1
|
Zhang L, Zhuge Y, Ni J. BUB1 serves as a biomarker for poor prognosis in liver hepatocellular carcinoma. BMC Immunol 2025; 26:20. [PMID: 40069598 PMCID: PMC11895216 DOI: 10.1186/s12865-025-00698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most frequent kind of liver cancer with high morbidity and mortality rates worldwide. Altered expression of BUB1 (budding uninhibited by benzimidazole 1) gene leads to chromosome instability and aneuploidy. This study investigated the expression of BUB1 and its prognostic value as well as its correlation with immune cell infiltration and immune checkpoints in HCC. RESULTS Using the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, we found that BUB1 was up-regulated in HCC, thus prompting us to validate this observation by immunohistochemistry on 57 HCC paraffin embedded tissues from Wuxi No.2 People's Hospital. Kaplan-Meier survival analysis revealed that HCC patients with high BUB1 expression had shorter overall survival (OS) time as well as progression-free interval (PFI), and disease-specific survival (DSS) time compared to the patients with low BUB1 expression. Besides, STRING database showed that the top 10 co-expression genes were mainly involved in the regulation of cell division during the mitosis. Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that BUB1 had a connection to cancer related pathways. Lastly, The Tumor Immune Estimation Resource (TIMER) analysis found that BUB1 was positively related to immune cell infiltration and some immune checkpoint gene in HCC. CLINICAL TRIAL NUMBER Not applicable. CONCLUSIONS Our present study demonstrated that BUB1 is a potential prognostic biomarker, and BUB1 may play a role in the tumor immune microenvironment in HCC.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Department of Gastroenterology, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, Wuxi, Jiangsu Province, China.
| | - Yuzheng Zhuge
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Jingbin Ni
- Department of Gastroenterology, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, Wuxi, Jiangsu Province, China
| |
Collapse
|
2
|
Liu T, Chen R, Bu D, Shi Z, Zhang H, Li W, Liu D. An epidemiological study of hepatitis virus infection in psychiatric patients in East China. BMC Public Health 2025; 25:869. [PMID: 40038657 DOI: 10.1186/s12889-025-22081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUNDS Psychiatric patients have been the focus of social attention, and they may be more susceptible to hepatitis viruses. This study aims to investigate the prevalence and influencing factors of hepatitis virus infection among psychiatric patients in East China. METHODS A total of 6,5911 newly admitted psychiatric patients at Shandong Daizhuang Hospital from 2017 to 2023 were included in this study. Test results of serum biomarkers for HBV and HCV infection were collected from psychiatric patients. Background information such as sex, age, ethnicity, marital status, occupation, residence, region, and types of psychosis were collected. Results of serum markers for hepatitis B and C were also collected from 23,628 non-psychiatric individuals. RESULTS In the study area, the HBV infection rate in psychiatric patients was 3.75% (95% CI: 3.46-3.74%) and showed a decreasing trend by year (p for trend = 0.000). The HCV infection rate in psychiatric patients was 0.23% (95% CI: 0.19-0.27%). The HBV infection rates differed among sex, age, marital status, occupation, residence, region, severity, and psychosis types. The HCV infection rates differed among age, marital status, occupation, and psychosis types. The HBV infection rate in psychiatric patients was positively skewed with age, being lowest in the age group of 5-15 years old and the highest in the age group of 36-40 years old, similar to the distribution of HBV infection in non-psychiatric patients. The HCV infection rate in psychiatric patients increased with age (p for trend = 0.000) and was similar to non-psychiatric patients (p for trend = 0.000). Compared with non-psychiatric patients, the "Mental and behavioural disorders due to use of alcohol", "Schizophrenia", "Mental disorders due to epilepsy", "Behavioural and emotional disorders with onset usually occurring in childhood and adolescence", "Obsessive-compulsive disorder", "Somatoform disorders" and "Depressive episode" become influencing factors for HBV infection. Compared with non-psychiatric patients, the "Dementia in other diseases classified elsewhere", "Depressive episode" become influencing factors for HCV infection. Being male, jobless and living in rural were risk factors for HBV infection, and urban became a risk factor for HCV infection. DISCUSSION AND CONCLUSION The rate of HBV and HCV infection among psychiatric patients in this region have remained low. Gender, age, occupation, residence, and types of psychosis were identified as potential influencing factors for hepatitis virus infection.
Collapse
Affiliation(s)
- Taixiu Liu
- Department of clinical laboratory, Shandong Daizhuang Hospital, Jining, 272051, China
- Jining Key Laboratory of Psychopharmacology, Jining, 272051, China
| | - Ruirui Chen
- Department of clinical laboratory, Shandong Daizhuang Hospital, Jining, 272051, China
- Jining Key Laboratory of Psychopharmacology, Jining, 272051, China
| | - Deyun Bu
- Qingdao West Coast New Area Center for Disease Control and Prevention, Qingdao, 266499, China
| | - Zheng Shi
- Department of clinical laboratory, Shandong Daizhuang Hospital, Jining, 272051, China
- Jining Key Laboratory of Psychopharmacology, Jining, 272051, China
| | - Heng Zhang
- Department of clinical laboratory, Shandong Daizhuang Hospital, Jining, 272051, China
- Jining Key Laboratory of Psychopharmacology, Jining, 272051, China
| | - Wu Li
- Department of psychiatry, Shandong Daizhuang Hospital, Jining, 272051, China
| | - Dong Liu
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining, 272029, China.
| |
Collapse
|
3
|
Nagashima S, Kobayashi S, Tsunoda S, Yamachika Y, Tozuka Y, Fukushima T, Morimoto M, Ueno M, Furuse J, Maeda S. A case of complete remission by cabozantinib as an end-line treatment for advanced hepatocellular carcinoma. Clin J Gastroenterol 2025; 18:125-129. [PMID: 39616585 PMCID: PMC11785699 DOI: 10.1007/s12328-024-02062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/07/2024] [Indexed: 02/01/2025]
Abstract
Cabozantinib is a multi-kinase inhibitor targeting multiple tyrosine kinases. It improves overall survival and progression-free survival in patients previously treated with sorafenib for advanced hepatocellular carcinoma (HCC) compared to the placebo in the phase 3 CELESTIAL trial. A 71-year-old man presented to our hospital for treatment of HCC with chronic hepatitis C. He was refractory to sorafenib, lenvatinib, regorafenib, and ramucirumab and started atezolizumab and bevacizumab therapy in November 2020. After administering the second cycle on December 10, 2020, the patient was diagnosed with progressive disease in January 2021. Therefore, cabozantinib (60 mg/day) was initiated on January 14, 2021. As the grade 3 aspartate aminotransferase and alanine aminotransferase levels increased, grade 3 anorexia and a decline in performance status were observed in the first week, and cabozantinib was terminated. His performance status and anorexia gradually improved, and contrast-enhanced computed tomography (CT) in June 2021 showed complete remission (CR) according to the modified Response Evaluation Criteria in Solid Tumors. The patient did not show disease progression for 11 months without receiving any treatment for HCC. To the best of our knowledge, this is the first report of CR with cabozantinib in advanced HCC.
Collapse
Affiliation(s)
- Shuhei Nagashima
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao Asahi-ku, Yokohama, 241-8515, Japan.
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Satoshi Kobayashi
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao Asahi-ku, Yokohama, 241-8515, Japan
| | - Shotaro Tsunoda
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao Asahi-ku, Yokohama, 241-8515, Japan
| | - Yui Yamachika
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao Asahi-ku, Yokohama, 241-8515, Japan
| | - Yuichiro Tozuka
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao Asahi-ku, Yokohama, 241-8515, Japan
| | - Taito Fukushima
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao Asahi-ku, Yokohama, 241-8515, Japan
| | - Manabu Morimoto
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao Asahi-ku, Yokohama, 241-8515, Japan
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao Asahi-ku, Yokohama, 241-8515, Japan
| | - Junji Furuse
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao Asahi-ku, Yokohama, 241-8515, Japan
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| |
Collapse
|
4
|
Wang J, Chen X, Wu D, Jia C, Lian Q, Pan Y, Yang J. Single-cell and machine learning approaches uncover intrinsic immune-evasion genes in the prognosis of hepatocellular carcinoma. LIVER RESEARCH 2024; 8:282-294. [PMID: 39958919 PMCID: PMC11771279 DOI: 10.1016/j.livres.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/07/2024] [Accepted: 11/01/2024] [Indexed: 02/18/2025]
Abstract
Background and aims Hepatocellular carcinoma (HCC) is a tumor of high heterogeneity and complexity, which poses significant challenges to effective treatment and patient prognosis because of its immune evasion characteristics. To address these issues, single-cell technology and machine learning methods have emerged as a promising approach to identify genes associated with immune escape in HCC. This study aimed to develop a prognostic risk score model for HCC by identifying intrinsic immune-evasion genes (IIEGs) through single-cell technology and machine learning, providing insights into immune infiltration, enhancing predictive accuracy, and facilitating the development of more effective treatment strategies. Materials and methods The study utilized data from The Cancer Genome Atlas database to analyze gene expression profiles and clinical data related to intrinsic immune evasion in patients with HCC. Various tools, including the Human Protein Atlas, cBioPortal, single-cell analysis, machine learning, and Kaplan-Meier plot, were used to analyze IIEGs. Functional enrichment analysis was conducted to explore potential mechanisms. In addition, the abundance of infiltrating cells in the tumor microenvironment was investigated using single-sample gene set enrichment analysis, CIBERSORT, xCELL, and tumor immunophenotype algorithms. The expression of glycosylphosphatidylinositol anchor attachment 1 (GPAA1) was examined in the clinical sample of HCC by quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemical staining. Results Univariate Cox analysis identified 63 IIEGs associated with the prognosis of HCC. Using random forest, least absolute shrinkage and selection operator regression analysis, and support vector machine, a risk score model consisting of six IIEGs (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), phosphatidylinositol glycan anchor biosynthesis class U (PIGU), endoplasmic reticulum membrane protein complex subunit 3 (EMC3), centrosomal protein 55 (CEP55), autophagy-related 10 (ATG10), and GPAA1) developed, which was validated using 10 pairs of HCC and adjacent non-cancerous samples. Based on the calculated median risk score, HCC samples were categorized into high- and low-risk groups. The Kaplan-Meier curve analysis showed that the high-risk group had a worse prognosis compared with the low-risk group. Time-dependent receiver operating characteristic analysis demonstrated the accurate predictive capability of the risk score model for HCC prognosis. Furthermore, immune infiltration analysis showed a positive correlation between the risk score model and 40 immune checkpoint genes as well as Th2 cells. Conclusions A prognostic risk score model was formulated by six IIEG signatures and showed promise in predicting the prognosis of patients diagnosed with HCC. The utilization of the IIEG risk score as a novel prognostic index, together with its significance as a valuable biomarker for immunotherapy in HCC, provides benefit for patients with HCC in determining therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Jiani Wang
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaopeng Chen
- Department of Hepatobiliary Surgery, The Third Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Donghao Wu
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Changchang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qinghai Lian
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuhang Pan
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiumei Yang
- Medical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Liu B, Yuan X, Dong K, Zhang J, Fu T, Du C. Exploration of the role of EMC3‑AS1 as a potential diagnostic and prognostic indicator in liver cancer. Oncol Lett 2024; 28:412. [PMID: 38988441 PMCID: PMC11234810 DOI: 10.3892/ol.2024.14545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
The aim of the present study was to evaluate the diagnostic and prognostic significance of the long non-coding RNA (lncRNA) endoplasmic reticulum membrane protein complex subunit 3 antisense RNA 1 (EMC3-AS1) in liver cancer, and its impact on the proliferative and invasive capabilities of liver cancer cells. EMC3-AS1 expression in liver cancer was assessed using data from The Cancer Genome Atlas and three Gene Expression Omnibus datasets, and validated in clinical liver cancer samples using reverse transcription-quantitative PCR. The prognostic and diagnostic potentials of this lncRNA were evaluated using Kaplan-Meier and receiver operating characteristic analyses, respectively. The infiltration of immune cells and differential expression of immune checkpoints (ICs) between high- and low-EMC3-AS1 expression groups were investigated. Therapeutic correlation analyses were also undertaken to assess the impact of EMC3-AS1 in the treatment of liver cancer. In addition, in vitro experiments were conducted using small interfering RNA to knock down the expression of EMC3-AS1 in HepG2, Sk-Hep-1 and Huh-7 cells, and evaluate the effect on cell proliferation, colony formation and migration. The results revealed a significant upregulation of EMC3-AS1 expression in liver cancer tissues compared with that in adjacent normal tissues, which was associated with an unfavorable prognosis and demonstrated diagnostic effectiveness for patients with liver cancer. Furthermore, patients with high EMC3-AS1 expression exhibited increased levels of IC markers in comparison with those with low EMC3-AS1 expression. In addition, EMC3-AS1 was indicated to have clinical significance in the prediction of the response to immunotherapy and chemotherapy. Notably, the in vitro experiments demonstrated that the knockdown of EMC3-AS1 significantly hindered cell proliferation, colony formation and migration. Consequently, it was concluded that EMC3-AS1 is upregulated in liver cancer and serves as a prognostic indicator for unfavorable outcomes in patients with liver cancer. Additionally, targeting EMC3-AS1 through knockdown interventions showed potential in mitigating the ability of liver cancer cells to proliferate and migrate, which highlights its dual role as a biomarker and therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Bo Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
- Department of Hepatobiliary Surgery, Pidu District People's Hospital of Chengdu, Chengdu, Sichuan 611730, P.R. China
| | - Xia Yuan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ke Dong
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Pidu District People's Hospital of Chengdu, Chengdu, Sichuan 611730, P.R. China
| | - Tingting Fu
- Department of Nosocomial Infection Control, Pidu District People's Hospital of Chengdu, Chengdu, Sichuan 611730, P.R. China
| | - Chengyou Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
6
|
Wang DH, Ye LH, Ning JY, Zhang XK, Lv TT, Li ZJ, Wang ZY. Single-cell sequencing and multiple machine learning algorithms to identify key T-cell differentiation gene for progression of NAFLD cirrhosis to hepatocellular carcinoma. Front Mol Biosci 2024; 11:1301099. [PMID: 38993839 PMCID: PMC11237165 DOI: 10.3389/fmolb.2024.1301099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/20/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction: Hepatocellular carcinoma (HCC), which is closely associated with chronicinflammation, is the most common liver cancer and primarily involves dysregulated immune responses in the precancerous microenvironment. Currently, most studies have been limited to HCC incidence. However, the immunopathogenic mechanisms underlying precancerous lesions remain unknown. Methods: We obtained single-cell sequencing data (GSE136103) from two nonalcoholic fatty liver disease (NAFLD) cirrhosis samples and five healthy samples. Using pseudo-time analysis, we systematically identified five different T-cell differentiation states. Ten machine-learning algorithms were used in 81 combinations to integrate the frameworks and establish the best T-cell differentiation-related prognostic signature in a multi-cohort bulk transcriptome analysis. Results: LDHA was considered a core gene, and the results were validated using multiple external datasets. In addition, we validated LDHA expression using immunohistochemistry and flow cytometry. Conclusion: LDHA is a crucial marker gene in T cells for the progression of NAFLD cirrhosis to HCC.
Collapse
Affiliation(s)
- De-hua Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Division of Liver Disease, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-hong Ye
- Department of Pathology, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing-yuan Ning
- Department of Immunology, Immunology Department of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiao-kuan Zhang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ting-ting Lv
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zi-jie Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhi-yu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Gong L, Wang W, Yu F, Deng Z, Luo N, Zhang X, Chen J, Peng J. Caffeic acid phenethyl ester derivative exerts remarkable anti-hepatocellular carcinoma effect, non-inferior to sorafenib, in vivo analysis. Sci Rep 2024; 14:14546. [PMID: 38914695 PMCID: PMC11196574 DOI: 10.1038/s41598-024-65496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024] Open
Abstract
Caffeic acid phenethyl ester (CAPE) and its derivatives exhibit considerable effects against hepatocellular carcinoma (HCC), with unquestioned safety. Here we investigated CAPE derivative 1' (CAPE 1') monotherapy to HCC, compared with sorafenib. HCC Bel-7402 cells were treated with CAPE 1', the IC50 was detected using CCK-8 analysis, and acute toxicity testing (5 g/kg) was performed to evaluate safety. In vivo, tumor growth after CAPE 1' treatment was evaluated using an subcutaneous tumor xenograft model. Five groups were examined, with group 1 given vehicle solution, groups 2, 3, and 4 given CAPE 1' (20, 50, and 100 mg/kg/day, respectively), and group 5 given sorafenib (30 mg/kg/day). Tumor volume growth and tumor volume-to-weight ratio were calculated and statistically analyzed. An estimated IC50 was 5.6 µM. Acute toxicity tests revealed no animal death or visible adverse effects with dosage up to 5 g/kg. Compared to negative controls, CAPE 1' treatment led to significantly slower increases of tumor volume and tumor volume-to-weight. CAPE 1' and sorafenib exerted similar inhibitory effects on HCC tumors. CAPE 1' was non-inferior to sorafenib for HCC treatment, both in vitro and in vivo. It has great potential as a promising drug for HCC, based on effectiveness and safety profile.
Collapse
Affiliation(s)
- Lei Gong
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Wenzhen Wang
- Department of Urology, Second Affiliated Hospital, Shandong University, Jinan, 250021, People's Republic of China
| | - Fei Yu
- Center of Hepatopancreatobiliary Diseases, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, People's Republic of China
| | - Zenghua Deng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Nan Luo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Xinjing Zhang
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Jianfen Chen
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China.
| |
Collapse
|
8
|
Zhang Z, Xu S, Song M, Huang W, Yan M, Li X. Association between blood lipid levels and the risk of liver cancer: a systematic review and meta-analysis. Cancer Causes Control 2024; 35:943-953. [PMID: 38376693 PMCID: PMC11129988 DOI: 10.1007/s10552-024-01853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE The association between blood lipid levels and the risk of developing liver cancer remains a subject of ongoing debate. To elucidate this association, we conducted a meta-analysis by systematically incorporating data from all relevant prospective cohort studies. METHODS We conducted a systematic search of the PubMed, Embase, Web of Science, and Cochrane Library databases covering studies published from database inception through July 2023. This study included prospective cohort studies related to lipid profiles (e.g., total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels) that reported hazard ratios (HRs) or relative risks (RRs) with corresponding 95% confidence intervals (95% CIs) to investigate their association with the risk of liver cancer. During the analysis process, we used fixed-effects or random-effects models based on the level of heterogeneity among the studies and obtained pooled risk ratios using these models. To ensure the robustness and reliability of the study findings, we also conducted sensitivity analyses and publication bias analyses. RESULTS After conducting a systematic search, 12 studies were identified from a total of 11,904 articles and were included in the meta-analysis. These studies included a combined population of 10,765,221 participants, among whom 31,055 cases of liver cancer were reported. The analysis revealed that the pooled HR for the serum TC concentration (highest versus lowest) was 0.45 (95% CI = 0.35-0.58, I2 = 78%). For TGs, the HR was 0.67 (95% CI = 0.46-0.96, I2 = 86%), while for HDL-C, the HR was 0.72 (95% CI = 0.58-0.90, I2 = 65%). The HR for LDL-C was 0.51 (95% CI = 0.23-1.13, I2 = 93%). CONCLUSION The findings of this study indicate that serum TC, TG, and HDL-C levels are negatively associated with liver cancer risk, suggesting that higher concentrations of these lipids are associated with a reduced risk of liver cancer. However, no significant association has been found between LDL-C levels and liver cancer risk.
Collapse
Affiliation(s)
- Zhihui Zhang
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
- Department of Gastrointestinal surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shicong Xu
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
- Department of Gastrointestinal surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Meixuan Song
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
| | - Weirong Huang
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
- Department of Gastrointestinal surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Manlin Yan
- School of Nursing, Southwest Medical University, Luzhou, 646000, China
- Department of Gastrointestinal surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xianrong Li
- Department of Gastrointestinal surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
9
|
Abdelhamed W, El-Kassas M. Hepatitis B virus as a risk factor for hepatocellular carcinoma: There is still much work to do. LIVER RESEARCH (BEIJING, CHINA) 2024; 8:83-90. [PMID: 39959873 PMCID: PMC11771266 DOI: 10.1016/j.livres.2024.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/23/2024] [Accepted: 05/30/2024] [Indexed: 04/03/2025]
Abstract
Hepatitis B virus (HBV) infection is a significant health problem that can result in progression to liver cirrhosis, decompensation, and the development of hepatocellular carcinoma (HCC). On a country level, the prevalence of chronic HBV infection varies between 0.1% and 35.0%, depending on the locality and the population being investigated. One-third of all liver cancer fatalities worldwide are attributable to HBV. The adoption of standard birth-dose immunization exerted the most significant impact on the decline of HBV prevalence. HCC incidence ranges from 0.01% to 1.40% in noncirrhotic patients and from 0.9% to 5.4% annually, in the settings of liver cirrhosis. Although antiviral therapy significantly reduces the risk of developing HBV-related HCC, studies have demonstrated that the risk persists, and that HCC screening is still essential. This review discusses the complex relationship between HBV infection and HCC, recent epidemiological data, different aspects of clinical disease characteristics, and the impact of antiviral therapy in this context.
Collapse
Affiliation(s)
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
- Liver Disease Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Gong Y, Zhou M, Zhu Y, Pan J, Zhou X, Jiang Y, Zeng H, Zheng H, Geng X, Huang D. PVALB Was Identified as an Independent Prognostic Factor for HCC Closely Related to Immunity, and Its Absence Accelerates Tumor Progression by Regulating NK Cell Infiltration. J Hepatocell Carcinoma 2024; 11:813-838. [PMID: 38737383 PMCID: PMC11088852 DOI: 10.2147/jhc.s450479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose Hepatocellular carcinoma is the most common primary liver cancer, with poor prognosis. Complex immune microenvironment of the liver is linked to the development of HCC. PVALB is a calcium-binding protein which has been described as a cancer suppressor gene in thyroid cancer and glioma. Nevertheless, the role of PVALB in HCC is unknown. Materials and Methods We obtained data from TCGA and GSE54236 datasets. MCP-counter, WGCNA and LASSO model were applied to identify PVALB. With UALCAN, MethSurv, and other websites, we probed the expression, methylation and survival of PVALB. LinkedOmics and GSEA were adopted for functional analysis, while TIMER, TISIDB, Kaplan-Meier plotter, TIDE databases were utilized to evaluate the relevance of PVALB to the tumor immune microenvironment and predict immunotherapy efficacy. TargetScan, DIANA, LncRNASNP2 databases and relevant experiments were employed to construct ceRNA network. Finally, molecular docking and drug sensitivity of PVALB were characterized by GeneMANIA, CTD, and so on. Results PVALB was recognized as a gene associated with HCC and NK cell. Its expression was down-regulated in HCC tissue, which lead to adverse prognosis. Besides, the hypomethylation of PVALB was related to its reduced expression. Notably, PVALB was tightly linked to immune, and its reduced expression attenuated the anticancer effect of NK cells via the Fas/FasL pathway, leading to a adverse outcome. The lnc-YY1AP1-3/hsa-miR-6735-5p/PVALB axis may regulate the PVALB expression. Finally, we found immunotherapy might be a viable treatment option. Conclusion In a word, PVALB is a prognostic indicator, whose low expression facilitates HCC progression by impacting NK cell infiltration.
Collapse
Affiliation(s)
- Yiyang Gong
- Department of Thyroid Surgery; Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Yanting Zhu
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Da Huang
- Department of Thyroid Surgery; Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
11
|
Zhou T, Cao J, Tang Q, Jin J, Liang Y, Feng B. Exploring the role of NAA40 in immune infiltrates and prognostic prediction in hepatocellular carcinoma. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2024; 13:26-34. [PMID: 38496356 PMCID: PMC10944357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/26/2024] [Indexed: 03/19/2024]
Abstract
NAA40 belongs to the N-terminal acetyltransferase (NATs) family, responsible for protein N-terminal modification, and it exerts crucial roles across various cancers. However, its impact on patient prognosis and immune infiltration in hepatocellular carcinoma (HCC) remains elusive. To address this, our study delved into the comprehensive analysis of NAA40 in the context of cancer. Our pan-cancer analysis unveiled elevated NAA40 expression in multiple tumor types, including BLCA, BRCA, CHOL, COAD, ESCA, HNSC, LIHC, LUAD, LUSC, STAD, and THCA. Additionally, through a comprehensive examination across various cancer types within TCGA, we discovered that high NAA40 gene expression correlated with poor prognosis in HCC, pointing toward its role in promoting oncogenesis. Further investigation illuminated the association of increased NAA40 expression with T stage, pathologic stage, tumor status, and histologic grade. Interestingly, we noted a significant inverse correlation between NAA40 expression and the infiltration levels of immune cells, such as DC cells, neutrophils, NK cells, and T cells, in liver cancer. This observation underpins the hypothesis that NAA40 influences HCC development by modulating immune cell infiltration. Functional enrichment analysis provided valuable insights into the pathways influenced by NAA40. Enriched pathways encompassed oxidative phosphorylation, xenobiotic metabolism, bile acid metabolism, fatty acid metabolism, G2M checkpoint, and E2F targets. These findings collectively position NAA40 as a potential biomarker for prognostic prediction and monitoring the effects of immunotherapy in HCC.
Collapse
Affiliation(s)
- Tong Zhou
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
- Medical College of Soochow UniversitySuzhou, Jiangsu, China
| | - Jun Cao
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Qingqin Tang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Jieyu Jin
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Yuting Liang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| | - Bin Feng
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou, Jiangsu, China
| |
Collapse
|
12
|
Liang Y, Zhong D, Yang Q, Tang Y, Qin Y, Su Y, Huang X, Shang J. Single-Cell RNA Sequencing Revealed That the Enrichment of TPI1 + Malignant Hepatocytes Was Linked to HCC Metastasis and Immunosuppressive Microenvironment. J Hepatocell Carcinoma 2024; 11:373-383. [PMID: 38410699 PMCID: PMC10896104 DOI: 10.2147/jhc.s453249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024] Open
Abstract
Background Tumor metastasis is the leading cause of high mortality in hepatocellular carcinoma (HCC). The metastasis-related HCC microenvironment is characterized by high heterogeneity. Single-cell RNA sequencing (scRNA-seq) may aid in determining specific cell clusters involved in regulating the immune microenvironment of HCC. Methods The scRNA-seq data of 10 HCC samples were collected from the Gene Expression Omnibus (GEO) database GSE124395. Correlations between key gene expression and clinicopathological data were determined using public databases. HCC tissues and matched tumor-adjacent and normal tissue samples were obtained by surgical resection at Sichuan Cancer Hospital. Immune cell infiltration analysis was performed and verified by immunohistochemistry and immunofluorescent staining. Results Nine malignant hepatocyte clusters with different marker genes and biological functions were identified. C3_Hepatocyte-SERF2 and C6_Hepatocyte-IL13RA2 were mainly involved in the regulation of the immune microenvironment, which was also a significant pathway in regulating HCC metastasis. Key genes in malignant hepatocyte clusters that associated with HCC metastasis were further screened by LASSO regression analysis. TPI1, a key gene in C6_Hepatocyte-IL13RA2 and HCC metastasis, could participate in regulating the HCC immune microenvironment in The Cancer Genome Atlas (TCGA) and Tumor Immune Estimation Resource (TIMER) databases. Moreover, immunohistochemistry analysis demonstrated that TPI1 expression was positively correlated with HCC metastasis and poor prognosis, while negatively correlated with CD8+ T cell infiltration. The negative correlation between TPI1 expression and CD8+ T cell infiltration was further confirmed by immunofluorescence staining. Conclusion In summary, a cluster of TPI1+ malignant hepatocytes was associated with the suppression of CD8+ T cell infiltration and HCC metastasis, providing novel insights into potential biomarkers for immunotherapy in HCC.
Collapse
Affiliation(s)
- Yuxin Liang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Deyuan Zhong
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Qinyan Yang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yuan Tang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yingying Qin
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, SAR, People's Republic of China
| | - Yuhao Su
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xiaolun Huang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jin Shang
- Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
13
|
Medvedeva A, Domakhina S, Vasnetsov C, Vasnetsov V, Kolomeisky A. Physical-Chemical Approach to Designing Drugs with Multiple Targets. J Phys Chem Lett 2024; 15:1828-1835. [PMID: 38330920 DOI: 10.1021/acs.jpclett.3c03624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Many people simultaneously exhibit multiple diseases, which complicates efficient medical treatments. For example, patients with cancer are frequently susceptible to infections. However, developing drugs that could simultaneously target several diseases is challenging. We present a novel theoretical method to assist in selecting compounds with multiple therapeutic targets. The idea is to find correlations between the physical and chemical properties of drug molecules and their abilities to work against multiple targets. As a first step, we investigated potential drugs against cancer and viral infections. Specifically, we investigated antimicrobial peptides (AMPs), which are short positively charged biomolecules produced by living systems as a part of their immune defense. AMPs show anticancer and antiviral activity. We use chemoinformatics and correlation analysis as a part of the machine-learning method to identify the specific properties that distinguish AMPs with dual anticancer and antiviral activities. Physical-chemical arguments to explain these observations are presented.
Collapse
Affiliation(s)
- Angela Medvedeva
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Sofya Domakhina
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Catherine Vasnetsov
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Victor Vasnetsov
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
14
|
Agustiningsih A, Rasyak MR, Turyadi, Jayanti S, Sukowati C. The oncogenic role of hepatitis B virus X gene in hepatocarcinogenesis: recent updates. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:120-134. [PMID: 38464387 PMCID: PMC10918233 DOI: 10.37349/etat.2024.00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 03/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancers with high mortality rate. Among its various etiological factors, one of the major risk factors for HCC is a chronic infection of hepatitis B virus (HBV). HBV X protein (HBx) has been identified to play an important role in the HBV-induced HCC pathogenesis since it may interfere with several key regulators of many cellular processes. HBx localization within the cells may be beneficial to HBx multiple functions at different phases of HBV infection and associated hepatocarcinogenesis. HBx as a regulatory protein modulates cellular transcription, molecular signal transduction, cell cycle, apoptosis, autophagy, protein degradation pathways, and host genetic stability via interaction with various factors, including its association with various non-coding RNAs. A better understanding on the regulatory mechanism of HBx on various characteristics of HCC would provide an overall picture of HBV-associated HCC. This article addresses recent data on HBx role in the HBV-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Agustiningsih Agustiningsih
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
| | - Muhammad Rezki Rasyak
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
- Post Graduate School, Faculty of Medicine, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Turyadi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
| | - Sri Jayanti
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
| | - Caecilia Sukowati
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS, AREA Science Park, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
15
|
Elmoslemany AM, Elzallat M, Abd-Elfatah MH, Mohammed DM, Elhady EE. Possible therapeutic effect of frankincense (Gum olibanum) and myrrh (Commiphora myrrha) resins extracts on DEN/CCL4 induced hepatocellular carcinoma in rats. PHYTOMEDICINE PLUS 2024; 4:100517. [DOI: 10.1016/j.phyplu.2023.100517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
|
16
|
Liu Q, Yan X, Li R, Yuan Y, Wang J, Zhao Y, Fu J, Su J. Polyamine Signal through HCC Microenvironment: A Key Regulator of Mitochondrial Preservation and Turnover in TAMs. Int J Mol Sci 2024; 25:996. [PMID: 38256070 PMCID: PMC10816144 DOI: 10.3390/ijms25020996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and, with increasing research on the tumor immune microenvironment (TIME), the immunosuppressive micro-environment of HCC hampers further application of immunotherapy, even though immunotherapy can provide survival benefits to patients with advanced liver cancer. Current studies suggest that polyamine metabolism is not only a key metabolic pathway for the formation of immunosuppressive phenotypes in tumor-associated macrophages (TAMs), but it is also profoundly involved in mitochondrial quality control signaling and the energy metabolism regulation process, so it is particularly important to further investigate the role of polyamine metabolism in the tumor microenvironment (TME). In this review, by summarizing the current research progress of key enzymes and substrates of the polyamine metabolic pathway in regulating TAMs and T cells, we propose that polyamine biosynthesis can intervene in the process of mitochondrial energy metabolism by affecting mitochondrial autophagy, which, in turn, regulates macrophage polarization and T cell differentiation. Polyamine metabolism may be a key target for the interactive dialog between HCC cells and immune cells such as TAMs, so interfering with polyamine metabolism may become an important entry point to break intercellular communication, providing new research space for developing polyamine metabolism-based therapy for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basical Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China; (Q.L.); (X.Y.); (R.L.); (Y.Y.); (J.W.); (Y.Z.); (J.F.)
| |
Collapse
|
17
|
Panneerselvam S, Wilson C, Kumar P, Abirami D, Pamarthi J, Reddy MS, Varghese J. Overview of hepatocellular carcinoma: from molecular aspects to future therapeutic options. Cell Adh Migr 2023; 17:1-21. [PMID: 37726886 PMCID: PMC10512929 DOI: 10.1080/19336918.2023.2258539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the seventh most highly prevalent malignant tumor globally and the second most common cause of mortality. HCC develops with complex pathways that occur through multistage biological processes. Non-alcoholic fatty liver disease, metabolic-associated fatty liver disease, alcoholic liver disease, autoimmune hepatitis, hepatitis B, and hepatitis C are the causative etiologies of HCC. HCC develops as a result of epigenetic changes, protein-coding gene mutations, and altered signaling pathways. Biomarkers and potential therapeutic targets for HCC open up new possibilities for treating the disease. Immune checkpoint inhibitors are included in the treatment options in combination with molecular targeted therapy.
Collapse
Affiliation(s)
- Sugan Panneerselvam
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Cornelia Wilson
- Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Discovery Park, Sandwich, UK
| | - Prem Kumar
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Dinu Abirami
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Jayakrishna Pamarthi
- Multi-Disciplinary Research Unit, Madras Medical College, Chennai, Tamil Nadu, India
| | - Mettu Srinivas Reddy
- The Director and Head, Liver Transplant and HPB surgery, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Joy Varghese
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| |
Collapse
|
18
|
Li Z, Zhang Y, Zhang B, Guo R, He M, Liu ZL, Yang L, Wang H. Bibliometric study of immunotherapy for hepatocellular carcinoma. Front Immunol 2023; 14:1210802. [PMID: 37600802 PMCID: PMC10436521 DOI: 10.3389/fimmu.2023.1210802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), recognized as a significant global health concern, ranks as the sixth most prevalent form of cancer and is the third leading cause of cancer-associated mortality. Over half of HCC patients are diagnosed at advanced stages, an unfortunate phenomenon primarily attributed to the liver's robust compensatory mechanisms. Given the limited availability of donor livers, existing clinical surgical approaches have yet to provide universally applicable treatment strategies offering substantial prognostic improvement for late-stage cancer. Although the past few decades have witnessed significant advancements in chemotherapy and targeted therapy for HCC, the emergence of drug resistance poses a substantial impediment to their successful execution. Furthermore, issues such as diminished quality of life post-treatment and high treatment costs warrant critical attention. Consequently, the imperative for an effective treatment strategy for advanced liver cancer is unequivocal. In recent years, notable progress in the development and application of immunotherapy has sparked a revolution in advanced liver cancer treatment. This study aims to elucidate a more comprehensive understanding of the current landscape, knowledge framework, research focal points, and nascent breakthrough trends in the domain of immunotherapy for hepatocellular carcinoma via bibliometric analysis. METHOD Our study involved conducting a comprehensive literature search spanning from 1999 through December 31, 2022, by utilizing the Science Citation Index Expanded (SCI-Expanded) database. Our aim was to amass all the papers and reviews related to immunotherapy for hepatocellular carcinoma. Our search strategy yielded a total of 4,486 papers. After exclusion of self-citations, we focused our analysis on 68,925 references. These references were cited 119,523 times (excluding 97,941 self-citations), boasting an average citation frequency of 26.64 times per paper, and achieved an h-index of 135. We employed analytical software tools like Citespace and VOSviewer to perform an intricate analysis of the amassed literature, covering various aspects, including geographical location, research institutions, publishing journals, authors, references, and keywords. Our method incorporated timeline analysis, burst detection, and co-occurrence analysis. The application of these tools facilitated a thorough evaluation of research hotspots, knowledge structure, and emerging advancements within the sphere of immunotherapy for hepatocellular carcinoma. RESULTS Our bibliometric analysis disclosed a noteworthy escalation in the number of publications in the realm of hepatocellular carcinoma immunotherapy during the years 2021-2022, surpassing the aggregate number of papers published in the preceding decade (2011-2020). This surge underscores a sharp upturn in research interest within this field. Additionally, the research hotspot in hepatocellular carcinoma immunotherapy has perceptibly deviated from the preceding decade's trends. In terms of geographical distribution, China emerged as the leading country, producing 50.08% of the total publications. This was followed by the United States, with 963 papers, and Japan, contributing 335 papers. Among research institutions, Sun Yat-sen University was the most prolific, while Tim F. Greten stood out as the most published author with 42 papers to his credit. A co-reference network examination uncovered a shift in research emphasis within the field of hepatocellular carcinoma immunotherapy, highlighting the evolving nature of this important area of study. CONCLUSION Our bibliometric study highlights the significant evolution and growth in HCC immunotherapy research over the past two decades. Looking ahead, research will focus on improving the microenvironment post-drug resistance from immune combination therapy, harnessing adoptive cellular immunity (as CAR-T), subclassify the population and developing new tumor markers. Incorporation of technologies such as nanotechnology, microbiology, and gene editing will further advance HCC treatments. This progressive trajectory in the field promises a brighter future for individuals suffering from HCC.
Collapse
Affiliation(s)
- Zhiyi Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Baipan Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| | - Minhua He
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Zi-Ling Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Shoraka S, Hosseinian SM, Hasibi A, Ghaemi A, Mohebbi SR. The role of hepatitis B virus genome variations in HBV-related HCC: effects on host signaling pathways. Front Microbiol 2023; 14:1213145. [PMID: 37588887 PMCID: PMC10426804 DOI: 10.3389/fmicb.2023.1213145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant global health issue, with a high prevalence in many regions. There are variations in the etiology of HCC in different regions, but most cases are due to long-term infection with viral hepatitis. Hepatitis B virus (HBV) is responsible for more than 50% of virus-related HCC, which highlights the importance of HBV in pathogenesis of the disease. The development and progression of HBV-related HCC is a complex multistep process that can involve host, viral, and environmental factors. Several studies have suggested that some HBV genome mutations as well as HBV proteins can dysregulate cell signaling pathways involved in the development of HCC. Furthermore, it seems that the pathogenicity, progression of liver diseases, response to treatment and also viral replication are different among HBV mutants. Understanding the relationship between HBV genome variations and host signaling pathway alteration will improve our understanding of the molecular pathogenesis of HBV-related HCC. Furthermore, investigating commonly dysregulated pathways in HBV-related HCC is necessary to discover more specific therapeutic targets and develop more effective strategies for HCC treatment. The objective of this review is to address the role of HBV in the HCC progression and primarily focus on the impacts of HBV genome variations on HCC-related signaling pathways.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Mahdi Hosseinian
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ayda Hasibi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Effenberger M, Waschina S, Bronowski C, Sturm G, Tassiello O, Sommer F, Zollner A, Watschinger C, Grabherr F, Gstir R, Grander C, Enrich B, Bale R, Putzer D, Djanani A, Moschen AR, Zoller H, Rupp J, Schreiber S, Burcelin R, Lass-Flörl C, Trajanoski Z, Oberhuber G, Rosenstiel P, Adolph TE, Aden K, Tilg H. A gut bacterial signature in blood and liver tissue characterizes cirrhosis and hepatocellular carcinoma. Hepatol Commun 2023; 7:e00182. [PMID: 37314752 DOI: 10.1097/hc9.0000000000000182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/18/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND HCC is the leading cause of cancer in chronic liver disease. A growing body of experimental mouse models supports the notion that gut-resident and liver-resident microbes control hepatic immune responses and, thereby, crucially contribute to liver tumorigenesis. However, a comprehensive characterization of the intestinal microbiome in fueling the transition from chronic liver disease to HCC in humans is currently missing. METHODS Here, we profiled the fecal, blood, and liver tissue microbiome of patients with HCC by 16S rRNA sequencing and compared profiles to nonmalignant cirrhotic and noncirrhotic NAFLD patients. RESULTS We report a distinct bacterial profile, defined from 16S rRNA gene sequences, with reduced α-and β-diversity in the feces of patients with HCC and cirrhosis compared to NAFLD. Patients with HCC and cirrhosis exhibited an increased proportion of fecal bacterial gene signatures in the blood and liver compared to NAFLD. Differential analysis of the relative abundance of bacterial genera identified an increased abundance of Ruminococcaceae and Bacteroidaceae in blood and liver tissue from both HCC and cirrhosis patients compared to NAFLD. Fecal samples from cirrhosis and HCC patients both showed a reduced abundance for several taxa, including short-chain fatty acid-producing genera, such as Blautia and Agathobacter. Using paired 16S rRNA and transcriptome sequencing, we identified a direct association between gut bacterial genus abundance and host transcriptome response within the liver tissue. CONCLUSIONS Our study indicates perturbations of the intestinal and liver-resident microbiome as a critical determinant of patients with cirrhosis and HCC.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvio Waschina
- Institute for Human Nutrition and Food Science, Division of Nutriinformatics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christina Bronowski
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Oronzo Tassiello
- Institute for Human Nutrition and Food Science, Division of Nutriinformatics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Andreas Zollner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Watschinger
- Department of Internal Medicine I, Gastroenterology, Nephrology, Metabolism & Endocrinology, Johannes Kepler University, Linz, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Ronald Gstir
- Institute of Hygiene and Medical Microbiology, ECMM, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Reto Bale
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel Putzer
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Angela Djanani
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Nephrology, Metabolism & Endocrinology, Johannes Kepler University, Linz, Austria
- Christian Doppler Laboratory for Mucosal Immunology, Johannes Kepler University, Linz, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Remy Burcelin
- INSERM 1297 and University Paul Sabatier: Institut des Maladies Métaboliques et Cardiovasculaires, France and Université Paul Sabatier, Toulouse, France
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, ECMM, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Oberhuber
- INNPATH, Institute of Pathology, University Hospital of Innsbruck, Innsbruck, Austria
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Jiang H, Fu H, Min T, Hu P, Shi J. Magnetic-Manipulated NK Cell Proliferation and Activation Enhance Immunotherapy of Orthotopic Liver Cancer. J Am Chem Soc 2023. [PMID: 37262421 DOI: 10.1021/jacs.3c02049] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The immunotherapy of deep solid tumors in the human body, such as liver cancer, still faces great challenges, especially the inactivation and insufficient infiltration of immune cells in solid tumor microenvironment. Natural killer (NK) cells are gaining ever-increasing attention owing to their unique features and are expected to play an important role in the liver cancer immunotherapy. However, NK cells are severely insufficient and inactivated in solid liver tumor due to the highly immunosuppressive intratumor microenvironment, resulting in poor clinical therapeutic efficacy. Herein, we propose a mild magnetocaloric regulation approach using a magnetogenetic nanoplatform MNPs@PEI-FA/pDNA (MPFD), which is synthesized by loading a heat-inducible plasmid DNA (HSP70-IL-2-EGFP) on polyethyleneimine (PEI)- and folic acid (FA)-modified ZnCoFe2O4@ZnMnFe2O4 magnetic nanoparticles (MNPs) to promote the proliferation and activation of tumor-infiltrating NK cells under magnetic manipulation without the limitation of penetration depth for orthotopic liver cancer immunotherapy. The magnetothermally responsive MPFD serves as a magnetism-heat nanotransducer to induce the gene transcription of IL-2 cytokine in orthotopic liver tumor for NK cell proliferation and activation. Both in vitro and in vivo results demonstrate that the remote mild magnetocaloric regulation (∼40 °C) by MPFD initiates the HSP70 promoter to trigger the overexpression of IL-2 cytokine for subsequent secretion, leading to in situ expansion and activation of tumor-infiltrating NK cells through the IL-2/IL-2 receptor (IL-2R) pathways and the resulting prominent tumor inhibition. This work not only evidences the great potential of magnetogenetic nanoplatform but also reveals the underlying proliferation and activation mechanism of NK cells in liver cancer treatment by magnetogenetic nanoplatform.
Collapse
Affiliation(s)
- Han Jiang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Fu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
| | - Tao Min
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Hu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
22
|
Kandeel M. Oncogenic Viruses-Encoded microRNAs and Their Role in the Progression of Cancer: Emerging Targets for Antiviral and Anticancer Therapies. Pharmaceuticals (Basel) 2023; 16:ph16040485. [PMID: 37111242 PMCID: PMC10146417 DOI: 10.3390/ph16040485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Approximately 20% of all cases of human cancer are caused by viral infections. Although a great number of viruses are capable of causing a wide range of tumors in animals, only seven of these viruses have been linked to human malignancies and are presently classified as oncogenic viruses. These include the Epstein-Barr virus (EBV), human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), human herpesvirus 8 (HHV8), and human T-cell lymphotropic virus type 1 (HTLV-1). Some other viruses, such as the human immunodeficiency virus (HIV), are associated with highly oncogenic activities. It is possible that virally encoded microRNAs (miRNAs), which are ideal non-immunogenic tools for viruses, play a significant role in carcinogenic processes. Both virus-derived microRNAs (v-miRNAs) and host-derived microRNAs (host miRNAs) can influence the expression of various host-derived and virus-derived genes. The current literature review begins with an explanation of how viral infections might exert their oncogenic properties in human neoplasms, and then goes on to discuss the impact of diverse viral infections on the advancement of several types of malignancies via the expression of v-miRNAs. Finally, the role of new anti-oncoviral therapies that could target these neoplasms is discussed.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
23
|
Lopez-Scarim J, Nambiar SM, Billerbeck E. Studying T Cell Responses to Hepatotropic Viruses in the Liver Microenvironment. Vaccines (Basel) 2023; 11:681. [PMID: 36992265 PMCID: PMC10056334 DOI: 10.3390/vaccines11030681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
T cells play an important role in the clearance of hepatotropic viruses but may also cause liver injury and contribute to disease progression in chronic hepatitis B and C virus infections which affect millions of people worldwide. The liver provides a unique microenvironment of immunological tolerance and hepatic immune regulation can modulate the functional properties of T cell subsets and influence the outcome of a virus infection. Extensive research over the last years has advanced our understanding of hepatic conventional CD4+ and CD8+ T cells and unconventional T cell subsets and their functions in the liver environment during acute and chronic viral infections. The recent development of new small animal models and technological advances should further increase our knowledge of hepatic immunological mechanisms. Here we provide an overview of the existing models to study hepatic T cells and review the current knowledge about the distinct roles of heterogeneous T cell populations during acute and chronic viral hepatitis.
Collapse
Affiliation(s)
| | | | - Eva Billerbeck
- Division of Hepatology, Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
24
|
Gao YJ, Li SR, Huang Y. An inflammation-related gene landscape predicts prognosis and response to immunotherapy in virus-associated hepatocellular carcinoma. Front Oncol 2023; 13:1118152. [PMID: 36969014 PMCID: PMC10033597 DOI: 10.3389/fonc.2023.1118152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundDue to the viral infection, chronic inflammation significantly increases the likelihood of hepatocellular carcinoma (HCC) development. Nevertheless, an inflammation-based signature aimed to predict the prognosis and therapeutic effect in virus-related HCC has rarely been established.MethodBased on the integrated analysis, inflammation-associated genes (IRGs) were systematically assessed. We comprehensively investigated the correlation between inflammation and transcriptional profiles, prognosis, and immune cell infiltration. Then, an inflammation-related risk model (IRM) to predict the overall survival (OS) and response to treatment for virus-related HCC patients was constructed and verified. Also, the potential association between IRGs and tumor microenvironment (TME) was investigated. Ultimately, hub genes were validated in plasma samples and cell lines via qRT-PCR. After transfection with shCCL20 combined with overSLC7A2, morphological change of SMMC7721 and huh7 cells was observed. Tumorigenicity model in nude mouse was established.ResultsAn inflammatory response-related gene signature model, containing MEP1A, CCL20, ADORA2B, TNFSF9, ICAM4, and SLC7A2, was constructed by conjoint analysis of least absolute shrinkage and selection operator (LASSO) Cox regression and gaussian finite mixture model (GMM). Besides, survival analysis attested that higher IRG scores were positively relevant to worse survival outcomes in virus-related HCC patients, which was testified by external validation cohorts (the ICGC cohort and GSE84337 dataset). Univariate and multivariate Cox regression analyses commonly proved that the IRG was an independent prognostic factor for virus-related HCC patients. Thus, a nomogram with clinical factors and IRG was also constructed to superiorly predict the prognosis of patients. Featured with microsatellite instability-high, mutation burden, and immune activation, lower IRG score verified a superior OS for sufferers. Additionally, IRG score was remarkedly correlated with the cancer stem cell index and drug susceptibility. The measurement of plasma samples further validated that CCL20 upexpression and SLC7A2 downexpression were positively related with virus-related HCC patients, which was in accord with the results in cell lines. Furthermore, CCL20 knockdown combined with SLC7A2 overexpression availably weakened the tumor growth in vivo.ConclusionsCollectively, IRG score, serving as a potential candidate, accurately and stably predicted the prognosis and response to immunotherapy in virus-related HCC patients, which could guide individualized treatment decision-making for the sufferers.
Collapse
Affiliation(s)
- Ying-jie Gao
- Department of Biochemistry and Molecular Biology, School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shi-rong Li
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Huang
- Department of Biochemistry and Molecular Biology, School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, China
- *Correspondence: Yuan Huang,
| |
Collapse
|
25
|
Zhang C, Peng L, Gu H, Wang J, Wang Y, Xu Z. ANXA10 is a prognostic biomarker and suppressor of hepatocellular carcinoma: a bioinformatics analysis and experimental validation. Sci Rep 2023; 13:1583. [PMID: 36709331 PMCID: PMC9884230 DOI: 10.1038/s41598-023-28527-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/19/2023] [Indexed: 01/30/2023] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is one of the main cancers worldwide and has high morbidity and mortality rates. Although previous studies have shown that ANXA10 is expressed at low levels in LIHC tumor tissues, the biological function of ANXA10 in LIHC is still unclear. Therefore, we utilized TCGA, TIMER, GEPIA2, TISIDB, LinkedOmics, ssGSEA algorithms and CIBERSORT methodology to preliminarily evaluate the potential mechanism of ANXA10 in LIHC. In vitro experiments were used to further verify some functions of ANXA10. Consequently, we found that ANXA10 mRNA/protein expression was downregulated in LIHC tissue compared to normal tissue. ANXA10 was significantly linked with clinicopathological features, immunocytes, multiple cancer-related pathways, m6A modification and a ceRNA network. A three-gene prognostic signature rooted in ANXA10-related immunomodulators was determined and found to be an independent prognostic predictor. A nomogram was constructed to predict survival with good accuracy. Additionally, in vitro trials revealed that ANXA10 upregulation inhibited LIHC cell proliferation and migration. This study reveals that ANXA10 may serve as a prognostic marker and promising therapeutic target in LIHC clinical practice through various biologic functions.
Collapse
Affiliation(s)
- Chaohua Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Linglong Peng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Haitao Gu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Jijian Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Yaxu Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
| | - Zhiquan Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China.
| |
Collapse
|
26
|
Jiayu F, Jiang Y, Zhou X, Zhou M, Pan J, Ke Y, Zhen J, Huang D, Jiang W. Comprehensive analysis of prognostic value, relationship to cell cycle, immune infiltration and m6A modification of ZSCAN20 in hepatocellular carcinoma. Aging (Albany NY) 2022; 14:9550-9578. [PMID: 36462500 PMCID: PMC9792207 DOI: 10.18632/aging.204312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/17/2022] [Indexed: 12/05/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common tumor across the globe with a high mortality rate. ZSCAN20 is a ZNF transcription factor, a key determinant of gene expression. Nonetheless, the mechanism of ZSCAN20 as a potential clinical biomarker and therapeutic target for HCC is not understood. Here, TIMER, TCGA, ICGC databases and immunohistochemical (IHC) and Western Blot found ZSCAN20 mRNA and protein levels were upregulated. Additionally, Kaplan-Meier Plotter, GEPIA and TCGA databases showed high ZSCAN20 expression was related to the short survival time of HCC patients. Multivariate Cox analysis exposed that ZSCAN20 can act as an independent prognostic factor. We observed methylation level of ZSCAN20 was associated with the clinicopathological characteristics and prognosis of HCC patients through UALCAN. Furthermore, enrichment examination exposed functional association between ZSCAN20 and cell cycle, immune infiltration. Functional experiments showed that interference with ZSCAN20 significantly reduced the invasion, migration and proliferation abilities of HCC cells. An immune infiltration analysis showed that ZSCAN20 was associated with immune cells, particularly T cells. The expression of ZSCAN20 was correlated with poor prognosis in the Regulatory T-cell. And Real-Time RT-PCR analysis found interference with ZSCAN20 significantly reduced the expression of some chemokines. Finally, the TCGA and ICGC data analysis suggested that the ZSCAN20 expression was greatly related to m6A modifier related genes. In conclusion, ZSCAN20 can serve as a prognostic biomarker for HCC and provide clues about cell cycle, immune infiltration, and m6A modification.
Collapse
Affiliation(s)
- Fang Jiayu
- Second Affiliated Hospital of Nanchang University, Nanchang, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yun Ke
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Jing Zhen
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weifan Jiang
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Zhao Z, Wang C, Chu P, Lu X. Key Genes Associated with Tumor-Infiltrating Non-regulatory CD4- and CD8-Positive T Cells in Microenvironment of Hepatocellular Carcinoma. Biochem Genet 2022; 60:1762-1780. [PMID: 35092558 PMCID: PMC9470630 DOI: 10.1007/s10528-021-10175-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
The immune microenvironment in hepatocellular carcinoma (HCC), especially T-cell infiltration, plays a key role in the prognosis and drug sensitivity of HCC. Our study aimed to analyze genes related to non-regulatory CD4+ and CD8+ T cell in HCC. Data of HCC samples were downloaded from The Cancer Genome Atlas (TCGA) database. According to stromal and immune score retrieved by Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm, differentiated expressed genes (DEGs) between high and low stromal/immune scoring groups were collected. Using Cibersort algorithm, abundance of immune cells was calculated and genes related with CD4+ and CD8+ T cells were selected. Protein-protein interaction (PPI) networks and networks of microRNA (miRNA)-target gene interactions were illustrated, in which CD4+ and CD8+ T cell-related core genes were selected. Finally, Cox regression test and Kaplan-Meier (K-M) survival analysis were conducted. Totally, 1579 DEGs were identified, where 103 genes and 407 genes related with CD4+ and CD8+ T cell were selected, respectively. Each of 30 core genes related to CD4+ T cells and CD8+ T cells were selected by PPI network. Four genes each related with the two types of T cells had a significant impact on prognosis of HCC patients. Amongst, KLRB1 and IL18RAP were final two genes related to both two kinds of T cells and associated with overall survival of the HCC patients.
Collapse
Affiliation(s)
- Zijun Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Chaonan Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peishan Chu
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| |
Collapse
|
28
|
Raus S, Lopez-Scarim J, Luthy J, Billerbeck E. Hepatic iNKT cells produce type 2 cytokines and restrain antiviral T cells during acute hepacivirus infection. Front Immunol 2022; 13:953151. [PMID: 36159876 PMCID: PMC9501689 DOI: 10.3389/fimmu.2022.953151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a curable disease, but the absence of a vaccine remains a major problem in infection prevention. The lack of small animal models and limited access to human liver tissue impede the study of hepatic antiviral immunity and the development of new vaccine strategies. We recently developed an immune-competent mouse model using an HCV-related rodent hepacivirus which shares immunological features with human viral hepatitis. In this study, we used this new model to investigate the role of invariant natural killer T (iNKT) cells during hepacivirus infection in vivo. These cells are enriched in the liver, however their role in viral hepatitis is not well defined. Using high-dimensional flow cytometry and NKT cell deficient mice we analyzed a potential role of iNKT cells in mediating viral clearance, liver pathology or immune-regulation during hepacivirus infection. In addition, we identified new immune-dominant MHC class I restricted viral epitopes and analyzed the impact of iNKT cells on virus-specific CD8+ T cells. We found that rodent hepacivirus infection induced the activation of iNKT cell subsets with a mixed NKT1/NKT2 signature and significant production of type 2 cytokines (IL-4 and IL-13) during acute infection. While iNKT cells were dispensable for viral clearance, the lack of these cells caused higher levels of liver injury during infection. In addition, the absence of iNKT cells resulted in increased effector functions of hepatic antiviral T cells. In conclusion, our study reports a regulatory role of hepatic iNKT cells during hepacivirus infection in vivo. Specifically, our data suggest that iNKT cells skewed towards type 2 immunity limit liver injury during acute infection by mechanisms that include the regulation of effector functions of virus-specific T cells.
Collapse
Affiliation(s)
- Svjetlana Raus
- Department of Medicine, Division of Hepatology, and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jarrett Lopez-Scarim
- Department of Medicine, Division of Hepatology, and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joshua Luthy
- BD Life Sciences - FlowJo, Ashland, OR, United States
| | - Eva Billerbeck
- Department of Medicine, Division of Hepatology, and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
29
|
Bioinformatics Analysis for Constructing a Six-Immune-Related Long Noncoding RNA Signature as a Prognostic Model of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2093437. [PMID: 35845962 PMCID: PMC9283041 DOI: 10.1155/2022/2093437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022]
Abstract
The present study was aimed at identifying the potential prognostic biomarkers of the immune-related long noncoding RNA (IRL) signature for patients with hepatocellular carcinoma (HCC). RNA-sequencing data and clinical information about HCC were obtained from The Cancer Genome Atlas. The IRLs were determined with regard to the coexpression of immune-related genes and differentially expressed lncRNAs. The survival IRLs were obtained using the univariate Cox analysis. Subsequently, the prognosis model was constructed via the multivariate Cox analysis. Subsequently, functional annotation was conducted using Gene Set Enrichment Analysis (GSEA) and principal component analysis (PCA). In total, 341 IRLs were identified, and 6 IRLs were found to have a highly significant association with the prognosis of patients with HCC. The immune prognosis model was constructed with these 6 IRLs (AC099850.4, negative regulator of antiviral response, AL031985.3, PRRT3-antisense RNA1, AL365203.2, and long intergenic nonprotein coding RNA 1224) using the multivariate Cox regression analysis. In addition, immune-related prognosis signatures were confirmed as an independent prognostic factor. The association between prognostic signatures and immune infiltration indicated that the 6 lncRNAs could reflect the immune status of the tumor. Collectively, the present study demonstrates that six-lncRNA signatures may be potential biomarkers to predict the prognosis of patients with HCC.
Collapse
|
30
|
Qi W, Bai Y, Wang Y, Liu L, Zhang Y, Yu Y, Chen H. BUB1 predicts poor prognosis and immune status in liver hepatocellular carcinoma. APMIS 2022; 130:371-382. [PMID: 35255180 DOI: 10.1111/apm.13219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022]
Abstract
Accurate assessment of the tumour immune microenvironment promotes individualized immunotherapy regimens and screens dominant populations suitable for immunotherapy. Therefore, potential molecular markers were investigated to make an overall assessment of the immune microenvironment status of liver hepatocellular carcinoma (LIHC). In this study, a total of 121 differentially expressed genes (DEGs) were identified, and DEGs were enriched in the epithelial-mesenchymal transition, hypoxia, myogenesis, and p53 pathways. A total of 20 hub genes were selected and a strong correlation was identified between these hub genes and prognosis. The expression of budding uninhibited by benzimidazoles 1 (BUB1) was found to be upregulated in LIHC and was strongly related to immune cells and immune checkpoint molecule expression. Immunohistochemistry (IHC) indicated that BUB1 expression was higher in LIHC tissues than in normal liver tissues. BUB1 knockdown resulted in reduced proliferation and vertical migration ability of LIHC cells, and reduced the expression of phospho-SMAD family member 2 and phospho-SMAD family member 3 proteins. IHC showed that BUB1 expression was accompanied by immune cell infiltration into LIHC tissues. These results suggest that BUB1 may serve as a potential prognostic biomarker for LIHC and as an indicator of its immune status.
Collapse
Affiliation(s)
- Wenbo Qi
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yuping Bai
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yiran Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Le Liu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yaqing Zhang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yang Yu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Chen
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
31
|
Liu Y, Fu B, Yu Z, Song G, Zeng H, Gong Y, Ding Y, Huang D. Identification of KRBA1 as a Potential Prognostic Biomarker Associated with Immune Infiltration and m6A Modification in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2022; 9:497-516. [PMID: 35669909 PMCID: PMC9166909 DOI: 10.2147/jhc.s363862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is a malignancy with high incidence, but its prognosis is not optimistic. KRBA1 is a member of the KRAB family and participates in the regulation of gene transcription. However, no studies have focused on the role of KRBA1 in HCC. Patients and Methods In this study, we first analyzed the expression of KRBA1 in HCC using TCGA and ICGC databases and validated by Immunohistochemistry in clinical HCC samples. The Wilcoxon rank-sum test was used to determine the relationship between KRBA1 expression and clinicopathological features. Subsequently, we used Kaplan-Meier online website analysis and Cox regression model to predict the prognostic value of KRBA1 in HCC patients. Furthermore, the functions of KRBA1 were identified by enrichment analysis. TIMER and GSCALite were used to investigate the relationship between KRBA1 expression in HCC and immune infiltration and drug targets, respectively. Finally, the relationship between KRBA1 expression and m6A modification in HCC was analyzed using the TCGA and ICGA datasets. Results The results showed that KRBA1 was upregulated in HCC and was associated with many clinicopathological features. High KRBA1 causes poor overall survival and may be an independent risk factor for HCC. KRBA1 tends to be hypermethylated and associated with poor prognosis in HCC compared with normal tissues. Enrichment analysis indicates that KRBA1 is associated with cell cycle and immune processes, and TIMER analysis shows that KRBA1 expression is associated with infiltration levels and immune characteristics of various immune cells. Silenced KRBA1 evidently reduced three chemokine expression in HCC cells. Drug sensitivity analysis showed that KRBA1 was sensitive to 39 drug small molecules. KRBA1 showed a strong positive correlation with five m6A related genes. Conclusion KRBA1 is a prognostic biomarker associated with HCC immunity and m6a modification, serving as an effective target for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Yue Liu
- Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China.,Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Bidong Fu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Gelin Song
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Yongqi Ding
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330000, People's Republic of China
| |
Collapse
|
32
|
Hepatitis B Virus-Associated Hepatocellular Carcinoma. Viruses 2022; 14:v14050986. [PMID: 35632728 PMCID: PMC9146458 DOI: 10.3390/v14050986] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is DNA-based virus, member of the Hepadnaviridae family, which can cause liver disease and increased risk of hepatocellular carcinoma (HCC) in infected individuals, replicating within the hepatocytes and interacting with several cellular proteins. Chronic hepatitis B can progressively lead to liver cirrhosis, which is an independent risk factor for HCC. Complications as liver decompensation or HCC impact the survival of HBV patients and concurrent HDV infection worsens the disease. The available data provide evidence that HBV infection is associated with the risk of developing HCC with or without an underlying liver cirrhosis, due to various direct and indirect mechanisms promoting hepatocarcinogenesis. The molecular profile of HBV-HCC is extensively and continuously under study, and it is the result of altered molecular pathways, which modify the microenvironment and lead to DNA damage. HBV produces the protein HBx, which has a central role in the oncogenetic process. Furthermore, the molecular profile of HBV-HCC was recently discerned from that of HDV-HCC, despite the obligatory dependence of HDV on HBV. Proper management of the underlying HBV-related liver disease is fundamental, including HCC surveillance, viral suppression, and application of adequate predictive models. When HBV-HCC occurs, liver function and HCC characteristics guide the physician among treatment strategies but always considering the viral etiology in the treatment choice.
Collapse
|
33
|
Peng Q, Hao LY, Guo YL, Zhang ZQ, Ji JM, Xue Y, Liu YW, Lu JL, Li CG, Shi XL. Solute carrier family 2 members 1 and 2 as prognostic biomarkers in hepatocellular carcinoma associated with immune infiltration. World J Clin Cases 2022; 10:3989-4019. [PMID: 35665115 PMCID: PMC9131213 DOI: 10.12998/wjcc.v10.i13.3989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/17/2021] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Metabolic reprogramming has been identified as a core hallmark of cancer. Solute carrier family 2 is a major glucose carrier family. It consists of 14 members, and we mainly study solute carrier family 2 member 1 (SLC2A1) and solute carrier family 2 member 2 (SLC2A2) here. SLC2A1, mainly existing in human erythrocytes, brain endothelial cells, and normal placenta, was found to be increased in hepatocellular carcinoma (HCC), while SLC2A2, the major transporter of the normal liver, was decreased in HCC. AIM To identify if SLC2A1 and SLC2A2 were associated with immune infiltration in addition to participating in the metabolic reprogramming in HCC. METHODS The expression levels of SLC2A1 and SLC2A2 were tested in HepG2 cells, HepG215 cells, and multiple databases. The clinical characteristics and survival data of SLC2A1 and SLC2A2 were examined by multiple databases. The correlation between SLC2A1 and SLC2A2 was analyzed by multiple databases. The functions and pathways in which SLC2A1, SLC2A2, and frequently altered neighbor genes were involved were discussed in String. Immune infiltration levels and immune marker genes associated with SLC2A1 and SLC2A2 were discussed from multiple databases. RESULTS The expression level of SLC2A1 was up-regulated, but the expression level of SLC2A2 was down-regulated in HepG2 cells, HepG215 cells, and liver cancer patients. The expression levels of SLC2A1 and SLC2A2 were related to tumor volume, grade, and stage in HCC. Interestingly, the expression levels of SLC2A1 and SLC2A2 were negatively correlated. Further, high SLC2A1 expression and low SLC2A2 expression were linked to poor overall survival and relapse-free survival. SLC2A1, SLC2A2, and frequently altered neighbor genes played a major role in the occurrence and development of tumors. Notably, SLC2A1 was positively correlated with tumor immune infiltration, while SLC2A2 was negatively correlated with tumor immune infiltration. Particularly, SLC2A2 methylation was positively correlated with lymphocytes. CONCLUSION SLC2A1 and SLC2A2 are independent therapeutic targets for HCC, and they are quintessential marker molecules for predicting and regulating the number and status of immune cells in HCC.
Collapse
Affiliation(s)
- Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Li-Yuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Ying-Lin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Zhi-Qin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Jing-Min Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Yi-Wei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Jun-Lan Lu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Cai-Ge Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Xin-Li Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| |
Collapse
|
34
|
Hu Z, Yin Y, Jiang J, Yan C, Wang Y, Wang D, Li L. Exosomal miR-142-3p secreted by hepatitis B virus (HBV)-hepatocellular carcinoma (HCC) cells promotes ferroptosis of M1-type macrophages through SLC3A2 and the mechanism of HCC progression. J Gastrointest Oncol 2022; 13:754-767. [PMID: 35557596 PMCID: PMC9086054 DOI: 10.21037/jgo-21-916] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/10/2022] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Most patients with hepatitis B virus (HBV) infection will develop hepatocellular carcinoma (HCC). This study aimed to explore the potential mechanism of miR-142-3p in HCC caused by HBV infection. METHODS HepG2 cells and M1 macrophages were cocultured and then infected with HBV to establish an in vitro model. MicroRNA (miRNA) and messenger RNA (mRNA) expression was analyzed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. The protein expressions of COX2, ACSL4, PTGS2, GPX4, and NOX1 were analyzed by Western blot. Flow cytometry and TUNEL assays were used to assess cell reactive oxygen species (ROS) and ferroptosis, respectively. Cell invasion and migration were measured by Transwell assay. To evaluate the ferroptosis of M1-type macrophages, glutathione (GSH), malondialdehyde (MDA), and Fe2+ content was detected by corresponding kits. Dual luciferase reporter gene detection verified the targeting relationship between miR-142-3p and SLC3A2. RESULTS MiR-142-3p was highly expressed in HBV-infected HCC patients and HBV-infected M1-type macrophages. Inhibition of miR-142-3p or overexpression of SLC3A2 reversed ferroptosis and inhibited the proliferation, migration, and invasion of HCC cells. CONCLUSIONS Our findings indicated that miR-142-3p promoted HBV-infected M1-type macrophage ferroptosis through SLC3A2, affecting the production of GSH, MDA, and Fe2+ and accelerating the development of HCC. The regulation of miR-142-3p and its target genes will help to clarify the pathogenesis of HCC induced by HBV infection and provide new theoretical foundations and therapeutic targets.
Collapse
Affiliation(s)
- Zongqiang Hu
- Hepato-Pancreato-Biliary Surgery Department, The First People’s Hospital of Kunming & The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanfeng Yin
- The Central Laboratory, The First People’s Hospital of Kunming & The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie Jiang
- Hepato-Pancreato-Biliary Surgery Department, The First People’s Hospital of Kunming & The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chuntao Yan
- The Central Laboratory, The First People’s Hospital of Kunming & The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiting Wang
- The Central Laboratory, The First People’s Hospital of Kunming & The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dongdong Wang
- Hepato-Pancreato-Biliary Surgery Department, The First People’s Hospital of Kunming & The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Li
- Hepato-Pancreato-Biliary Surgery Department, The First People’s Hospital of Kunming & The Calmette Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
35
|
Certad G. Is Cryptosporidium a hijacker able to drive cancer cell proliferation? Food Waterborne Parasitol 2022; 27:e00153. [PMID: 35498550 PMCID: PMC9044164 DOI: 10.1016/j.fawpar.2022.e00153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
The pathophysiological mechanisms of Cryptosporidium infection are multifactorial and not completely understood. Some advances achieved recently revealed that the infection by Cryptosporidium parvum induces cytoskeleton remodeling and actin reorganization through the implication of several intracellular signals involving, for example, PI3K, Src, Cdc42 and GTPases. It has also been reported that the infection by C. parvum leads to the activation of NF-κβ, known to induce anti-apoptotic mechanisms and to transmit oncogenic signals to epithelial cells. Despite the growing evidence about the hijacking of cellular pathways, potentially being involved in cancer onset, this information has rarely been linked to the tumorigenic potential of the parasite. However, several evidences support an association between Cryptosporidium infection and the development of digestive neoplasia. To explore the dynamics of Cryptosporidium infection, an animal model of cryptosporidiosis using corticoid dexamethasone-treated adult SCID (severe combined immunodeficiency) mice, orally infected with C. parvum or Cryptosporidium muris oocysts was implemented. C. parvum-infected animals developed digestive adenocarcinoma. When mechanisms involved in this neoplastic process were explored, the pivotal role of the Wnt pathway together with the alteration of the cytoskeleton was confirmed. Recently, a microarray assay allowed the detection of cancer-promoting genes and pathways highly up regulated in the group of C. parvum infected animals when compared to non-infected controls. Moreover, different human cases/control studies reported significant higher prevalence of Cryptosporidium infection among patients with recently diagnosed colon cancer before any treatment when compared to the control group (patients without colon neoplasia but with persistent digestive symptoms). These results suggest that Cryptosporidium is a potential oncogenic agent involved in cancer development beyond the usual suspects. If Cryptosporidium is able to hijack signal transduction, then is very likely that this contributes to transformation of its host cell. More research in the field is required in order to identify mechanisms and molecular factors involved in this process and to develop effective treatment interventions.
Collapse
|
36
|
Sofer S, Lamkiewicz K, Armoza Eilat S, Partouche S, Marz M, Moskovits N, Stemmer SM, Shlomai A, Sklan EH. A genome-wide CRISPR activation screen reveals Hexokinase 1 as a critical factor in promoting resistance to multi-kinase inhibitors in hepatocellular carcinoma cells. FASEB J 2022; 36:e22191. [PMID: 35147243 DOI: 10.1096/fj.202101507rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/27/2021] [Accepted: 01/20/2022] [Indexed: 01/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is often diagnosed at an advanced stage and is, therefore, treated with systemic drugs, such as tyrosine-kinase inhibitors (TKIs). These drugs, however, offer only modest survival benefits due to the rapid development of drug resistance. To identify genes implicated in TKI resistance, a cluster of regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 activation screen was performed in hepatoma cells treated with regorafenib, a TKI used as second-line therapy for advanced HCC. The screen results show that Hexokinase 1 (HK1), catalyzing the first step in glucose metabolism, is a top candidate for conferring TKI resistance. Compatible with this, HK1 was upregulated in regorafenib-resistant cells. Using several experimental approaches, both in vitro and in vivo, we show that TKI resistance correlates with HK1 expression. Furthermore, an HK inhibitor resensitized resistant cells to TKI treatment. Together, our data indicate that HK1 may function as a critical factor modulating TKI resistance in hepatoma cells and, therefore, may serve as a biomarker for treatment success.
Collapse
Affiliation(s)
- Summer Sofer
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, Jena, Germany.,European Virus Bioinformatics Center, Jena, Germany
| | - Shir Armoza Eilat
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shirly Partouche
- Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, Jena, Germany.,European Virus Bioinformatics Center, Jena, Germany.,Leibniz Institute for Age Research-Fritz Lipmann Institute, Jena, Germany
| | - Neta Moskovits
- PDX Laboratory, Felsenstein Medical Research Center and the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Salomon M Stemmer
- PDX Laboratory, Felsenstein Medical Research Center and the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Oncology, Davidoff Center, Rabin Medical Center, Petah-Tikva, Israel
| | - Amir Shlomai
- Felsenstein Medical Research Center and the Department of Medicine D, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Mahapatra S, Mohanty S, Mishra R, Prasad P. An overview of cancer and the human microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:83-139. [DOI: 10.1016/bs.pmbts.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Zou C, El Dika I, Vercauteren KOA, Capanu M, Chou J, Shia J, Pilet J, Quirk C, Lalazar G, Andrus L, Kabbani M, Yaqubie A, Khalil D, Mergoub T, Chiriboga L, Rice CM, Abou‐Alfa GK, de Jong YP. Mouse characteristics that affect establishing xenografts from hepatocellular carcinoma patient biopsies in the United States. Cancer Med 2021; 11:602-617. [PMID: 34951132 PMCID: PMC8817074 DOI: 10.1002/cam4.4375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chenhui Zou
- Division of Gastroenterology and Hepatology Weill Medical College at Cornell University New York New York USA
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Imane El Dika
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
- Department of Medicine Weill Medical College at Cornell University New York New York USA
| | - Koen O. A. Vercauteren
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Joanne Chou
- Department of Epidemiology and Biostatistics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Jinru Shia
- Department of Pathology Memorial Sloan Kettering Cancer Center New York New York USA
| | - Jill Pilet
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Gadi Lalazar
- Division of Gastroenterology and Hepatology Weill Medical College at Cornell University New York New York USA
- Laboratory of Cellular Biophysics The Rockefeller University New York New York USA
| | - Linda Andrus
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Mohammad Kabbani
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
- Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover Germany
| | - Amin Yaqubie
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
| | - Danny Khalil
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
- Department of Medicine Weill Medical College at Cornell University New York New York USA
| | - Taha Mergoub
- Memorial Sloan Kettering Cancer Center Sloan Kettering Institute New York New York USA
| | - Luis Chiriboga
- Department of Pathology Center for Biospecimen Research and Development NYU Langone Health New York New York USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Ghassan K. Abou‐Alfa
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
- Department of Medicine Weill Medical College at Cornell University New York New York USA
| | - Ype P. de Jong
- Division of Gastroenterology and Hepatology Weill Medical College at Cornell University New York New York USA
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| |
Collapse
|
39
|
Hepatitis B virus small envelope protein promotes HCC angiogenesis via ER stress signaling to upregulate VEGFA expression. J Virol 2021; 96:e0197521. [PMID: 34910612 DOI: 10.1128/jvi.01975-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a hypervascular tumor and accumulating evidence has indicated that stimulation of angiogenesis by HBV may contribute to HCC malignancy. The small protein of hepatitis B virus surface antigen (HBsAg), SHBs, is the most abundant HBV viral protein and has a close clinical association with HCC, however, whether SHBs contributes to HCC angiogenesis remains unknown. This study reports that forced expression of SHBs in HCC cells promoted xenograft tumor growth and increased the microvessel density (MVD) within the tumors. Consistently, HBsAg was also positively correlated with MVD count in HCC patients' specimens. The conditioned media from the SHBs-transfected HCC cells increased the capillary tube formation and migration of human umbilical vein endothelial cells (HUVECs). Intriguingly, overexpression of SHBs increased VEGFA expression at both mRNA and protein levels. A higher VEGFA expression level was also observed in the xenograft tumors transplanted with SHBs-expressing HCC cells and in HBsAg-positive HCC tumor tissues as compared to their negative controls. As expected, in the culture supernatants, the secretion of VEGFA was also significantly enhanced from HCC cells expressing SHBs, which promoted HUVECs migration and vessel formation. Furthermore, all the three unfolded protein response (UPR) sensors IRE1α, PERK and ATF6 associated with endoplasmic reticulum (ER) stress were found activated in the SHBs-expressing cells and correlated with VEGFA protein expression and secretion. Taken together, these results suggest an important role of SHBs in HCC angiogenesis and may highlight a potential target for preventive and therapeutic intervention of HBV-related HCC and its malignant progression. IMPORTANCE Chronic hepatitis B virus infection is one of the important risk factors for the development and progression of hepatocellular carcinoma (HCC). HCC is characteristic of hypervascularization even at early phases of the disease due to overexpression of angiogenic factors like vascular endothelial growth factor-A (VEGFA). However, a detailed mechanism in the HBV-induced angiogenesis remains to be established. In this study, we demonstrate for the first time that the most abundant HBV viral protein, i.e. small surface antigens (SHBs) can enhance the angiogenic capacity of HCC cells by upregulation of VEGFA expression both in vitro and in vivo. Mechanistically, SHBs induced endoplasmic reticulum (ER) stress which consequently activated unfolded protein response (UPR) signaling to increase VEGFA expression and secretion. This study suggests that SHBs plays an important pro-angiogenic role in HBV-associated HCC and may represent a potential target for anti-angiogenic therapy in the HCC.
Collapse
|
40
|
Xing R, Gao J, Cui Q, Wang Q. Strategies to Improve the Antitumor Effect of Immunotherapy for Hepatocellular Carcinoma. Front Immunol 2021; 12:783236. [PMID: 34899747 PMCID: PMC8660685 DOI: 10.3389/fimmu.2021.783236] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most fatal malignancies in the world, is usually diagnosed in advanced stages due to late symptom manifestation with very limited therapeutic options, which leads to ineffective intervention and dismal prognosis. For a decade, tyrosine kinase inhibitors (TKIs) have offered an overall survival (OS) benefit when used in a first-line (sorafenib and lenvatinib) and second-line setting (regorafenib and cabozantinib) in advanced HCC, while long-term response remains unsatisfactory due to the onset of primary or acquired resistance. Recently, immunotherapy has emerged as a promising therapy in the treatment of several solid tumors, such as melanoma and non-small cell lung cancer. Moreover, as the occurrence of HCC is associated with immune tolerance and immunosurveillance escape, there is a potent rationale for employing immunotherapy in HCC. However, immunotherapy monotherapy, mainly including immune checkpoint inhibitors (ICIs) that target checkpoints programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), and the cytotoxic T lymphocyte antigen-4 (CTLA-4), has a relatively low response rate. Thus, the multi-ICIs or the combination of immunotherapy with other therapies, like antiangiogenic drugs and locoregional therapies, has become a novel strategy to treat HCC. Combining different ICIs may have a synergistical effect attributed to the complementary effects of the two immune checkpoint pathways (CTLA-4 and PD-1/PD-L1 pathways). The incorporation of antiangiogenic drugs in ICIs can enhance antitumor immune responses via synergistically regulating the vasculature and the immune microenvironment of tumor. In addition, locoregional treatments can improve antitumor immunity by releasing the neoplasm antigens from killed tumor cells; in turn, this antitumor immune response can be intensified by immunotherapy. Therefore, the combination of locoregional treatments and immunotherapy may achieve greater efficacy through further synergistic effects for advanced HCC. This review aims to summarize the currently reported results and ongoing trials of the ICIs-based combination therapies for HCC to explore the rational combination strategies and further improve the survival of patients with HCC.
Collapse
Affiliation(s)
- Rui Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinping Gao
- Department of Oncology, North War Zone General Hospital, Shenyang, China
| | - Qi Cui
- Department of Cold Environmental Medicine, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qian Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
41
|
De Battista D, Zamboni F, Gerstein H, Sato S, Markowitz TE, Lack J, Engle RE, Farci P. Molecular Signature and Immune Landscape of HCV-Associated Hepatocellular Carcinoma (HCC): Differences and Similarities with HBV-HCC. J Hepatocell Carcinoma 2021; 8:1399-1413. [PMID: 34849372 PMCID: PMC8615147 DOI: 10.2147/jhc.s325959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction HCC is the third leading cause of cancer-related death worldwide, with chronic viral hepatitis accounting for more than 70% of the cases. Therapeutic options are limited and ineffective. The increasing use of immune-based therapies in solid tumors highlights the need to expand our knowledge on the immunologic microenvironment of HCC. Methods Access to liver samples from 20 well-characterized patients with HCC associated with HCV (n = 9) or HBV (n = 11) gave us the opportunity to study the immunologic landscape in these tumors. For each patient, RNA-sequencing was performed on the tumor and surrounding nontumorous tissue. Results We found that both HCV- and HBV-HCC are associated with a predominance of downregulated genes (74% and 67%, respectively). Analysis of the immune landscape using a curated gene list showed 216 of 2481 (9%) immune genes in HCV-HCC and 164 of 2560 (6%) in HBV-HCC. However, only 8 immune genes (4%) were upregulated in HCV-HCC and 27 (16.5%) in HBV-HCC. HCV-HCC was characterized by an enrichment of downregulated genes related to T-cell activation and oxidative stress. The dramatic downregulation of immune genes related to T-cell activation in HCV-HCC prompted us to perform an extensive immunohistochemistry analysis on paraffin-embedded liver specimen. Interestingly, we found a significant reduction of immune-cell infiltration (CD3, CD8 and CD20 positive cells) within the tumor. Moreover, we observed that HCV-HCC is characterized by an enrichment of M2-like CD68-positive cells. These data are consistent with the dramatic downregulation of immune-cell infiltration seen in HCV-HCC. Conversely, HBV-HCC was characterized by upregulation of genes related to monocyte/macrophage activation and cell cycle control, and downregulation of genes involved in various cell metabolisms. Conclusion This study demonstrates a distinctive molecular signature and immune landscape in HCC of different viral etiology, which could provide new insights into pathogenesis and lead to the development of novel immune-based therapies.
Collapse
Affiliation(s)
- Davide De Battista
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fausto Zamboni
- Liver Transplantation Center, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Hannah Gerstein
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shinya Sato
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tovah E Markowitz
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Ronald E Engle
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
42
|
Sweed D, Sultan MM, Mosbeh A, Fayed YA, Abdelsameea E, Ehsan NA, Abdel-Rahman MH, Waked I. Lymphoepithelioma-like Hepatocellular Carcinoma: a Case Report and Review of Literature. J Gastrointest Cancer 2021; 54:275-281. [PMID: 34813031 DOI: 10.1007/s12029-021-00757-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
We report a case of hepatic lymphoepithelioma-like carcinoma-hepatocellular carcinoma subtype (LEL-HCC) in a 41-year-old man with chronic hepatitis C virus (HCV) infection. The patient presented with abdominal pain and further assessment revealed a hypoechoic mass on ultrasonography. Serum alpha-fetoprotein (AFP) was 13·6 ng/dl. The patient was diagnosed as hepatocellular carcinoma based on the established triphasic computed tomography (TCT) diagnostic criteria and he underwent a surgical resection of the mass. Microscopic examination showed sheets and cords of malignant epithelial cells intermixed with heavy lymphoid infiltrate, with more than 100 tumor-infiltrating lymphocytes (TILs) per 10 high-power-field (HPF). Based on immunohistochemical studies, the malignant cells were positive for Hep Par 1 and glypican 3, focally positive for cytokeratin 7 (CK7), and negative for cytokeratin 20 (CK20). TILs were diffusely positive for cluster of differentiation 3 CD3 with an approximately equal CD4/CD8 ratio. The patient was recurrence free at 25 months after surgery, as evident by CT and serum alpha-fetoprotein level. LEL-HCC is a rare variant of HCC with a relatively better prognosis. Exploring the potential for immune modulator-based therapy in this subset of tumors is highly recommended.
Collapse
Affiliation(s)
- Dina Sweed
- Pathology Department, National Liver Institute, Menoufia University, Shibin Al Kawm, Egypt
| | - Mervat M Sultan
- Pathology Department, National Liver Institute, Menoufia University, Shibin Al Kawm, Egypt
| | - Asmaa Mosbeh
- Pathology Department, National Liver Institute, Menoufia University, Shibin Al Kawm, Egypt.
| | - Yahya A Fayed
- Hepatopancreatobiliary Surgery Department, National Liver Institute, Menoufia University, Shibin Al Kawm, Egypt
| | - Eman Abdelsameea
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shibin Al Kawm, Egypt
| | - Nermine A Ehsan
- Pathology Department, National Liver Institute, Menoufia University, Shibin Al Kawm, Egypt
| | - Mohamed H Abdel-Rahman
- Pathology Department, National Liver Institute, Menoufia University, Shibin Al Kawm, Egypt
| | - Imam Waked
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shibin Al Kawm, Egypt
| |
Collapse
|
43
|
Han JJ, Chen Y, Nan YC, Yang YL. Extremely high titer of hepatitis B surface antigen antibodies in a primary hepatocellular carcinoma patient: A case report. World J Clin Cases 2021; 9:8492-8497. [PMID: 34754858 PMCID: PMC8554442 DOI: 10.12998/wjcc.v9.i28.8492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/10/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) may be caused by hepatitis B virus (HBV) infection. Post-infection recovery-associated changes of HBV indicators include decreased hepatitis B surface antigen (HBsAg) level and increased anti-HBsAg antibody titer. Testing to detect HBV DNA is conducted rarely but could detect latent HBV infection persisting after acute infection and prompt administration of treatments to clear HBV and prevent subsequent HBV-induced HCC development. Here, we present an HCC case with an extremely high anti-HBsAg antibody titer and latent HBV infection.
CASE SUMMARY A 57-year-old male patient with abdominal pain who was diagnosed with primary HCC presented with an extremely high level (over 2000 ng/mL) of serum alpha-fetoprotein. Abdominal B-ultrasonography and computed tomography scan results indicated focal liver lesion and mild splenomegaly. Assessments of serological markers revealed a high titer of antibodies against hepatitis B core antigen (anti-HBcAg antibodies), an extremely high titer (1000 mIU/mL) of hepatitis B surface antibodies (anti-HBsAg antibodies, anti-HBs) and absence of detectible HBsAg. Medical records indicated that the patient had reported no history of HBV vaccination, infection or hepatitis. Therefore, to rule out latent HBV infection in this patient, a serum sample was collected then tested to detect HBV DNA, yielding a positive result. Based on the aforementioned information, the final diagnosis was HCC associated with hepatitis B in a compensated stage of liver dysfunction and the patient was hospitalized for surgical treatment.
CONCLUSION A rare HCC case with high serum anti-HBsAg antibody titer and detectable HBV DNA resulted from untreated latent HBV infection.
Collapse
Affiliation(s)
- Jing-Jing Han
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yu-Chen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Yong-Lin Yang
- Department of Infectious Disease, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People's Hospital), Taizhou 225300, Jiangsu Province, China
- Department of General Practice, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
| |
Collapse
|
44
|
Human inborn errors of immunity to oncogenic viruses. Curr Opin Immunol 2021; 72:277-285. [PMID: 34364035 DOI: 10.1016/j.coi.2021.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 12/25/2022]
Abstract
Oncoviruses are viruses that can cause tumors. Seven viruses are currently recognized as oncogenic in humans: Epstein Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV, also known as HHV8), human papillomaviruses (HPVs), hepatitis B virus (HBV), hepatitis C virus (HCV), human T-lymphotropic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV). The clinical phenotypes resulting from infection with these oncoviruses range from asymptomatic infection to invasive cancers. Patients with inborn errors of immunity (IEI) are prone to the development of infectious diseases caused by a narrow or broad spectrum of pathogens, including oncoviruses in some cases. Studies of patients with IEI have deepened our understanding of the non-redundant mechanisms underlying the control of EBV, HHV8 and HPV infections. The human genetic factors conferring predisposition to oncogenic HBV, HCV, HTLV-1 and MCPyV manifestations remain elusive. We briefly review here what is currently known about the IEI conferring predisposition to severe infection with oncoviruses.
Collapse
|
45
|
Ren X, Ju Y, Wang C, Wei R, Sun H, Zhang Q. MARCKS on Tumor-Associated Macrophages is Correlated with Immune Infiltrates and Poor Prognosis in Hepatocellular Carcinoma. Cancer Invest 2021; 39:756-768. [PMID: 34279157 DOI: 10.1080/07357907.2021.1950757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma is the fourth most common cause of cancer-related death. However, the cross-talk between tumor immune microenvironment and hepatocellular carcinoma (HCC) remains unclear. MATERIAL AND METHODS We analyzed the expression of miR-143-3p in exosomes from different HCC cell lines. Differentially expressed genes (DEGs) in Tumor-associated macrophages (TAMs) co-cultured with HCC cell lines were overlapped with miR-143-3p target genes. We used the Oncomine, Kaplan-Meier plotter, and The Cancer Genome Atlas (TCGA) databases to assess Myristoylated alanine-rich C-kinase substrate (MARCKS) expression in various types of cancers. The relationship between patient clinicopathological characteristics and MARCKS expression level was identified using the Kaplan-Meier plotter database. Last, we analyzed how MARCKS expression correlated with immune infiltration makers using the TCGA database, Tumor IMmune Estimation Resource (TIMER), and Gene Expression Profiling Interactive Analysis (GEPIA). RESULTS Exosomal miR-143-3p was elevated after IL-6 treatment in the HCC cell line. MARCKS, a target gene of miR-143-3p, was up-regulated in Tumor-associated macrophages co-cultured with high-metastatic-potential HCC cell line. MARCKS expression was identified as significantly correlated with outcome in multiple types of cancer, especially in HCC. High MARCKS expression level was associated with poorer overall survival (OS), Progress-free survival (PFS), and also with patient gender, race, hepatitis virus background, stage, grade, AJCC_T, and vascular invasion. MARCKS was positively associated with levels of T follicular helper cells (TFH) (R = .48, p < .001), T helper type 2 (Th2) cells (R = .47, p < .001), macrophages (R = .41, p ≤ .001), T helper cells (R = .40, p < .001), T helper type 1 (Th1) cells (R = .38, p < .001), T cells (R = .34, p < .001), NK CD56bright cells (R = .34, p < .001) and immature DC (iDC) (R = .33, p < .001), and negatively associated with levels of T helper 17 (Th17) cells. Also, MARCKS may influence the M2 polarization and immune escape. CONCLUSION The present study suggests that MARCKS on TAMs is associated with poor prognosis and immune cell infiltration in HCC.
Collapse
Affiliation(s)
- Xudong Ren
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanqin Ju
- Department of Stomotology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chaoqun Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ran Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haoting Sun
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Quanbao Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Zhan T, Gao X, Wang G, Li F, Shen J, Lu C, Xu L, Li Y, Zhang J. Construction of Novel lncRNA-miRNA-mRNA Network Associated With Recurrence and Identification of Immune-Related Potential Regulatory Axis in Hepatocellular Carcinoma. Front Oncol 2021; 11:626663. [PMID: 34336642 PMCID: PMC8320021 DOI: 10.3389/fonc.2021.626663] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant diseases globally. Despite continuous improvement of treatment methods, high postoperative recurrence rate remains an urgent problem. In order to determine the mechanism underlying recurrence of liver cancer and identify prognostic genes, data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were integrated and analyzed. Differentially expressed genes (DEGs) between HCC tissue and normal liver tissue were identified, and a protein-protein interaction network was constructed to find hub genes. Clinical correlation analysis and disease-free survival (DFS) analysis were performed using the R language and GEPIA to identify relapse-related genes. Correlation analysis was used to identify a potential regulatory axis. Dual-luciferase reporter gene assay was used to confirm the reliability of the long non-coding RNA (lncRNA)-microRNA (miRNA)-mRNA regulatory axis. Immune infiltration analysis was performed using the TIMER database. Correlations between immune gene markers and ASF1B were verified using quantitative real-time polymerase chain reaction (RT-qPCR). In this work, we found that nine lncRNAs and five mRNAs were significantly overexpressed in HCC tissues from patients with recurrence. SNHG3, LINC00205, ASF1B, AURKB, CCNB1, CDKN3, and DTL were also closely related to HCC grade and stage. Survival analysis showed that these seven DEGs were significantly correlated with poor DFS. Correlation analysis identified SNHG3-miR-214-3p-ASF1B as a potential regulatory axis. Dual-luciferase reporter gene assay showed that SNHG3 and ASF1B directly bound to miR-214-3p. ASF1B was negatively regulated by miRNA-214-3p, and overexpression of SNHG3 could inhibit the expression of miRNA-214-3p. In addition, ASF1B was positively correlated with immune infiltration. A reduction in ASF1B could markedly inhibit the expression of CD86, CD8, STAT1, STAT4, CD68, and PD1 in HCC cells. Flow cytometry showed that SNHG3 promoted the PD-1 expression by regulating ASF1B. Meanwhile, elevated ASF1B predicted poor prognosis of HCC patients in subgroups with decreased B cells, CD8+ T cells, or neutrophils, and those with enriched CD4+ T cells. In conclusion, we found that a novel lncRNA SNHG3/miR-214-3p/ASF1B axis could promote the recurrence of HCC by regulating immune infiltration.
Collapse
Affiliation(s)
- Tian Zhan
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiang Gao
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guoguang Wang
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fan Li
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jian Shen
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chen Lu
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuan Li
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Yan Q, Zheng W, Wang B, Ye B, Luo H, Yang X, Zhang P, Wang X. A prognostic model based on seven immune-related genes predicts the overall survival of patients with hepatocellular carcinoma. BioData Min 2021; 14:29. [PMID: 33962640 PMCID: PMC8106157 DOI: 10.1186/s13040-021-00261-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a disease with a high incidence and a poor prognosis. Growing amounts of evidence have shown that the immune system plays a critical role in the biological processes of HCC such as progression, recurrence, and metastasis, and some have discussed using it as a weapon against a variety of cancers. However, the impact of immune-related genes (IRGs) on the prognosis of HCC remains unclear. METHODS Based on The Cancer Gene Atlas (TCGA) and Immunology Database and Analysis Portal (ImmPort) datasets, we integrated the ribonucleic acid (RNA) sequencing profiles of 424 HCC patients with IRGs to calculate immune-related differentially expressed genes (DEGs). Survival analysis was used to establish a prognostic model of survival- and immune-related DEGs. Based on genomic and clinicopathological data, we constructed a nomogram to predict the prognosis of HCC patients. Gene set enrichment analysis further clarified the signalling pathways of the high-risk and low-risk groups constructed based on the IRGs in HCC. Next, we evaluated the correlation between the risk score and the infiltration of immune cells, and finally, we validated the prognostic performance of this model in the GSE14520 dataset. RESULTS A total of 100 immune-related DEGs were significantly associated with the clinical outcomes of patients with HCC. We performed univariate and multivariate least absolute shrinkage and selection operator (Lasso) regression analyses on these genes to construct a prognostic model of seven IRGs (Fatty Acid Binding Protein 6 (FABP6), Microtubule-Associated Protein Tau (MAPT), Baculoviral IAP Repeat Containing 5 (BIRC5), Plexin-A1 (PLXNA1), Secreted Phosphoprotein 1 (SPP1), Stanniocalcin 2 (STC2) and Chondroitin Sulfate Proteoglycan 5 (CSPG5)), which showed better prognostic performance than the tumour/node/metastasis (TNM) staging system. Moreover, we constructed a regulatory network related to transcription factors (TFs) that further unravelled the regulatory mechanisms of these genes. According to the median value of the risk score, the entire TCGA cohort was divided into high-risk and low-risk groups, and the low-risk group had a better overall survival (OS) rate. To predict the OS rate of HCC, we established a gene- and clinical factor-related nomogram. The receiver operating characteristic (ROC) curve, concordance index (C-index) and calibration curve showed that this model had moderate accuracy. The correlation analysis between the risk score and the infiltration of six common types of immune cells showed that the model could reflect the state of the immune microenvironment in HCC tumours. CONCLUSION Our IRG prognostic model was shown to have value in the monitoring, treatment, and prognostic assessment of HCC patients and could be used as a survival prediction tool in the near future.
Collapse
Affiliation(s)
- Qian Yan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjiang Zheng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Boqing Wang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baoqian Ye
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiyan Luo
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinqian Yang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ping Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiongwen Wang
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
48
|
RETROSPECTIVE EVALUATION OF HEPATOCELLULAR NEOPLASMS IN NILE LECHWE ( KOBUS MEGACEROS) FROM TWO FLORIDA ZOOLOGICAL INSTITUTIONS. J Zoo Wildl Med 2021; 51:678-686. [PMID: 33480545 DOI: 10.1638/2020-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 11/21/2022] Open
Abstract
This case series describes hepatocellular neoplasms in 10 Nile lechwe (Kobus megaceros) at two separate zoological institutions in Florida. Histologically, the neoplasms were classified as hepatocellular carcinoma (n = 7), hepatocellular adenoma (n = 2), and hepatobiliary carcinoma (n = 1). Common clinical signs were nonspecific and included thin body condition (n =7), lethargy (n =6), lameness (n =3), and acute recumbency (n =5). Four males and six females were affected, and the mean age at death was 12.7 yr with a range of 4-18 yr. All cases were diagnosed postmortem, and metastasis to various sites, including lung, lymph nodes, and omentum, was found in 40% of cases (n = 4). A single case of hepatocellular carcinoma in a Nile lechwe was described in 2007; however, this is the first reported series of neoplasms in Reduncinae. The pathogenesis behind the development of hepatocellular neoplasms in Nile lechwe has not yet been identified.
Collapse
|
49
|
Peng X, Chen R, Cai S, Lu S, Zhang Y. SLC1A4: A Powerful Prognostic Marker and Promising Therapeutic Target for HCC. Front Oncol 2021; 11:650355. [PMID: 33777811 PMCID: PMC7991385 DOI: 10.3389/fonc.2021.650355] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
SLC1A4, a Na-dependent neutral amino acid transporter, was considered to participate in the various pathobiological process, including tumorigenesis. However, the correlation between SLC1A4 and Hepatocellular Carcinoma (HCC) remains unclear. In our study, integrative bioinformatics and functional profiling were performed to reveal the prognosis and potential function of SLC1A4 in HCC. The results showed that the mRNA and protein levels of SLC1A4 were elevated in HCC, and it was a powerful independent prognostic marker for overall survival (OS). The co-expressed genes analysis and GSEA analysis showed that SLC1A4 was related to cell cycle, metabolism, cancer-related pathway. Furthermore, the functional analysis revealed that silenced SLC1A4 inhibited cell proliferation, migration, cell cycle, and promoted cell apoptosis in HCC. Next, immune analysis showed that SLC1A4 expression was positively associated with immune infiltration and immune-related chemokine expression in HCC. Silenced SLC1A4 evidently reduced these chemokines expression in HCC cells. Finally, drug sensitivity analysis revealed potential five sensitivity drugs for HCC patients with high-expressed SLC1A4. In conclusion, our results suggested that SLCIA4 could be a novel predictor prognosis and immunotherapeutic targets of HCC, and the sensitivity drugs may be effective therapeutic strategy for HCC patients with high-expressed SLC1A4.
Collapse
Affiliation(s)
- Xiaozhen Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Huaihua Key Laboratory of Research and Application of Novel Molecular Diagnostic Techniques, School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shenglan Cai
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Lu
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
50
|
Mauda-Havakuk M, Mikhail AS, Starost MF, Jones EC, Karim B, Kleiner DE, Partanen A, Esparza-Trujillo JA, Bakhutashvili I, Wakim PG, Kassin MT, Lewis AL, Karanian JW, Wood BJ, Pritchard WF. Imaging, Pathology, and Immune Correlates in the Woodchuck Hepatic Tumor Model. J Hepatocell Carcinoma 2021; 8:71-83. [PMID: 33728278 PMCID: PMC7955744 DOI: 10.2147/jhc.s287800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background Woodchucks chronically infected with woodchuck hepatitis virus (WHV), which resembles human hepatitis B virus, develop spontaneous hepatic tumors and may be an important biological and immunological model for human HCC. Nonetheless, this model requires further validation to fully realize its translational potential. Methods Woodchucks infected at birth with WHV that had developed HCC (n=12) were studied. Computed tomography, ultrasound, and magnetic resonance imaging were performed under anesthesia. LI-RADS scoring and correlative histologic analysis of sectioned tissues were performed. For immune characterization of tumors, CD3 (T cells), CD4 (T helpers), NCAM (Natural killers), FOXP3 (T-regulatory), PDL-1 (inhibitory checkpoint protein), and the human hepatocellular carcinoma (HCC) biomarker alpha-fetoprotein (AFP) immunohistochemical stains were performed. Results Forty tumors were identified on imaging of which 29 were confirmed to be HCC with 26 categorized as LR-4 or 5. The remainder of the tumors had benign histology including basophilic foci, adenoma, and lipidosis as well as pre-malignant dysplastic foci. LR-4 and LR-5 lesions showed high sensitivity (90%) and specificity (100%) for malignant and pre-malignant tumors. Natural killers count was found to be 2–5 times lower in tumors relative to normal parenchyma while other immune cells were located in the periphery of tumors. Tumors expressed AFP and did not express PD-L1. Conclusion Woodchucks chronically infected with WHV developed diverse hepatic tumor types with diagnostic imaging, pathology, and immune patterns comparable to that in humans. This unique animal model may provide a valuable tool for translation and validation of novel image-guided and immune-therapeutic investigations.
Collapse
Affiliation(s)
- Michal Mauda-Havakuk
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S Mikhail
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Matthew F Starost
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth C Jones
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Baktiar Karim
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - David E Kleiner
- Center for Cancer Research, Clinical Center, National Cancer Institute, Bethesda, MD, USA
| | - Ari Partanen
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Juan A Esparza-Trujillo
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ivane Bakhutashvili
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Paul G Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Michael T Kassin
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Andrew L Lewis
- Biocompatibles UK Ltd (a BTG International Group Company), Camberley, UK
| | - John W Karanian
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institute of Biomedical Imaging and Bioengineering and National Cancer Institute Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - William F Pritchard
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|