1
|
Wang M, Gao C, Lessing DJ, Chu W. Saccharomyces cerevisiae SC-2201 Attenuates AOM/DSS-Induced Colorectal Cancer by Modulating the Gut Microbiome and Blocking Proinflammatory Mediators. Probiotics Antimicrob Proteins 2025; 17:1523-1535. [PMID: 38329696 DOI: 10.1007/s12602-024-10228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Colorectal cancer is the third most common cancer in the world today, and studies have shown that the ratio of Candida to Saccharomyces cerevisiae increased, and the abundance of S. cerevisiae in the intestines of patients with colorectal cancer decreased, which suggests that there is an imbalance in the proportion of fungi in the intestines of patients with colorectal cancer. The objective of this study was to screen S. cerevisiae isolate from traditional Chinese fermentation starters and assess its ability to ameliorate dysbiosis and to alleviate the carcinogenic process of azoxymethane/dextran sodium sulfate-induced colorectal cancer in mice model. S. cerevisiae strain SC-2201 was isolated and exhibited probiotic properties, including the ability to survive in an acidic pH environment and in the presence of bile salts in the gastrointestinal tract, as well as antioxidant activities. Oral administration of S. cerevisiae SC-2201 not only alleviated weight loss but also reduced colonic shortening and histological damage in azoxymethane/dextran sodium sulfate-induced colorectal cancer in mice. Furthermore, the administration of S. cerevisiae SC-2201 suppressed the expression of proinflammatory mediators, such as interleukin-1β, interleukin-6, cyclooxygenase-2, vascular endothelial growth factor, nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3. Specifically, the analysis of gut bacteriome showed a significant decrease in Bacteroidota and Campylobacterota levels, as well as an increase in Proteobacteria level in the colorectal cancer group, which was alleviated by supplementation with S. cerevisiae SC-2201. The analysis of the mycobiome revealed a significant increase in the levels of Basidiomycota, Apiosordaria, Naganishia, and Taphrina genera in the colorectal cancer group, which were alleviated after supplementation with S. cerevisiae SC-2201. However, the levels of Xenoramularia, Entoloma, and Keissleriella were significantly increased after administration with S. cerevisiae SC-2201. Overall, the findings of this study demonstrate that S. cerevisiae SC-2201 possesses potential probiotic properties and can effectively attenuate the development of colorectal cancer, highlighting its cancer-preventive potential. This is the first report of a S. cerevisiae strain isolated from traditional Chinese fermentation starters which showed good probiotic properties, and mitigated azoxymethane/dextran sodium sulfate-induced colorectal cancer by modulating the gut microbiome and blocking proinflammatory mediators in mice.
Collapse
Affiliation(s)
- Minyu Wang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu Province, Nanjing, 210009, People's Republic of China
| | - Chongzheng Gao
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu Province, Nanjing, 210009, People's Republic of China
| | - Duncan James Lessing
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu Province, Nanjing, 210009, People's Republic of China
| | - Weihua Chu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu Province, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
2
|
Sadri M, Shafaghat Z, Roozbehani M, Hoseinzadeh A, Mohammadi F, Arab FL, Minaeian S, Fard SR, Faraji F. Effects of Probiotics on Liver Diseases: Current In Vitro and In Vivo Studies. Probiotics Antimicrob Proteins 2025; 17:1688-1710. [PMID: 39739162 DOI: 10.1007/s12602-024-10431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Various types of liver or hepatic diseases cause the death of about 2 million people worldwide every year, of which 1 million die from the complications of cirrhosis and another million from hepatocellular carcinoma and viral hepatitis. Currently, the second most common solid organ transplant is the liver, and the current rate represents less than 10% of global transplant requests. Hence, finding new approaches to treat and prevent liver diseases is essential. In liver diseases, the interaction between the liver, gut, and immune system is crucial, and probiotics positively affect the human microbiota. Probiotics are a non-toxic and biosafe alternative to synthetic chemical compounds. Health promotion by lowering cholesterol levels, stimulating host immunity, the natural gut microbiota, and other functions are some of the activities of probiotics, and their metabolites, including bacteriocins, can exert antimicrobial effects against a broad range of pathogenic bacteria. The present review discusses the available data on the results of preclinical and clinical studies on the effects of probiotic administration on different types of liver diseases.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Hoseinzadeh
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Mohammadi
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran.
| |
Collapse
|
3
|
McDonnell KJ. Operationalizing Team Science at the Academic Cancer Center Network to Unveil the Structure and Function of the Gut Microbiome. J Clin Med 2025; 14:2040. [PMID: 40142848 PMCID: PMC11943358 DOI: 10.3390/jcm14062040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Oncologists increasingly recognize the microbiome as an important facilitator of health as well as a contributor to disease, including, specifically, cancer. Our knowledge of the etiologies, mechanisms, and modulation of microbiome states that ameliorate or promote cancer continues to evolve. The progressive refinement and adoption of "omic" technologies (genomics, transcriptomics, proteomics, and metabolomics) and utilization of advanced computational methods accelerate this evolution. The academic cancer center network, with its immediate access to extensive, multidisciplinary expertise and scientific resources, has the potential to catalyze microbiome research. Here, we review our current understanding of the role of the gut microbiome in cancer prevention, predisposition, and response to therapy. We underscore the promise of operationalizing the academic cancer center network to uncover the structure and function of the gut microbiome; we highlight the unique microbiome-related expert resources available at the City of Hope of Comprehensive Cancer Center as an example of the potential of team science to achieve novel scientific and clinical discovery.
Collapse
Affiliation(s)
- Kevin J McDonnell
- Center for Precision Medicine, Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Chen P, Yang C, Ren K, Xu M, Pan C, Ye X, Li L. Modulation of gut microbiota by probiotics to improve the efficacy of immunotherapy in hepatocellular carcinoma. Front Immunol 2024; 15:1504948. [PMID: 39650662 PMCID: PMC11621041 DOI: 10.3389/fimmu.2024.1504948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Hepatocellular carcinoma, a common malignancy of the digestive system, typically progresses through a sequence of hepatitis, liver fibrosis, cirrhosis and ultimately, tumor. The interaction between gut microbiota, the portal venous system and the biliary tract, referred to as the gut-liver axis, is crucial in understanding the mechanisms that contribute to the progression of hepatocellular carcinoma. Mechanisms implicated include gut dysbiosis, alterations in microbial metabolites and increased intestinal barrier permeability. Imbalances in gut microbiota, or dysbiosis, contributes to hepatocellular carcinoma by producing carcinogenic substances, disrupting the balance of the immune system, altering metabolic processes, and increasing intestinal barrier permeability. Concurrently, accumulating evidence suggests that gut microbiota has the ability to modulate antitumor immune responses and affect the efficacy of cancer immunotherapies. As a new and effective strategy, immunotherapy offers significant potential for managing advanced stages of hepatocellular carcinoma, with immune checkpoint inhibitors achieving significant advancements in improving patients' survival. Probiotics play a vital role in promoting health and preventing diseases by modulating metabolic processes, inflammation and immune responses. Research indicates that they are instrumental in boosting antitumor immune responses through the modulation of gut microbiota. This review is to explore the relationship between gut microbiota and the emergence of hepatocellular carcinoma, assess the contributions of probiotics to immunotherapy and outline the latest research findings, providing a safer and more cost-effective potential strategy for the prevention and management of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Chengchen Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ke Ren
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Mingzhi Xu
- Department of General Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Chenwei Pan
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuewei Ye
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
dos Santos Pereira E, de Oliveira Raphaelli C, Massaut KB, Ribeiro JA, Soares Vitola HR, Pieniz S, Fiorentini ÂM. Probiotics: Therapeutic Strategy on the Prevention and Treatment of
Inflammatory Diseases: Obesity, Type 2 Diabetes Mellitus and Celiac
Disease. CURRENT NUTRITION & FOOD SCIENCE 2024; 20:1112-1125. [DOI: 10.2174/0115734013252358231016181809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 01/03/2025]
Abstract
Background:
Recent evidence demonstrates the fundamental role of the gut microbiota
in inflammatory diseases, and several mechanisms of action of probiotics in improvement of inflammatory
parameters.
Objective:
The objective of this review was to relate the consumption of probiotic bacteria and its
effects on inflammatory diseases, including obesity, type II diabetes and celiac disease.
Methods:
A search was carried out in English, between the years 2011 and 2022, for research articles
and clinical trials with humans and in vivo studies. Research showed improvement in cardiovascular
risk markers, and improvement in insulin sensitivity, lipid profile and plasma atherogenic
index, in obesity with the use of probiotics. In type II diabetes, decreased levels of fasting glucose,
glycated hemoglobin, insulin and glycemic index, and increased levels of peptide 1, superoxide
dismutase and glutathione peroxidase were observed.
Results:
In addition to cellular protection of the islets of Langerhans and positive alteration of TNF-
α and IL-1β markers. Improvement in the condition of patients with celiac disease was observed,
since the neutralization of the imbalance in serotonin levels was observed, reducing the expression
of genes of interest and also, a decrease in cytokines.
Conclusion:
Therefore, the use of probiotics should be encouraged.
Collapse
Affiliation(s)
| | | | - Khadija Bezerra Massaut
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | - Jardel Araújo Ribeiro
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | | | - Simone Pieniz
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| | - Ângela Maria Fiorentini
- Department of Food Science and Technology, Universidade Federal de Pelotas, Pelotas, Rs, Brazil
| |
Collapse
|
6
|
Massaut KB, Vitola HRS, Gonçalves VS, Leite FPL, Jardim RD, Moreira ÂN, da Silva WP, Fiorentini ÂM. Administration of Lacticaseibacillus casei CSL3 in Swiss Mice with Immunosuppression Induced by Cyclophosphamide: Effects on Immunological, Biochemical, Oxidative Stress, and Histological Parameters. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10362-9. [PMID: 39313704 DOI: 10.1007/s12602-024-10362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
The study aimed to evaluate the effects of supplementation with Lacticaseibacillus casei CSL3 in Swiss mice immunosuppressed with cyclophosphamide on immunological, biochemical, oxidative stress, and histological parameters. The animals were distributed into four groups (control, CSL3, cyclophosphamide, and CSL3 + cyclophosphamide), where two groups were treated with L. casei CSL3 (10 log CFU mL-1) for 30 days, and two groups received chemotherapy (days 27 and 30-total dose of 250 mg kg-1). Counts of lactic acid bacteria (LAB) and bile-resistant LAB in stool samples; blood count (erythrogram, leukogram, and platelets); serum total cholesterol levels; catalase enzyme activity; and thiobarbituric acid reactive substances (TBARS) levels in liver, kidney, and brain; IL-4 expression; IL-23, TNF-α, NF-κβ in the spleen; and histological changes in the liver, kidneys, and intestine were evaluated. The CSL3 + cyclophosphamide group showed a significant increase in bile-resistant LAB counts in feces (p = 0.0001), leukocyte counts, and expression of IL-23, TNF-α, and NF-κβ (p < 0.05) significantly reduced total cholesterol levels (p = 0.001) and protected liver damage of supplemented animals. For oxidative stress damage, the bacterium did not influence the results. It is concluded that the bacterium is safe at a concentration of 10 log CFU mL-1 and has probiotic potential due to its positive influence on the immune response and lipid metabolism.
Collapse
Affiliation(s)
- Khadija Bezerra Massaut
- Laboratory of Food Microbiology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Helena Reissing Soares Vitola
- Laboratory of Food Microbiology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | | | - Rodrigo Desessards Jardim
- Histology Laboratory, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Ângela Nunes Moreira
- Laboratory of Applied Immunology, Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Laboratory of Food Microbiology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Ângela Maria Fiorentini
- Laboratory of Food Microbiology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
7
|
Hazra R, Chattopadhyay S, Mallick A, Gayen S, Roy S. Revealing the therapeutic properties of gut microbiota: transforming cancer immunotherapy from basic to clinical approaches. Med Oncol 2024; 41:175. [PMID: 38874788 DOI: 10.1007/s12032-024-02416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
The immune system plays a pivotal role in the battle against cancer, serving as a formidable guardian in the ongoing fight against malignant cells. To combat these malignant cells, immunotherapy has emerged as a prevalent approach leveraging antibodies and peptides such as anti-PD-1, anti-PD-L1, and anti-CTLA-4 to inhibit immune checkpoints and activate T lymphocytes. The optimization of gut microbiota plays a significant role in modulating the defense system in the body. This study explores the potential of certain gut-resident bacteria to amplify the impact of immunotherapy. Contemporary antibiotic treatments, which can impair gut flora, may diminish the efficacy of immune checkpoint blockers. Conversely, probiotics or fecal microbiota transplantation can help re-establish intestinal microflora equilibrium. Additionally, the gut microbiome has been implicated in various strategies to counteract immune resistance, thereby enhancing the success of cancer immunotherapy. This paper also acknowledges cutting-edge technologies such as nanotechnology, CAR-T therapy, ACT therapy, and oncolytic viruses in modulating gut microbiota. Thus, an exhaustive review of literature was performed to uncover the elusive link that could potentiate the gut microbiome's role in augmenting the success of cancer immunotherapy.
Collapse
Affiliation(s)
- Rudradeep Hazra
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
8
|
Li N, Niu L, Liu Y, Wang Y, Su X, Xu C, Sun Z, Guo H, Gong J, Shen S. Taking SCFAs produced by Lactobacillus reuteri orally reshapes gut microbiota and elicits antitumor responses. J Nanobiotechnology 2024; 22:241. [PMID: 38735933 PMCID: PMC11089779 DOI: 10.1186/s12951-024-02506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) incidence is increasing in recent years due to intestinal flora imbalance, making oral probiotics a hotspot for research. However, numerous studies related to intestinal flora regulation ignore its internal mechanisms without in-depth research. RESULTS Here, we developed a probiotic microgel delivery system (L.r@(SA-CS)2) through the layer-by-layer encapsulation technology of alginate (SA) and chitosan (CS) to improve gut microbiota dysbiosis and enhance anti-tumor therapeutic effect. Short chain fatty acids (SCFAs) produced by L.r have direct anti-tumor effects. Additionally, it reduces harmful bacteria such as Proteobacteria and Fusobacteriota, and through bacteria mutualophy increases beneficial bacteria such as Bacteroidota and Firmicutes which produce butyric acid. By binding to the G protein-coupled receptor 109A (GPR109A) on the surface of colonic epithelial cells, butyric acid can induce apoptosis in abnormal cells. Due to the low expression of GPR109A in colon cancer cells, MK-6892 (MK) can be used to stimulate GPR109A. With increased production of butyrate, activated GPR109A is able to bind more butyrate, which further promotes apoptosis of cancer cells and triggers an antitumor response. CONCLUSION It appears that the oral administration of L.r@(SA-CS)2 microgels may provide a treatment option for CRC by modifying the gut microbiota.
Collapse
Affiliation(s)
- Nannan Li
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116021, China
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Lili Niu
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116021, China
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Yao Liu
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
- Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yang Wang
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116021, China
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xiaomin Su
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116021, China
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Ce Xu
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116021, China
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zanya Sun
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116021, China
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Huishu Guo
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116021, China.
| | - Jingru Gong
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| | - Shun Shen
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
9
|
Wójcik R, Małaczewska J, Tobolski D, Miciński J, Kaczorek-Łukowska E, Zwierzchowski G. The Effect of Orally Administered Multi-Strain Probiotic Formulation ( Lactobacillus, Bifidobacterium) on the Phagocytic Activity and Oxidative Metabolism of Peripheral Blood Granulocytes and Monocytes in Lambs. Int J Mol Sci 2024; 25:5068. [PMID: 38791112 PMCID: PMC11120738 DOI: 10.3390/ijms25105068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Probiotic feed additives have attracted considerable research interest in recent years because the effectiveness of probiotics can differ across microbial strains and the supplemented macroorganisms. The present study was conducted on 16 lambs divided equally into two groups (C-control and E-experimental). The examined lambs were aged 11 days at the beginning of the experiment and 40 days at the end of the experiment. The diet of group E lambs was supplemented with a multi-strain probiotic formulation (Lactobacillus plantarum AMT14, Lactobacillus plantarum AMT4, Lactobacillus rhamnosus AMT15, and Bifidobacterium animalis AMT30), whereas group C lambs did not receive the probiotic additive. At the beginning of the experiment (day 0) and on experimental days 15 and 30, blood was sampled from the jugular vein to determine and compare: phagocytic activity (Phagotest) and oxidative metabolism (Phagoburst) of peripheral blood granulocytes and monocytes by flow cytometry. An analysis of the phagocytic activity of granulocytes and monocytes revealed significantly higher levels of phagocytic activity (expressed as the percentage of phagocytic cells and mean fluorescence intensity) in lambs that were administered the multi-strain probiotic formulation compared with lambs in the control group. The probiotic feed additive also exerted a positive effect on the oxidative metabolism of both granulocytes and monocytes (expressed as the percentage of oxidative metabolism and mean fluorescence intensity) after stimulation with Escherichia coli bacteria and with PMA (4-phorbol-12-β-myristate-13-acetate). These findings suggest that the tested probiotic formulation may have a positive effect on the immune status of lambs.
Collapse
Affiliation(s)
- Roman Wójcik
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (R.W.); (J.M.); (E.K.-Ł.)
| | - Joanna Małaczewska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (R.W.); (J.M.); (E.K.-Ł.)
| | - Dawid Tobolski
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland;
| | - Jan Miciński
- Department of Sheep and Goat Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-917 Olsztyn, Poland;
| | - Edyta Kaczorek-Łukowska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (R.W.); (J.M.); (E.K.-Ł.)
| | - Grzegorz Zwierzchowski
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
10
|
Fu Y, Li J, Cai W, Huang Y, Liu X, Ma Z, Tang Z, Bian X, Zheng J, Jiang J, Li C. The emerging tumor microbe microenvironment: From delineation to multidisciplinary approach-based interventions. Acta Pharm Sin B 2024; 14:1560-1591. [PMID: 38572104 PMCID: PMC10985043 DOI: 10.1016/j.apsb.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Intratumoral microbiota has become research hotspots, and emerges as a non-negligent new component of tumor microenvironments (TME), due to its powerful influence on tumor initiation, metastasis, immunosurveillance and prognosis despite in low-biomass. The accumulations of microbes, and their related components and metabolites within tumor tissues, endow TME with additional pluralistic features which are distinct from the conventional one. Therefore, it's definitely necessary to comprehensively delineate the sophisticated landscapes of tumor microbe microenvironment, as well as their functions and related underlying mechanisms. Herein, in this review, we focused on the fields of tumor microbe microenvironment, including the heterogeneity of intratumor microbiota in different types of tumors, the controversial roles of intratumoral microbiota, the basic features of tumor microbe microenvironment (i.e., pathogen-associated molecular patterns (PAMPs), typical microbial metabolites, autophagy, inflammation, multi-faceted immunomodulation and chemoresistance), as well as the multidisciplinary approach-based intervention of tumor microbiome for cancer therapy by applying wild-type or engineered live microbes, microbiota metabolites, antibiotics, synthetic biology and rationally designed biomaterials. We hope our work will provide valuable insight to deeply understand the interplay of cancer-immune-microbial, and facilitate the development of microbes-based tumor-specific treatments.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Mondal P, Meeran SM. The emerging role of the gut microbiome in cancer cell plasticity and therapeutic resistance. Cancer Metastasis Rev 2024; 43:135-154. [PMID: 37707749 DOI: 10.1007/s10555-023-10138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Resistance to therapeutic agents is one of the major challenges in cancer therapy. Generally, the focus is given to the genetic driver, especially the genetic mutation behind the therapeutic resistance. However, non-mutational mechanisms, such as epigenetic modifications, and TME alteration, which is mainly driven by cancer cell plasticity, are also involved in therapeutic resistance. The concept of plasticity mainly relies on the conversion of non-cancer stem cells (CSCs) to CSCs or epithelial-to-mesenchymal transition via different mechanisms and various signaling pathways. Cancer plasticity plays a crucial role in therapeutic resistance as cancer cells are able to escape from therapeutics by shifting the phenotype and thereby enhancing tumor progression. New evidence suggests that gut microbiota can change cancer cell characteristics by impacting the mechanisms involved in cancer plasticity. Interestingly, gut microbiota can also influence the therapeutic efficacy of anticancer drugs by modulating the mechanisms involved in cancer cell plasticity. The gut microbiota has been shown to reduce the toxicity of certain clinical drugs. Here, we have documented the critical role of the gut microbiota on the therapeutic efficacy of existing anticancer drugs by altering the cancer plasticity. Hence, the extended knowledge of the emerging role of gut microbiota in cancer cell plasticity can help to develop gut microbiota-based novel therapeutics to overcome the resistance or reduce the toxicity of existing drugs. Furthermore, to improve the effectiveness of therapy, it is necessary to conduct more clinical and preclinical research to fully comprehend the mechanisms of gut microbiota.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Nutritional Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Laboratory of Nutritional Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Gholami H, Chmiel JA, Burton JP, Maleki Vareki S. The Role of Microbiota-Derived Vitamins in Immune Homeostasis and Enhancing Cancer Immunotherapy. Cancers (Basel) 2023; 15:1300. [PMID: 36831641 PMCID: PMC9954268 DOI: 10.3390/cancers15041300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Not all cancer patients who receive immunotherapy respond positively and emerging evidence suggests that the gut microbiota may be linked to treatment efficacy. Though mechanisms of microbial contributions to the immune response have been postulated, one likely function is the supply of basic co-factors to the host including selected vitamins. Bacteria, fungi, and plants can produce their own vitamins, whereas humans primarily obtain vitamins from exogenous sources, yet despite the significance of microbial-derived vitamins as crucial immune system modulators, the microbiota is an overlooked source of these nutrients in humans. Microbial-derived vitamins are often shared by gut bacteria, stabilizing bioenergetic pathways amongst microbial communities. Compositional changes in gut microbiota can affect metabolic pathways that alter immune function. Similarly, the immune system plays a pivotal role in maintaining the gut microbiota, which parenthetically affects vitamin biosynthesis. Here we elucidate the immune-interactive mechanisms underlying the effects of these microbially derived vitamins and how they can potentially enhance the activity of immunotherapies in cancer.
Collapse
Affiliation(s)
- Hasti Gholami
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - John A. Chmiel
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
- Division of Urology, Department of Surgery, Western University, London, ON N6A 3K7, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
13
|
Chang MR, Rusanov DA, Arakelyan J, Alshehri M, Asaturova AV, Kireeva GS, Babak MV, Ang WH. Targeting emerging cancer hallmarks by transition metal complexes: Cancer stem cells and tumor microbiome. Part I. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
14
|
Mahmood R, Voisin A, Olof H, Khorasaniha R, Lawal SA, Armstrong HK. Host Microbiomes Influence the Effects of Diet on Inflammation and Cancer. Cancers (Basel) 2023; 15:521. [PMID: 36672469 PMCID: PMC9857231 DOI: 10.3390/cancers15020521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer is the second leading cause of death globally, and there is a growing appreciation for the complex involvement of diet, microbiomes, and inflammatory processes culminating in tumorigenesis. Although research has significantly improved our understanding of the various factors involved in different cancers, the underlying mechanisms through which these factors influence tumor cells and their microenvironment remain to be completely understood. In particular, interactions between the different microbiomes, specific dietary factors, and host cells mediate both local and systemic immune responses, thereby influencing inflammation and tumorigenesis. Developing an improved understanding of how different microbiomes, beyond just the colonic microbiome, can interact with dietary factors to influence inflammatory processes and tumorigenesis will support our ability to better understand the potential for microbe-altering and dietary interventions for these patients in future.
Collapse
Affiliation(s)
- Ramsha Mahmood
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Athalia Voisin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Hana Olof
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Reihane Khorasaniha
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Samuel A. Lawal
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Heather K. Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
15
|
Advances in Lactobacillus Restoration for β-Lactam Antibiotic-Induced Dysbiosis: A System Review in Intestinal Microbiota and Immune Homeostasis. Microorganisms 2023; 11:microorganisms11010179. [PMID: 36677471 PMCID: PMC9861108 DOI: 10.3390/microorganisms11010179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
A balanced gut microbiota and their metabolites are necessary for the maintenance of the host's health. The antibiotic-induced dysbiosis can cause the disturbance of the microbial community, influence the immune homeostasis and induce susceptibility to metabolic- or immune-mediated disorders and diseases. The Lactobacillus and their metabolites or components affect the function of the host's immune system and result in microbiota-mediated restoration. Recent data have indicated that, by altering the composition and functions of gut microbiota, antibiotic exposure can also lead to a number of specific pathologies, hence, understanding the potential mechanisms of the interactions between gut microbiota dysbiosis and immunological homeostasis is very important. The Lactobacillus strategies for detecting the associations between the restoration of the relatively imbalanced microbiome and gut diseases are provided in this discussion. In this review, we discuss the recently discovered connections between microbial communities and metabolites in the Lactobacillus treatment of β-lactam antibiotic-induced dysbiosis, and establish the relationship between commensal bacteria and host immunity under this imbalanced homeostasis of the gut microbiota.
Collapse
|
16
|
Frąk M, Grenda A, Krawczyk P, Milanowski J, Kalinka E. Interactions between Dietary Micronutrients, Composition of the Microbiome and Efficacy of Immunotherapy in Cancer Patients. Cancers (Basel) 2022; 14:5577. [PMID: 36428677 PMCID: PMC9688200 DOI: 10.3390/cancers14225577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of immunotherapy in cancer patients depends on the activity of the host's immune system. The intestinal microbiome is a proven immune system modulator, which plays an important role in the development of many cancers and may affect the effectiveness of anti-cancer therapy. The richness of certain bacteria in the gut microbiome (e.g., Bifidobacterium spp., Akkermanisa muciniphila and Enterococcus hire) improves anti-tumor specific immunity and the response to anti-PD-1 or anti-PD-L1 immunotherapy by activating antigen-presenting cells and cytotoxic T cells within the tumor. Moreover, micronutrients affect directly the activities of the immune system or regulate their function by influencing the composition of the microbiome. Therefore, micronutrients can significantly influence the effectiveness of immunotherapy and the development of immunorelated adverse events. In this review, we describe the relationship between the supply of microelements and the abundance of various bacteria in the intestinal microbiome and the effectiveness of immunotherapy in cancer patients. We also point to the function of the immune system in the case of shifts in the composition of the microbiome and disturbances in the supply of microelements. This may in the future become a therapeutic target supporting the effects of immunotherapy in cancer patients.
Collapse
Affiliation(s)
- Małgorzata Frąk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Anna Grenda
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Paweł Krawczyk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Janusz Milanowski
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Ewa Kalinka
- Department of Oncology, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland
| |
Collapse
|
17
|
Xie Y, Jiao X, Zeng M, Fan Z, Li X, Yuan Y, Zhang Q, Xia Y. Clinical Significance of Fusobacterium nucleatum and Microsatellite Instability in Evaluating Colorectal Cancer Prognosis. Cancer Manag Res 2022; 14:3021-3036. [PMID: 36262751 PMCID: PMC9576466 DOI: 10.2147/cmar.s382464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 02/05/2023] Open
Abstract
Objective Both genetic and microbial factors play important roles in colorectal cancer (CRC) development. The effects of Fusobacterium nucleatum (F. nucleatum) and microsatellite instability (MSI) on CRC prognosis require more clinical evidence. We aimed to investigate the role of F. nucleatum and MSI as biomarkers in predicting the prognosis of CRC. Methods CRC patients in various TNM stages were enrolled. MSI status and F. nucleatum were detected by immunohistochemical staining of formalin-fixed paraffin-embedded (FFPE) specimens. The associations between MSI status and F. nucleatum and clinical parameters were analyzed. Results MSI tumors were more frequently observed in the colon than in the rectum. Cancerous tissues had higher levels of F. nucleatum than adjacent noncancerous tissues. There were no significant differences in F. nucleatum abundance in different age, sex, tumor stage, location, and tumor marker groups. MSI status was associated with tumor location and stage. Survival analyses revealed that disease-free survival (DFS) was significantly longer in the F. nucleatum-negative, younger age, and TNM stage I-II groups (p< 0.05), and age, advanced TNM stage (III and IV), and F. nucleatum status were independent factors for poor prognosis. Multivariate Cox regression and receiver operating characteristic (ROC) curve analyses showed that conventional tumor biomarkers of CRC had more prognostic value than F. nucleatum and MSI. Conclusion Age, advanced TNM stage, and F. nucleatum positivity were independent factors of poor prognosis, suggesting that F. nucleatum and MSI may contribute to the identification of new strategies for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Yanxuan Xie
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Zhiqiang Fan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Qiaoxin Zhang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Yong Xia
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| |
Collapse
|
18
|
Kumar D, Lal MK, Dutt S, Raigond P, Changan SS, Tiwari RK, Chourasia KN, Mangal V, Singh B. Functional Fermented Probiotics, Prebiotics, and Synbiotics from Non-Dairy Products: A Perspective from Nutraceutical. Mol Nutr Food Res 2022; 66:e2101059. [PMID: 35616160 DOI: 10.1002/mnfr.202101059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/11/2022] [Indexed: 12/24/2022]
Abstract
The current trend of health-conscious consumers and healthy food habits prompts researchers to explore developing food products with synbiotic benefits. Synbiotic foods have gained popularity in recent years due to their functional, nutritional, physiological, and therapeutic characteristics. Lactose intolerance, dyslipidemia, and allergic milk proteins become the barriers in the development of dairy probiotics. The present scenario of an increase in the demand for vegetarian products leads to a rise in the consumption of non-dairy probiotics. Prebiotics like, resistant starch, inulin, and polyphenols are selectively used by gut microbiota to enhance the selection and colonization of probiotics bacteria. Probiotic's action mechanisms include the production of bacteriocins, peptides, short-chain fatty acids, amino acids, vitamins, and other metabolites. Therefore, this review article explores the alternative sources of probiotics so it will help to an understanding of non-dairy based functional fermented foods for both pro and prebiotics. Dietary fibers in vegetables, fruits, and cereals are one of prospective prebiotics and highlighted the various methods for making non-dairy synbiotics based on dietary fibers, such as microencapsulation, freeze-drying, and spray drying is also addressed.
Collapse
Affiliation(s)
- Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Som Dutt
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Pinky Raigond
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | | | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Kumar Nishant Chourasia
- ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata, West Bengal, 700120, India
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
19
|
Jampílek J, Kráľová K, Bella V. Probiotics and prebiotics in the prevention and management of human cancers (colon cancer, stomach cancer, breast cancer, and cervix cancer ). PROBIOTICS IN THE PREVENTION AND MANAGEMENT OF HUMAN DISEASES 2022:187-212. [DOI: 10.1016/b978-0-12-823733-5.00009-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Waziri A, Bharti C, Aslam M, Jamil P, Mirza MA, Javed MN, Pottoo U, Ahmadi A, Alam MS. Probiotics for the Chemoprotective Role against the Toxic Effect of Cancer Chemotherapy. Anticancer Agents Med Chem 2022; 22:654-667. [PMID: 33992067 DOI: 10.2174/1871520621666210514000615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chemo- and radiation therapy-based clinical management of different types of cancers is associated with toxicity and several side effects. Therefore, there is always an unmet need to explore agents that reduce such risk factors. Among these, natural products have attracted much attention because of their potent antioxidant and antitumor effects. In the past, some breakthrough outcomes established that various bacteria in the human intestinal gut are bearing growth-promoting attributes and suppressing the conversion of pro-carcinogens into carcinogens. Hence probiotics integrated approaches are nowadays being explored as rationalized therapeutics in the clinical management of cancer. METHODS Here, published literature was explored to review chemoprotective roles of probiotics against toxic and side effects of chemotherapeutics. RESULTS Apart from excellent anti-cancer abilities, probiotics alleviate toxicity & side effects of chemotherapeutics, with a high degree of safety and efficiency. CONCLUSION Preclinical and clinical evidence suggests that due to the chemoprotective roles of probiotics against side effects and toxicity of chemotherapeutics, their integration in chemotherapy would be a judicious approach.
Collapse
Affiliation(s)
- Aafrin Waziri
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Delhi, India
| | - Charu Bharti
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna Road, Gurgaon, Haryana-122103, India
| | - Mohammed Aslam
- Faculty of Pharmacy, AL Hawash Private University, Homs, Syria
| | - Parween Jamil
- Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Md Noushad Javed
- Department of Pharmacy, SMAS, KR Mangalam University, Gurugram, India
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Uzma Pottoo
- Department of Food Science & Technology, School of Applied Sciences & Technology, University of Kashmir, J.K., India
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Md Sabir Alam
- NIMS Institute of Pharmacy, NIMS University, NH-11C, Delhi - Jaipur Expy, Shobha Nagar, Jaipur, Rajasthan India
- SGT College of Pharmacy, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, Haryana 122505, India
| |
Collapse
|
21
|
Lee MH. Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Commun (Lond) 2021; 41:937-967. [PMID: 34355542 PMCID: PMC8504147 DOI: 10.1002/cac2.12200] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
It has been shown that gut microbiota dysbiosis leads to physiological changes and links to a number of diseases, including cancers. Thus, many cancer categories and treatment regimens should be investigated in the context of the microbiome. Owing to the availability of metagenome sequencing and multiomics studies, analyses of species characterization, host genetic changes, and metabolic profile of gut microbiota have become feasible, which has facilitated an exponential knowledge gain about microbiota composition, taxonomic alterations, and host interactions during tumorigenesis. However, the complexity of the gut microbiota, with a plethora of uncharacterized host‐microbe, microbe‐microbe, and environmental interactions, still contributes to the challenge of advancing our knowledge of the microbiota‐cancer interactions. These interactions manifest in signaling relay, metabolism, immunity, tumor development, genetic instability, sensitivity to cancer chemotherapy and immunotherapy. This review summarizes current studies/molecular mechanisms regarding the association between the gut microbiota and the development of cancers, which provides insights into the therapeutic strategies that could be harnessed for cancer diagnosis, treatment, or prevention.
Collapse
Affiliation(s)
- Mong-Hong Lee
- Research Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China
| |
Collapse
|
22
|
Szczyrek M, Bitkowska P, Chunowski P, Czuchryta P, Krawczyk P, Milanowski J. Diet, Microbiome, and Cancer Immunotherapy-A Comprehensive Review. Nutrients 2021; 13:2217. [PMID: 34203292 PMCID: PMC8308287 DOI: 10.3390/nu13072217] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023] Open
Abstract
The immune system plays a key role in cancer suppression. Immunotherapy is widely used as a treatment method in patients with various types of cancer. Immune checkpoint blockade using antibodies, such as anti-PD-1, anti-PD-L1, and anti-CTLA-4, is currently gaining popularity. A systematic literature search was executed, and all available data was summarized. This review shows that specific dietary patterns (such as, e.g., animal-based, vegetarian, or Mediterranean diet) alter the gut microbiome's composition. An appropriate intestinal microbiota structure might modulate the function of human immune system, which affects the bodily anti-cancer response. This paper shows also that specific bacteria species inhabiting the gastrointestinal tract can have a beneficial influence on the efficacy of immunotherapy. Antibiotics weaken gut bacteria and worsen the immune checkpoint blockers' efficacy, whereas a faecal microbiota transplant or probiotics supplementation may help restore bacterial balance in the intestine. Other factors (like vitamins, glucose, or BMI) change the cancer treatment response, as well. This review demonstrates that there is a strong association between one's diet, gut microbiome composition, and the outcome of immunotherapy. However, further investigation on this subject is required.
Collapse
Affiliation(s)
- Michał Szczyrek
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (P.B.); (P.C.); (P.C.); (P.K.); (J.M.)
| | | | | | | | | | | |
Collapse
|
23
|
Reens AL, Cabral DJ, Liang X, Norton JE, Therien AG, Hazuda DJ, Swaminathan G. Immunomodulation by the Commensal Microbiome During Immune-Targeted Interventions: Focus on Cancer Immune Checkpoint Inhibitor Therapy and Vaccination. Front Immunol 2021; 12:643255. [PMID: 34054810 PMCID: PMC8155485 DOI: 10.3389/fimmu.2021.643255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence in clinical and preclinical studies indicates that success of immunotherapies can be impacted by the state of the microbiome. Understanding the role of the microbiome during immune-targeted interventions could help us understand heterogeneity of treatment success, predict outcomes, and develop additional strategies to improve efficacy. In this review, we discuss key studies that reveal reciprocal interactions between the microbiome, the immune system, and the outcome of immune interventions. We focus on cancer immune checkpoint inhibitor treatment and vaccination as two crucial therapeutic areas with strong potential for immunomodulation by the microbiota. By juxtaposing studies across both therapeutic areas, we highlight three factors prominently involved in microbial immunomodulation: short-chain fatty acids, microbe-associate molecular patterns (MAMPs), and inflammatory cytokines. Continued interrogation of these models and pathways may reveal critical mechanistic synergies between the microbiome and the immune system, resulting in novel approaches designed to influence the efficacy of immune-targeted interventions.
Collapse
Affiliation(s)
- Abigail L. Reens
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Damien J. Cabral
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Xue Liang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - James E. Norton
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Alex G. Therien
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Daria J. Hazuda
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
- Infectious Disease and Vaccine Research, Merck & Co., Inc., West Point, PA, United States
| | - Gokul Swaminathan
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| |
Collapse
|
24
|
Shen W, Sun J, Li Z, Yao F, Lin K, Jiao X. Food intake and its effect on the species and abundance of intestinal flora in colorectal cancer and healthy individuals. Korean J Intern Med 2021; 36:568-583. [PMID: 33167104 PMCID: PMC8137414 DOI: 10.3904/kjim.2019.373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIM It is known that an imbalance in the intestinal f lora plays a crucial role in colorectal cancer (CRC), but the effect of food consumption patterns on the types of intestinal flora remains to be clarified. We aimed to analyze the associations between food intake and intestinal flora in healthy and CRC individuals. METHODS Food intake data were recorded using the Food Frequency Questionnaire (FFQ). The composition and diversity of the intestinal flora detected by 16S rRNA gene sequencing, and the data were analyzed by R version 3.1.1 software. RESULTS Higher intake of red meat or pickled foods, and lower intake of white meat, fruits, vegetables, beans, nuts were found in the CRC group compared with the healthy group. Higher levels of Fusobacteria and Proteobacteria, and lower levels of Firmicutes were observed in the CRC group. Partial correlation analysis revealed that the intake of fruits, beans, and nuts was negatively correlated with Proteobacteria and Fusobacteria, but pickled food was positively correlated with Fusobacteria (p < 0.05). Fish, beans, and nuts intake was negatively correlated with Escherichia (p = 0.01). Multiple regression analysis revealed that vegetable oil (odds ratio [OR], 0.26; 95% confidence interval [CI], 0.13 to 0.82), vegetables (OR, 0.26; 95% CI, 0.10 to 0.64), eggs (OR, 0.26; 95% CI, 0.10 to 0.69), pickled foods (OR, 21.02; 95% CI, 6.02 to 73.45), and red meat (OR, 4.23; 95% CI, 1.68 to 10.60) had an impact on CRC risk. CONCLUSION The species and abundance of intestinal flora varies between CRC and healthy individuals and may be affected by their food preference.
Collapse
Affiliation(s)
- Weitao Shen
- The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jiayu Sun
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Zhiyang Li
- The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Fen Yao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Kaihuang Lin
- The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
- Correspondence to Xiaoyang Jiao, Ph.D. Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd, 515041, Guangdong, China Tel +86-754-88900497 Fax: +86-754-88900410 E-mail:
| |
Collapse
|
25
|
Fontana L, Plaza-Díaz J, Robles-Bolívar P, Valente-Godínez H, Sáez-Lara MJ, Abadía-Molina F, Gómez-Llorente C, Gil Á, Álvarez-Mercado AI. Bifidobacterium breve CNCM I-4035, Lactobacillus paracasei CNCM I-4034 and Lactobacillus rhamnosus CNCM I-4036 Modulate Macrophage Gene Expression and Ameliorate Damage Markers in the Liver of Zucker-Lepr
fa/fa
Rats. Nutrients 2021; 13:202. [PMID: 33440736 PMCID: PMC7826559 DOI: 10.3390/nu13010202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has reached pandemic proportions worldwide. We have previously reported that the probiotic strains Bifidobacterium breve CNCM I-4035, Lactobacillus paracasei CNCM I-4034 and Lactobacillus rhamnosus CNCM I-4036 exert anti-inflammatory effects in the intestine of Zucker-Lepr fa/fa rats. In this work, we focused on their hepatic effects. M1 macrophages are related to inflammation and NAFLD pathogenesis, whereas M2 macrophages release anti-inflammatory mediators. We evaluated the effects of these 3 strains on macrophage polarization, inflammation and liver damage of Zucker-Lepr fa/fa rats. The animals received either a placebo or 1010 CFU of probiotics orally for 30 days. Nos2 and Cd86 mRNA levels were determined as markers of M1 macrophages, and Cd163 and Arg1 as M2 markers, respectively, by qRT-PCR. Liver damage was determined by lipid peroxidation, leukocyte infiltration and myeloperoxidase activity. We evaluated a panoply of circulating chemokines, the hepatic ratio P-Akt/Akt, NF-kB and P-NF-kB protein levels. All 3 probiotic strains modulated macrophage polarization in liver and circulating levels of inflammation-related mediators. L. paracasei CNCM I-4034 increased the ratio P-Akt/Akt and NF-kB protein levels. B. breve CNCM I-4035, L. paracasei CNCM I-4034 and L. rhamnosus CNCM I-4036 decreased both pro-inflammatory macrophage gene expression and leukocyte infiltration in the liver.
Collapse
Affiliation(s)
- Luis Fontana
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; (J.P.-D.); (C.G.-L.); (Á.G.)
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain;
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; (J.P.-D.); (C.G.-L.); (Á.G.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain;
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Paula Robles-Bolívar
- Department of Cell Biology, School of Sciences, Campus de Fuente Nueva, 18071 Granada, Spain;
| | - Héctor Valente-Godínez
- Division of Health Sciences, Campus León, Department Medicine and Nutrition, University of Guanajuato, 36000 Guanajuato, Mexico;
| | - María José Sáez-Lara
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain;
- Department of Biochemistry and Molecular Biology I, School of Sciences, Campus de Fuente Nueva, 18071 Granada, Spain
| | - Francisco Abadía-Molina
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain;
- Department of Cell Biology, School of Sciences, Campus de Fuente Nueva, 18071 Granada, Spain;
| | - Carolina Gómez-Llorente
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; (J.P.-D.); (C.G.-L.); (Á.G.)
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain;
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; (J.P.-D.); (C.G.-L.); (Á.G.)
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain;
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain; (J.P.-D.); (C.G.-L.); (Á.G.)
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Avda. del Conocimiento s/n, Armilla, 18100 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain;
| |
Collapse
|
26
|
Liu K, Yang X, Zeng M, Yuan Y, Sun J, He P, Sun J, Xie Q, Chang X, Zhang S, Chen X, Cai L, Xie Y, Jiao X. The Role of Fecal Fusobacterium nucleatum and pks+ Escherichia coli as Early Diagnostic Markers of Colorectal Cancer. DISEASE MARKERS 2021; 2021:1171239. [PMID: 34853619 PMCID: PMC8629656 DOI: 10.1155/2021/1171239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Accurate analysis of intestinal microbiota will facilitate establishment of an evaluating system for assessing colorectal cancer (CRC) risk and prognosis. This study evaluates the potential role of Fusobacterium nucleatum (F. nucleatum) and Escherichia coli with a pks gene (pks+ E. coli) in early CRC diagnosis. METHODS We recruited 139 patients, including CRC (n = 60), colorectal adenomatous polyposis (CAP) (n = 37), and healthy individuals (n = 42) based on their colonoscopy examinations. We collected stool and serum samples from the participants and measured the relative abundance of F. nucleatum and pks+ E. coli in fecal samples by quantitative PCR. Receiver operating characteristic curve (ROC) analyses were used to analyze the diagnostic value of single or combined biomarkers. RESULTS Fecal F. nucleatum and pks+ E. coli levels were higher in the CRC group in either the CAP group or healthy controls (P = 0.02; 0.01). There was no statistical difference in the distribution of F. nucleatum and pks+ E. coli in patients with different tumor sites (P > 0.05). The combination of F. nucleatum+pks+ E. coli+CEA+CA19-9+FOBT was chosen as the optimal panel in differentiating both CRC and CAP from the controls. The combination of F. nucleatum, pks+ E. coli, and FOBT improved diagnostic efficiency. However, there was difficulty in differentiating CRC from CAP. CONCLUSION Our results suggested that combining bacterial markers with conventional tumor markers improves the diagnostic efficiency for noninvasive diagnosis of CRC.
Collapse
Affiliation(s)
- Kaixi Liu
- Departments of Clinical Laboratory, Shantou Central Hospital, Shantou, China
| | - Xinran Yang
- Departments of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, China
| | - Mi Zeng
- Medical College of Shantou University, Shantou, China
| | - Yumeng Yuan
- Medical College of Shantou University, Shantou, China
| | - Jianhong Sun
- Departments of Clinical Pathology, Shantou Central Hospital, Shantou, China
| | - Ping He
- Medical College of Shantou University, Shantou, China
| | - Jiayu Sun
- Medical College of Shantou University, Shantou, China
| | - Qingdong Xie
- Medical College of Shantou University, Shantou, China
| | - Xiaolan Chang
- Medical College of Shantou University, Shantou, China
| | - Suwei Zhang
- Departments of Clinical Laboratory, Shantou Central Hospital, Shantou, China
| | - Xiang Chen
- Departments of Health Care Center, The First Affiliated Hospital of Shantou University Medical College, China
| | - Leshan Cai
- Departments of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, China
| | - Yanxuan Xie
- Departments of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, China
| | - Xiaoyang Jiao
- Medical College of Shantou University, Shantou, China
| |
Collapse
|
27
|
Silveira DSC, Veronez LC, Lopes-Júnior LC, Anatriello E, Brunaldi MO, Pereira-da-Silva G. Lactobacillus bulgaricus inhibits colitis-associated cancer via a negative regulation of intestinal inflammation in azoxymethane/dextran sodium sulfate model. World J Gastroenterol 2020; 26:6782-6794. [PMID: 33268961 PMCID: PMC7684459 DOI: 10.3748/wjg.v26.i43.6782] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colitis-associated cancer (CAC) accounts for 2%-3% of colorectal cancer (CRC) cases preceded by inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis. Intestinal microbiota has been reported to play a central role in the pathogenesis of IBD and CAC. Recently, numerous prebiotics and probiotics have being investigated as antitumor agents due to their capacity to modulate inflammatory responses. Previous studies have indicated that lactic acid bacteria could be successfully used in managing sporadic CRC, however little is known about their role in CAC. AIM To investigate the effect of the probiotic Lactobacillus bulgaricus (L. bulgaricus) during the development of an experimental model of colitis associated colon cancer (CAC). METHODS C57BL/6 mice received an intraperitoneal injection of azoxymethane (10 mg/kg), followed by three cycles of sodium dextran sulphate diluted in water (5% w/v). Probiotic group received daily L. bulgaricus. Intestinal inflammation was determined by scoring clinical signs. Cytokines levels were determined from colon and/or tumor samples by ELISA BD OptEIATM kits. The level of significance was set at P < 0.05. Graphs were generated and statistical analysis performed using the software GraphPad Prism 6.0. RESULTS L. bulgaricus treatment inhibited of total tumor volume and mean size of tumors. In addition, the probiotic also attenuated the clinical signs of intestinal inflammation inducing a decrease in intestinal and tumor levels of IL-6, TNF-α, IL-17, IL-23 and IL-1β. CONCLUSION Our results suggest a potential chemopreventive effect of probiotic on CAC. L. bulgaricus regulates the inflammatory response and preventing CAC.
Collapse
Affiliation(s)
- Denise Sayuri Calheiros Silveira
- Department of Biochemistry and Immunology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Biochemistry and Immunology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto 14049-900, SP, Brazil
| | - Luís Carlos Lopes-Júnior
- Health Sciences Center, Federal University of Espírito Santo - UFES, Vitória 29043-900, ES, Brazil
| | - Elen Anatriello
- Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos 12231-280, SP, Brazil
| | | | - Gabriela Pereira-da-Silva
- Department of Maternal-Infant Nursing and Public Health, University of São Paulo at Ribeirão Preto College of Nursing, Ribeirão Preto 14040-902, SP, Brazil
| |
Collapse
|
28
|
Andreeva NV, Gabbasova RR, Grivennikov SI. Microbiome in cancer progression and therapy. Curr Opin Microbiol 2020; 56:118-126. [PMID: 33147555 DOI: 10.1016/j.mib.2020.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
A myriad of microbes living together with the host constitute microbiota, which possesses very diverse functions in regulation of host physiology. Recently, it has been unequivocally demonstrated that microbiota regulates cancer initiation, progression and responses to therapy. Here we review known pro-tumorigenic and anti-tumorigenic function of microbiota and mechanisms how microbes can regulate cancer cells and immune and stromal cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Natalia V Andreeva
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Samuel Oschin Comprehensive Cancer Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Railia R Gabbasova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Samuel Oschin Comprehensive Cancer Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sergei I Grivennikov
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Samuel Oschin Comprehensive Cancer Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
29
|
Synergistic anti-tumour effects of Clostridium butyricum in combination with apatinib in CT26 colorectal tumour-bearing mice. Anticancer Drugs 2020; 30:991-997. [PMID: 31205067 DOI: 10.1097/cad.0000000000000817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To investigate the synergistic antitumour effect of Clostridium butyricum combined with apatinib on colorectal cancer in mice. Murine colorectal carcinoma cell line CT26.WT cells were xenografted into the skin of BALB/c mice. Tumour-bearing mice were randomly divided into four groups, and given different treatment options (PBS control; C. butyricum; apatinib; C. butyricum + apatinib). Real-time PCR was used to detect C. butyricum content in the intestine of mice given C. butyricum. The effects of various regimens on tumour growth were monitored, and CD31, proliferating cell nuclear antigen (PCNA), Bcl-2 and cleaved caspase-3 expressions in tumour were analysed by immunohistochemistry. C. butyricum combined with apatinib significantly inhibits tumour growth with decreased CD31, PCNA and Bcl-2 expressions, and increased cleaved caspase-3 expressions. Our study confirms that C. butyricum combined with apatinib in the treatment of xenografted colon tumour in mice can significantly inhibit tumour growth and promote cell apoptosis than apatinib alone treatments, providing the reference for clinical treatments.
Collapse
|
30
|
Wang Z, Wu X. Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker. Cancer Med 2020; 9:8086-8121. [PMID: 32875727 PMCID: PMC7643687 DOI: 10.1002/cam4.3410] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Immunocheckpoint proteins of tumor infiltrating lymphocytes play an important role in tumor prognosis in the course of tumor clinicopathology. PD‐1 (Programmed cell death protein 1) is an important immunosuppressive molecule. By binding to PD‐L1 (programmed cell death‐ligand 1), it blocks TCR and its costimulus signal transduction, inhibits the activation and proliferation of T cells, depletes the function of effector T cells, and enables tumor cells to achieve immune escape. In recent years, immunocheckpoint blocking therapy targeting the PD‐1/PD‐L1 axis has achieved good results in a variety of malignant tumors, pushing tumor immunotherapy to a new milestone, such as anti‐PD‐1 monoclonal antibody Nivolumab, Pembrolizumab, and anti‐PD‐L1 monoclonal antibody Atezolizumab, which are considered as potential antitumor drugs. It was found in clinical use that some patients obtained long‐term efficacy, but most of them developed drug resistance recurrence in the later stage. The high incidence of drug resistance (including primary and acquired drug resistance) still cannot be ignored, which limited its clinical application and became a new problem in this field. Due to tumor heterogeneity, current limited research shows that PD‐1 or PD‐L1 monoclonal antibody drug resistance may be related to the following factors: mutation of tumor antigen and antigen presentation process, multiple immune checkpoint interactions, immune microenvironment changes dynamically, activation of oncogenic pathways, gene mutation and epigenetic changes of key proteins in tumors, tumor competitive metabolism, and accumulation of metabolites, etc, mechanisms of resistance are complex. Therefore, it is the most urgent task to further elucidate the mechanism of immune checkpoint inhibitor resistance, discover multitumor universal biomarkers, and develop new target agents to improve the response rate of immunotherapy in patients. In this study, the mechanism of anti‐PD‐1/PD‐L1 drug resistance in tumors, the potential biomarkers for predicting PD‐1 acquired resistance, and the recent development of combination therapy were reviewed one by one. It is believed that, based on the complex mechanism of drug resistance, it is of no clinical significance to simply search for and regulate drug resistance targets, and it may even produce drug resistance again soon. It is speculated that according to the possible tumor characteristics, three types of treatment methods should be combined to change the tumor microenvironment ecology and eliminate various heterogeneous tumor subsets, so as to reduce tumor drug resistance and improve long‐term clinical efficacy.
Collapse
Affiliation(s)
- Zhengyi Wang
- GCP Center of Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital Medical Sciences, Chengdu City, Sichuan Province, China.,Institute of Laboratory Animals of Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu City, Sichuan Province, China
| | - Xiaoying Wu
- Ministry of Education and Training, Second People's Hospital, Chengdu City, Sichuan Province, China
| |
Collapse
|
31
|
Chattopadhyay I, Nandi D, Nag A. The pint- sized powerhouse: Illuminating the mighty role of the gut microbiome in improving the outcome of anti- cancer therapy. Semin Cancer Biol 2020; 70:98-111. [PMID: 32739479 DOI: 10.1016/j.semcancer.2020.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
Cancer persists as a major health catastrophe and a leading cause of widespread mortality across every nation. Research of several decades has increased our understanding of the pivotal pathways and key players of the host during tumor development and progression, which has enabled generation of precision therapeutics with improved efficacy. Despite such tremendous advancements in our combat against this fatal disease, a majority of the cancer patients suffer from poor tumor- free survival owing to the increased incidence of recurrent tumor. This is primarily due to the development of resistance against contemporary anti- cancer strategies. Recent studies have pointed towards the involvement of the human symbiotic gut microbiota in regulating the outcome of chemotherapy and immunotherapy. It does so primarily by modulating the metabolism of the drugs and host immune response, thereby enhancing the efficacy and ameliorating the toxicity. The interactions between the therapeutic agents, microbial community and host immunity may provide a new avenue for the clinical management of cancer. In addition, consumption of dietary pro-, pre- and synbiotics has been recognized to confer protection against tumor genesis and also promote improved response to traditional tumor suppressive strategies. Naturally, the use of various combinatorial regimes containing dietary supplements that improve the gut microbiome in amalgamation with conventional cancer treatment methods may significantly augment the therapeutic outcome of cancer patients and circumnavigate the resistance mechanisms that confound traditional therapies. In this review, we have summarized the role of the gut microbiome, which is the largest assembly of commensals within the human body, in regulating the efficacy and toxicity of various existing anti- cancer therapies including chemotherapy, immunotherapy and surgery. Furthermore, we have discussed how novel strategies integrating the application of probiotics, prebiotics, synbiotics and antibiotics in combination with the aforementioned anti- cancer modules manipulate the gut microbiota and, therefore, augment their therapeutic outcome. Together, such innovative anti- tumorigenic approaches may prove highly effective in improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Indranil Chattopadhyay
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610001, India.
| | - Deeptashree Nandi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
32
|
Xiaoyu P, Chao G, Lihua D, Pengyu C. Gut bacteria affect the tumoral immune milieu: distorting the efficacy of immunotherapy or not?. Gut Microbes 2020; 11:691-705. [PMID: 32216675 PMCID: PMC7524336 DOI: 10.1080/19490976.2020.1739794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/02/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Immunotherapy using immune-checkpoint inhibitors is revolutionizing oncotherapy. However, the application of immunotherapy may be restricted because of the lack of proper biomarkers in a portion of cancer patients. Recently, emerging evidence has revealed that gut commensal bacteria can impact the therapeutic efficacy of immune-checkpoint inhibitors in several cancer models. In addition, testing the composition of gut bacteria provides context for prediction of the efficacy and toxicity of immunotherapy. In this review, we discuss the impacts of gut commensal bacteria on the tumoral immune milieu, highlighting some typical bacteria and their associations with immunotherapy.
Collapse
Affiliation(s)
- Pu Xiaoyu
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Ge Chao
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Dong Lihua
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chang Pengyu
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Aindelis G, Chlichlia K. Modulation of Anti-Tumour Immune Responses by Probiotic Bacteria. Vaccines (Basel) 2020; 8:vaccines8020329. [PMID: 32575876 PMCID: PMC7350223 DOI: 10.3390/vaccines8020329] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
There is a growing amount of evidence to support the beneficial role of a balanced intestinal microbiota, or distinct members thereof, in the manifestation and progression of malignant tumours, not only in the gastrointestinal tract but also in distant tissues as well. Intriguingly, bacterial species have been demonstrated to be indispensable modulatory agents of widely-used immunotherapeutic or chemotherapeutic regiments. However, the exact contribution of commensal bacteria to immunity, as well as to neoplasia formation and response to treatment, has not been fully elucidated, and most of the current knowledge acquired from animal models has yet to be translated to human subjects. Here, recent advances in understanding the interaction of gut microbes with the immune system and the modulation of protective immune responses to cancer, either naturally or in the context of widely-used treatments, are reviewed, along with the implications of these observations for future therapeutic approaches. In this regard, bacterial species capable of facilitating optimal immune responses against cancer have been surveyed. According to the findings summarized here, we suggest that strategies incorporating probiotic bacteria and/or modulation of the intestinal microbiota can be used as immune adjuvants, aiming to optimize the efficacy of cancer immunotherapies and conventional anti-tumour treatments.
Collapse
|
34
|
Li N, Yu Y, Chen X, Gao S, Zhang Q, Xu C. Bifidobacterium breve M-16V alters the gut microbiota to alleviate OVA-induced food allergy through IL-33/ST2 signal pathway. J Cell Physiol 2020; 235:9464-9473. [PMID: 32394447 DOI: 10.1002/jcp.29751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/21/2020] [Indexed: 12/23/2022]
Abstract
There has been a marked increase in life-threatening food allergy (FA). One hypothesis is that changes in bacterial communities may be key to FA. To better understand how gut microbiota regulates FA in humans, we established a mouse model with FA induced by ovalbumin. We found that the mice with FA had abnormal bacterial composition, accompanied by increased immunoglobulin G, immunoglobulin E, and interleukin-4/interferon-γ, and there existed a certain coherence between them. Interestingly, Bifidobacterium breve M-16V may alter the gut microbiota to alleviate the allergy symptoms by IL-33/ST2 signaling. Our results indicate that gut microbiota is essential for regulating FA to dietary antigens and demonstrate that intervention in bacterial community regulation may be therapeutically related to FA.
Collapse
Affiliation(s)
- Na Li
- Department of Pediatric, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of tropical medicine, Hainan Medical University, HaiKou, China
| | - Yi Yu
- Department of Pediatric, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuehua Chen
- Department of Pediatric, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenshen Gao
- Department of Pediatric, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Zhang
- Department of Pediatric, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chundi Xu
- Department of Pediatric, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Shen W, Sun J, Yao F, Lin K, Yuan Y, Chen Y, Han H, Li Z, Zou J, Jiao X. Microbiome in Intestinal Lavage Fluid May Be A Better Indicator in Evaluating The Risk of Developing Colorectal Cancer Compared with Fecal Samples. Transl Oncol 2020; 13:100772. [PMID: 32298987 PMCID: PMC7160452 DOI: 10.1016/j.tranon.2020.100772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Intestinal microbiota plays a vital role in the pathogenesis of colorectal cancer (CRC), which is crucial for assessing the risk and prognosis of CRC. Most studies regarding human gut microbiota mainly based on the feces, but the exact composition of microbiota vary significantly due to fecal composition is easily affected by many factors. We aim to evaluate whether intestinal lavage fluid (IVF) is a better substitution mirroring the gut microbiota. METHODS We performed 16S rRNA gene analysis on fecal and IVF samples from 30 CRC patients and 25 healthy individuals, comparison in luminal (feces) / mucosal (IVF) adherent bacterial community profiles were analyzed. RESULTS The difference between feces and IVF were observed, including the diversity and abundance of pathogenic bacteria (either in single strain or in co-occurrence pattern). IVF group shared 605 OTUs with the fecal group, but there was 94 OTUs only observed in fecal samples, while 247 OTUs were mainly existing in the IVF group. Among them, 27 vital bacterial species detected in IVF, while 10 critical species detected in fecal samples. The co-occurrence bacteria Fusobacteria Cluster and Proteobacteria Cluster 2 significantly increased in IVF than in control (P < .01), while Firmicutes Cluster 1, Firmicutes Cluster 2 and Proteobacteria Cluster 1 were markedly lower in IVF than in control (P < .001). In CRC feces, Fusobacteria Cluster was higher than in control (P < .05), but Firmicutes Cluster 1 was of substantially less abundance than in control (P < .001). Proteobacteria Cluster 2 was increased dramatically in IVF than in feces (P < .05), Firmicutes Cluster 1 were of substantially less abundance than in feces (P < .05). CONCLUSION Pathogenic microbiota is more abundant in IVF than in feces. Microbiota of IVF may closely be related to the mucosal-associated microbial communities, which benefit from elucidating the relationship of the intestinal microbiota and CRC carcinogenesis.
Collapse
Affiliation(s)
- Weitao Shen
- The second affiliated hospital of Shantou University Medical College, Shantou, Guangdong, China 515041.
| | - Jiayu Sun
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China 515041.
| | - Fen Yao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China 515041.
| | - Kaihuang Lin
- The second affiliated hospital of Shantou University Medical College, Shantou, Guangdong, China 515041.
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China 515041.
| | - Yexi Chen
- The second affiliated hospital of Shantou University Medical College, Shantou, Guangdong, China 515041.
| | - Hui Han
- The second affiliated hospital of Shantou University Medical College, Shantou, Guangdong, China 515041.
| | - Zhiyang Li
- The second affiliated hospital of Shantou University Medical College, Shantou, Guangdong, China 515041.
| | - Juan Zou
- The second affiliated hospital of Shantou University Medical College, Shantou, Guangdong, China 515041.
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China 515041.
| |
Collapse
|
36
|
Current status and development of anti-PD-1/PD-L1 immunotherapy for lung cancer. Int Immunopharmacol 2020; 79:106088. [DOI: 10.1016/j.intimp.2019.106088] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
|
37
|
Shui L, Yang X, Li J, Yi C, Sun Q, Zhu H. Gut Microbiome as a Potential Factor for Modulating Resistance to Cancer Immunotherapy. Front Immunol 2020; 10:2989. [PMID: 32010123 PMCID: PMC6978681 DOI: 10.3389/fimmu.2019.02989] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota refers to the diverse community of more than 100 trillion microorganisms residing in our intestines. It is now known that any shift in the composition of gut microbiota from that present during the healthy state in an individual is associated with predisposition to multiple pathological conditions, such as diabetes, autoimmunity, and even cancer. Currently, therapies targeting programmed cell death protein 1/programmed cell death 1 ligand 1 or cytotoxic T-lymphocyte antigen-4 are the focus of cancer immunotherapy and are widely applied in clinical treatment of various tumors. Owing to relatively low overall response rate, however, it has been an ongoing research endeavor to identify the mechanisms or factors for improving the therapeutic efficacy of these immunotherapies. Other than causing mutations that affect gene expression, some gut bacteria may also activate or repress the host's response to immune checkpoint inhibitors. In this review, we have described recent advancements made in understanding the regulatory relationship between gut microbiome and cancer immunotherapy. We have also summarized the potential molecular mechanisms behind this interaction, which can serve as a basis for utilizing different kinds of gut bacteria as promising tools for reversing immunotherapy resistance in cancer.
Collapse
Affiliation(s)
- Lin Shui
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Sun
- Drug Research Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Li F, Lu DY, Zhong Q, Tan F, Li W, Liao W, Zhao X. Lactobacillus fermentum HFY06 reduced CCl4-induced hepatic damage in Kunming mice. RSC Adv 2020; 10:1-9. [PMID: 35492553 PMCID: PMC9048285 DOI: 10.1039/c9ra08789c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/12/2019] [Indexed: 01/02/2023] Open
Abstract
This study was conducted to investigate the preventative effect of Lactobacillus fermentum HFY06 on carbon tetrachloride (CCl4)-induced liver injury in Kunming mice. Mice were treated with HFY06, then liver damage was induced using CCl4. Evaluation indicators included the activities of aspartate aminotransferase (AST), triglycerides (TG), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) in serum; cytokines levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) in serum; and related gene expressions of nuclear factor-κB (NF-κB), TNF-α, cyclooxygenase-2 (COX-2), copper/zinc superoxide dismutase (Cu/Zn-SOD), manganese superoxide dismutase (Mn-SOD), and catalase (CAT). Liver tissue was stained with hematoxylin and eosin for pathological analysis. Compared with the model group, HFY06 reduced the liver index, increased the serum SOD and GSH-Px activities, and reduced the AST, TG, and MDA activities in the mice. Inflammation-related IL-6, TNF-α and IFN-γ levels were also reduced after treatment with a high dose of HFY06. Pathological observation showed that CCl4 damaged the mouse livers, which were significantly improved after treatment with silymarin and HFY06. qPCR also confirmed that the high dose of HFY06 (109 colony-forming units [CFU] per kg per day) upregulated the mRNA expression of the antioxidant genes, Cu/Zn-SOD, Mn-SOD, and CAT, in the liver tissue and downregulated the mRNA expression of the inflammatory factors, NF-κB, TNF-α and COX-2, but HFY06 was less effective than silymarin. These findings indicate that HFY06 prevented CCl4-induced liver damage in vivo but was less effective than silymarin. Thus, HFY06 may have a potential role in treating liver diseases. This study was conducted to investigate the preventative effect of Lactobacillus fermentum HFY06 on carbon tetrachloride (CCl4)-induced liver injury in Kunming mice.![]()
Collapse
Affiliation(s)
- Fang Li
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- P. R. China
- Chongqing Engineering Research Center of Functional Food
| | - De-Yun Lu
- Department of Gastroenterology
- Chengdu First People's Hospital
- Chengdu 610041
- P. R. China
| | - Qiu Zhong
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- P. R. China
- Chongqing Engineering Research Center of Functional Food
| | - Fang Tan
- Department of Public Health
- Our Lady of Fatima University
- Valenzuela 838
- Philippines
| | - Wenfeng Li
- School of Life Science and Biotechnology
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Wei Liao
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- P. R. China
- Department of Public Health
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food
- Chongqing University of Education
- Chongqing 400067
- P. R. China
- Chongqing Engineering Research Center of Functional Food
| |
Collapse
|
39
|
Machado D, Almeida D, Seabra CL, Andrade JC, Gomes AM, Freitas AC. Nanoprobiotics: When Technology Meets Gut Health. FUNCTIONAL BIONANOMATERIALS 2020. [DOI: 10.1007/978-3-030-41464-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Nicoletti A, Pompili M, Gasbarrini A, Ponziani FR. Going with the gut: probiotics as a novel therapy for hepatocellular carcinoma. Hepatobiliary Surg Nutr 2019; 8:295-297. [PMID: 31245418 DOI: 10.21037/hbsn.2019.01.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alberto Nicoletti
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico A Gemelli IRCCS, Rome, Italy
| | - Maurizio Pompili
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico A Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico A Gemelli IRCCS, Rome, Italy
| | - Francesca R Ponziani
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico A Gemelli IRCCS, Rome, Italy
| |
Collapse
|
41
|
Chen B, Du G, Guo J, Zhang Y. Bugs, drugs, and cancer: can the microbiome be a potential therapeutic target for cancer management? Drug Discov Today 2019; 24:1000-1009. [PMID: 30818030 DOI: 10.1016/j.drudis.2019.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
Outnumbering our own cells over ten times, gut microbes can even be considered an additional organ. Several studies have explored the association between microbiomes and antitumor drug response. It has been reported that the presence of specific bacteria might modulate cancer progression and the efficacy of anticancer therapeutics. Bacteria-targeting intervention can provide crucial guidance for the design of next-generation antitumor drugs. Here, we review previous findings elucidating the impact of gut microbiomes on cancer treatment and the possible underlying mechanisms. In addition, we examine the role of microbiome manipulation in controlling tumor growth. Finally, we discuss concerns regarding the alteration of the microbiome composition, and the potential approaches to surpass existing limitations.
Collapse
Affiliation(s)
- Biying Chen
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Guangye Du
- Department of Pathology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Jiahui Guo
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China.
| | - Yanjie Zhang
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China.
| |
Collapse
|
42
|
The Interplay between Immunity and Microbiota at Intestinal Immunological Niche: The Case of Cancer. Int J Mol Sci 2019; 20:ijms20030501. [PMID: 30682772 PMCID: PMC6387318 DOI: 10.3390/ijms20030501] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota is central to the pathogenesis of several inflammatory and autoimmune diseases. While multiple mechanisms are involved, the immune system clearly plays a special role. Indeed, the breakdown of the physiological balance in gut microbial composition leads to dysbiosis, which is then able to enhance inflammation and to influence gene expression. At the same time, there is an intense cross-talk between the microbiota and the immunological niche in the intestinal mucosa. These interactions may pave the way to the development, growth and spreading of cancer, especially in the gastro-intestinal system. Here, we review the changes in microbiota composition, how they relate to the immunological imbalance, influencing the onset of different types of cancer and the impact of these mechanisms on the efficacy of traditional and upcoming cancer treatments.
Collapse
|
43
|
Yu W, Si M, Li L, He P, Fan Z, Zhang Q, Jiao X. Biomarkers Reflecting The Destruction Of The Blood-Brain Barrier Are Valuable In Predicting The Risk Of Lymphomas With Central Nervous System Involvement. Onco Targets Ther 2019; 12:9505-9512. [PMID: 31807026 PMCID: PMC6857655 DOI: 10.2147/ott.s222432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/25/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE We aimed to identify the biomarkers in cerebrospinal fluid (CSF) that facilitate the diagnosis of lymphomas with central nervous system (CNS) involvement. METHODS Four cases of non-Hodgkin's lymphoma (NHL) patients with/without CNS involvement were enrolled respectively, and non-CNS tumor patients (n=3) were selected to be the controls. Lab biomarkers, cytokines, and tight junction proteins (TJs) in CSF and serum were measured. RESULTS When comparing the CNS to non-CNS group, cytokine including MMP-9 (15.24 vs 0.36 ng/mL), CCL-2 (1922.04 vs 490.68 pg/mL), and sVCAM-1 (61.36 vs 9.00 pg/mL), TJs including OCLN (6.68 vs 2.59 pg/mL), and ZO-1 (710.04 vs 182.98 pg/mL) in CSF were significantly higher in lymphomas patients with CNS involvement than those without CNS involvement. However, serum biomarkers were not significantly elevated. Contrary to the major findings, all conventional biomarkers and MRI results showed no significant change. CONCLUSION CSF biomarkers affecting BBB disruption are valuable in mirroring the risk of lymphoma CNS metastasis. Further study with a larger sample size is needed to verify these biomarkers in predicting lymphoma CNS involvement.
Collapse
Affiliation(s)
- Wenjun Yu
- Department of Hematology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
| | - Mengya Si
- Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
| | - Li Li
- Obstetrics Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
| | - Ping He
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Zhiqiang Fan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Qiaoxin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- Correspondence: Xiaoyang Jiao Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Guangdong515041, People’s Republic of China Email
| |
Collapse
|
44
|
Adachi K, Tamada K. Microbial biomarkers for immune checkpoint blockade therapy against cancer. J Gastroenterol 2018; 53:999-1005. [PMID: 30003334 PMCID: PMC6132931 DOI: 10.1007/s00535-018-1492-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 02/04/2023]
Abstract
Three major standard treatments, i.e., surgery, chemotherapy, and radiotherapy, were traditionally applied to the treatment of cancer and saved many patients. Meanwhile, clinical studies as well as basic research of immunotherapy are being actively conducted for intractable or advanced malignancies that cannot be cured by the conventional standard treatments. Remarkable therapeutic efficacies have been recently reported in clinical trials on some cancer types, and immunotherapy is now being recognized as the "fourth" standard therapy against cancer. In particular, immune checkpoint inhibitor therapy (ICI) has demonstrated the effectiveness of immunotherapy through large-scale randomized clinical trials, leading to the paradigm-shift in cancer treatment. Immune checkpoint molecules transduce co-inhibitory signals to immunocompetent cells including T cells, and crucially contribute to the formation of an immunosuppressive microenvironment in tumor tissues, which intrinsically confers the treatment resistance. Programmed death-1 (PD-1, CD279) is one of the typical immune checkpoint molecules. Anti-tumor therapies targeting PD-1 and its ligands had been developed and approved in many countries, and various studies utilizing clinical specimens are currently progressing. In this review, we provide an overview of the biomarkers based on the analysis of enteric microbiota that correlate with the clinical efficacy/inefficacy of PD-1-based therapy.
Collapse
Affiliation(s)
- Keishi Adachi
- 0000 0001 0660 7960grid.268397.1Department of Immunology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 Japan
| | - Koji Tamada
- 0000 0001 0660 7960grid.268397.1Department of Immunology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 Japan
| |
Collapse
|
45
|
Pimentel TC, Aparecida Marcolino V, Eduardo Barão C, Jensen Klososki S, Rosset M. Minas Frescal Cheese as a Probiotic Carrier. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-54528-8_66-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Xu F, Yi J, Wang F, Wang W, Wang Z, Xue J, Luan X. Involvement of soluble B7-H3 in combination with the serum inflammatory cytokines interleukin-17, -8 and -6 in the diagnosis of hepatocellular carcinoma. Oncol Lett 2017; 14:8138-8143. [PMID: 29344257 DOI: 10.3892/ol.2017.7215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
Previous studies have demonstrated that B7-H3, and the inflammatory cytokines interleukin (IL)-17, IL-8 and IL-6, are involved in the development of a variety of tumors. The objectives of the present study were: i) To investigate the association between soluble B7-H3 (sB7-H3) and cytokine levels of IL-17, IL-8 and IL-6 in the serum of patients with hepatocellular carcinoma (HCC); and ii) to determine their potential value for use in HCC diagnosis. Serum sB7-H3, IL-17, IL-8 and IL-6 levels in the HCC patients and healthy control subjects were measured using ELISA. The accuracy of each of these biomarkers in HCC diagnosis was compared using a receiver operating characteristic curve and the area under the curve (AUC). A logistic regression model was used to investigate the accuracy of diagnosing HCC when evaluated using combined determinations of sB7-H3, IL-17, IL-8 and IL-6 levels. The data demonstrated that serum levels of sB7-H3, IL-17, IL-8 and IL-6 were significantly increased in HCC patients compared with those in the healthy control group. Serum sB7-H3 levels were positively associated with serum IL-17, whereas serum IL-8 levels were negatively correlated with serum IL-17 levels. The AUC values for sB7-H3, IL-17, IL-8 and IL-6 were 83.2, 65.7, 95.3 and 97.0%, respectively, and indicated that all four biomarkers exhibited a statistically significant capacity for diagnosing HCC. Using the logistic regression model, the AUC value, sensitivity and specificity, as determined for the combination of the four biomarkers, were 99.2, 96.67 and 97.14%, respectively. This was significantly greater than that achieved when any single biomarker was used alone in the logistic regression model to assess their accuracy in HCC diagnosis. The optimum cutoff value of the predicted probability obtained by the combination of sB7-H3, IL-17, IL-8 and IL-6 in the regression model was 0.5745. To conclude, the present study revealed that there exists a positive association between serum sB7-H3 and IL-17 levels in HCC patients. Determinations involving the combination of serum sB7-H3, IL-17, IL-8 and IL-6 levels demonstrate great potential for use in HCC diagnosis.
Collapse
Affiliation(s)
- Fenghuang Xu
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Junzhu Yi
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Feifei Wang
- Department of Anesthesiology, The Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Weiwei Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhuoya Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Jiangnan Xue
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|