1
|
Qi MH, Li JT, Zhai B. Mechanisms of vascular co-option as a potential therapeutic target in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2024; 32:827-834. [DOI: 10.11569/wcjd.v32.i11.827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers, which has an insidious onset, and most of the patients have already lost the chance of radical surgery at the time of the first diagnosis, so systematic antitumor therapy has become the key to the treatment of intermediate and advanced HCC. The emergence of drug resistance to antitumor drugs is one of the most important reasons for the poor efficacy, which affects the prognosis of HCC patients, and how to improve the therapeutic efficacy for HCC is still the main focus of the present research. Although the research on antitumor drugs based on neovascularization has been deepening both domestically and abroad, less research has been done on the vascular co-option mode, which shares blood vessels of normal tissues to meet the metabolic needs of the tumor itself, and its impact on the progression of HCC and antitumor therapy has not been extensively studied. In this paper, we provide an overview of the impact of vascular co-option on multiple treatment modalities for hepatocellular carcinoma and related mechanisms, with a view to laying a theoretical foundation for improving drug resistance in HCC.
Collapse
Affiliation(s)
- Ming-Hao Qi
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Jing-Tao Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Bo Zhai
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| |
Collapse
|
2
|
Harris AL, Kerr DJ, Pezzella F, Ribatti D. Accessing the vasculature in cancer: revising an old hallmark. Trends Cancer 2024; 10:1038-1051. [PMID: 39358088 DOI: 10.1016/j.trecan.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 10/04/2024]
Abstract
The classic cancer hallmark, inducing angiogenesis, was born out of the long-held notion that tumours could grow only if new vessels were formed. The attempts, based on this premise, to therapeutically restrain angiogenesis in hopes of controlling tumour growth have been less effective than expected. This is partly because primary and metastatic tumours can grow without angiogenesis. The discovery of nonangiogenic cancers and the mechanisms they use to exploit normal vessels, called 'vessel co-option,' has opened a new field in cancer biology. Consequently, the cancer hallmark, 'inducing angiogenesis,' has been modified to 'inducing or accessing vasculature.'
Collapse
Affiliation(s)
| | - David J Kerr
- Radcliffe Department of Medicine, Nuffield Division of Clinical Laboratory Science, University of Oxford, Oxford, UK
| | - Francesco Pezzella
- Radcliffe Department of Medicine, Nuffield Division of Clinical Laboratory Science, University of Oxford, Oxford, UK.
| | - Domenico Ribatti
- Dipartimento di Biomedicina Traslazionale e Neuroscienze, Università degli Studi di Bari, Bari, Italy
| |
Collapse
|
3
|
Oh MY, Yoon KC, Hyeon S, Jang T, Choi Y, Kim J, Kong HJ, Chai YJ. Navigating the Future of 3D Laparoscopic Liver Surgeries: Visualization of Internal Anatomy on Laparoscopic Images With Augmented Reality. Surg Laparosc Endosc Percutan Tech 2024; 34:459-465. [PMID: 38965779 DOI: 10.1097/sle.0000000000001307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Liver tumor resection requires precise localization of tumors and blood vessels. Despite advancements in 3-dimensional (3D) visualization for laparoscopic surgeries, challenges persist. We developed and evaluated an augmented reality (AR) system that overlays preoperative 3D models onto laparoscopic images, offering crucial support for 3D visualization during laparoscopic liver surgeries. METHODS Anatomic liver structures from preoperative computed tomography scans were segmented using open-source software including 3D Slicer and Maya 2022 for 3D model editing. A registration system was created with 3D visualization software utilizing a stereo registration input system to overlay the virtual liver onto laparoscopic images during surgical procedures. A controller was customized using a modified keyboard to facilitate manual alignment of the virtual liver with the laparoscopic image. The AR system was evaluated by 3 experienced surgeons who performed manual registration for a total of 27 images from 7 clinical cases. The evaluation criteria included registration time; measured in minutes, and accuracy; measured using the Dice similarity coefficient. RESULTS The overall mean registration time was 2.4±1.7 minutes (range: 0.3 to 9.5 min), and the overall mean registration accuracy was 93.8%±4.9% (range: 80.9% to 99.7%). CONCLUSION Our validated AR system has the potential to effectively enable the prediction of internal hepatic anatomic structures during 3D laparoscopic liver resection, and may enhance 3D visualization for select laparoscopic liver surgeries.
Collapse
Affiliation(s)
- Moon Young Oh
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Boramae Medical Center
| | - Kyung Chul Yoon
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Boramae Medical Center
| | - Seulgi Hyeon
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Boramae Medical Center
| | - Taesoo Jang
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yeonjin Choi
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Korea
| | - Junki Kim
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyoun-Joong Kong
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Jun Chai
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Boramae Medical Center
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
4
|
Li Z, Nguyen Canh H, Takahashi K, Le Thanh D, Nguyen Thi Q, Yang R, Yoshimura K, Sato Y, Nguyen Thi K, Nakata H, Ikeda H, Kozaka K, Kobayashi S, Yagi S, Harada K. Histopathological growth pattern and vessel co-option in intrahepatic cholangiocarcinoma. Med Mol Morphol 2024; 57:200-217. [PMID: 38960952 PMCID: PMC11343874 DOI: 10.1007/s00795-024-00392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) exhibits different blood imaging features and prognosis depending on histology. To clarity histopathological growth patterns (HGPs) and vascularization processes of iCCA, we collected 145 surgical specimens and histologically classified them into large bile duct (LBD) (20 cases), small bile duct (SBD) (54), cholangiolocarcinoma (CLC) (35), combined SBD-CLC (cSBD-CLC) (26), and ductal plate malformation (DPM) (10) (sub)types. According to the invasive pattern at the interface between tumor and adjacent background liver, HGPs were classified into desmoplastic, pushing, and replacing HGPs. Desmoplastic HGP predominated in LBD type (55.5%), while replacing HGP was common in CLC (82.9%) and cSBD-CLC (84.6%) subtypes. Desmoplastic HGP reflected angiogenesis, while replacing HGP showed vessel co-option in addition to angiogenesis. By evaluating microvessel density (MVD) using vascular markers, ELTD1 identified vessel co-option and angiogenesis, and ELTD1-positive MVD at invasive margin in replacing HGP was significantly higher than those in desmoplastic and pushing HGPs. REDD1, an angiogenesis-related marker, demonstrated preferably higher MVD in the tumor center than in other areas. iCCA (sub)types and HGPs were closely related to vessel co-option and immune-related factors (lymphatic vessels, lymphocytes, and neutrophils). In conclusion, HGPs and vascular mechanisms characterize iCCA (sub)types and vessel co-option linked to the immune microenvironment.
Collapse
Affiliation(s)
- Zihan Li
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, 920-8640, Japan
| | - Hiep Nguyen Canh
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, 920-8640, Japan
| | - Kenta Takahashi
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, 920-8640, Japan
| | - Dong Le Thanh
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, 920-8640, Japan
| | - Quynh Nguyen Thi
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, 920-8640, Japan
| | - Rui Yang
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, 920-8640, Japan
| | - Kaori Yoshimura
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, 920-8640, Japan
| | - Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, 920-8640, Japan
| | - Khuyen Nguyen Thi
- Center of Pathology and Molecular Biology, National Cancer Hospital, Hanoi, Vietnam
| | - Hiroki Nakata
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroko Ikeda
- Department of Diagnostic Pathology, Kanazawa University Hospital, Kanazawa, Japan
| | - Kazuto Kozaka
- Department of Radiology, Kanazawa University Hospital, Kanazawa, Japan
| | - Satoshi Kobayashi
- Department of Radiology, Kanazawa University Hospital, Kanazawa, Japan
| | - Shintaro Yagi
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kanazawa University, Kanazawa, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, 920-8640, Japan.
| |
Collapse
|
5
|
Hsu CY, Abdulrahim MN, Mustafa MA, Omar TM, Balto F, Pineda I, Khudair TT, Ubaid M, Ali MS. The multifaceted role of PCSK9 in cancer pathogenesis, tumor immunity, and immunotherapy. Med Oncol 2024; 41:202. [PMID: 39008137 DOI: 10.1007/s12032-024-02435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), a well-known regulator of cholesterol metabolism and cardiovascular diseases, has recently garnered attention for its emerging involvement in cancer biology. The multifunctional nature of PCSK9 extends beyond lipid regulation and encompasses a wide range of cellular processes that can influence cancer progression. Studies have revealed that PCSK9 can modulate signaling pathways, such as PI3K/Akt, MAPK, and Wnt/β-catenin, thereby influencing cellular proliferation, survival, and angiogenesis. Additionally, the interplay between PCSK9 and cholesterol homeostasis may impact membrane dynamics and cellular migration, further influencing tumor aggressiveness. The central role of the immune system in monitoring and controlling cancer is increasingly recognized. Recent research has demonstrated the ability of PCSK9 to modulate immune responses through interactions with immune cells and components of the tumor microenvironment. This includes effects on dendritic cell maturation, T cell activation, and cytokine production, suggesting a role in shaping antitumor immune responses. Moreover, the potential influence of PCSK9 on immune checkpoints such as PD1/PD-L1 lends an additional layer of complexity to its immunomodulatory functions. The growing interest in cancer immunotherapy has prompted exploration into the potential of targeting PCSK9 for therapeutic benefits. Preclinical studies have demonstrated synergistic effects between PCSK9 inhibitors and established immunotherapies, offering a novel avenue for combination treatments. The strategic manipulation of PCSK9 to enhance tumor immunity and improve therapeutic outcomes presents an exciting area for further investigations. Understanding the mechanisms by which PCSK9 influences cancer biology and immunity holds promise for the development of novel immunotherapeutic approaches. This review aims to provide a comprehensive analysis of the intricate connections between PCSK9, cancer pathogenesis, tumor immunity, and the potential implications for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan.
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA.
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Franklin Balto
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Indira Pineda
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Teeba Thamer Khudair
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
6
|
Reang J, Sharma V, Yadav V, Tonk RK, Majeed J, Sharma A, Sharma PC. Redefining the significance of quinoline containing compounds as potent VEGFR-2 inhibitors for cancer therapy. Med Chem Res 2024; 33:1079-1099. [DOI: 10.1007/s00044-024-03252-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 01/03/2025]
|
7
|
Fan J, Wang L, Zhang C, Wu X, Han L, Zhang X, Gao S, Xue J, Zhang Q. PDIA3 driven STAT3/PD-1 signaling promotes M2 TAM polarization and aggravates colorectal cancer progression. Aging (Albany NY) 2024; 16:8880-8897. [PMID: 38761176 PMCID: PMC11164521 DOI: 10.18632/aging.205847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/13/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVE This inquiry endeavors to delineate the influence of PDIA3 on tumor-associated macrophages within the realm of colorectal malignancies, whilst elucidating the intrinsic biochemical pathways. METHOD Leveraging bioinformatics, we scrutinized the symbiosis between PDIA3, STAT3, and CD274. A xenograft model in immunodeficient murine served to assess PDIA3's impact on colorectal carcinogenesis. Further, Western blot analysis quantified the protein expression of PDIA3, p-STAT3, PD-1, XBP-1, assorted enzymes, and IL-6. Moreover, in vitro assays gauged SW480 cellular dynamics inclusive of migration, invasive potential, and proliferation. RESULTS Bioinformatics exploration exposed PDIA3's elevated presence in diverse cancers, with a marked expression in colorectal cancer, as per TCGA and GEO repositories. Correlative studies showed PDIA3 positively aligning with STAT3 and CD274, the latter also associated with monocyte-derived macrophages. Comparative analysis of colorectal neoplasms and normal colon samples unveiled heightened levels of PDIA3 markers which, when overexpressed in SW480 cells, escalated tumorigenicity and oncogenic behaviors, with a noted decrease upon PD-1 monoclonal antibody intervention. CONCLUSIONS PDIA3 augments the M2 polarization of tumor-associated macrophages via modulation of the STAT3/PD-1 cascade, thus invigorating the tumorous proliferation and dissemination in colorectal cancer. Such revelations position PDIA3 as an auspicious target for PD-1 blockade therapeutics, offering a promising foundation for rectifying colorectal carcinoma.
Collapse
Affiliation(s)
- Jianchun Fan
- Graduate School, Hebei North University, Zhangjiakou 075000, China
| | - Likun Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Chunze Zhang
- Department of Anus and Intestine Surgery, Tianjin People's Hospital, Tianjin 300122, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
- Institute of Tumor, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
- Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin 300100, China
| | - Lei Han
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Xiaoyu Zhang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Shuquan Gao
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Qi Zhang
- Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin 300100, China
| |
Collapse
|
8
|
Yang D, Dang S, Wang Z, Xie M, Li X, Ding X. Vessel co-option: a unique vascular-immune niche in liver cancer. Front Oncol 2024; 14:1386772. [PMID: 38737903 PMCID: PMC11082301 DOI: 10.3389/fonc.2024.1386772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Tumor vasculature is pivotal in regulating tumor perfusion, immune cell infiltration, metastasis, and invasion. The vascular status of the tumor is intricately linked to its immune landscape and response to immunotherapy. Vessel co-option means that tumor tissue adeptly exploits pre-existing blood vessels in the para-carcinoma region to foster its growth rather than inducing angiogenesis. It emerges as a significant mechanism contributing to anti-angiogenic therapy resistance. Different from angiogenic tumors, vessel co-option presents a distinctive vascular-immune niche characterized by varying states and distribution of immune cells, including T-cells, tumor-associated macrophages, neutrophils, and hepatic stellate cells. This unique composition contributes to an immunosuppressive tumor microenvironment that is crucial in modulating the response to cancer immunotherapy. In this review, we systematically reviewed the evidence and molecular mechanisms of vessel co-option in liver cancer, while also exploring its implications for anti-angiogenic drug resistance and the immune microenvironment, to provide new ideas and clues for screening patients with liver cancer who are effective in immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangming Ding
- Department of Gastroenterology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Carrera-Aguado I, Marcos-Zazo L, Carrancio-Salán P, Guerra-Paes E, Sánchez-Juanes F, Muñoz-Félix JM. The Inhibition of Vessel Co-Option as an Emerging Strategy for Cancer Therapy. Int J Mol Sci 2024; 25:921. [PMID: 38255995 PMCID: PMC10815934 DOI: 10.3390/ijms25020921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Vessel co-option (VCO) is a non-angiogenic mechanism of vascularization that has been associated to anti-angiogenic therapy. In VCO, cancer cells hijack the pre-existing blood vessels and use them to obtain oxygen and nutrients and invade adjacent tissue. Multiple primary tumors and metastases undergo VCO in highly vascularized tissues such as the lungs, liver or brain. VCO has been associated with a worse prognosis. The cellular and molecular mechanisms that undergo VCO are poorly understood. Recent studies have demonstrated that co-opted vessels show a quiescent phenotype in contrast to angiogenic tumor blood vessels. On the other hand, it is believed that during VCO, cancer cells are adhered to basement membrane from pre-existing blood vessels by using integrins, show enhanced motility and a mesenchymal phenotype. Other components of the tumor microenvironment (TME) such as extracellular matrix, immune cells or extracellular vesicles play important roles in vessel co-option maintenance. There are no strategies to inhibit VCO, and thus, to eliminate resistance to anti-angiogenic therapy. This review summarizes all the molecular mechanisms involved in vessel co-option analyzing the possible therapeutic strategies to inhibit this process.
Collapse
Affiliation(s)
- Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Patricia Carrancio-Salán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José M. Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
10
|
Wang Z, Deng L, Xu X, Zhao L. Differential expression of PLAC1 and Netrin-1 in liver metastasis of colorectal cancer and its predictive value. BMC Gastroenterol 2023; 23:275. [PMID: 37568074 PMCID: PMC10416537 DOI: 10.1186/s12876-023-02908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
OBJECTIVE To explore the differential expression of placental specific gene 1 (PLAC1) and neurite guidance factor 1 (netrin-1) in colorectal cancer (CRC) liver metastasis and its predictive value. METHODS Paraffin specimens of primary CRC were selected, including 60 simple colorectal cancer specimens and 47 liver metastasis specimens. At the same time, 40 cases of normal colorectal mucosa were taken as the control group. The expression of PLAC1 and Netrin-1 in tissue was detected by immunohistochemistry (IHC). The correlation between PLAC1 and Netrin-1 expression and clinicopathological characteristics of patients with CRC liver metastases was analyzed. Logistic analysis was adopted to analyze the influencing factors of liver metastasis in CRC. A prediction model was established and ROC curve was used to detect the discrimination of the prediction model. The clinical value of PLAC1 and netrin-1 in predicting liver metastasis of CRC was analyzed using ROC curve. The relationship between the expression of PLAC1 and netrin-1 and the prognosis of CRC patients with liver metastasis was analyzed using Kaplan Meier survival curve. RESULTS The positive staining of PLAC1 and netrin-1 was mainly located in the cytoplasm by IHC detection. Positive expression of PLAC1 and netrin-1 in CRC tissues was markedly higher than that in normal colorectal mucosal epithelium (P < 0.05). Positive expression of PLAC1 in metastatic group was higher than that in non-metastatic group without significant difference (P > 0.05). The metastasis group had much higher positive expression of netrin-1 than the non-metastasis group (P < 0.05). The content of PLAC1 in the tissues of CRC with liver metastasis had a close relationship with differentiation degree and lymph node metastasis (P < 0.05). The expression of Netrin-1 in the tissues of CRC with liver metastasis was associated with Dukes stage, differentiation degree and lymph node metastasis (P < 0.05). Logistic regression analysis showed that Dukes stage, differentiation, lymph node metastasis, CEA, Alb and D-dimer were the independent risk factors for liver metastasis of CRC (P < 0.05). The model was constructed according to the regression coefficients and constant terms, and the discrimination of the prediction model was evaluated using ROC curve, with the AUC of 0.903 (95% CI 0.831 ~ 0.975), the sensitivity of 93.80%, the specificity of 80.00%, and the Jordan index of 0.738. The AUC of PLAC1 and netrin-1 alone and combined detection to predict liver metastasis of CRC were 0.805, 0.793 and 0.921, respectively. The survival time of patients with positive PLAC1 and netrin-1 expression were sharply shorter than that of the patients with negative expression (P < 0.05). CONCLUSIONS The expression of PLAC1 and netrin-1 was strongly increased in CRC with liver metastasis, which had a certain clinical value in predicting liver metastasis of CRC. Dukes stage, differentiation degree, lymph node metastasis, CEA, Alb and D-dimer were independent risk factors for liver metastasis of CRC, and the model based on these indicators had good discrimination for effectively evaluating the risk of liver metastasis in CRC.
Collapse
Affiliation(s)
- Zhijun Wang
- Department of Blood Transfusion, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, 330029, Jiangxi, P.R. China
| | - Lei Deng
- General Department of oncology, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Hospital, Jiangxi Clinical Research Center for Cancer, Nanchang, 330029, Jiangxi, P.R. China
| | - Xiwen Xu
- Department of Gastroenterology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, No. 7889, Changdong Avenue, Gaoxin district, Nanchang City, 330029, Jiangxi Province, P.R. China
| | - Lianwu Zhao
- Department of Gastroenterology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, No. 7889, Changdong Avenue, Gaoxin district, Nanchang City, 330029, Jiangxi Province, P.R. China.
| |
Collapse
|
11
|
Delgado-Bellido D, Oliver FJ, Vargas Padilla MV, Lobo-Selma L, Chacón-Barrado A, Díaz-Martin J, de Álava E. VE-Cadherin in Cancer-Associated Angiogenesis: A Deceptive Strategy of Blood Vessel Formation. Int J Mol Sci 2023; 24:ijms24119343. [PMID: 37298296 DOI: 10.3390/ijms24119343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Tumor growth depends on the vascular system, either through the expansion of blood vessels or novel adaptation by tumor cells. One of these novel pathways is vasculogenic mimicry (VM), which is defined as a tumor-provided vascular system apart from endothelial cell-lined vessels, and its origin is partly unknown. It involves highly aggressive tumor cells expressing endothelial cell markers that line the tumor irrigation. VM has been correlated with high tumor grade, cancer cell invasion, cancer cell metastasis, and reduced survival of cancer patients. In this review, we summarize the most relevant studies in the field of angiogenesis and cover the various aspects and functionality of aberrant angiogenesis by tumor cells. We also discuss the intracellular signaling mechanisms involved in the abnormal presence of VE-cadherin (CDH5) and its role in VM formation. Finally, we present the implications for the paradigm of tumor angiogenesis and how targeted therapy and individualized studies can be applied in scientific analysis and clinical settings.
Collapse
Affiliation(s)
- Daniel Delgado-Bellido
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - F J Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain
| | | | - Laura Lobo-Selma
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | | | - Juan Díaz-Martin
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Enrique de Álava
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| |
Collapse
|
12
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 342] [Impact Index Per Article: 171.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
13
|
Annese T, Errede M, De Giorgis M, Lorusso L, Tamma R, Ribatti D. Double Immunohistochemical Staining on Formalin-Fixed Paraffin-Embedded Tissue Samples to Study Vascular Co-option. Methods Mol Biol 2023; 2572:101-116. [PMID: 36161411 DOI: 10.1007/978-1-0716-2703-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Vascular co-option is a non-angiogenic mechanism whereby tumor growth and progression move on by hijacking the pre-existing and nonmalignant blood vessels and is employed by various tumors to grow and metastasize.The histopathological identification of co-opted blood vessels is complex, and no specific markers were defined, but it is critical to develop new and possibly more effective therapeutic strategies. Here, in glioblastoma, we show that the co-opted blood vessels can be identified, by double immunohistochemical staining, as weak CD31+ vessels with reduced P-gp expression and proliferation and surrounded by highly proliferating and P-gp- or S100A10-expressing tumor cells. Results can be quantified by the Aperio Colocalization algorithm, which is a valid and robust method to handle and investigate large data sets.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy.
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
14
|
Zaharia C, Veen T, Lea D, Kanani A, Alexeeva M, Søreide K. Histopathological Growth Pattern in Colorectal Liver Metastasis and The Tumor Immune Microenvironment. Cancers (Basel) 2022; 15:cancers15010181. [PMID: 36612177 PMCID: PMC9818232 DOI: 10.3390/cancers15010181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Almost half of all patients with colorectal cancer present with or eventually develop metastasis, most frequently in the liver. Understanding the histopathological growth patterns and tumor immune microenvironment of colorectal liver metastases may help determine treatment strategies and assess prognosis. A literature search was conducted to gather information on cancer biology, histopathological growth patterns, and the tumor immune microenvironment in colorectal liver metastases, including their mechanisms and their impact on clinical outcomes. A first consensus on histopathological growth patterns emerged in 2017, identifying five growth patterns. Later studies found benefits from a two-tier system, desmoplastic and non-desmoplastic, incorporated into the updated 2022 consensus. Furthermore, the tumor immune microenvironment shows additional characteristic features with relevance to cancer biology. This includes density of T-cells (CD8+), expression of claudin-2, presence of vessel co-option versus angiogenesis, as well as several other factors. The relation between histopathological growth patterns and the tumor immune microenvironment delineates distinct subtypes of cancer biology. The distinct subtypes are found to correlate with risk of metastasis or relapse, and hence to clinical outcome and long-term survival in each patient. In order to optimize personalized and precision therapy for patients with colorectal liver metastases, further investigation into the mechanisms of cancer biology and their translational aspects to novel treatment targets is warranted.
Collapse
Affiliation(s)
- Claudia Zaharia
- Department of Pathology, Stavanger University Hospital, N-4068 Stavanger, Norway
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, N-4068 Stavanger, Norway
| | - Torhild Veen
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, N-4068 Stavanger, Norway
- Department of Gastrointestinal Surgery, Stavanger University Hospital, N-4068 Stavanger, Norway
| | - Dordi Lea
- Department of Pathology, Stavanger University Hospital, N-4068 Stavanger, Norway
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, N-4068 Stavanger, Norway
| | - Arezo Kanani
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, N-4068 Stavanger, Norway
- Department of Gastrointestinal Surgery, Stavanger University Hospital, N-4068 Stavanger, Norway
| | - Marina Alexeeva
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, N-4068 Stavanger, Norway
- Department of Gastrointestinal Surgery, Stavanger University Hospital, N-4068 Stavanger, Norway
| | - Kjetil Søreide
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, N-4068 Stavanger, Norway
- Department of Gastrointestinal Surgery, Stavanger University Hospital, N-4068 Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, N-7804 Bergen, Norway
- Correspondence:
| |
Collapse
|
15
|
Gazzillo A, Polidoro MA, Soldani C, Franceschini B, Lleo A, Donadon M. Relationship between Epithelial-to-Mesenchymal Transition and Tumor-Associated Macrophages in Colorectal Liver Metastases. Int J Mol Sci 2022; 23:16197. [PMID: 36555840 PMCID: PMC9783529 DOI: 10.3390/ijms232416197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The liver is the most common metastatic site in colorectal cancer (CRC) patients. Indeed, 25-30% of the cases develop colorectal liver metastasis (CLM), showing an extremely poor 5-year survival rate and resistance to conventional anticancer therapies. Tumor-associated macrophages (TAMs) provide a nurturing microenvironment for CRC metastasis, promoting epithelial-to-mesenchymal transition (EMT) through the TGF-β signaling pathway, thus driving tumor cells to acquire mesenchymal properties that allow them to migrate from the primary tumor and invade the new metastatic site. EMT is known to contribute to the disruption of blood vessel integrity and the generation of circulating tumor cells (CTCs), thus being closely related to high metastatic potential in numerous solid cancers. Despite the fact that it is well-recognized that the crosstalk between tumor cells and the inflammatory microenvironment is crucial in the EMT process, the association between the EMT and the role of TAMs is still poorly understood. In this review, we elaborated on the role that TAMs exert in the induction of EMT during CLM development. Since TAMs are the major source of TGF-β in the liver, we also focused on novel insights into their role in TGF-β-induced EMT.
Collapse
Affiliation(s)
- Aurora Gazzillo
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Ana Lleo
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, MI, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
| | - Matteo Donadon
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, MI, Italy
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, NO, Italy
- Department of General Surgery, University Maggiore Hospital Della Carità, 28100 Novara, NO, Italy
| |
Collapse
|
16
|
Annese T, Errede M, d’Amati A, De Giorgis M, Lorusso L, Tamma R, Ribatti D. Differential P-Glycoprotein/CD31 Expression as Markers of Vascular Co-Option in Primary Central Nervous System Tumors. Diagnostics (Basel) 2022; 12:diagnostics12123120. [PMID: 36553127 PMCID: PMC9777393 DOI: 10.3390/diagnostics12123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vascular co-option is one of the main features of brain tumor progression. It is identified using histopathological analysis, but no antibody-specific markers were found, and no universally accepted histological features were defined. METHODS We employed double immunohistochemical stainings for CD31, P-gp, S100A10, and mitochondria on formalin-fixed, paraffin-embedded human samples of IDH-WT glioblastoma, IDH-mutant astrocytoma, and meningioma to study vascular co-option across different brain tumors and across normal, peritumoral, and intratumoral areas using the Aperio colocalization algorithm, which is a valid and robust method to handle and investigate large data sets. RESULTS The results have shown that (i) co-opted vessels could be recognized by the presence of metabolically overactive (evaluated as mitochondria expression) and P-gp+ or S100A10+ tumor cells surrounding CD31+ endothelial cells; (ii) vascular co-option occurs in the intratumoral area of meningioma and astrocytoma; and (iii) vascular co-option is prevalent in peritumoral glioblastoma area. CONCLUSIONS The described approach identifies new markers for cellular components of the vessel wall and techniques that uncover the order and localization of vascularization mechanisms, which may contribute to developing new and possibly more effective therapeutic strategies.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, LUM University, Casamassima, 70100 Bari, Italy
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Correspondence:
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Antonio d’Amati
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Section of Pathology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
17
|
Adnani L, Spinelli C, Tawil N, Rak J. Role of extracellular vesicles in cancer-specific interactions between tumour cells and the vasculature. Semin Cancer Biol 2022; 87:196-213. [PMID: 36371024 DOI: 10.1016/j.semcancer.2022.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/25/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Cancer progression impacts and exploits the vascular system in several highly consequential ways. Among different types of vascular cells, blood cells and mediators that are engaged in these processes, endothelial cells are at the centre of the underlying circuitry, as crucial constituents of angiogenesis, angiocrine stimulation, non-angiogenic vascular growth, interactions with the coagulation system and other responses. Tumour-vascular interactions involve soluble factors, extracellular matrix molecules, cell-cell contacts, as well as extracellular vesicles (EVs) carrying assemblies of molecular effectors. Oncogenic mutations and transforming changes in the cancer cell genome, epigenome and signalling circuitry exert important and often cancer-specific influences upon pathways of tumour-vascular interactions, including the biogenesis, content, and biological activity of EVs and responses of cancer cells to them. Notably, EVs may carry and transfer bioactive, oncogenic macromolecules (oncoproteins, RNA, DNA) between tumour and vascular cells and thereby elicit unique functional changes and forms of vascular growth and remodeling. Cancer EVs influence the state of the vasculature both locally and systemically, as exemplified by cancer-associated thrombosis. EV-mediated communication pathways represent attractive targets for therapies aiming at modulation of the tumour-vascular interface (beyond angiogenesis) and could also be exploited for diagnostic purposes in cancer.
Collapse
Affiliation(s)
- Lata Adnani
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Cristiana Spinelli
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Nadim Tawil
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Janusz Rak
- McGill University and Research Institute of the McGill University Health Centre, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
18
|
Development of Tumor-Vasculature Interaction on Chip Mimicking Vessel Co-Option of Glioblastoma. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Rada M, Hassan N, Lazaris A, Metrakos P. The molecular mechanisms underlying neutrophil infiltration in vessel co-opting colorectal cancer liver metastases. Front Oncol 2022; 12:1004793. [PMID: 36330498 PMCID: PMC9623070 DOI: 10.3389/fonc.2022.1004793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/03/2022] [Indexed: 09/25/2023] Open
Abstract
Colorectal cancer liver metastases (CRCLMs) have two major histopathological growth patterns (HGPs): desmoplastic (DHGP) and replacement (RHGP). The DHGP tumours derive their vasculature by angiogenesis, while the RHGP tumours use vessel co-option. Various studies have associated RHGP tumours with an unfavourable prognosis, as well as high levels of resistance to anti-angiogenic agents and chemotherapy. Recently, we reported higher numbers of neutrophils in the tumour microenvironment (TME) of vessel co-opting tumours compared to their angiogenic counterparts. However, the molecular mechanisms underlying this phenotype are unclear. Herein, we suggested a positive correlation between the expression of angiopoietin-1 (Ang1) in the hepatocytes and the presence of neutrophils in vessel co-opting tumours. Importantly, upregulation of Ang1 in the hepatocytes is associated with the presence of runt-related transcription factor-1 (RUNX1) in the neighboring cancer cells in vitro and in vivo. Altogether, our data suggest the molecular mechanisms by which neutrophils are infiltrated in vessel co-opting CRCLM lesions. This finding may yield novel therapeutic strategies for CRCLM patients in future.
Collapse
Affiliation(s)
- Miran Rada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | | | - Peter Metrakos
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
20
|
Qi M, Fan S, Huang M, Pan J, Li Y, Miao Q, Lyu W, Li X, Deng L, Qiu S, Liu T, Deng W, Chu X, Jiang C, He W, Xia L, Yang Y, Hong J, Qi Q, Yin W, Liu X, Shi C, Chen M, Ye W, Zhang D. Targeting FAPα-expressing hepatic stellate cells overcomes resistance to antiangiogenics in colorectal cancer liver metastasis models. J Clin Invest 2022; 132:e157399. [PMID: 35951441 PMCID: PMC9525122 DOI: 10.1172/jci157399] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Vessel co-option has been demonstrated to mediate colorectal cancer liver metastasis (CRCLM) resistance to antiangiogenic therapy. The current mechanisms underlying vessel co-option have mainly focused on "hijacker" tumor cells, whereas the function of the "hijackee" sinusoidal blood vessels has not been explored. Here, we found that the occurrence of vessel co-option in bevacizumab-resistant CRCLM xenografts was associated with increased expression of fibroblast activation protein α (FAPα) in the co-opted hepatic stellate cells (HSCs), which was dramatically attenuated in HSC-specific conditional Fap-knockout mice bearing CRCLM allografts. Mechanistically, bevacizumab treatment induced hypoxia to upregulate the expression of fibroblast growth factor-binding protein 1 (FGFBP1) in tumor cells. Gain- or loss-of-function experiments revealed that the bevacizumab-resistant tumor cell-derived FGFBP1 induced FAPα expression by enhancing the paracrine FGF2/FGFR1/ERK1/-2/EGR1 signaling pathway in HSCs. FAPα promoted CXCL5 secretion in HSCs, which activated CXCR2 to promote the epithelial-mesenchymal transition of tumor cells and the recruitment of myeloid-derived suppressor cells. These findings were further validated in tumor tissues derived from patients with CRCLM. Targeting FAPα+ HSCs effectively disrupted the co-opted sinusoidal blood vessels and overcame bevacizumab resistance. Our study highlights the role of FAPα+ HSCs in vessel co-option and provides an effective strategy to overcome the vessel co-option-mediated bevacizumab resistance.
Collapse
Affiliation(s)
- Ming Qi
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Shuran Fan
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinghua Pan
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yong Li
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and
| | - Qun Miao
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenyu Lyu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaobo Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Lijuan Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shenghui Qiu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tongzheng Liu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Weiqing Deng
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaodong Chu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chang Jiang
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenzhuo He
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liangping Xia
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jian Hong
- School of Medicine, Jinan University, Guangzhou, China
| | - Qi Qi
- School of Medicine, Jinan University, Guangzhou, China
| | - Wenqian Yin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiangning Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Changzheng Shi
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and
| |
Collapse
|
21
|
Cuypers A, Truong ACK, Becker LM, Saavedra-García P, Carmeliet P. Tumor vessel co-option: The past & the future. Front Oncol 2022; 12:965277. [PMID: 36119528 PMCID: PMC9472251 DOI: 10.3389/fonc.2022.965277] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor vessel co-option (VCO) is a non-angiogenic vascularization mechanism that is a possible cause of resistance to anti-angiogenic therapy (AAT). Multiple tumors are hypothesized to primarily rely on growth factor signaling-induced sprouting angiogenesis, which is often inhibited during AAT. During VCO however, tumors invade healthy tissues by hijacking pre-existing blood vessels of the host organ to secure their blood and nutrient supply. Although VCO has been described in the context of AAT resistance, the molecular mechanisms underlying this process and the profile and characteristics of co-opted vascular cell types (endothelial cells (ECs) and pericytes) remain poorly understood, resulting in the lack of therapeutic strategies to inhibit VCO (and to overcome AAT resistance). In the past few years, novel next-generation technologies (such as single-cell RNA sequencing) have emerged and revolutionized the way of analyzing and understanding cancer biology. While most studies utilizing single-cell RNA sequencing with focus on cancer vascularization have centered around ECs during sprouting angiogenesis, we propose that this and other novel technologies can be used in future investigations to shed light on tumor EC biology during VCO. In this review, we summarize the molecular mechanisms driving VCO known to date and introduce the models used to study this phenomenon to date. We highlight VCO studies that recently emerged using sequencing approaches and propose how these and other novel state-of-the-art methods can be used in the future to further explore ECs and other cell types in the VCO process and to identify potential vulnerabilities in tumors relying on VCO. A better understanding of VCO by using novel approaches could provide new answers to the many open questions, and thus pave the way to develop new strategies to control and target tumor vascularization.
Collapse
Affiliation(s)
- Anne Cuypers
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anh-Co Khanh Truong
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Lisa M. Becker
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Paula Saavedra-García
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
22
|
Niu Y, Xue J, Wu X, Qu M, Wang L, Liang W, Li T. Clinical Significance of Serum Haptoglobin and Protein Disulfide-Isomerase A3 in the Screening, Diagnosis, and Staging of Colorectal Cancer. Front Pharmacol 2022; 13:935500. [PMID: 35860021 PMCID: PMC9290321 DOI: 10.3389/fphar.2022.935500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022] Open
Abstract
Objective: This study aims to explore the clinical significance of haptoglobin (HP) and protein disulfide-isomerase A3 (PDIA3) in human serum in the screening, diagnosis and staging of colorectal cancer (CRC), and to provide novel screening approaches featuring high specificity, sensitivity, and accuracy for early screening and diagnosis of clinical colorectal cancer. Methods: 88, 77, and 36 blood specimens were respectively harvested from colorectal cancer patients, colorectal polyp patients, and normal subjects (the health examination) who requested medical assistance from our hospital between Oct2019 and February 2022. The serum contents of HP and PDIA3 in each sample were determined through an enzyme linked immunosorbent assay (ELISA). This step was taken to analyze the differences among different specimen groups in terms of the serum contents of HP and PDIA3, to analyze the relationships between the expression levels of HP and PDIA3 and the pathological characteristics of colorectal cancer, and to explore the critical role of HP and PDIA3 in the screening, diagnosis, and staging of colorectal cancer. Results: Serum contents of HP and PDIA3 were higher in colorectal cancer patients, with statistical differences (p < 0.05), than those in the colonic polyp patients and healthy subjects. Receiver operating characteristic (ROC) curve demonstrated that the cut-offs of HP and PDIA3 serum contents indicating colorectal cancer were 149 ug/ml and 66 ng/ml respectively. The individually and jointly tested AUCs of HP (0.802) and PDIA3 (0.727) were higher than those of serum CEA and CA199, the sensitivity and specificity of HP were 64.8 and 91.2%, the sensitivity and specificity of PDIA3 were 65.9 and 71.7%. Moreover, the contents of HP and PDIA3 increased alongside disease progression, with differences (p < 0.05). Conclusion: Our research indicated that joint testing of HP and PDIA3 was of reference value for progressive stage and reliable biological indicators of colorectal cancer screening.
Collapse
Affiliation(s)
- Yajin Niu
- Graduate School, Hebei North University, Zhangjiakou, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Ming Qu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Likun Wang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
23
|
Xie H, Wei L, Yuan G, Liu M, Liang Y, Gao S, Wang Q, Lin X, Tang S, Gan J. Combination of Geriatric Nutritional Risk Index and Carcinoembryonic Antigen to Predict the Survival of Patients With Colorectal Cancer. Front Nutr 2022; 9:902080. [PMID: 35845803 PMCID: PMC9280638 DOI: 10.3389/fnut.2022.902080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background This study explored the value of the combination of Geriatric Nutritional Risk Index (GNRI) and carcinoembryonic antigen (CEA) for the prognosis assessment of CRC patients. Methods This study retrospectively enrolled 1,014 CRC patients who underwent surgery between 2012 and 2014. Kaplan-Meier and log-rank tests were used to compare survival differences. Cox proportional hazards regression analysis was used to assess risk factors associated with progression-free survival (PFS) and overall survival (OS). Nomograms were constructed to predict the prognosis of CRC patients. Randomized internal validation was used to confirm the predictive accuracy of the prognostic nomograms. Results The GNRI-CEA score was established by combining GNRI and CEA. Compared with patients with normal GNRI-CEA scores, patients with mild/moderate/severe GNRI-CEA scores had significantly lower survival (PFS, 68.99% vs. 57.75% vs. 41.34% vs. 31.36%, p < 0.001; OS, 68.99% vs. 57.75% vs. 41.34% vs. 31.36%, p < 0.001). The GNRI-CEA score is an independent factor predicting the prognosis of CRC patients. The risk of death was twofold higher in patients with low GNRI and high CEA than in those with both normal GNRI and CEA [PFS, hazard ratio (HR), 2.339; 95% confidence interval (CI), 1.656-3.303; p < 0.001; OS, HR, 2.340; 95% CI, 1.645-3.329; p < 0.001]. Prognostic nomograms had good resolution and accuracy in predicting 1-5 year PFS and OS. Randomized internal validation showed that the nomograms were reliable. Conclusion The combination of GNRI and CEA can effectively stratify the prognosis of CRC patients. The nomogram established based on the two indices can provide a personalized reference for prognostic assessment and clinical decision-making for CRC patients.
Collapse
Affiliation(s)
- Hailun Xie
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Lishuang Wei
- Department of Geriatric Respiratory Disease Ward, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Guanghui Yuan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Mingxiang Liu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Yanren Liang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Shunhui Gao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Qiwen Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Xin Lin
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
- Grade 2018, Department of Clinical Medicine, Guangxi Medical University, Nanning, China
| | - Shuangyi Tang
- Department of Pharmacy, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jialiang Gan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| |
Collapse
|
24
|
Rada M, Kapelanski-Lamoureux A, Tsamchoe M, Petrillo S, Lazaris A, Metrakos P. Angiopoietin-1 Upregulates Cancer Cell Motility in Colorectal Cancer Liver Metastases through Actin-Related Protein 2/3. Cancers (Basel) 2022; 14:2540. [PMID: 35626145 PMCID: PMC9139616 DOI: 10.3390/cancers14102540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Resistance to anti-angiogenic therapy is a major challenge in the treatment of colorectal cancer liver metastases (CRCLMs). Vessel co-option has been identified as a key contributor to anti-angiogenic therapy resistance in CRCLMs. Recently, we identified a positive correlation between the expression of Angiopoietin1 (Ang1) in the liver and the development of vessel co-opting CRCLM lesions in vivo. However, the mechanisms underlying its stimulation of vessel co-option are unclear. Herein, we demonstrated Ang1 as a positive regulator of actin-related protein 2/3 (ARP2/3) expression in cancer cells, in vitro and in vivo, which is known to be essential for the formation of vessel co-option in CRCLM. Significantly, Ang1-dependent ARP2/3 expression was impaired in the cancer cells upon Tie2 or PI3K/AKT inhibition in vitro. Taken together, our results suggest novel mechanisms by which Ang1 confers the development of vessel co-option in CRCLM, which, targeting this pathway, may serve as promising therapeutic targets to overcome the development of vessel co-option in CRCLM.
Collapse
Affiliation(s)
- Miran Rada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (A.K.-L.); (M.T.); (S.P.); (A.L.)
| | | | | | | | | | - Peter Metrakos
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (A.K.-L.); (M.T.); (S.P.); (A.L.)
| |
Collapse
|
25
|
Lugassy C, Vermeulen PB, Ribatti D, Pezzella F, Barnhill RL. Vessel co-option and angiotropic extravascular migratory metastasis: a continuum of tumour growth and spread? Br J Cancer 2022; 126:973-980. [PMID: 34987186 PMCID: PMC8980005 DOI: 10.1038/s41416-021-01686-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Two fields of cancer research have emerged dealing with the biology of tumour cells localised to the abluminal vascular surface: vessel co-option (VCo), a non-angiogenic mode of tumour growth and angiotropic extravascular migratory metastasis (EVMM), a non-hematogenous mode of tumour migration and metastasis. VCo is a mechanism by which tumour cells gain access to a blood supply by spreading along existing blood vessels in order to grow locally. Angiotropic EVMM involves "pericytic mimicry" (PM), which is characterised by tumour cells continuously migrating in the place of pericytes distantly along abluminal vascular surfaces. When cancer cells are engaged in PM and EVMM, they migrate along blood vessels beyond the advancing front of the tumour to secondary sites with the formation of regional and distant metastases. In the present perspective, the authors review the current scientific literature, emphasising the analogies between embryogenesis and cancer progression, the re-activation of embryonic signals by "cancer stem cells", and the important role of laminins and epithelial-mesenchymal-transition. This perspective maintains that VCo and angiotropic EVMM constitute complementary processes and represent a continuum of cancer progression from the primary tumour to metastases and of tumour growth to EVMM, analogous to the embryonic development program.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Translational Research, Institut Curie, Paris, France.
| | - Peter B Vermeulen
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus, Antwerp, Belgium
- Center for Oncological Research (CORE, Faculty of Medicine and Health Sciences), University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Francesco Pezzella
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Raymond L Barnhill
- Department of Translational Research, Institut Curie, Paris, France
- University of Paris UFR de Médecine, Paris, France
| |
Collapse
|
26
|
Rada M, Tsamchoe M, Kapelanski-Lamoureux A, Hassan N, Bloom J, Petrillo S, Kim DH, Lazaris A, Metrakos P. Cancer Cells Promote Phenotypic Alterations in Hepatocytes at the Edge of Cancer Cell Nests to Facilitate Vessel Co-Option Establishment in Colorectal Cancer Liver Metastases. Cancers (Basel) 2022; 14:1318. [PMID: 35267627 PMCID: PMC8909291 DOI: 10.3390/cancers14051318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Vessel co-option is correlated with resistance against anti-angiogenic therapy in colorectal cancer liver metastases (CRCLM). Vessel co-opting lesions are characterized by highly motile cancer cells that move toward and along the pre-existing vessels in the surrounding nonmalignant tissue and co-opt them to gain access to nutrients. To access the sinusoidal vessels, the cancer cells in vessel co-opting lesions must displace the hepatocytes and occupy their space. However, the mechanisms underlying this displacement are unknown. Herein, we examined the involvement of apoptosis, autophagy, motility, and epithelial-mesenchymal transition (EMT) pathways in hepatocyte displacement by cancer cells. We demonstrate that cancer cells induce the expression of the proteins that are associated with the upregulation of apoptosis, motility, and EMT in adjacent hepatocytes in vitro and in vivo. Accordingly, we observe the upregulation of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase-1 (PARP-1) and actin-related protein 2/3 (ARP2/3) in adjacent hepatocytes to cancer cell nests, while we notice a downregulation of E-cadherin. Importantly, the knockdown of runt-related transcription factor 1 (RUNX1) in cancer cells attenuates the function of cancer cells in hepatocytes alterations in vitro and in vivo. Altogether, our data suggest that cancer cells exploit various mechanisms to displace hepatocytes and access the sinusoidal vessels to establish vessel co-option.
Collapse
Affiliation(s)
- Miran Rada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (M.T.); (A.K.-L.); (N.H.); (J.B.); (S.P.); (D.H.K.); (A.L.)
| | | | | | | | | | | | | | | | - Peter Metrakos
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (M.T.); (A.K.-L.); (N.H.); (J.B.); (S.P.); (D.H.K.); (A.L.)
| |
Collapse
|
27
|
Guo L, Yang Y, Sheng Y, Wang J, Li W, Zhou X, Ruan S, Han C. Galloflavin Relieves the Malignant Behavior of Colorectal Cancer Cells in the Inflammatory Tumor Microenvironment. Front Pharmacol 2021; 12:752118. [PMID: 34955826 PMCID: PMC8702829 DOI: 10.3389/fphar.2021.752118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/17/2021] [Indexed: 11/22/2022] Open
Abstract
Background: In this study, we mainly aimed to explore the correlation between galloflavin and NLRP3 and its effect on colorectal cancer. Methods: NLRP3 was overexpressed in SW480 cells; LPS + ATP was used to mimic the inflammatory microenvironment. Wound healing assay and Transwell assay were utilized to detect cell migration and invasion abilities; CCK-8 assay was performed to detect cell viability alterations; colony formation assay was conducted to detect colony formation ability; Western blot was used to detect the levels of NLRP3, ASC, C-Myc, and P21. SW480 cells were pretreated with high-dose and low-dose galloflavin, followed by observation of their effects on cell metastasis and invasion. NLRP3 was knocked out in SW480 to construct the SW480-NLRP3−/− cell line, followed by high-dose galloflavin treatment and subsequent observation of cell metastasis and invasion abilities. Small molecule–protein docking and pull-down assay were performed to confirm the targeting relationship between galloflavin and NLRP3. After constructing a tumor-bearing mice model, galloflavin was intragastrically administered, followed by detection of tumor growth, expression of NLRP3 and ASC by immunohistochemistry, and tumor histopathology by H&E staining. Results: After NLRP3 overexpression and LPS/ATP induction in SW480, the cell migration and invasion abilities were significantly enhanced, and cell viability was also enhanced. The activation of NLRP3 could promote the malignant behavior of colorectal cancer cells in the inflammatory microenvironment. Galloflavin treatment could significantly attenuate the malignant behavior of SW480 in the inflammatory microenvironment and inhibit the migration and invasion capabilities of SW480. The knockout of NLRP3 inhibited the effect of galloflavin, which did not significantly change the migration and invasion abilities. Molecular docking and pull-down assay revealed a targeted binding relationship between galloflavin and NLRP3 and that galloflavin is bound to NLRP3 not ASC protein. Moreover, galloflavin could inhibit tumor growth and decrease the expression of NLRP in tumor-bearing mice. Conclusion: In this study, we found that NLRP3 could promote the migration and invasion of colorectal cancer cells in the inflammatory microenvironment. Galloflavin could inhibit the malignant behavior of colorectal cancer cells by targeting NLRP3.
Collapse
Affiliation(s)
- Li Guo
- Department of Center Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yi Yang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yongjia Sheng
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jin Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenyan Li
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaohong Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Shuiliang Ruan
- Department of Center Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chenyang Han
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
28
|
Senchukova MA. Issues of origin, morphology and clinical significance of tumor microvessels in gastric cancer. World J Gastroenterol 2021; 27:8262-8282. [PMID: 35068869 PMCID: PMC8717017 DOI: 10.3748/wjg.v27.i48.8262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains a serious oncological problem, ranking third in the structure of mortality from malignant neoplasms. Improving treatment outcomes for this pathology largely depends on understanding the pathogenesis and biological characteristics of GC, including the identification and characterization of diagnostic, prognostic, predictive, and therapeutic biomarkers. It is known that the main cause of death from malignant neoplasms and GC, in particular, is tumor metastasis. Given that angiogenesis is a critical process for tumor growth and metastasis, it is now considered an important marker of disease prognosis and sensitivity to anticancer therapy. In the presented review, modern concepts of the mechanisms of tumor vessel formation and the peculiarities of their morphology are considered; data on numerous factors influencing the formation of tumor microvessels and their role in GC progression are summarized; and various approaches to the classification of tumor vessels, as well as the methods for assessing angiogenesis activity in a tumor, are highlighted. Here, results from studies on the prognostic and predictive significance of tumor microvessels in GC are also discussed, and a new classification of tumor microvessels in GC, based on their morphology and clinical significance, is proposed for consideration.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460021, Russia
| |
Collapse
|
29
|
Harry JA, Ormiston ML. Novel Pathways for Targeting Tumor Angiogenesis in Metastatic Breast Cancer. Front Oncol 2021; 11:772305. [PMID: 34926282 PMCID: PMC8678517 DOI: 10.3389/fonc.2021.772305] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common cancer affecting women and is the second leading cause of cancer related death worldwide. Angiogenesis, the process of new blood vessel development from pre-existing vasculature, has been implicated in the growth, progression, and metastasis of cancer. Tumor angiogenesis has been explored as a key therapeutic target for decades, as the blockade of this process holds the potential to reduce the oxygen and nutrient supplies that are required for tumor growth. However, many existing anti-angiogenic approaches, such as those targeting Vascular Endothelial Growth Factor, Notch, and Angiopoietin signaling, have been associated with severe side-effects, limited survival advantage, and enhanced cancer regrowth rates. To address these setbacks, alternative pathways involved in the regulation of tumor angiogenesis are being explored, including those involving Bone Morphogenetic Protein-9 signaling, the Sonic Hedgehog pathway, Cyclooxygenase-2, p38-mitogen-activated protein kinase, and Chemokine Ligand 18. This review article will introduce the concept of tumor angiogenesis in the context of breast cancer, followed by an overview of current anti-angiogenic therapies, associated resistance mechanisms and novel therapeutic targets.
Collapse
Affiliation(s)
- Jordan A Harry
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Mark L Ormiston
- Department of Medicine, Queen's University, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Department of Surgery, Queen's University, Kingston, ON, Canada
| |
Collapse
|
30
|
The emerging roles of circular RNAs in vessel co-option and vasculogenic mimicry: clinical insights for anti-angiogenic therapy in cancers. Cancer Metastasis Rev 2021; 41:173-191. [PMID: 34664157 DOI: 10.1007/s10555-021-10000-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Unexpected resistance to anti-angiogenic treatment prompted the investigation of non-angiogenic tumor processes. Vessel co-option (VC) and vasculogenic mimicry (VM) are recognized as primary non-angiogenic mechanisms. In VC, cancer cells utilize pre-existing blood vessels for support, whereas in VM, cancer cells channel and provide blood flow to rapidly growing tumors. Both processes have been implicated in the development of tumor and resistance to anti-angiogenic drugs in many tumor types. The morphology, but rare molecular alterations have been investigated in VC and VM. There is a pressing need to better understand the underlying cellular and molecular mechanisms. Here, we review the emerging circular RNA (circRNA)-mediated regulation of non-angiogenic processes, VC and VM.
Collapse
|
31
|
Rada M, Kapelanski-Lamoureux A, Petrillo S, Tabariès S, Siegel P, Reynolds AR, Lazaris A, Metrakos P. Runt related transcription factor-1 plays a central role in vessel co-option of colorectal cancer liver metastases. Commun Biol 2021; 4:950. [PMID: 34376784 PMCID: PMC8355374 DOI: 10.1038/s42003-021-02481-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer liver metastasis (CRCLM) has two major histopathological growth patterns: angiogenic desmoplastic and non-angiogenic replacement. The replacement lesions obtain their blood supply through vessel co-option, wherein the cancer cells hijack pre-existing blood vessels of the surrounding liver tissue. Consequentially, anti-angiogenic therapies are less efficacious in CRCLM patients with replacement lesions. However, the mechanisms which drive vessel co-option in the replacement lesions are unknown. Here, we show that Runt Related Transcription Factor-1 (RUNX1) overexpression in the cancer cells of the replacement lesions drives cancer cell motility via ARP2/3 to achieve vessel co-option. Furthermore, overexpression of RUNX1 in the cancer cells is mediated by Transforming Growth Factor Beta-1 (TGFβ1) and thrombospondin 1 (TSP1). Importantly, RUNX1 knockdown impaired the metastatic capability of colorectal cancer cells in vivo and induced the development of angiogenic lesions in liver. Our results confirm that RUNX1 may be a potential target to overcome vessel co-option in CRCLM.
Collapse
Affiliation(s)
- Miran Rada
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | | | - Stephanie Petrillo
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Sébastien Tabariès
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Peter Siegel
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | | | - Anthoula Lazaris
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Peter Metrakos
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada.
| |
Collapse
|
32
|
Rosińska S, Gavard J. Tumor Vessels Fuel the Fire in Glioblastoma. Int J Mol Sci 2021; 22:6514. [PMID: 34204510 PMCID: PMC8235363 DOI: 10.3390/ijms22126514] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, a subset of aggressive brain tumors, deploy several means to increase blood vessel supply dedicated to the tumor mass. This includes typical program borrowed from embryonic development, such as vasculogenesis and sprouting angiogenesis, as well as unconventional processes, including co-option, vascular mimicry, and transdifferentiation, in which tumor cells are pro-actively engaged. However, these neo-generated vascular networks are morphologically and functionally abnormal, suggesting that the vascularization processes are rather inefficient in the tumor ecosystem. In this review, we reiterate the specificities of each neovascularization modality in glioblastoma, and, how they can be hampered mechanistically in the perspective of anti-cancer therapies.
Collapse
Affiliation(s)
- Sara Rosińska
- CRCINA, Inserm, CNRS, Université de Nantes, 44000 Nantes, France;
| | - Julie Gavard
- CRCINA, Inserm, CNRS, Université de Nantes, 44000 Nantes, France;
- Integrated Center for Oncology, ICO, 44800 St. Herblain, France
| |
Collapse
|
33
|
Alternative Vascularization Mechanisms in Tumor Resistance to Therapy. Cancers (Basel) 2021; 13:cancers13081912. [PMID: 33921099 PMCID: PMC8071410 DOI: 10.3390/cancers13081912] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Tumors rely on blood vessels to grow and metastasize. Malignant tumors can employ different strategies to create a functional vascular network. Tumor cells can use normal processes of vessel formation but can also employ cancer-specific mechanisms, by co-opting normal vessels present in tissues or by turning themselves into vascular cells. These different types of tumor vessels have specific molecular and functional characteristics that profoundly affect tumor behavior and response to therapies, including drugs targeting the tumor vasculature (antiangiogenic therapies). In this review, we discuss how vessels formed by different mechanisms affect the intrinsic sensitivity of tumors to therapy and, on the other hand, how therapies can affect tumor vessel formation, leading to resistance to drugs, cancer recurrence, and treatment failure. Potential strategies to avoid vessel-mediated resistance to antineoplastic therapies will be discussed. Abstract Blood vessels in tumors are formed through a variety of different mechanisms, each generating vessels with peculiar structural, molecular, and functional properties. This heterogeneity has a major impact on tumor response or resistance to antineoplastic therapies and is now emerging as a promising target for strategies to prevent drug resistance and improve the distribution and efficacy of antineoplastic treatments. This review presents evidence of how different mechanisms of tumor vessel formation (vasculogenesis, glomeruloid proliferation, intussusceptive angiogenesis, vasculogenic mimicry, and vessel co-option) affect tumor responses to antiangiogenic and antineoplastic therapies, but also how therapies can promote alternative mechanisms of vessel formation, contributing to tumor recurrence, malignant progression, and acquired drug resistance. We discuss the possibility of tailoring treatment strategies to overcome vasculature-mediated drug resistance or to improve drug distribution and efficacy.
Collapse
|