in vivo. LINC00942 suppresses ferroptosis and induces Treg immunosuppression in HCC by recruiting IGF2BP3 to enhance SLC7A11 mRNA stability, which may provide novel therapeutic targets for HCC.
Collapse
Affiliation(s)
- Dong Jin
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Yongfeng Hui
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Di Liu
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Nan Li
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Junzhi Leng
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Genwang Wang
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Qi Wang
- Department of Hepatobiliary Surgery, Ningxia Medical University General Hospital, 804 Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| | - Zhenhui Lu
- Department of Hepatobiliary Surgery, Shekou Shenzhen People's Hospital, 36 Shekou Industrial 7 Road, Nanshan District, Shenzhen, 518067, Guangdong, China.
| |
Collapse
|
16
|
He R, Huang S, Lu J, Su L, Gao X, Chi H. Unveiling the immune symphony: decoding colorectal cancer metastasis through immune interactions. Front Immunol 2024; 15:1362709. [PMID: 38415252 PMCID: PMC10897008 DOI: 10.3389/fimmu.2024.1362709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Colorectal cancer (CRC), known for its high metastatic potential, remains a leading cause of cancer-related death. This review emphasizes the critical role of immune responses in CRC metastasis, focusing on the interaction between immune cells and tumor microenvironment. We explore how immune cells, through cytokines, chemokines, and growth factors, contribute to the CRC metastasis cascade, underlining the tumor microenvironment's role in shaping immune responses. The review addresses CRC's immune evasion tactics, especially the upregulation of checkpoint inhibitors like PD-1 and CTLA-4, highlighting their potential as therapeutic targets. We also examine advanced immunotherapies, including checkpoint inhibitors and immune cell transplantation, to modify immune responses and enhance treatment outcomes in CRC metastasis. Overall, our analysis offers insights into the interplay between immune molecules and the tumor environment, crucial for developing new treatments to control CRC metastasis and improve patient prognosis, with a specific focus on overcoming immune evasion, a key aspect of this special issue.
Collapse
Affiliation(s)
- Ru He
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiaan Lu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xinrui Gao
- Department of Oncology, Yongchuan Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Isah Tsamiya R, Mohd Nafi SN, Che Jalil NA, Mat Zin AA. The Clinicopathological Characteristics of Young-Onset Versus Adult-Onset Colorectal Cancer: A Tertiary Hospital-Based Study. Malays J Med Sci 2024; 31:200-211. [PMID: 38456100 PMCID: PMC10917589 DOI: 10.21315/mjms2024.31.1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/02/2023] [Indexed: 03/09/2024] Open
Abstract
Background The prevalence of colorectal cancer (CRC) among young individuals is rising worldwide, especially in Malaysia. Investigations are currently employed to distinguish the features of young-onset CRC (YOCRC) from adult-onset CRC (AOCRC). This study aimed to compare the characteristics of patients with YOCRC and AOCRC diagnosed at Hospital Universiti Sains Malaysia (HUSM). Methods This was a retrospective study of CRC cases from January 2013 to December 2021. The details of YOCRC (< 50 years old) and AOCRC (≥ 50 years old) patients were retrieved from the laboratory system and medical records. The Pearson's chi-square test, Fisher's exact test and multiple logistic regression were used to compare the AOCRC and YOCRC cases. Statistical significance was defined at a P-value of ≤ 0.05. Results The AOCRC (254/319, 79.6%) was more prevalent than YOCRC (65/319, 20.4%), with a predominance of males (53.9%) and Malay sub-population (90.2%). AOCRC and YOCRC shared similarities in left-sided location, high occurrence of adenocarcinoma with moderately differentiated histology and advanced stage of diagnosis. More patients with YOCRC (23.1%) had a family history of cancer than patients with AOCRC. YOCRC also differed from AOCRC by having more specific histological subtypes, such as mucinous adenocarcinoma (15.4%) and signet ring carcinoma (6.2%). In addition, patients with YOCRC commonly presented with a low density of tumour-infiltrating lymphocytes (TILs) (60%). Multiple logistic regression showed a family history of CRC (adjusted odds ratio [AOR] = 3.75, P = 0.003) and histological type (AOR = 15.21, P < 0.001) are more likely to cause YOCRC than diabetes (AOR = 0.06, P < 0.001) and hypertension (AOR = 0.14, P < 0.001) comorbidities, which are associated with AOCRC. Conclusion Our descriptive study presented the epidemiological and histopathological characteristics of AOCRC and YOCRC in HUSM, providing current information on distinguishing features between the groups.
Collapse
Affiliation(s)
- Rilwanu Isah Tsamiya
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Siti Norasikin Mohd Nafi
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nur Asyilla Che Jalil
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kelantan, Malaysia
| | - Anani Aila Mat Zin
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
18
|
Zhang H, Hu K, Lu Y, Xu Z, Chen G, Yu D, Gao X, Feng Q, Jia X, Xu L, Zhou J, Wu X, Song D, Zhu H, Li B, Zhu W, Shi J. A novel pterostilbene compound DCZ0825 induces macrophage M1 differentiation and Th1 polarization to exert anti-myeloma and immunomodulatory. Int Immunopharmacol 2024; 127:111446. [PMID: 38157697 DOI: 10.1016/j.intimp.2023.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Multiple myeloma (MM) is an incurable and recurrent malignancy characterized by abnormal plasma cell proliferation. There is an urgent need to develop effective drugs in MM. DCZ0825 is a small molecule compound derived from pterostilbene with direct anti-myeloma activity and indirect immune-killing effects though reversal of the immunosuppression. DCZ0825 inhibits the activity and proliferation of MM cells causing no significant toxicity to normal cells. Using flow cytometry, this study found that DCZ0825 induced caspase-dependent apoptosis in MM cells and arrested the cell cycle in the G2/M phase by down-regulating CyclinB1, CDK1 and CDC25. Moreover, DCZ0825 up-regulated IRF3 and IRF7 to increase IFN-γ, promoting M2 macrophages to transform into M1 macrophages, releasing the immunosuppression of CD4T cells and stimulated M1 macrophages and Th1 cells to secrete more INF-γ to form immune killing effect on MM cells. Treatment with DCZ0825 resulted in an increased proportion of positive regulatory cells such as CD4T, memory T cells, CD8T, and NK cells, with downregulation of the proportion of negative regulatory cells such as Treg cells and MDSCs. In conclusion, DCZ0825 is a novel compound with both antitumor and immunomodulatory activity.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Ke Hu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yumeng Lu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gege Chen
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xuejie Gao
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qilin Feng
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xinyan Jia
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Li Xu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinfeng Zhou
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dongliang Song
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Huabin Zhu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Bo Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
19
|
Georgescu MT, Trifanescu OG, Serbanescu GL, Mitrica RI, Georgescu DE, Mihaila RI, Neagu A, Gaube A, Botezatu C, Manolescu Mastalier BS. Navigating a Complex Intersection: Immunotherapy and Radiotherapy Synergy in Squamous Cell Carcinoma of the Skin—A Comprehensive Literature Review. COSMETICS 2023; 10:165. [DOI: 10.3390/cosmetics10060165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Skin squamous cell carcinoma (SCC) represents a major public health concern due to its high incidence and potential for local invasion and metastasis. Compared to local recurrence, metastatic SCC represents an even greater therapeutic challenge. Once distant metastasis occurs, the disease becomes incurable, and treatment focuses on palliation and prolonging survival. The immune microenvironment of SCC is characterized by an infiltration of immune cells, including tumor-infiltrating lymphocytes. In addition to its direct cytotoxic effects, radiotherapy also induces immunomodulatory effects within the tumor microenvironment. Radiation can promote the release of tumor-associated antigens and induce immunogenic cell death, thereby enhancing the recognition of tumor cells by the immune system. Immunotherapy and radiotherapy have emerged as promising therapeutic modalities for metastatic SCC. This literature review aims to evaluate the potential synergy between these treatments and shed light on their combined efficacy. Within the manuscript, we present a compelling case report of a patient with advanced SCC who exhibited resistance to the combined regimen of immunotherapy and radiotherapy, leading to disease progression. Despite the increasing evidence supporting the synergy between these modalities, this case underscores the complex nature of treatment response and the importance of considering individual patient characteristics.
Collapse
Affiliation(s)
- Mihai Teodor Georgescu
- Prof. Dr. Al. Trestioreanu Oncology Discipline, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania
| | - Oana Gabriela Trifanescu
- Prof. Dr. Al. Trestioreanu Oncology Discipline, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania
| | - Georgia Luiza Serbanescu
- Prof. Dr. Al. Trestioreanu Oncology Discipline, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania
| | - Radu Iulian Mitrica
- Prof. Dr. Al. Trestioreanu Oncology Discipline, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania
| | - Dragos Eugen Georgescu
- “Dr. Ion Cantacuzino” Surgery Discipline, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Raluca Ioana Mihaila
- “Prof. Dr. AL. Trestioreanu” Oncology I Department, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania
| | - Alexandra Neagu
- Radiotherapy 2 Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, 022328 Bucharest, Romania
| | - Alexandra Gaube
- “Prof. Dr. Matei Bals” National Institute of Infectious Diseases, 021105 Bucharest, Romania
| | - Cristian Botezatu
- Colentina Hospital Surgery Discipline, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | | |
Collapse
|
20
|
Yang S, Zou R, Dai Y, Hu Y, Li F, Hu H. Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review). Int J Oncol 2023; 63:137. [PMID: 37888583 PMCID: PMC10631767 DOI: 10.3892/ijo.2023.5585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly heterogeneous malignancy originating from the epithelial system of the bile ducts, and its incidence in recent years is steadily increasing. The immune microenvironment of CCA is characterized by diversity and complexity, with a substantial presence of cancer‑associated fibroblasts and immune cell infiltration, which plays a key role in regulating the distinctive biological behavior of cholangiocarcinoma, including tumor growth, angiogenesis, lymphangiogenesis, invasion and metastasis. Despite the notable success of immunotherapy in the treatment of solid tumors in recent years, patients with CCA have responded poorly to immune checkpoint inhibitor therapy. The interaction of tumor cells with cellular components of the immune microenvironment can regulate the activity and function of immune cells and form an immunosuppressive microenvironment, which may cause ineffective immunotherapy. Therefore, the components of the tumor immune microenvironment appear to be novel targets for immune therapies. Combination therapy focusing on immune checkpoint inhibitors is a promising and valuable first‑line or translational treatment approach for intractable biliary tract malignancies. The present review discusses the compositional characteristics and regulatory factors of the CCA immune microenvironment and the possible immune escape mechanisms. In addition, a summary of the advances in immunotherapy for CCA is also provided. It is hoped that the present review may function as a valuable reference for the development of novel immunotherapeutic strategies for CCA.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruiqi Zou
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yushi Dai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yafei Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fuyu Li
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Haijie Hu
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
21
|
Xing J, Zhang J, Wang J. The Immune Regulatory Role of Adenosine in the Tumor Microenvironment. Int J Mol Sci 2023; 24:14928. [PMID: 37834375 PMCID: PMC10573203 DOI: 10.3390/ijms241914928] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Adenosine, an immunosuppressive metabolite, is produced by adenosine triphosphate (ATP) released from dying or stressed cells and is found at high levels in the tumor microenvironment of most solid tumors. It mediates pro-tumor activities by inducing tumor cell proliferation, migration or invasion, tumor tissue angiogenesis, and chemoresistance. In addition, adenosine plays an important role in regulating anti-tumor immune responses and facilitating tumor immune escape. Adenosine receptors are broadly expressed by tumor-infiltrated immune cells, including suppressive tumor-associated macrophages and CD4+ regulatory T cells, as well as effector CD4+ T cells and CD8+ cytotoxic T lymphocytes. Therefore, adenosine is indispensable in down-regulating anti-tumor immune responses in the tumor microenvironment and contributes to tumor progression. This review describes the current progress on the role of adenosine/adenosine receptor pathway in regulating the tumor-infiltrating immune cells that contribute to tumor immune evasion and aims to provide insights into adenosine-targeted tumor immunotherapy.
Collapse
Affiliation(s)
- Jianlei Xing
- Department of Immunology, School of Basic Medicine, China Medical University, Shenyang 100001, China
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinyan Wang
- Department of Immunology, School of Basic Medicine, China Medical University, Shenyang 100001, China
| |
Collapse
|
22
|
Zhao D, Mo Y, Neganova ME, Aleksandrova Y, Tse E, Chubarev VN, Fan R, Sukocheva OA, Liu J. Dual effects of radiotherapy on tumor microenvironment and its contribution towards the development of resistance to immunotherapy in gastrointestinal and thoracic cancers. Front Cell Dev Biol 2023; 11:1266537. [PMID: 37849740 PMCID: PMC10577389 DOI: 10.3389/fcell.2023.1266537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Successful clinical methods for tumor elimination include a combination of surgical resection, radiotherapy, and chemotherapy. Radiotherapy is one of the crucial components of the cancer treatment regimens which allow to extend patient life expectancy. Current cutting-edge radiotherapy research is focused on the identification of methods that should increase cancer cell sensitivity to radiation and activate anti-cancer immunity mechanisms. Radiation treatment activates various cells of the tumor microenvironment (TME) and impacts tumor growth, angiogenesis, and anti-cancer immunity. Radiotherapy was shown to regulate signaling and anti-cancer functions of various TME immune and vasculature cell components, including tumor-associated macrophages, dendritic cells, endothelial cells, cancer-associated fibroblasts (CAFs), natural killers, and other T cell subsets. Dual effects of radiation, including metastasis-promoting effects and activation of oxidative stress, have been detected, suggesting that radiotherapy triggers heterogeneous targets. In this review, we critically discuss the activation of TME and angiogenesis during radiotherapy which is used to strengthen the effects of novel immunotherapy. Intracellular, genetic, and epigenetic mechanisms of signaling and clinical manipulations of immune responses and oxidative stress by radiotherapy are accented. Current findings indicate that radiotherapy should be considered as a supporting instrument for immunotherapy to limit the cancer-promoting effects of TME. To increase cancer-free survival rates, it is recommended to combine personalized radiation therapy methods with TME-targeting drugs, including immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Deyao Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingyi Mo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Margarita E. Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Yulia Aleksandrova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, CALHN, Adelaide, SA, Australia
| | - Vladimir N. Chubarev
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Olga A. Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, CALHN, Adelaide, SA, Australia
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Pan Y, Yang W, Tang B, Wang X, Zhang Q, Li W, Li L. The protective and pathogenic role of Th17 cell plasticity and function in the tumor microenvironment. Front Immunol 2023; 14:1192303. [PMID: 37457739 PMCID: PMC10339829 DOI: 10.3389/fimmu.2023.1192303] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
At the turn of the century, researchers discovered a unique subtype of T helper cells that secretes IL-17 and defined it as Th17. The latest study found that Th17 cells play both positive and negative definitive roles in the regulation of antitumor immune responses. Although the function of Th17 in the tumor microenvironment remains poorly understood, more and more studies have shown that this paradoxical dual role is closely related to the plasticity of Th17 cells in recent decades. Further understanding of the characteristics of Th17 cells in the tumor microenvironment could yield novel and useful therapeutic approaches to treat cancer. In this review, we further present the high plasticity of Th17 cells and the function of Th17-producing IL-17 in tumor immunity.
Collapse
|
24
|
Li Z, Yuan F, Liu X, Wei J, Liu T, Li W, Li C. Establishment and validation of a ferroptosis-related signature predicting prognosis and immunotherapy effect in colon cancer. Front Oncol 2023; 13:1201616. [PMID: 37287923 PMCID: PMC10243598 DOI: 10.3389/fonc.2023.1201616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 06/09/2023] Open
Abstract
Background Ferroptosis, a novel form of regulating cell death, is related to various cancers. However, the role of ferroptosis-related genes (FRGs) on the occurrence and development of colon cancer (CC) needs to be further elucidated. Method CC transcriptomic and clinical data were downloaded from TCGA and GEO databases. The FRGs were obtained from the FerrDb database. The consensus clustering was performed to identify the best clusters. Then, the entire cohort was randomly divided into the training and testing cohorts. Univariate Cox, LASSO regression and multivariate Cox analyses were used to construct a novel risk model in training cohort. The testing and the merged cohorts were performed to validate the model. Moreover, CIBERSORT algorithm analyze TIME between high- and low- risk groups. The immunotherapy effect was evaluated by analyzing the TIDE score and IPS between high- and low- risk groups. Lastly, RT-qPCR were performed to analyze the expression of the three prognostic genes, and the 2-years OS and DFS between the high- and low- risk groups of 43 clinical CC samples to further validate the value of the risk model. Results SLC2A3, CDKN2A, and FABP4 were identified to construct a prognostic signature. Kaplan-Meier survival curves showed that OS between the high- and low-risk groups were statistically significant (pmerged<0.001, ptraining<0.001, ptesting<0.001). TIDE score and IPS were higher in the high-risk group (pTIDE<0.005, pDysfunction<0.005, pExclusion<0.001, pmAb-CTLA-4 = 3e-08, pmAb-PD-1 = 4.1e-10). The clinical samples were divided into high- and low- risk groups according to the risk score. There was a statistical difference in DFS (p=0.0108). Conclusion This study established a novel prognostic signature and provided more insight into the immunotherapy effect of CC.
Collapse
Affiliation(s)
- Zhufeng Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Yuan
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianming Wei
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Weidong Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
25
|
Conci S, Catalano G, Roman D, Zecchetto C, Lucin E, De Bellis M, Tripepi M, Guglielmi A, Milella M, Ruzzenente A. Current Role and Future Perspectives of Immunotherapy and Circulating Factors in Treatment of Biliary Tract Cancers. Int J Med Sci 2023; 20:858-869. [PMID: 37324191 PMCID: PMC10266048 DOI: 10.7150/ijms.82008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/07/2023] [Indexed: 06/17/2023] Open
Abstract
Biliary tract cancers (BTCs) are a heterogenous group of malignancies arising from the epithelial cells of the biliary tree and the gallbladder. They are often locally advanced or already metastatic at the time of the diagnosis and therefore prognosis remains dismal. Unfortunately, the management of BTCs has been limited by resistance and consequent low response rate to cytotoxic systemic therapy. New therapeutic approaches are needed to improve the survival outcomes for these patients. Immunotherapy, one of the newest therapeutic options, is changing the approach to the oncological treatment. Immune checkpoint inhibitors are by far the most promising group of immunotherapeutic agents: they work by blocking the tumor-induced inhibition of the immune cellular response. Immunotherapy in BTCs is currently approved as second-line treatment for patients whose tumors have a peculiar molecular profile, such as high levels of microsatellites instability, PD-L1 overexpression, or high levels of tumor mutational burden. However, emerging data from ongoing clinical trials seem to suggest that durable responses can be achieved in other subsets of patients. The BTCs are characterized by a highly desmoplastic microenvironment that fuels the growth of cancer tissue, but tissue biopsies are often difficult to obtain or not feasible in BTCs. Recent studies have hence proposed to use liquid biopsy approaches to search the blood circulating tumor cells (CTCs) or circulating tumor DNA (ctDNA) to use as biomarkers in BTCs. So far studies are insufficient to promote their use in clinical management, however trials are still in progress with promising preliminary results. Analysis of blood samples for ctDNA to research possible tumor-specific genetic or epigenetic alterations that could be linked to treatment response or prognosis was already feasible. Although there are still few data available, ctDNA analysis in BTC is fast, non-invasive, and could also represent a way to diagnose BTC earlier and monitor tumor response to chemotherapy. The prognostic capabilities of soluble factors in BTC are not yet precisely determined and more studies are needed. In this review, we will discuss the different approaches to immunotherapy and tumor circulating factors, the progress that has been made so far, and the possible future developments.
Collapse
Affiliation(s)
- Simone Conci
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Giovanni Catalano
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Diletta Roman
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Camilla Zecchetto
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Eleonora Lucin
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Mario De Bellis
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Marzia Tripepi
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Alfredo Guglielmi
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Michele Milella
- Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| | - Andrea Ruzzenente
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, Verona, Italy
| |
Collapse
|
26
|
Zhang R, Ye Y, Wu J, Gao J, Huang W, Qin H, Tian H, Han M, Zhao B, Sun Z, Chen X, Dong X, Liu K, Liu C, Tu Y, Zhao S. Immunostimulant In Situ Fibrin Gel for Post-operative Glioblastoma Treatment by Macrophage Reprogramming and Photo-Chemo-Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17627-17640. [PMID: 37000897 DOI: 10.1021/acsami.3c00468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Tumor recurrence remains the leading cause of treatment failure following surgical resection of glioblastoma (GBM). M2-like tumor-associated macrophages (TAMs) infiltrating the tumor tissue promote tumor progression and seriously impair the efficacy of chemotherapy and immunotherapy. In addition, designing drugs capable of crossing the blood-brain barrier and eliciting the applicable organic response is an ambitious challenge. Here, we propose an injectable nanoparticle-hydrogel system that uses doxorubicin (DOX)-loaded mesoporous polydopamine (MPDA) nanoparticles encapsulated in M1 macrophage-derived nanovesicles (M1NVs) as effectors and fibrin hydrogels as in situ delivery vehicles. In vivo fluorescence imaging shows that the hydrogel system triggers photo-chemo-immunotherapy to destroy remaining tumor cells when delivered to the tumor cavity of a model of subtotal GBM resection. Concomitantly, the result of flow cytometry indicated that M1NVs comprehensively improved the immune microenvironment by reprogramming M2-like TAMs to M1-like TAMs. This hydrogel system combined with a near-infrared laser effectively promoted the continuous infiltration of T cells, restored T cell effector function, inhibited the infiltration of myeloid-derived suppressor cells and regulatory T cells, and thereby exhibited a strong antitumor immune response and significantly inhibited tumor growth. Hence, MPDA-DOX-NVs@Gel (MD-NVs@Gel) presents a unique clinical strategy for the treatment of GBM recurrence.
Collapse
Affiliation(s)
- Ruotian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Yicheng Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianing Wu
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Junbin Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weichang Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanfeng Qin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingyang Han
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Boyan Zhao
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Zhenying Sun
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xingli Dong
- Shenzhen University General Hospital, Shenzhen 518000, China
| | - Kun Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chang Liu
- Sport Science College, Beijing Sport University, Beijing 100091, China
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
- Shenzhen University General Hospital, Shenzhen 518000, China
| |
Collapse
|
27
|
Kazakova A, Sudarskikh T, Kovalev O, Kzhyshkowska J, Larionova I. Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review). Int J Oncol 2023; 62:32. [PMID: 36660926 PMCID: PMC9851132 DOI: 10.3892/ijo.2023.5480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Tumor‑associated macrophages (TAMs) are crucial cells of the tumor microenvironment (TME), which belong to the innate immune system and regulate primary tumor growth, immunosuppression, angiogenesis, extracellular matrix remodeling and metastasis. The review discusses current knowledge of essential cell‑cell interactions of TAMs within the TME of solid tumors. It summarizes the mechanisms of stromal cell (including cancer‑associated fibroblasts and endothelial cells)‑mediated monocyte recruitment and regulation of differentiation, as well as pro‑tumor and antitumor polarization of TAMs. Additionally, it focuses on the perivascular TAM subpopulations that regulate angiogenesis and lymphangiogenesis. It describes the possible mechanisms of reciprocal interactions of TAMs with other immune cells responsible for immunosuppression. Finally, it highlights the perspectives for novel therapeutic approaches to use combined cellular targets that include TAMs and other stromal and immune cells in the TME. The collected data demonstrated the importance of understanding cell‑cell interactions in the TME to prevent distant metastasis and reduce the risk of tumor recurrence.
Collapse
Affiliation(s)
- Anna Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Tatiana Sudarskikh
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Oleg Kovalev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| |
Collapse
|
28
|
Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Acta Pharm Sin B 2022; 12:4327-4347. [PMID: 36561994 PMCID: PMC9764075 DOI: 10.1016/j.apsb.2022.11.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer immunotherapy has significantly flourished and revolutionized the limited conventional tumor therapies, on account of its good safety and long-term memory ability. Discouragingly, low patient response rates and potential immune-related side effects make it rather challenging to literally bring immunotherapy from bench to bedside. However, it has become evident that, although the immunosuppressive tumor microenvironment (TME) plays a pivotal role in facilitating tumor progression and metastasis, it also provides various potential targets for remodeling the immunosuppressive TME, which can consequently bolster the effectiveness of antitumor response and tumor suppression. Additionally, the particular characteristics of TME, in turn, can be exploited as avenues for designing diverse precise targeting nanomedicines. In general, it is of urgent necessity to deliver nanomedicines for remodeling the immunosuppressive TME, thus improving the therapeutic outcomes and clinical translation prospects of immunotherapy. Herein, we will illustrate several formation mechanisms of immunosuppressive TME. More importantly, a variety of strategies concerning remodeling immunosuppressive TME and strengthening patients' immune systems, will be reviewed. Ultimately, we will discuss the existing obstacles and future perspectives in the development of antitumor immunotherapy. Hopefully, the thriving bloom of immunotherapy will bring vibrancy to further exploration of comprehensive cancer treatment.
Collapse
|
29
|
Regulatory T Cells in Ovarian Carcinogenesis and Future Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14225488. [PMID: 36428581 PMCID: PMC9688690 DOI: 10.3390/cancers14225488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Regulatory T cells (Tregs) have been shown to play a role in the development of solid tumors. A better understanding of the biology of Tregs, immune suppression by Tregs, and how cancer developed with the activity of Tregs has facilitated the development of strategies used to improve immune-based therapy. In ovarian cancer, Tregs have been shown to promote cancer development and resistance at different cancer stages. Understanding the various Treg-mediated immune escape mechanisms provides opportunities to establish specific, efficient, long-lasting anti-tumor immunity. Here, we review the evidence of Treg involvement in various stages of ovarian cancer. We further provide an overview of the current and prospective therapeutic approaches that arise from the modulation of Treg-related tumor immunity at those specific stages. Finally, we propose combination strategies of Treg-related therapies with other anti-tumor therapies to improve clinical efficacy and overcome tumor resistance in ovarian cancer.
Collapse
|
30
|
Chung A, Nasralla D, Quaglia A. Understanding the Immunoenvironment of Primary Liver Cancer: A Histopathology Perspective. J Hepatocell Carcinoma 2022; 9:1149-1169. [PMID: 36349146 PMCID: PMC9637345 DOI: 10.2147/jhc.s382310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most common cancers worldwide, primary liver cancer remains a major cause of cancer-related mortality. Hepatocellular carcinoma and cholangiocarcinoma represent the majority of primary liver cancer cases. Despite advances in the development of novel anti-cancer therapies that exploit targets within the immune system, survival rates from liver cancer remain poor. Furthermore, responses to immunotherapies, such as immune checkpoint inhibitors, have revealed limited and variable responses amongst patients with hepatocellular carcinoma, although combination immunotherapies have shown recent breakthroughs in clinical trials. This has shifted the focus towards improving our understanding of the underlying immune and molecular characteristics of liver tumours that may influence their response to immune-modulating treatments. In this review, we outline the complex interactions that occur in the tumour microenvironment of hepatocellular carcinoma and cholangiocarcinoma, respectively, from a histopathological perspective. We explore the potential role of a classification system based on immune-specific characteristics within each cancer type, the importance of understanding inter- and intra-tumoural heterogeneity and consider the future role of histopathology and novel technologies within this field.
Collapse
Affiliation(s)
- Annabelle Chung
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - David Nasralla
- Department of Hepato-Pancreato-Biliary Surgery, Royal Free Hospital, London, UK
| | - Alberto Quaglia
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| |
Collapse
|
31
|
Gramantieri L, Fornari F, Giovannini C, Trerè D. MicroRNAs at the Crossroad between Immunoediting and Oncogenic Drivers in Hepatocellular Carcinoma. Biomolecules 2022; 12:biom12070930. [PMID: 35883486 PMCID: PMC9313100 DOI: 10.3390/biom12070930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In recent years, treatments enhancing the antitumor immune response have revealed a new promising approach for advanced hepatocellular carcinoma (HCC). Beside favorable results in about one third of patients, much still remains to be done to face primary nonresponse, early, and late disease reactivation. Understanding the mechanisms underneath immune system modulation by immune checkpoint inhibitors in HCC might give additional opportunities for patient selection and combined approaches. MicroRNAs have emerged as relevant modulators of cancer cell hallmarks, including aberrant proliferation, invasion and migration capabilities, epithelial-to-mesenchymal transition, and glycolytic metabolism. At the same time, they contribute to the immune system development, response, and programs activation, with particular regard towards regulatory functions. Thus, miRNAs are relevant not only in cancer cells’ biology, but also in the immune response and interplay between cancer, microenvironment, and immune system. Abstract Treatments aimed to reverse the tumor-induced immune tolerance represent a promising approach for advanced hepatocellular carcinoma (HCC). Notwithstanding, primary nonresponse, early, and late disease reactivation still represent major clinical challenges. Here, we focused on microRNAs (miRNAs) acting both as modulators of cancer cell hallmarks and immune system response. We outlined the bidirectional function that some oncogenic miRNAs play in the differentiation and program activation of the immune system development and, at the same time, in the progression of HCC. Indeed, the multifaceted spectrum of miRNA targets allows the modulation of both immune-associated factors and oncogenic or tumor suppressor drivers at the same time. Understanding the molecular changes contributing to disease onset, progression, and resistance to treatments might help to identify possible novel biomarkers for selecting patient subgroups, and to design combined tailored treatments to potentiate antitumor approaches. Preliminary findings seem to argue in favor of a bidirectional function of some miRNAs, which enact an effective modulation of molecular pathways driving oncogenic and immune-skipping phenotypes associated with cancer aggressiveness. The identification of these miRNAs and the characterization of their ‘dual’ role might help to unravel novel biomarkers identifying those patients more likely to respond to immune checkpoint inhibitors and to identify possible therapeutic targets with both antitumor and immunomodulatory functions. In the present review, we will focus on the restricted panel of miRNAs playing a bidirectional role in HCC, influencing oncogenic and immune-related pathways at once. Even though this field is still poorly investigated in HCC, it might represent a source of candidate molecules acting as both biomarkers and therapeutic targets in the setting of immune-based treatments.
Collapse
Affiliation(s)
- Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesca Fornari
- Department for Life Quality Studies (QuVi), University of Bologna, 47921 Rimini, Italy
- Centre for Applied Biomedical Research-CRBA, University of Bologna, IRCCS St. Orsola Hospital, 40138 Bologna, Italy
| | - Catia Giovannini
- Centre for Applied Biomedical Research-CRBA, University of Bologna, IRCCS St. Orsola Hospital, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Davide Trerè
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
- Departmental Program in Laboratory Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
32
|
Hao Y, Dong H, Li W, Lv X, Shi B, Gao P. The Molecular Role of IL-35 in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:874823. [PMID: 35719927 PMCID: PMC9204334 DOI: 10.3389/fonc.2022.874823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and a common cause of cancer-related death. Better understanding of the molecular mechanisms, pathogenesis, and treatment of NSCLC can help improve patient outcomes. Significant progress has been made in the treatment of NSCLC, and immunotherapy can prolong patient survival. However, the overall cure and survival rates are low, especially in patients with advanced metastases. Interleukin-35 (IL-35), an immunosuppressive factor, is associated with the onset and prognosis of various cancers. Studies have shown that IL-35 expression is elevated in NSCLC, and it is closely related to the progression and prognosis of NSCLC. However, there are few studies on the mechanism of IL-35 in NSCLC. This study discusses the role of IL-35 and its downstream signaling pathways in the pathogenesis of NSCLC and provides new insights into its therapeutic potential.
Collapse
Affiliation(s)
- Yuqiu Hao
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Hongna Dong
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Xuejiao Lv
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Bingqing Shi
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory Medicine, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Revenko A, Carnevalli LS, Sinclair C, Johnson B, Peter A, Taylor M, Hettrick L, Chapman M, Klein S, Solanki A, Gattis D, Watt A, Hughes AM, Magiera L, Kar G, Ireland L, Mele DA, Sah V, Singh M, Walton J, Mairesse M, King M, Edbrooke M, Lyne P, Barry ST, Fawell S, Goldberg FW, MacLeod AR. Direct targeting of FOXP3 in Tregs with AZD8701, a novel antisense oligonucleotide to relieve immunosuppression in cancer. J Immunother Cancer 2022; 10:jitc-2021-003892. [PMID: 35387780 PMCID: PMC8987763 DOI: 10.1136/jitc-2021-003892] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The Regulatory T cell (Treg) lineage is defined by the transcription factor FOXP3, which controls immune-suppressive gene expression profiles. Tregs are often recruited in high frequencies to the tumor microenvironment where they can suppress antitumor immunity. We hypothesized that pharmacological inhibition of FOXP3 by systemically delivered, unformulated constrained ethyl-modified antisense oligonucleotides could modulate the activity of Tregs and augment antitumor immunity providing therapeutic benefit in cancer models and potentially in man. METHODS We have identified murine Foxp3 antisense oligonucleotides (ASOs) and clinical candidate human FOXP3 ASO AZD8701. Pharmacology and biological effects of FOXP3 inhibitors on Treg function and antitumor immunity were tested in cultured Tregs and mouse syngeneic tumor models. Experiments were controlled by vehicle and non-targeting control ASO groups as well as by use of multiple independent FOXP3 ASOs. Statistical significance of biological effects was evaluated by one or two-way analysis of variance with multiple comparisons. RESULTS AZD8701 demonstrated a dose-dependent knockdown of FOXP3 in primary Tregs, reduction of suppressive function and efficient target downregulation in humanized mice at clinically relevant doses. Surrogate murine FOXP3 ASO, which efficiently downregulated Foxp3 messenger RNA and protein levels in primary Tregs, reduced Treg suppressive function in immune suppression assays in vitro. FOXP3 ASO promoted more than 70% reduction in FOXP3 levels in Tregs in vitro and in vivo, strongly modulated Treg effector molecules (eg, ICOS, CTLA-4, CD25 and 4-1BB), and augmented CD8+ T cell activation and produced antitumor activity in syngeneic tumor models. The combination of FOXP3 ASOs with immune checkpoint blockade further enhanced antitumor efficacy. CONCLUSIONS Antisense inhibitors of FOXP3 offer a promising novel cancer immunotherapy approach. AZD8701 is being developed clinically as a first-in-class FOXP3 inhibitor for the treatment of cancer currently in Ph1a/b clinical trial (NCT04504669).
Collapse
Affiliation(s)
| | | | | | - Ben Johnson
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | | | | | - Melissa Chapman
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Andrew Watt
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | | | - Gozde Kar
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Vasu Sah
- Oncology R&D, AstraZeneca, Waltham, MA, USA
| | | | | | | | | | | | - Paul Lyne
- Oncology R&D, AstraZeneca, Waltham, MA, USA
| | | | | | | | | |
Collapse
|
34
|
Li T, Liu W, Hui W, Shi T, Liu H, Feng Y, Gao F. Integrated Analysis of Ulcerative Colitis Revealed an Association between PHLPP2 and Immune Infiltration. DISEASE MARKERS 2022; 2022:4983471. [PMID: 35308140 PMCID: PMC8931176 DOI: 10.1155/2022/4983471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is a progressive intestine inflammatory disease that is prone to recur. Herein, we utilize microarray technology and bioinformatics to reveal the underlying pathogenesis of UC and provide novel markers. Colonic biopsies were taken from eight UC patients and eight healthy controls. Three differentially expressed miRNAs (DEMIs) and 264 differentially expressed genes (DEGs) were screened using mRNA and miRNA microarray. Most DEGs were significantly associated with immune response and were markedly enriched in the IL-17 signaling pathway. Among the target genes of DEMIs, PHLPP2 overlapped with DEGs and the downregulation of PHLPP2 group was mainly involved in the epithelial-mesenchymal transition. PHLPP2 was downregulated in UC patients, which was validated in 5 GEO datasets and qRT-PCR. The ROC curve demonstrated that PHLPP2 has a perfect ability to distinguish UC patients from healthy controls. Moreover, PHLPP2 was low expression in patients with active UC. CIBERSORT algorithm indicated that the abundance of gamma delta T cells (P = 0.04), M0 macrophages (P = 0.01), and activated mast cells (P < 0.01) was significantly greater than that of the control group. The Spearman correlation analysis showed that PHLPP2 was positively correlated with the proportion of activated NK cells (rho = 0.62, P = 0.013) and Tregs (rho = 0.55, P = 0.03), but negatively correlated with those of activated mast cells (rho = -0.8, P < 0.01) and macrophages (rho = -0.73, P < 0.01). These results indicate that PHLPP2 is associated with immune cells in the pathogenesis of UC, as well as provide new prospects and future directions of investigation.
Collapse
Affiliation(s)
- Ting Li
- Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Weidong Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Wenjia Hui
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Tian Shi
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Huan Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Yan Feng
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Feng Gao
- Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, China
| |
Collapse
|
35
|
Li Y, Zhou T, Cheng X, Li D, Zhao M, Zheng WV. microRNA-378a-3p regulates the progression of hepatocellular carcinoma by regulating PD-L1 and STAT3. Bioengineered 2022; 13:4730-4743. [PMID: 35184646 PMCID: PMC8973785 DOI: 10.1080/21655979.2022.2031408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Programmed death ligand 1 (PD-L1) plays an essential role in the development or progression of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression during normal and pathophysiological events. Here, we explored the functions and detailed mechanisms of miR-378a-3p and PD-L1 in HCC progression. First, miR-378a-3p was selected by analyzing miRNA levels in two HCC Gene Expression Omnibus datasets. We found that miR-378a-3p levels exhibited a downward trend in HCC and were negatively correlated with PD-L1 levels. Additionally, a dual luciferase assay predicted that miR-378a-3p directly targets PD-L1. Moreover, the transfection of miR-378a-3p mimics into Li-7 and HuH-7 cells effectively decreased the PD-L1 mRNA and protein expression levels, and inhibited Treg differentiation in co-culture models by modulating the expression levels of certain cytokines. Furthermore, the overexpression of miR-378a-3p hindered cell proliferation and migration but facilitated apoptosis by repressing STAT3 signaling in HCC cells. In conclusion, miR-378a-3p appears to inhibit HCC tumorigenesis by regulating PD-L1 and STAT3 levels. Thus, miR-378a-3p may be a potential target for HCC therapy.
Collapse
Affiliation(s)
- Yaqin Li
- Department of Infectious Disease, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Tao Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Xianyi Cheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Dezhi Li
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Meng Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei V. Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
36
|
Zanetti M, Xian S, Dosset M, Carter H. The Unfolded Protein Response at the Tumor-Immune Interface. Front Immunol 2022; 13:823157. [PMID: 35237269 PMCID: PMC8882736 DOI: 10.3389/fimmu.2022.823157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor-immune interface has surged to primary relevance in an effort to understand the hurdles facing immune surveillance and cancer immunotherapy. Reports over the past decades have indicated a role for the unfolded protein response (UPR) in modulating not only tumor cell fitness and drug resistance, but also local immunity, with emphasis on the phenotype and altered function of immune cells such as myeloid cells and T cells. Emerging evidence also suggests that aneuploidy correlates with local immune dysregulation. Recently, we reported that the UPR serves as a link between aneuploidy and immune cell dysregulation in a cell nonautonomous way. These new findings add considerable complexity to the organization of the tumor microenvironment (TME) and the origin of its altered function. In this review, we summarize these data and also discuss the role of aneuploidy as a negative regulator of local immunity.
Collapse
Affiliation(s)
- Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Maurizio Zanetti, ; orcid.org/0000-0001-6346-8776
| | - Su Xian
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA, United States
| | - Magalie Dosset
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
37
|
Wu F, Zhang L, Wang L, Zhang D. AGT May Serve as a Prognostic Biomarker and Correlated with Immune Infiltration in Gastric Cancer. Int J Gen Med 2022; 15:1865-1878. [PMID: 35264871 PMCID: PMC8899101 DOI: 10.2147/ijgm.s351662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Angiotensinogen (AGT), as a component of the renin–angiotensin system (RAS), is associated with multiple risk factors for gastric cancer (GC). However, the relationship between AGT and tumor-infiltrating lymphocytes in GC remains elusive. Methods AGT expression was analyzed based on the Cancer Genome Atlas (TCGA) dataset. Kaplan–Meier curve was employed to assess the role of AGT expression in gastric patients’ prognosis. The association between AGT expression and tumor immune infiltration was further evaluated via exploring Tumour Immune Estimation Resource (TIMER) and The Gene Expression Profiling Interactive Analysis (GEPIA). We also used multiple public databases to analyse the aberrant methylation of AGT, construct protein–protein interaction (PPI) and gene ontology (GO) analyses. Results AGT was overexpressed in GC tissues compared with normal gastric tissues (P<0.05). High AGT expression related with poorer overall survival of patients with GC, especially in advanced GC patients. Immune infiltration analysis revealed that AGT was associated with several immune cells (including B cells, CD4+ T cells, macrophages), and AGT expression was also associated with the markers of NK cells, TAMs, Tregs, and so on (all P<0.05). Methylation analysis indicated that hypomethylation may lead to abnormal upregulation of the AGT. GO analysis showed that AGT and its related genes were enriched in systemic arterial blood pressure by hormone, regulation of blood volume by renin-angiotensin, NIK/NF-kappaB signaling, ficolin-1-rich granule and so on. Conclusion AGT could act as a promising biomarker for prognosis and immune infiltration in GC.
Collapse
Affiliation(s)
- Fanqi Wu
- Department of Respiratory, Lanzhou University Second Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Longguo Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Li Wang
- Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, People’s Republic of China
- Correspondence: Dekui Zhang, Department of Gastroenterology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Lanzhou, Gansu Province, People’s Republic of China, Tel +86 13919788616, Email
| |
Collapse
|
38
|
Yun CO, Kasala D, Lee SH, Hong JW, Oh E, Yoon AR. Bioreducible polymer-mediated delivery of oncolytic adenovirus can attenuate antiviral immune response and concurrently enhance induction of antitumor immune response to effectively prevent metastasis. Biomater Sci 2022; 10:4293-4308. [DOI: 10.1039/d2bm00200k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oncolytic virotherapy is highly promising and novel treatment modality for cancer. Several clinical trials with oncolytic viruses have illustrated that the potent antitumor efficacy of these viruses may rely on...
Collapse
|
39
|
Whiteside TL. Tumor-Infiltrating Lymphocytes and Their Role in Solid Tumor Progression. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:89-106. [PMID: 35165861 PMCID: PMC9113058 DOI: 10.1007/978-3-030-91311-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor-infiltrating lymphocytes (TIL) are an important component of the tumor environment. Their role in tumor growth and progression has been debated for decades. Today, emphasis has shifted to beneficial effects of TIL for the host and to therapies optimizing the benefits by reducing immune suppression in the tumor microenvironment. Evidence indicates that when TILs are present in the tumor as dense aggregates of activated immune cells, tumor prognosis and responses to therapy are favorable. Gene signatures and protein profiling of TIL at the population and single-cell levels provide clues not only about their phenotype and numbers but also about TIL potential functions in the tumor. Correlations of the TIL data with clinicopathological tumor characteristics, clinical outcome, and patients' survival indicate that TILs exert influence on the disease progression, especially in colorectal carcinomas and breast cancer. At the same time, the recognition that TIL signatures vary with time and cancer progression has initiated investigations of TIL as potential prognostic biomarkers. Multiple mechanisms are utilized by tumors to subvert the host immune system. The balance between pro- and antitumor responses of TIL largely depends on the tumor microenvironment, which is unique in each cancer patient. This balance is orchestrated by the tumor and thus is shifted toward the promotion of tumor growth. Changes occurring in TIL during tumor progression appear to serve as a measure of tumor aggressiveness and potentially provide a key to selecting therapeutic strategies and inform about prognosis.
Collapse
Affiliation(s)
- Theresa L Whiteside
- Departments of Pathology and Immunology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Subramaniam S, Anandha Rao JS, Ramdas P, Ng MH, Kannan Kutty M, Selvaduray KR, Radhakrishnan AK. Reduced infiltration of regulatory T cells in tumours from mice fed daily with gamma-tocotrienol supplementation. Clin Exp Immunol 2021; 206:161-172. [PMID: 34331768 PMCID: PMC8506134 DOI: 10.1111/cei.13650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 01/08/2023] Open
Abstract
Gamma-tocotrienol (γT3) is an analogue of vitamin E with beneficial effects on the immune system, including immune-modulatory properties. This study reports the immune-modulatory effects of daily supplementation of γT3 on host T helper (Th) and T regulatory cell (Treg ) populations in a syngeneic mouse model of breast cancer. Female BALB/c mice were fed with either γT3 or vehicle (soy oil) for 2 weeks via oral gavage before they were inoculated with syngeneic 4T1 mouse mammary cancer cells (4T1 cells). Supplementation continued until the mice were euthanized. Mice (n = 6) were euthanized at specified time-points for various analysis (blood leucocyte, cytokine production and immunohistochemistry). Tumour volume was measured once every 7 days. Gene expression studies were carried out on tumour-specific T lymphocytes isolated from splenic cultures. Supplementation with γT3 increased CD4+ (p < 0.05), CD8+ (p < 0.05) T-cells and natural killer cells (p < 0.05) but suppressed Treg cells (p < 0.05) in peripheral blood when compared to animals fed with the vehicle. Higher interferon (IFN)-γ and lower transforming growth factor (TGF)-ꞵ levels were noted in the γT3 fed mice. Immunohistochemistry findings revealed higher infiltration of CD4+ cells, increased expression of interleukin-12 receptor-beta-2 (IL-12ꞵ2R), interleukin (IL)-24 and reduced expression of cells that express the forkhead box P3 (FoxP3) in tumours from the γT3-fed animals. Gene expression studies showed the down-regulation of seven prominent genes in splenic CD4+ T cells isolated from γT3-fed mice. Supplementation with γT3 from palm oil-induced T cell-dependent cell-mediated immune responses and suppressed T cells in the tumour microenvironment in a syngeneic mouse model of breast cancer.
Collapse
Affiliation(s)
- Shonia Subramaniam
- School of Postgraduate StudiesInternational Medical UniversityKuala LumpurMalaysia
- Product Development and Advisory ServicesMalaysian Palm Oil BoardKajangMalaysia
| | - Jeya Seela Anandha Rao
- Pathology DivisionSchool of MedicineInternational Medical UniversityKuala LumpurMalaysia
| | - Premdass Ramdas
- Division of Applied Biomedical Sciences and BiotechnologySchool of Health SciencesInternational Medical UniversityKuala LumpurMalaysia
| | - Mei Han Ng
- Engineering and ProcessingMalaysian Palm Oil BoardKajangMalaysia
| | | | | | - Ammu Kutty Radhakrishnan
- Pathology DivisionSchool of MedicineInternational Medical UniversityKuala LumpurMalaysia
- Jeffery Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
41
|
Moatti A, Cohen JL. The TNF-α/TNFR2 Pathway: Targeting a Brake to Release the Anti-tumor Immune Response. Front Cell Dev Biol 2021; 9:725473. [PMID: 34712661 PMCID: PMC8546260 DOI: 10.3389/fcell.2021.725473] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Newly discovered anti-cancer immunotherapies, such as immune checkpoint inhibitors and chimeric antigen receptor T cells, focus on spurring the anti-tumor effector T cell (Teff) response. Although such strategies have already demonstrated a sustained beneficial effect in certain malignancies, a substantial proportion of treated patients does not respond. CD4+FOXP3+ regulatory T cells (Tregs), a suppressive subset of T cells, can impair anti-tumor responses and reduce the efficacy of currently available immunotherapies. An alternative view that has emerged over the last decade proposes to tackle this immune brake by targeting the suppressive action of Tregs on the anti-tumoral response. It was recently demonstrated that the tumor necrosis factor alpha (TNF-α) tumor necrosis factor receptor 2 (TNFR2) is critical for the phenotypic stabilization and suppressive function of human and mouse Tregs. The broad non-specific effects of TNF-α infusion in patients initially led clinicians to abandon this signaling pathway as first-line therapy against neoplasms. Previously unrecognized, TNFR2 has emerged recently as a legitimate target for anti-cancer immune checkpoint therapy. Considering the accumulation of pre-clinical data on the role of TNFR2 and clinical reports of TNFR2+ Tregs and tumor cells in cancer patients, it is now clear that a TNFR2-centered approach could be a viable strategy, once again making the TNF-α pathway a promising anti-cancer target. Here, we review the role of the TNFR2 signaling pathway in tolerance and the equilibrium of T cell responses and its connections with oncogenesis. We analyze recent discoveries concerning the targeting of TNFR2 in cancer, as well as the advantages, limitations, and perspectives of such a strategy.
Collapse
Affiliation(s)
- Audrey Moatti
- Université Paris-Est Créteil Val de Marne, INSERM, IMRB, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Créteil, France
| | - José L Cohen
- Université Paris-Est Créteil Val de Marne, INSERM, IMRB, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Créteil, France
| |
Collapse
|
42
|
Mandapathil M, Szczepanski MJ, Jackson EK, Lang S, Whiteside TL. Breast Cancer Cell-Derived Adenosine Enhances Generation and Suppressor Function of Human Adaptive Regulatory T Cells. J Pers Med 2021; 11:jpm11080754. [PMID: 34442398 PMCID: PMC8401826 DOI: 10.3390/jpm11080754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction: Adaptive regulatory T cells (Tr1) are induced in the periphery by environmental stimuli. CD73 expression and adenosine (ADO) production by tumor cells may influence Tr1 generation and their immunosuppressive activity. Material and Methods: Tr1 were generated in co-cultures of CD4+CD25neg T cells, autologous immature dendritic cells (iDC), and irradiated ADO-producing CD73+ or non-producing CD73neg breast cancer (BrCa) cell lines (TU). The expression of ectonucleotidases and other surface markers on Tr1 was determined by flow cytometry. Tr1-mediated suppression of proliferation was evaluated in CFSE-based assays. Luciferase-based ATP detection assays and mass spectrometry were used to measure ATP hydrolysis and ADO levels. Cytokine levels were measured by ELISA or Luminex. CD73 expression on tumor cells or T cells in TU tissues was assessed by immunofluorescence. Results: CD73+ TU induced higher numbers of Tr1 cells (p < 0.01) than CD73neg TU. Tr1TU73+ hydrolyzed more exogenous ATP, produced more ADO, and mediated higher suppression than Tr1TU73neg (p < 0.05 for all). ARL67156, an ectonucleotidase inhibitor, and ZM241385, A2A receptor antagonist, reduced suppression of proliferation mediated by Tr1TU73+ cells (p < 0.01). Basal-like primary BrCa cells expressed higher levels of ectonucleotidases and induced more Tr1 than less aggressive primary luminal-like BrCa. Conclusion: BrCa producing ADO (CD73+ TU) favor the induction of Tr1, which expresses CD39 and CD73, hydrolyzes ATP to ADO, and effectively suppresses anti-tumor immunity.
Collapse
Affiliation(s)
- Magis Mandapathil
- Department of Otorhinolaryngology, Asklepios Clinic St. Georg, 20099 Hamburg, Germany
- Department of Otorhinolaryngol Head & Neck Surg, Philipps University of Marburg, 35033 Marburg, Germany
- Correspondence: ; Tel.: +49-40-18-18-854144; Fax: +49-40-18-18-852237
| | | | - Edwin K. Jackson
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Stephan Lang
- Department of Otorhinolaryngology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| |
Collapse
|
43
|
Kwiatkowska I, Hermanowicz JM, Przybyszewska-Podstawka A, Pawlak D. Not Only Immune Escape-The Confusing Role of the TRP Metabolic Pathway in Carcinogenesis. Cancers (Basel) 2021; 13:2667. [PMID: 34071442 PMCID: PMC8198784 DOI: 10.3390/cancers13112667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The recently discovered phenomenon that cancer cells can avoid immune response has gained scientists' interest. One of the pathways involved in this process is tryptophan (TRP) metabolism through the kynurenine pathway (KP). Individual components involved in TRP conversion seem to contribute to cancerogenesis both through a direct impact on cancer cells and the modulation of immune cell functionality. Due to this fact, this pathway may serve as a target for immunotherapy and attempts are being made to create novel compounds effective in cancer treatment. However, the results obtained from clinical trials are not satisfactory, which raises questions about the exact role of KP elements in tumorigenesis. An increasing number of experiments reveal that TRP metabolites may either be tumor promoters and suppressors and this is why further research in this field is highly needed. The aim of this study is to present KP as a modulator of cancer development through multiple mechanisms and to point to its ambiguity, which may be a reason for failures in treatment based on the inhibition of tryptophan metabolism.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | | | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| |
Collapse
|
44
|
Gaiani F, Marchesi F, Negri F, Greco L, Malesci A, de’Angelis GL, Laghi L. Heterogeneity of Colorectal Cancer Progression: Molecular Gas and Brakes. Int J Mol Sci 2021; 22:5246. [PMID: 34063506 PMCID: PMC8156342 DOI: 10.3390/ijms22105246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
The review begins with molecular genetics, which hit the field unveiling the involvement of oncogenes and tumor suppressor genes in the pathogenesis of colorectal cancer (CRC) and uncovering genetic predispositions. Then the notion of molecular phenotypes with different clinical behaviors was introduced and translated in the clinical arena, paving the way to next-generation sequencing that captured previously unrecognized heterogeneity. Among other molecular regulators of CRC progression, the extent of host immune response within the tumor micro-environment has a critical position. Translational sciences deeply investigated the field, accelerating the pace toward clinical transition, due to its strong association with outcomes. While the perturbation of gut homeostasis occurring in inflammatory bowel diseases can fuel carcinogenesis, micronutrients like vitamin D and calcium can act as brakes, and we discuss underlying molecular mechanisms. Among the components of gut microbiota, Fusobacterium nucleatum is over-represented in CRC, and may worsen patient outcome. However, any translational knowledge tracing the multifaceted evolution of CRC should be interpreted according to the prognostic and predictive frame of the TNM-staging system in a perspective of clinical actionability. Eventually, we examine challenges and promises of pharmacological interventions aimed to restrain disease progression at different disease stages.
Collapse
Affiliation(s)
- Federica Gaiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, via Gramsci 14, 43126 Parma, Italy
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy; (F.M.); (A.M.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20132 Milan, Italy
| | - Francesca Negri
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy;
| | - Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy;
| | - Alberto Malesci
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy; (F.M.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| | - Gian Luigi de’Angelis
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, via Gramsci 14, 43126 Parma, Italy
| | - Luigi Laghi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy;
| |
Collapse
|
45
|
Hori Y, Kubota A, Yokose T, Furukawa M, Matsushita T, Katsumata N, Oridate N. Prognostic Role of Tumor-Infiltrating Lymphocytes and Tumor Budding in Early Oral Tongue Carcinoma. Laryngoscope 2021; 131:2512-2518. [PMID: 33955550 PMCID: PMC8518756 DOI: 10.1002/lary.29589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/02/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Objectives/Hypothesis Occult lymph metastasis is an important prognosticator for the treatment of early oral tongue squamous cell carcinoma (SCC). The objective of this study was to evaluate the prognostic significance of tumor‐infiltrating lymphocytes (TILs) in early oral tongue SCC. The combination of the TIL subtype and intermediate‐ or high‐grade budding scores was investigated as a prognostic marker for occult neck metastases. Study Design Retrospective study. Methods Specimens from 62 patients with early oral tongue SCC treated with only primary surgery were analyzed by immunohistochemistry for CD4+, CD8+, FoxP3+, and CD45RO+ T cells and CD163+ macrophages. The highest number of each TIL subtype was counted in two areas of parenchyma and stroma in the tumor (Tumor) and peripheral stroma of the invasion margin. Results Based on multivariate analysis, a high density of Tumor CD163+ macrophages served as the poorest prognostic factor for regional control (RC) and disease‐free survival (DFS). Patients with both a high density of Tumor CD163+ macrophages and an intermediate‐ or a high‐grade budding score had a poor prognosis for RC according to the log‐rank test. Conclusions In summary, each TIL subtype may use different mechanisms during early and advanced stages of oral tongue SCC. A high density of Tumor CD163+ macrophages was determined to be a risk factor for RC and DFS as well as an additional stratification factor for RC in patients with intermediate‐ or high‐grade budding scores. Therefore, identifying TIL subtypes in daily clinical practice can help determine a more successful and individualized therapeutic approach for early oral tongue SCC. Level of Evidence Step 4 (Level 4) Laryngoscope, 131:2512–2518, 2021
Collapse
Affiliation(s)
- Yukiko Hori
- Department of Otorhinolaryngology, Shinshu Ueda Medical Center, Ueda, Nagano, Japan.,Department of Head and Neck Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Akira Kubota
- Department of Head and Neck Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan.,Department of Otorhinolaryngology, Hiro Yama Clinic, Tokyo, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Madoka Furukawa
- Department of Head and Neck Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takeshi Matsushita
- Department of Head and Neck Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan.,Department of Otorhinolaryngology, Yokosuka General Hospital Uwamachi, Yokosuka, Kanagawa, Japan
| | - Noriyuki Katsumata
- Department of Head and Neck Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Nobuhiko Oridate
- Department of Otolaryngology Head and Neck Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
46
|
Park SJ, Lee J, Kim H, Shin K, Lee M, Park JM, Choi MG, Park CH, Song KY, Lee HH, Kim IH. Association between absolute lymphocyte count and overall mortality in patients with surgically resected gastric cancer. Korean J Intern Med 2021; 36:679-688. [PMID: 33601866 PMCID: PMC8137401 DOI: 10.3904/kjim.2019.358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/20/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS Lymphocytes are an important component of the cell-mediated immune system. As lymphopenia is reportedly associated with poor prognoses in patients with various cancers, we investigated this notion in patients who underwent curative gastrectomy. METHODS We retrospectively analyzed the association between absolute lymphocyte count (ALC) and prognosis in patients with stage I-III gastric cancer who underwent curative surgical resection. Ever lymphopenic patients were defined as those with ALCs < 1,000/μL at any time post-diagnosis except within 30 days post-surgery. Adjusted multivariable regression models were used to evaluate the associations between lymphopenia and overall mortality, gastric cancer-specific mortality, and disease-free survival. RESULTS We investigated 1,222 patients diagnosed between January 2011 and December 2015. Fifty-six patients (4.6%) were lymphopenic at diagnosis and nearly one-quarter (24.8%) were ever lymphopenic with a mean minimum ALC of 640/μL. Older age (odds ratio [OR], 1.02) and higher stage (stage III vs. I; OR, 3.01) were positively associated with ever lymphopenia. On multivariable analysis, ever lymphopenia predicted higher overall mortality (hazard ratio [HR], 1.83; p = 0.008), higher gastric cancer-specific mortality (HR, 1.58; p = 0.048), and shorter disease-free survival (HR, 1.83; p = 0.006). The 5-year gastric cancer-specific mortality rates for ever- and never lymphopenic patients were 10.9% and 3.7%, respectively; their 5-year cumulative recurrence rates were 15.1% and 4.6%, respectively. CONCLUSION This study demonstrate that ever lymphopenia is independent prognostic factor for overall mortality and recurrence in patients with potentially curable gastric cancer; hence, ALCs may be a biomarker for predicting the prognoses of patients with stage I-III gastric cancer who had curative gastrectomy.
Collapse
Affiliation(s)
- Se Jun Park
- Divisions of Medical Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Jinsoo Lee
- Divisions of Medical Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Hyunho Kim
- Divisions of Medical Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Kabsoo Shin
- Divisions of Medical Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - MyungAh Lee
- Divisions of Medical Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Jae Myung Park
- Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Myung-Gyu Choi
- Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Cho Hyun Park
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Kyo Young Song
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Han Hong Lee
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - In-Ho Kim
- Divisions of Medical Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| |
Collapse
|
47
|
Luker GD, Yang J, Richmond A, Scala S, Festuccia C, Schottelius M, Wester HJ, Zimmermann J. At the Bench: Pre-clinical evidence for multiple functions of CXCR4 in cancer. J Leukoc Biol 2021; 109:969-989. [PMID: 33104270 PMCID: PMC8254203 DOI: 10.1002/jlb.2bt1018-715rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Signaling through chemokine receptor, C-X-C chemokine receptor type 4 (CXCR4) regulates essential processes in normal physiology, including embryogenesis, tissue repair, angiogenesis, and trafficking of immune cells. Tumors co-opt many of these fundamental processes to directly stimulate proliferation, invasion, and metastasis of cancer cells. CXCR4 signaling contributes to critical functions of stromal cells in cancer, including angiogenesis and multiple cell types in the tumor immune environment. Studies in animal models of several different types of cancers consistently demonstrate essential functions of CXCR4 in tumor initiation, local invasion, and metastasis to lymph nodes and distant organs. Data from animal models support clinical observations showing that integrated effects of CXCR4 on cancer and stromal cells correlate with metastasis and overall poor prognosis in >20 different human malignancies. Small molecules, Abs, and peptidic agents have shown anticancer efficacy in animal models, sparking ongoing efforts at clinical translation for cancer therapy. Investigators also are developing companion CXCR4-targeted imaging agents with potential to stratify patients for CXCR4-targeted therapy and monitor treatment efficacy. Here, pre-clinical studies demonstrating functions of CXCR4 in cancer are reviewed.
Collapse
Affiliation(s)
- Gary D Luker
- Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jinming Yang
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Ann Richmond
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Stefania Scala
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Claudio Festuccia
- Department of Applied Clinical Science and Biotechnologies, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Margret Schottelius
- Department of Nuclear Medicine, Centre Hospitalier Universitaire Vaudois, and Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Hans-Jürgen Wester
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
48
|
The Emerging Role of Immunotherapy in Intrahepatic Cholangiocarcinoma. Vaccines (Basel) 2021; 9:vaccines9050422. [PMID: 33922362 PMCID: PMC8146949 DOI: 10.3390/vaccines9050422] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
Biliary tract cancer, and intrahepatic cholangiocarcinoma (iCC) in particular, represents a rather uncommon, highly aggressive malignancy with unfavorable prognosis. Therapeutic options remain scarce, with platinum-based chemotherapy is being considered as the gold standard for the management of advanced disease. Comprehensive molecular profiling of tumor tissue biopsies, utilizing multi-omics approaches, enabled the identification of iCC’s intratumor heterogeneity and paved the way for the introduction of novel targeted therapies under the scope of precision medicine. Yet, the unmet need for optimal care of patients with chemo-refractory disease or without targetable mutations still exists. Immunotherapy has provided a paradigm shift in cancer care over the past decade. Currently, immunotherapeutic strategies for the management of iCC are under intense research. Intrinsic factors of the tumor, including programmed death-ligand 1 (PD-L1) expression and mismatch repair (MMR) status, are simply the tip of the proverbial iceberg with regard to resistance to immunotherapy. Acknowledging the significance of the tumor microenvironment (TME) in both cancer growth and drug response, we broadly discuss about its diverse immune components. We further review the emerging role of immunotherapy in this rare disease, summarizing the results of completed and ongoing phase I–III clinical trials, expounding current challenges and future directions.
Collapse
|
49
|
Alam W, Bouferraa Y, Haibe Y, Shamseddine A. Complete Radiological Response of Recurrent Metastatic Adrenocortical Carcinoma to Pembrolizumab and Mitotane. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 15:11795549211007682. [PMID: 33889043 PMCID: PMC8040600 DOI: 10.1177/11795549211007682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/10/2021] [Indexed: 11/29/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. Treatment options for ACC are limited, with resection the main intervention. Most cases present in late metastatic cases, and data regarding effective therapies is limited. We report a case of ACC in a 40-year-old woman with history of ACC postadrenalectomy, who presented with recurrent metastatic ACC in the left perinephric space. She was started on pembrolizumab which was added to her mitotane maintenance therapy. Complete radiological response was achieved after 4 cycles of pembrolizumab. As far as we know, this is the first case to achieve complete radiological response with mitotane and pembrolizumab in recurrent metastatic ACC, with negative prognostic markers and no prior radiotherapy. As our findings are in the setting of one clinical case, we suggest the need to perform a trial to assess the benefit of combining mitotane and pembrolizumab in treating metastatic ACC.
Collapse
Affiliation(s)
- Walid Alam
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Youssef Bouferraa
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yolla Haibe
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
50
|
Cheng X, Ma T, Yi L, Su C, Wang X, Wen T, Wang B, Wang Y, Zhang H, Liu Z. Low expression of BTN3A3 indicates poor prognosis and promotes cell proliferation, migration and invasion in non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:478. [PMID: 33850875 PMCID: PMC8039694 DOI: 10.21037/atm-21-163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background The butyrophilin (BTN) family has many members with diverse functions related to immunomodulation, initiation and progression of tumors. BTN3A3 belongs to the BTN family, and exploring its expression and correlation with the prognosis of non-small cell lung cancer (NSCLC) patients has great clinical significance. Methods Clinical specimens were used to detect BTN3A3 expression. Small interfering RNA (siRNA) was used to knock down BTN3A3 and analyze the proliferative, migratory and invading ability of the transfected NSCLC cells. Multiplex immunofluorescence staining was used to detect the expression of BTN3A3 protein in the tumor microenvironment (TME). We analyzed the relationship between the expression of BTN3A3 and the clinicopathological features and prognosis of NSCLC patients. Results The expression of BTN3A3 in NSCLC tissues was significantly lower than in adjacent tissues, and patients with low expression of BTN3A3 had late clinical stages and lower degree of tumor differentiation. Knocking down BTN3A3 promoted the proliferation, migration and invasion of NSCLC. In the TME, the density of BTN3A3+ tumor cells positively correlated with the density of CD8+ T cells, and the patients with low expression of BTN3A3 had poor overall survival (OS). Conclusions Changes in the BTN3A3 expression level may play a potential key role in the carcinogenesis and development of NSCLC. Patients with low expression of BTN3A3 showed a more aggressive and invasive phenotype and a lower level of CD8+ T-cell infiltration, which may be an important factor affecting the OS of NSCLC patients.
Collapse
Affiliation(s)
- Xu Cheng
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tianyu Ma
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ling Yi
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Chongyu Su
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaojue Wang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tao Wen
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bing Wang
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yuxuan Wang
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhidong Liu
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|