1
|
Baillie JS, Gendernalik A, Garrity DM, Bark D, Quinn TA. The in vivo study of cardiac mechano-electric and mechano-mechanical coupling during heart development in zebrafish. Front Physiol 2023; 14:1086050. [PMID: 37007999 PMCID: PMC10060984 DOI: 10.3389/fphys.2023.1086050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
In the adult heart, acute adaptation of electrical and mechanical activity to changes in mechanical load occurs via feedback processes known as “mechano-electric coupling” and “mechano-mechanical coupling.” Whether this occurs during cardiac development is ill-defined, as acutely altering the heart’s mechanical load while measuring functional responses in traditional experimental models is difficult, as embryogenesis occurs in utero, making the heart inaccessible. These limitations can be overcome with zebrafish, as larvae develop in a dish and are nearly transparent, allowing for in vivo manipulation and measurement of cardiac structure and function. Here we present a novel approach for the in vivo study of mechano-electric and mechano-mechanical coupling in the developing zebrafish heart. This innovative methodology involves acute in vivo atrial dilation (i.e., increased atrial preload) in larval zebrafish by injection of a controlled volume into the venous circulation immediately upstream of the heart, combined with optical measurement of the acute electrical (change in heart rate) and mechanical (change in stroke area) response. In proof-of-concept experiments, we applied our new method to 48 h post-fertilisation zebrafish, which revealed differences between the electrical and mechanical response to atrial dilation. In response to an acute increase in atrial preload there is a large increase in atrial stroke area but no change in heart rate, demonstrating that in contrast to the fully developed heart, during early cardiac development mechano-mechanical coupling alone drives the adaptive increase in atrial output. Overall, in this methodological paper we present our new experimental approach for the study of mechano-electric and mechano-mechanical coupling during cardiac development and demonstrate its potential for understanding the essential adaptation of heart function to acute changes in mechanical load.
Collapse
Affiliation(s)
| | - Alex Gendernalik
- Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | | | - David Bark
- Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States
| | - T. Alexander Quinn
- Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
- Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
- *Correspondence: T. Alexander Quinn,
| |
Collapse
|
2
|
Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages. Nat Commun 2022; 13:7960. [PMID: 36575170 PMCID: PMC9794824 DOI: 10.1038/s41467-022-35691-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Heart development is a continuous process involving significant remodeling during embryogenesis and neonatal stages. To date, several groups have used single-cell sequencing to characterize the heart transcriptomes but failed to capture the progression of heart development at most stages. This has left gaps in understanding the contribution of each cell type across cardiac development. Here, we report the transcriptional profile of the murine heart from early embryogenesis to late neonatal stages. Through further analysis of this dataset, we identify several transcriptional features. We identify gene expression modules enriched at early embryonic and neonatal stages; multiple cell types in the left and right atriums are transcriptionally distinct at neonatal stages; many congenital heart defect-associated genes have cell type-specific expression; stage-unique ligand-receptor interactions are mostly between epicardial cells and other cell types at neonatal stages; and mutants of epicardium-expressed genes Wt1 and Tbx18 have different heart defects. Assessment of this dataset serves as an invaluable source of information for studies of heart development.
Collapse
|
3
|
Cavero I, Holzgrefe H. Remembering the canonical discoverers of the core components of the mammalian cardiac conduction system: Keith and Flack, Aschoff and Tawara, His, and Purkinje. ADVANCES IN PHYSIOLOGY EDUCATION 2022; 46:549-579. [PMID: 35924782 DOI: 10.1152/advan.00072.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 03/08/2025]
Abstract
The mammalian cardiac conduction system (CCS) is a multifaceted continuum of electrically distinct, interconnected constructs within the myocardial mass. The key components are the sinus node (SAN), the atrioventricular node (AVN), the His bundle (HB), and the Purkinje fiber network (PF), the latter serendipitously discovered by Jan Evangelista Purkinje in 1839 in the sheep ventricle. In 1893, Wilhelm His, Jr. described a ventricular muscular tract conveying SAN-generated action potentials from the AVN (discovered by Sunao Tawara and Karl Albert Aschoff in 1906) to the PF. In 1906, Keith and Flack completed these explorations by localizing the SAN, the primum movens of CCS, which functions as a biologic oscillator emitting cadenced impulses that travel via the Bachmann bundle to the atrial myocytes and, via internodal pathways, to the AVN. Here these impulses are briefly delayed, enabling atrial systole before continuing via the AVN and the high-speed His-Purkinje conduction axis to signal ventricular contraction. The CCS canonical discoverers (Keith and Flack, Aschoff and Tawara, His, and Purkinje), historical controversies, fundamental notions of anatomy, physiology, and pathology, and therapeutic interventions pertaining to the CCS are the main themes of this review. Any scientist mentioned or unmentioned in this report who contributed directly or indirectly, with correct or inaccurate hypotheses, to the characterization of the CCS deserves our deepest gratitude for the long and painstaking hours spent microscopically scrutinizing heart specimens from multiple mammalian species, including humans.NEW & NOTEWORTHY This report presents the first comprehensive summary of the factors enabling the discovery of the cardiac conduction system (CCS). Biographical highlights and achievements of the CCS canonical discoverers, hypotheses concerning mechanisms underlying sinus node (SAN) automaticity, use of eponyms to denominate a discovery, famous controversies, possible reproachable behavior (e.g., intellectual support for eugenics in post-World War I Germany) by two of the discoverers, and examples of historical mentor-pupil relationships are discussed.
Collapse
|
4
|
New Insights into the Development and Morphogenesis of the Cardiac Purkinje Fiber Network: Linking Architecture and Function. J Cardiovasc Dev Dis 2021; 8:jcdd8080095. [PMID: 34436237 PMCID: PMC8397066 DOI: 10.3390/jcdd8080095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
The rapid propagation of electrical activity through the ventricular conduction system (VCS) controls spatiotemporal contraction of the ventricles. Cardiac conduction defects or arrhythmias in humans are often associated with mutations in key cardiac transcription factors that have been shown to play important roles in VCS morphogenesis in mice. Understanding of the mechanisms of VCS development is thus crucial to decipher the etiology of conduction disturbances in adults. During embryogenesis, the VCS, consisting of the His bundle, bundle branches, and the distal Purkinje network, originates from two independent progenitor populations in the primary ring and the ventricular trabeculae. Differentiation into fast-conducting cardiomyocytes occurs progressively as ventricles develop to form a unique electrical pathway at late fetal stages. The objectives of this review are to highlight the structure–function relationship between VCS morphogenesis and conduction defects and to discuss recent data on the origin and development of the VCS with a focus on the distal Purkinje fiber network.
Collapse
|
5
|
Ling S, Jenkins MW, Watanabe M, Ford SM, Rollins AM. Prenatal ethanol exposure impairs the conduction delay at the atrioventricular junction in the looping heart. Am J Physiol Heart Circ Physiol 2021; 321:H294-H305. [PMID: 34142884 PMCID: PMC8526336 DOI: 10.1152/ajpheart.00107.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
The etiology of ethanol-related congenital heart defects has been the focus of much study, but most research has concentrated on cellular and molecular mechanisms. We have shown with optical coherence tomography (OCT) that ethanol exposure led to increased retrograde flow and smaller atrioventricular (AV) cushions compared with controls. Since AV cushions play a role in patterning the conduction delay at the atrioventricular junction (AVJ), this study aims to investigate whether ethanol exposure alters the AVJ conduction in early looping hearts and whether this alteration is related to the decreased cushion size. Quail embryos were exposed to a single dose of ethanol at gastrulation, and Hamburger-Hamilton stage 19-20 hearts were dissected for imaging. Cardiac conduction was measured using an optical mapping microscope and we imaged the endocardial cushions using OCT. Our results showed that, compared with controls, ethanol-exposed embryos exhibited abnormally fast AVJ conduction and reduced cushion size. However, this increased conduction velocity (CV) did not strictly correlate with decreased cushion volume and thickness. By matching the CV map to the cushion-size map along the inflow heart tube, we found that the slowest conduction location was consistently at the atrial side of the AVJ, which had the thinner cushions, not at the thickest cushion location at the ventricular side as expected. Our findings reveal regional differences in the AVJ myocardium even at this early stage in heart development. These findings reveal the early steps leading to the heterogeneity and complexity of conduction at the mature AVJ, a site where arrhythmias can be initiated.NEW & NOTEWORTHY To the best of our knowledge, this is the first study investigating the impact of ethanol exposure on the early cardiac conduction system. Our results showed that ethanol-exposed embryos exhibited abnormally fast atrioventricular conduction. In addition, our findings, in CV measurements and endocardial cushion thickness, reveal regional differences in the AVJ myocardium even at this early stage in heart development, suggesting that the differentiation and maturation at this site are complex and warrant further studies.
Collapse
Affiliation(s)
- Shan Ling
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Michael W Jenkins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - Stephanie M Ford
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children's Hospital, Cleveland, Ohio
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - Andrew M Rollins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
6
|
Nkx2-5 defines distinct scaffold and recruitment phases during formation of the murine cardiac Purkinje fiber network. Nat Commun 2020; 11:5300. [PMID: 33082351 PMCID: PMC7575572 DOI: 10.1038/s41467-020-19150-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/29/2020] [Indexed: 01/24/2023] Open
Abstract
The ventricular conduction system coordinates heartbeats by rapid propagation of electrical activity through the Purkinje fiber (PF) network. PFs share common progenitors with contractile cardiomyocytes, yet the mechanisms of segregation and network morphogenesis are poorly understood. Here, we apply genetic fate mapping and temporal clonal analysis to identify murine cardiomyocytes committed to the PF lineage as early as E7.5. We find that a polyclonal PF network emerges by progressive recruitment of conductive precursors to this scaffold from a pool of bipotent progenitors. At late fetal stages, the segregation of conductive cells increases during a phase of rapid recruitment to build the definitive PF network through a non-cell autonomous mechanism. We also show that PF differentiation is impaired in Nkx2-5 haploinsufficient embryos leading to failure to extend the scaffold. In particular, late fetal recruitment fails, resulting in PF hypoplasia and persistence of bipotent progenitors. Our results identify how transcription factor dosage regulates cell fate divergence during distinct phases of PF network morphogenesis. Here, the authors apply genetic fate mapping and temporal clonal analysis to study progenitor recruitment and network morphogenesis of murine cardiac Purkinje fibers. Additionally, they characterize how transcription factor dosage regulates cell fate divergence during distinct phases of this process.
Collapse
|
7
|
Md Lazin Md Lazim MR, Aminuddin A, Chellappan K, Ugusman A, Hamid AA, Wan Ahmad WAN, Mohamad MSF. Is Heart Rate a Confounding Factor for Photoplethysmography Markers? A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072591. [PMID: 32290168 PMCID: PMC7177218 DOI: 10.3390/ijerph17072591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 11/18/2022]
Abstract
Finger photoplethysmography (PPG) waveform is blood volume change of finger microcirculation that reflects vascular function. Reflection index (RI), stiffness index (SI) and second derivative of photoplethysmogram (SDPPG) are derived from PPG waveforms proposed as cardiovascular disease (CVD) markers. Heart rate (HR) is a known factor that affects vascular function. Individual resting HR variation may affect RI, SI and SDPPG. This review aims to identify studies about the relationship between HR with RI, SI and SDPPG among humans. A literature search was conducted in Medline via the Ebscohost and Scopus databases to find relevant articles published within 11 years. The main inclusion criteria were articles in the English language that discuss the relationship between HR with RI, SI and SDPPG using PPG among humans. The search found 1960 relevant articles but only six articles that met the inclusion criteria. SI and RI showed an association with HR. SDPPG (SDPPG-b/SDPPG-a ratio, SDPPG-d/SDPPG-a ratio, aging index (AGI) and revised aging index (RAGI)) also had an association with HR. Only RI had a considerable association with HR, the association between SI and HR was non-considerable and the association between HR and SDPPG was inconclusive. Further interventional studies should be conducted to investigate this issue, as a variation in resting HR may challenge the validity of PPG-based CVD markers.
Collapse
Affiliation(s)
- Md Rizman Md Lazin Md Lazim
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (A.A.); (A.U.); (A.A.H.)
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (A.A.); (A.U.); (A.A.H.)
| | - Kalaivani Chellappan
- Centre of Advance Electronic & Communication Engineering (PAKET), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence: ; Tel.: +603-8911-8374
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (A.A.); (A.U.); (A.A.H.)
| | - Adila A Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (A.A.); (A.U.); (A.A.H.)
| | - Wan Amir Nizam Wan Ahmad
- Biomedicine Programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Mohd Shawal Faizal Mohamad
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia;
| |
Collapse
|
8
|
Liskova YV, Stadnikov AA, Salikova SP. [Role of telocytes in the heart in health and diseases]. Arkh Patol 2017; 79:58-63. [PMID: 28418360 DOI: 10.17116/patol201779258-63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review summarizes the data available in the literature on the development, structure, and function of telocytes (TCs) and their role in the heart in health and diseases. At the present time, TCs have been found in many organs of mammals and humans. TC is a small oval cell that contains a nucleus surrounded by small amounts of cytoplasm, with extremely long and thin processes named telopodias. TCs have unique ultrastructural and immunohistochemical features; double positive labeling for CD34/PDGFR-β and CD34/vimentin is suitable for their identification. The role of TCs in the heart at different study stages is the subject of debate. There are currently available data on a decline in the number of cardiac TCs in patients with various heart diseases. Relying on a number of investigations showing that TCs are present in the subepicardial stem cell niches, the authors consider a hypothesis for the key role of cardiac TCs in the regeneration and reparation of the heart.
Collapse
Affiliation(s)
- Yu V Liskova
- Orenburg State Medical University, Ministry of Health of Russia, Orenburg
| | - A A Stadnikov
- Orenburg State Medical University, Ministry of Health of Russia, Orenburg
| | - S P Salikova
- S.M. Kirov Military Medical Academy, Ministry of Defense of the Russian Federation, Saint Petersburg
| |
Collapse
|
9
|
Wijngaarde CA, Blank AC, Stam M, Wadman RI, van den Berg LH, van der Pol WL. Cardiac pathology in spinal muscular atrophy: a systematic review. Orphanet J Rare Dis 2017; 12:67. [PMID: 28399889 PMCID: PMC5387385 DOI: 10.1186/s13023-017-0613-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/14/2017] [Indexed: 01/09/2023] Open
Abstract
Background Hereditary proximal spinal muscular atrophy (SMA) is a severe neuromuscular disease of childhood caused by homozygous loss of function of the survival motor neuron (SMN) 1 gene. The presence of a second, nearly identical SMN gene (SMN2) in the human genome ensures production of residual levels of the ubiquitously expressed SMN protein. Alpha-motor neurons in the ventral horns of the spinal cord are most vulnerable to reduced SMN concentrations but the development or function of other tissues may also be affected, and cardiovascular abnormalities have frequently been reported both in patients and SMA mouse models. Methods We systematically reviewed reported cardiac pathology in relation to SMN deficiency. To investigate the relevance of the possible association in more detail, we used clinical classification systems to characterize structural cardiac defects and arrhythmias. Conclusions Seventy-two studies with a total of 264 SMA patients with reported cardiac pathology were identified, along with 14 publications on SMA mouse models with abnormalities of the heart. Structural cardiac pathology, mainly septal defects and abnormalities of the cardiac outflow tract, was reported predominantly in the most severely affected patients (i.e. SMA type 1). Cardiac rhythm disorders were most frequently reported in patients with milder SMA types (e.g. SMA type 3). All included studies lacked control groups and a standardized approach for cardiac evaluation. The convergence to specific abnormalities of cardiac structure and function may indicate vulnerability of specific cell types or developmental processes relevant for cardiogenesis. Future studies would benefit from a controlled and standardized approach for cardiac evaluation in patients with SMA. Electronic supplementary material The online version of this article (doi:10.1186/s13023-017-0613-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C A Wijngaarde
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
| | - A C Blank
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Stam
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - R I Wadman
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - L H van den Berg
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - W L van der Pol
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Ma P, Chan DC, Gu S, Watanabe M, Jenkins MW, Rollins AM. Volumetric optical mapping in early embryonic hearts using light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:5120-5128. [PMID: 28018729 PMCID: PMC5175556 DOI: 10.1364/boe.7.005120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 05/18/2023]
Abstract
Optical mapping (OM) of electrical activity using voltage-sensitive fluorescent dyes is a powerful tool for the investigation of embryonic cardiac electrophysiology. However, because conventional OM integrates the signal in depth and projects it to a two-dimensional plane, information acquired is incomplete and dependent upon the orientation of the sample. This complicates interpretation of data, especially when comparing one heart to another. To overcome this limitation, we present volumetric OM using light-sheet microscopy, which enables high-speed capture of optically sectioned slices. Voltage-sensitive fluorescence images from multiple planes across entire early embryonic quail hearts were acquired, and complete, orientation-independent, four-dimensional maps of transmembrane potential are demonstrated. Volumetric OM data were collected while using optical pacing to control the heart rate, paving the way for physiological measurements and precise manipulation of the heartbeat in the future.
Collapse
Affiliation(s)
- Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Shanghai Key Laboratory of Modern Optical Systems, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Dennis C. Chan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
11
|
Ma P, Gu S, Karunamuni GH, Jenkins MW, Watanabe M, Rollins AM. Cardiac neural crest ablation results in early endocardial cushion and hemodynamic flow abnormalities. Am J Physiol Heart Circ Physiol 2016; 311:H1150-H1159. [PMID: 27542407 PMCID: PMC5130492 DOI: 10.1152/ajpheart.00188.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/17/2016] [Indexed: 12/22/2022]
Abstract
Cardiac neural crest cell (CNCC) ablation creates congenital heart defects (CHDs) that resemble those observed in many syndromes with craniofacial and cardiac consequences. The loss of CNCCs causes a variety of great vessel defects, including persistent truncus arteriosus and double-outlet right ventricle. However, because of the lack of quantitative volumetric measurements, less severe defects, such as great vessel size changes and valve defects, have not been assessed. Also poorly understood is the role of abnormal cardiac function in the progression of CNCC-related CHDs. CNCC ablation was previously reported to cause abnormal cardiac function in early cardiogenesis, before the CNCCs arrive in the outflow region of the heart. However, the affected functional parameters and how they correlate with the structural abnormalities were not fully characterized. In this study, using a CNCC-ablated quail model, we contribute quantitative phenotyping of CNCC ablation-related CHDs and investigate abnormal early cardiac function, which potentially contributes to late-stage CHDs. Optical coherence tomography was used to assay early- and late-stage embryos and hearts. In CNCC-ablated embryos at four-chambered heart stages, great vessel diameter and left atrioventricular valve leaflet volumes are reduced. Earlier, at cardiac looping stages, CNCC-ablated embryos exhibit abnormally twisted bodies, abnormal blood flow waveforms, increased retrograde flow percentage, and abnormal cardiac cushions. The phenotypes observed in this CNCC-ablation model were also strikingly similar to those found in an established avian fetal alcohol syndrome model, supporting the contribution of CNCC dysfunction to the development of alcohol-induced CHDs.
Collapse
Affiliation(s)
- Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio; and
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio; and
| | - Ganga H Karunamuni
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio; and
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio; and
| |
Collapse
|
12
|
Development of the cardiac conduction system in zebrafish. Gene Expr Patterns 2016; 21:89-96. [PMID: 27593944 DOI: 10.1016/j.gep.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/24/2016] [Accepted: 08/28/2016] [Indexed: 01/29/2023]
Abstract
The cardiac conduction system (CCS) propagates and coordinates the electrical excitation that originates from the pacemaker cells, throughout the heart, resulting in rhythmic heartbeat. Its defects result in life-threatening arrhythmias and sudden cardiac death. Understanding of the factors involved in the formation and function of the CCS remains incomplete. By transposon assisted transgenesis, we have developed enhancer trap (ET) lines of zebrafish that express fluorescent protein in the pacemaker cells at the sino-atrial node (SAN) and the atrio-ventricular region (AVR), termed CCS transgenics. This expression pattern begins at the stage when the heart undergoes looping morphogenesis at 36 h post fertilization (hpf) and is maintained into adulthood. Using the CCS transgenics, we investigated the effects of perturbation of cardiac function, as simulated by either the absence of endothelium or hemodynamic stimulation, on the cardiac conduction cells, which resulted in abnormal compaction of the SAN. To uncover the identity of the gene represented by the EGFP expression in the CCS transgenics, we mapped the transposon integration sites on the zebrafish genome to positions in close proximity to the gene encoding fibroblast growth homologous factor 2a (fhf2a). Fhf2a is represented by three transcripts, one of which is expressed in the developing heart. These transgenics are useful tools for studies of development of the CCS and cardiac disease.
Collapse
|
13
|
Chiou KK, Rocks JW, Chen CY, Cho S, Merkus KE, Rajaratnam A, Robison P, Tewari M, Vogel K, Majkut SF, Prosser BL, Discher DE, Liu AJ. Mechanical signaling coordinates the embryonic heartbeat. Proc Natl Acad Sci U S A 2016; 113:8939-44. [PMID: 27457951 PMCID: PMC4987837 DOI: 10.1073/pnas.1520428113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the beating heart, cardiac myocytes (CMs) contract in a coordinated fashion, generating contractile wave fronts that propagate through the heart with each beat. Coordinating this wave front requires fast and robust signaling mechanisms between CMs. The primary signaling mechanism has long been identified as electrical: gap junctions conduct ions between CMs, triggering membrane depolarization, intracellular calcium release, and actomyosin contraction. In contrast, we propose here that, in the early embryonic heart tube, the signaling mechanism coordinating beats is mechanical rather than electrical. We present a simple biophysical model in which CMs are mechanically excitable inclusions embedded within the extracellular matrix (ECM), modeled as an elastic-fluid biphasic material. Our model predicts strong stiffness dependence in both the heartbeat velocity and strain in isolated hearts, as well as the strain for a hydrogel-cultured CM, in quantitative agreement with recent experiments. We challenge our model with experiments disrupting electrical conduction by perfusing intact adult and embryonic hearts with a gap junction blocker, β-glycyrrhetinic acid (BGA). We find this treatment causes rapid failure in adult hearts but not embryonic hearts-consistent with our hypothesis. Last, our model predicts a minimum matrix stiffness necessary to propagate a mechanically coordinated wave front. The predicted value is in accord with our stiffness measurements at the onset of beating, suggesting that mechanical signaling may initiate the very first heartbeats.
Collapse
Affiliation(s)
- Kevin K Chiou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Jason W Rocks
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Christina Yingxian Chen
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Sangkyun Cho
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Koen E Merkus
- Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Anjali Rajaratnam
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Patrick Robison
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Manorama Tewari
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Kenneth Vogel
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Stephanie F Majkut
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Dennis E Discher
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrea J Liu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
14
|
Haack T, Abdelilah-Seyfried S. The force within: endocardial development, mechanotransduction and signalling during cardiac morphogenesis. Development 2016; 143:373-86. [PMID: 26839341 DOI: 10.1242/dev.131425] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endocardial cells are cardiac endothelial cells that line the interior of the heart tube. Historically, their contribution to cardiac development has mainly been considered from a morphological perspective. However, recent studies have begun to define novel instructive roles of the endocardium, as a sensor and signal transducer of biophysical forces induced by blood flow, and as an angiocrine signalling centre that is involved in myocardial cellular morphogenesis, regeneration and reprogramming. In this Review, we discuss how the endocardium develops, how endocardial-myocardial interactions influence the developing embryonic heart, and how the dysregulation of blood flow-responsive endocardial signalling can result in pathophysiological changes.
Collapse
Affiliation(s)
- Timm Haack
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, Hannover D-30625, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, Hannover D-30625, Germany Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, Potsdam D-14476, Germany
| |
Collapse
|
15
|
Watanabe M, Rollins AM, Polo-Parada L, Ma P, Gu S, Jenkins MW. Probing the Electrophysiology of the Developing Heart. J Cardiovasc Dev Dis 2016; 3:jcdd3010010. [PMID: 29367561 PMCID: PMC5715694 DOI: 10.3390/jcdd3010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/14/2022] Open
Abstract
Many diseases that result in dysfunction and dysmorphology of the heart originate in the embryo. However, the embryonic heart presents a challenging subject for study: especially challenging is its electrophysiology. Electrophysiological maturation of the embryonic heart without disturbing its physiological function requires the creation and deployment of novel technologies along with the use of classical techniques on a range of animal models. Each tool has its strengths and limitations and has contributed to making key discoveries to expand our understanding of cardiac development. Further progress in understanding the mechanisms that regulate the normal and abnormal development of the electrophysiology of the heart requires integration of this functional information with the more extensively elucidated structural and molecular changes.
Collapse
Affiliation(s)
- Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65201, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65201, USA.
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Michael W Jenkins
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
16
|
Gu S, Wang YT, Ma P, Werdich AA, Rollins AM, Jenkins MW. Mapping conduction velocity of early embryonic hearts with a robust fitting algorithm. BIOMEDICAL OPTICS EXPRESS 2015; 6:2138-57. [PMID: 26114034 PMCID: PMC4473749 DOI: 10.1364/boe.6.002138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/27/2015] [Accepted: 04/27/2015] [Indexed: 05/23/2023]
Abstract
Cardiac conduction maturation is an important and integral component of heart development. Optical mapping with voltage-sensitive dyes allows sensitive measurements of electrophysiological signals over the entire heart. However, accurate measurements of conduction velocity during early cardiac development is typically hindered by low signal-to-noise ratio (SNR) measurements of action potentials. Here, we present a novel image processing approach based on least squares optimizations, which enables high-resolution, low-noise conduction velocity mapping of smaller tubular hearts. First, the action potential trace measured at each pixel is fit to a curve consisting of two cumulative normal distribution functions. Then, the activation time at each pixel is determined based on the fit, and the spatial gradient of activation time is determined with a two-dimensional (2D) linear fit over a square-shaped window. The size of the window is adaptively enlarged until the gradients can be determined within a preset precision. Finally, the conduction velocity is calculated based on the activation time gradient, and further corrected for three-dimensional (3D) geometry that can be obtained by optical coherence tomography (OCT). We validated the approach using published activation potential traces based on computer simulations. We further validated the method by adding artificially generated noise to the signal to simulate various SNR conditions using a curved simulated image (digital phantom) that resembles a tubular heart. This method proved to be robust, even at very low SNR conditions (SNR = 2-5). We also established an empirical equation to estimate the maximum conduction velocity that can be accurately measured under different conditions (e.g. sampling rate, SNR, and pixel size). Finally, we demonstrated high-resolution conduction velocity maps of the quail embryonic heart at a looping stage of development.
Collapse
Affiliation(s)
- Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yves T Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Pei Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Andreas A Werdich
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, 44016, USA
| |
Collapse
|
17
|
Abstract
During development, cardiogenesis is orchestrated by a family of heart progenitors that build distinct regions of the heart. Each region contains diverse cell types that assemble to form the complex structures of the individual cardiac compartments. Cardiomyocytes are the main cell type found in the heart and ensure contraction of the chambers and efficient blood flow throughout the body. Injury to the cardiac muscle often leads to heart failure due to the loss of a large number of cardiomyocytes and its limited intrinsic capacity to regenerate the damaged tissue, making it one of the leading causes of morbidity and mortality worldwide. In this Primer we discuss how insights into the molecular and cellular framework underlying cardiac development can be used to guide the in vitro specification of cardiomyocytes, whether by directed differentiation of pluripotent stem cells or via direct lineage conversion. Additional strategies to generate cardiomyocytes in situ, such as reactivation of endogenous cardiac progenitors and induction of cardiomyocyte proliferation, will also be discussed.
Collapse
Affiliation(s)
- Daniela Später
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Bioscience, CVMD iMED, AstraZeneca, Pepparedsleden 1, Mölndal 43150, Sweden
| | - Emil M Hansson
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Cell and Molecular Biology and Medicine, Karolinska Institutet, 35 Berzelius Vag, Stockholm 171 77, Sweden
| | - Lior Zangi
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Cardiology, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA Cardiovascular Research Center, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Kenneth R Chien
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Cell and Molecular Biology and Medicine, Karolinska Institutet, 35 Berzelius Vag, Stockholm 171 77, Sweden
| |
Collapse
|
18
|
Hua LL, Vedantham V, Barnes RM, Hu J, Robinson AS, Bressan M, Srivastava D, Black BL. Specification of the mouse cardiac conduction system in the absence of Endothelin signaling. Dev Biol 2014; 393:245-254. [PMID: 25050930 PMCID: PMC4143461 DOI: 10.1016/j.ydbio.2014.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
Coordinated contraction of the heart is essential for survival and is regulated by the cardiac conduction system. Contraction of ventricular myocytes is controlled by the terminal part of the conduction system known as the Purkinje fiber network. Lineage analyses in chickens and mice have established that the Purkinje fibers of the peripheral ventricular conduction system arise from working myocytes during cardiac development. It has been proposed, based primarily on gain-of-function studies, that Endothelin signaling is responsible for myocyte-to-Purkinje fiber transdifferentiation during avian heart development. However, the role of Endothelin signaling in mammalian conduction system development is less clear, and the development of the cardiac conduction system in mice lacking Endothelin signaling has not been previously addressed. Here, we assessed the specification of the cardiac conduction system in mouse embryos lacking all Endothelin signaling. We found that mouse embryos that were homozygous null for both ednra and ednrb, the genes encoding the two Endothelin receptors in mice, were born at predicted Mendelian frequency and had normal specification of the cardiac conduction system and apparently normal electrocardiograms with normal QRS intervals. In addition, we found that ednra expression within the heart was restricted to the myocardium while ednrb expression in the heart was restricted to the endocardium and coronary endothelium. By establishing that ednra and ednrb are expressed in distinct compartments within the developing mammalian heart and that Endothelin signaling is dispensable for specification and function of the cardiac conduction system, this work has important implications for our understanding of mammalian cardiac development.
Collapse
Affiliation(s)
- Lisa L Hua
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Vasanth Vedantham
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA; Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA 94158-2517, USA; Department of Medicine, University of California, San Francisco, CA 94158-2517, USA
| | - Ralston M Barnes
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Jianxin Hu
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Ashley S Robinson
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Michael Bressan
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA
| | - Deepak Srivastava
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA; Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA 94158-2517, USA; Department of Pediatrics, University of California, San Francisco, CA 94158-2517, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA.
| |
Collapse
|
19
|
Feeney MM, Rosenblum ND. Urinary tract pacemaker cells: current knowledge and insights from nonrenal pacemaker cells provide a basis for future discovery. Pediatr Nephrol 2014; 29:629-35. [PMID: 24129851 DOI: 10.1007/s00467-013-2631-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/23/2013] [Accepted: 08/27/2013] [Indexed: 01/09/2023]
Abstract
Coordinated ureteric peristalsis propels urine from the kidney to the bladder. Cells in the renal pelvis and ureter spontaneously generate and propagate electrical activity to control this process. Recently, c-kit tyrosine kinase and hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) were identified in the upper urinary tract. Both of these proteins are required for coordinated proximal to distal contractions in the ureter. Alterations in pacemaker cell expression are present in multiple congenital kidney diseases, suggesting a functional contribution by these cells to pathologic states. In contrast to gut and heart pacemaker cells, the developmental biology of ureteric pacemaker cells, including cell lineage and signaling mechanisms, is undefined. Here, we review pacemaker cell identify and function in the urinary pelvis and ureter and the control of pacemaker function by Hedgehog-GLI signaling. Next, we highlight current knowledge of gut and heart pacemaker cells that is likely to provide insight into developmental mechanisms that could control urinary pacemaker cells.
Collapse
Affiliation(s)
- Meghan M Feeney
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, Ontario, Canada, M5G OA4
| | | |
Collapse
|
20
|
Ma P, Wang YT, Gu S, Watanabe M, Jenkins MW, Rollins AM. Three-dimensional correction of conduction velocity in the embryonic heart using integrated optical mapping and optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:76004. [PMID: 24996663 PMCID: PMC4082492 DOI: 10.1117/1.jbo.19.7.076004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/13/2014] [Accepted: 05/28/2014] [Indexed: 05/29/2023]
Abstract
Optical mapping (OM) of cardiac electrical activity conventionally collects information from a three-dimensional (3-D) surface as a two-dimensional (2-D) projection map. When applied to measurements of the embryonic heart, this method ignores the substantial and complex curvature of the heart surface, resulting in significant errors when calculating conduction velocity, an important electrophysiological parameter. Optical coherence tomography (OCT) is capable of imaging the 3-D structure of the embryonic heart and accurately characterizing the surface topology. We demonstrate an integrated OCT/OM imaging system capable of simultaneous conduction mapping and 3-D structural imaging. From these multimodal data, we obtained 3-D activation maps and corrected conduction velocity maps of early embryonic quail hearts. 3-D correction eliminates underestimation bias in 2-D conduction velocity measurements, therefore enabling more accurate measurements with less experimental variability. The integrated system will also open the door to correlate the structure and electrophysiology, thereby improving our understanding of heart development.
Collapse
Affiliation(s)
- Pei Ma
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, United States
| | - Yves T. Wang
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, United States
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio 44106, United States
| | - Shi Gu
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, United States
| | - Michiko Watanabe
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio 44106, United States
| | - Michael W. Jenkins
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, United States
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio 44106, United States
| | - Andrew M. Rollins
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, United States
| |
Collapse
|
21
|
Wu M, Peng S, Zhao Y. Inducible gene deletion in the entire cardiac conduction system using Hcn4-CreERT2 BAC transgenic mice. Genesis 2013; 52:134-40. [PMID: 24281837 DOI: 10.1002/dvg.22730] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 11/11/2022]
Abstract
Developmental defects and disruption of molecular pathways of the cardiac conduction system (CCS) can cause life-threatening cardiac arrhythmias. Despite decades of effort, knowledge about the development and molecular control of the CCS remains primitive. Mouse genetics, complementary to other approaches such as human genetics, has become a key tool for exploring the developmental processes of various organs and associated diseases. Genetic analysis using mouse models will likely provide great insights about the development of the CCS, which can facilitate the development of novel therapeutic strategies to treat arrhythmias. To enable genetic studies of the CCS, CCS-associated Cre mouse models are essential. However, existing mouse models with Cre activity reported in the CCS have various limitations such as Cre leak, haploinsufficiency, and inadequate specificity of the Cre activity. To circumvent those limitations, we successfully generated Hcn4-CreERT2 bacterial artificial chromosome (BAC) transgenic mice using BAC recombineering in which Cre activity was specifically detected in the entire CCS after tamoxifen induction. Our Hcn4-CreERT2 BAC transgenic line will be an invaluable genetic tool with which to dissect the developmental control of CCS and arrhythmias.
Collapse
Affiliation(s)
- Meng Wu
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | |
Collapse
|
22
|
Venius J, Zurauskas E, Rotomskis R. High resolution imaging of the human cardiac conduction system using reflectance confocal microscopy. TOHOKU J EXP MED 2012; 229:67-73. [PMID: 23269205 DOI: 10.1620/tjem.229.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhythmical contraction of the heart is controlled by the cardiac conduction system (CCS) that consists of the three main parts: the sino-atrial node, the atrioventricular node and the His-Purkinje system. A heartbeat signal, originated from CCS, spreads through its branches to the different parts of the heart, initiating depolarization of the ventricles. However, this highly important system could not be distinguished visually from the surrounding heart tissues: myocardium (MC) and connective tissue (CT). Thus, during surgical procedures, CCS could be easily damaged; namely, the reliable method for identification of CCS either in vivo or ex vivo does not exist. Accordingly, there is a definite need for developing a CCS imaging method. Reflection confocal microscopy (RCM) offers non-destructive imaging of the tissue at depths of up to 0.35 mm with the capability of identification of a single cell. During the visualization procedure, a given tissue is illuminated with infrared laser light and the image is obtained because of different reflections from the tissue structures. However, the reflective structures in the heart tissues are still not identified. In the present study, for the first time we investigated cardiac tissues by RCM. The resolution of the method allowed us to distinguish MC cells and CCS cells. The method also allowed us to distinguish the network-like structures that are main components of CT. The ability to visualize different tissue components indicates a great potential for RCM to be used in non-destructive cardiac investigations and for imaging CCS.
Collapse
Affiliation(s)
- Jonas Venius
- Laboratory of Biomedical Physics of Vilnius University Institute of Oncology, Vilnius, Lithuania.
| | | | | |
Collapse
|
23
|
Abstract
Emerging data in the field of cardiac development as well as repair and regeneration indicate a complex and important interplay between endocardial, epicardial, and myofibroblast populations that is critical for cardiomyocyte differentiation and postnatal function. For example, epicardial cells have been shown to generate cardiac myofibroblasts and may be one of the primary sources for this cell lineage during development. Moreover, paracrine signaling from the epicardium and endocardium is critical for proper development of the heart and pathways such as Wnt, fibroblast growth factor, and retinoic acid signaling have been shown to be key players in this process. Despite this progress, interactions between nonmyocyte cells and cardiomyocytes in the heart are still poorly understood. We review the various nonmyocyte-myocyte interactions that occur in the heart and how these interactions, primarily through signaling networks, help direct cardiomyocyte differentiation and regulate postnatal cardiac function.
Collapse
Affiliation(s)
- Ying Tian
- Department of Medicine, University of Pennsylvania, PA 19104-5129, USA
| | | |
Collapse
|
24
|
NOing the heart: role of nitric oxide synthase-3 in heart development. Differentiation 2012; 84:54-61. [PMID: 22579300 DOI: 10.1016/j.diff.2012.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/03/2012] [Accepted: 04/10/2012] [Indexed: 01/30/2023]
Abstract
Congenital heart disease is the most common birth defect in humans. Identifying factors that are critical to embryonic heart development could further our understanding of the disease and lead to new strategies of its prevention and treatment. Nitric oxide synthase-3 (NOS3) or endothelial nitric oxide synthase (eNOS) is known for many important biological functions including vasodilation, vascular homeostasis and angiogenesis. Over the past decade, studies from our lab and others have shown that NOS3 is required during heart development. More specifically, deficiency in NOS3 results in congenital septal defects, cardiac hypertrophy and postnatal heart failure. In addition, NOS3 is pivotal to the morphogenesis of major coronary arteries and myocardial capillary development. Interestingly, these effects of NOS3 are mediated through induction of transcription and growth factors that are crucial in the formation of coronary arteries. Finally, deficiency in NOS3 results in high incidences of bicuspid aortic valves, a disease in humans that often leads to complications with age including aortic valve stenosis or regurgitation, endocarditis, aortic aneurysm formation, and aortic dissection. In summary, these data suggest NOS3 plays a critical role in embryonic heart development and morphogenesis of coronary arteries and aortic valves.
Collapse
|
25
|
Kirchmaier BC, Poon KL, Schwerte T, Huisken J, Winkler C, Jungblut B, Stainier DY, Brand T. The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development. Dev Biol 2012; 363:438-50. [PMID: 22290329 DOI: 10.1016/j.ydbio.2012.01.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 11/18/2022]
Abstract
The Popeye domain containing (Popdc) genes encode a family of transmembrane proteins with an evolutionary conserved Popeye domain. These genes are abundantly expressed in striated muscle tissue, however their function is not well understood. In this study we have investigated the role of the popdc2 gene in zebrafish. Popdc2 transcripts were detected in the embryonic myocardium and transiently in the craniofacial and tail musculature. Morpholino oligonucleotide-mediated knockdown of popdc2 resulted in aberrant development of skeletal muscle and heart. Muscle segments in the trunk were irregularly shaped and craniofacial muscles were severely reduced or even missing. In the heart, pericardial edema was prevalent in the morphants and heart chambers were elongated and looping was abnormal. These pathologies in muscle and heart were alleviated after reducing the morpholino concentration. However the heart still was abnormal displaying cardiac arrhythmia at later stages of development. Optical recordings of cardiac contractility revealed irregular ventricular contractions with a 2:1, or 3:1 atrial/ventricular conduction ratio, which caused a significant reduction in heart frequency. Recordings of calcium transients with high spatiotemporal resolution using a transgenic calcium indicator line (Tg(cmlc2:gCaMP)(s878)) and SPIM microscopy confirmed the presence of a severe arrhythmia phenotype. Our results identify popdc2 as a gene important for striated muscle differentiation and cardiac morphogenesis. In addition it is required for the development of the cardiac conduction system.
Collapse
Affiliation(s)
- Bettina C Kirchmaier
- Cell- and Developmental Biology, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mezzano V, Sheikh F. Cell-cell junction remodeling in the heart: possible role in cardiac conduction system function and arrhythmias? Life Sci 2011; 90:313-21. [PMID: 22227473 DOI: 10.1016/j.lfs.2011.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 11/28/2022]
Abstract
Anchoring cell-cell junctions (desmosomes, fascia adherens) play crucial roles in maintaining mechanical integrity of cardiac muscle cells and tissue. Genetic mutations and/or loss of critical components in these macromolecular structures are increasingly being associated with arrhythmogenic cardiomyopathies; however, their specific roles have been primarily attributed to effects within the working (ventricular) cardiac muscle. Growing evidence also points to a key role for anchoring cell-cell junction components in cardiac muscle cells of the cardiac conduction system. This is not only evidenced by the molecular and ultra-structural presence of anchoring cell junctions in specific compartments/structures of the cardiac conduction system (sinoatrial node, atrioventricular node, His-Purkinje system), but also because conduction system-related arrhythmias can be found in humans and mouse models of cardiomyopathies harboring defects and/or mutations in key anchoring cell-cell junction proteins. These studies emphasize the clinical need to understand the molecular and cellular role(s) for anchoring cell-cell junctions in cardiac conduction system function and arrhythmias. This review will focus on (i) experimental findings that underline an important role for anchoring cell-cell junctions in the cardiac conduction system, (ii) insights regarding involvement of these structures in age-related cardiac remodeling of the conduction system, (iii) summarizing available genetic mouse models that can target cardiac conduction system structures and (iv) implications of these findings on future therapies for arrhythmogenic heart diseases.
Collapse
Affiliation(s)
- Valeria Mezzano
- Department of Medicine (Cardiology Division), University of California-San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
27
|
Li J, Wang K, Zuo W, Lu W, Zhang H. Construction of 3D Realistic Purkinje System: A Locally Linear Embedding-Based Method. J BIOL SYST 2011. [DOI: 10.1142/s0218339010003664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The geometry of canine ventricle with purkinje system provides the data basis for the simulation and analysis of the mechanisms of ventricular pathophysiology. The acquisition of the geometry of the purkinje system, however, is very challenging, and traditional construction approaches are mainly based on modeling using fractal geometry. In this paper, we propose a novel locally linear embedding (LLE)-based method to construct 3D anatomical purkinje system of the canine left ventricle (LV). First, we collect the 2D purkinje system data in a canine ventricle and extract the endocardial surface of the canine left ventricle from 3D canine ventricle. Then, LLE is used to map the 3D geometry of the endocardial surface to a 2D subspace, and the 2D purkinje system data is further embedded into this 2D subspace. Finally, LLE is adopted to map both the 3D geometry of the endocardial surface and the 2D purkinje system data back to the 3D space. An experiment is designed to verify the effectiveness of the LLE-based construction method. The proposed method approaches is promising in restoring realistic purkinje system of the left canine ventricle.
Collapse
Affiliation(s)
- Jie Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Wangmeng Zuo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Weigang Lu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Henggui Zhang
- School of Physics and Astronomy, The University of Manchester, Manchester, UK
| |
Collapse
|
28
|
Affiliation(s)
- Robert G. Kelly
- From the Developmental Biology Institute of Marseilles-Luminy, Université de la Méditerranée, Marseilles, France
| |
Collapse
|
29
|
Aanhaanen WTJ, Moorman AFM, Christoffels VM. Origin and development of the atrioventricular myocardial lineage: insight into the development of accessory pathways. ACTA ACUST UNITED AC 2011; 91:565-77. [PMID: 21630423 DOI: 10.1002/bdra.20826] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 12/16/2022]
Abstract
Defects originating from the atrioventricular canal region are part of a wide spectrum of congenital cardiovascular malformations that frequently affect newborns. These defects include partial or complete atrioventricular septal defects, atrioventricular valve defects, and arrhythmias, such as atrioventricular re-entry tachycardia, atrioventricular nodal block, and ventricular preexcitation. Insight into the cellular origin of the atrioventricular canal myocardium and the molecular mechanisms that control its development will aid in the understanding of the etiology of the atrioventricular defects. This review discusses current knowledge concerning the origin and fate of the atrioventricular canal myocardium, the molecular mechanisms that determine its specification and differentiation, and its role in the development of certain malformations such as those that underlie ventricular preexcitation.
Collapse
Affiliation(s)
- Wim T J Aanhaanen
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, Amsterdam, The Netherlands
| | | | | |
Collapse
|
30
|
Miquerol L, Beyer S, Kelly RG. Establishment of the mouse ventricular conduction system. Cardiovasc Res 2011; 91:232-42. [DOI: 10.1093/cvr/cvr069] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
31
|
Abstract
The myocardium of the heart is composed of multiple highly specialized myocardial lineages, including those of the ventricular and atrial myocardium, and the specialized conduction system. Specification and maturation of each of these lineages during heart development is a highly ordered, ongoing process involving multiple signaling pathways and their intersection with transcriptional regulatory networks. Here, we attempt to summarize and compare much of what we know about specification and maturation of myocardial lineages from studies in several different vertebrate model systems. To date, most research has focused on early specification, and although there is still more to learn about early specification, less is known about factors that promote subsequent maturation of myocardial lineages required to build the functioning adult heart.
Collapse
Affiliation(s)
- Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla CA 92093, USA.
| | | | | | | |
Collapse
|
32
|
Arrenberg AB, Stainier DYR, Baier H, Huisken J. Optogenetic control of cardiac function. Science 2010; 330:971-4. [PMID: 21071670 DOI: 10.1126/science.1195929] [Citation(s) in RCA: 345] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cardiac pacemaker controls the rhythmicity of heart contractions and can be substituted by a battery-operated device as a last resort. We created a genetically encoded, optically controlled pacemaker by expressing halorhodopsin and channelrhodopsin in zebrafish cardiomyocytes. Using patterned illumination in a selective plane illumination microscope, we located the pacemaker and simulated tachycardia, bradycardia, atrioventricular blocks, and cardiac arrest. The pacemaker converges to the sinoatrial region during development and comprises fewer than a dozen cells by the time the heart loops. Perturbation of the activity of these cells was entirely reversible, demonstrating the resilience of the endogenous pacemaker. Our studies combine optogenetics and light-sheet microscopy to reveal the emergence of organ function during development.
Collapse
|
33
|
Chen F, De Diego C, Chang MG, McHarg JL, John S, Klitzner TS, Weiss JN. Atrioventricular conduction and arrhythmias at the initiation of beating in embryonic mouse hearts. Dev Dyn 2010; 239:1941-9. [PMID: 20549739 DOI: 10.1002/dvdy.22319] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To investigate cardiac physiology at the onset of heart beating in embryonic mouse hearts, we performed optical imaging of membrane potential (Vm) and/or intracellular calcium (Ca(i)). Action potentials and Ca(i) transients were detected in approximately 50% of mouse embryo hearts at E8.5, but in all hearts at E9.0, indicating that beating typically starts between E8-E9. Beating was eliminated by Ca channel blocker nifedipine and the I(f) blocker ZD7288, unaffected by tetrodotoxin and only mildly depressed by disabling sarcoplasmic (SR) and endoplasmic (ER) reticulum Ca cycling. From E8.5 to E10, conduction velocity increased from 0.2-1 mm/s to >5 mm/s in first ventricular and then atrial tissue, while remaining slow in other areas. Arrhythmias included atrioventricular reentry induced by adenosine. In summary, at the onset of beating, I(f)-dependent pacemaking drives both AP propagation and Ca(i) transient generation through activation of voltage-dependent Ca channels. Na channels and intracellular Ca cycling have minor roles.
Collapse
Affiliation(s)
- Fuhua Chen
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California-Los Angeles, 675 Charles Young Drive South, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Chi NC, Bussen M, Brand-Arzamendi K, Ding C, Olgin JE, Shaw RM, Martin GR, Stainier DYR. Cardiac conduction is required to preserve cardiac chamber morphology. Proc Natl Acad Sci U S A 2010; 107:14662-7. [PMID: 20675583 PMCID: PMC2930423 DOI: 10.1073/pnas.0909432107] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Electrical cardiac forces have been previously hypothesized to play a significant role in cardiac morphogenesis and remodeling. In response to electrical forces, cultured cardiomyocytes rearrange their cytoskeletal structure and modify their gene expression profile. To translate such in vitro data to the intact heart, we used a collection of zebrafish cardiac mutants and transgenics to investigate whether cardiac conduction could influence in vivo cardiac morphogenesis independent of contractile forces. We show that the cardiac mutant dco(s226) develops heart failure and interrupted cardiac morphogenesis following uncoordinated ventricular contraction. Using in vivo optical mapping/calcium imaging, we determined that the dco cardiac phenotype was primarily due to aberrant ventricular conduction. Because cardiac contraction and intracardiac hemodynamic forces can also influence cardiac development, we further analyzed the dco phenotype in noncontractile hearts and observed that disorganized ventricular conduction could affect cardiomyocyte morphology and subsequent heart morphogenesis in the absence of contraction or flow. By positional cloning, we found that dco encodes Gja3/Cx46, a gap junction protein not previously implicated in heart formation or function. Detailed analysis of the mouse Cx46 mutant revealed the presence of cardiac conduction defects frequently associated with human heart failure. Overall, these in vivo studies indicate that cardiac electrical forces are required to preserve cardiac chamber morphology and may act as a key epigenetic factor in cardiac remodeling.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Connexins/classification
- Connexins/genetics
- Connexins/metabolism
- Electrocardiography
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/physiology
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/physiology
- Gene Knockdown Techniques
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Heart/embryology
- Heart/physiology
- Heart Conduction System/physiology
- In Situ Hybridization
- Mice
- Mice, Knockout
- Microscopy, Confocal
- Molecular Sequence Data
- Mutation
- Myocardium/metabolism
- Phylogeny
- Sequence Homology, Amino Acid
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Neil C. Chi
- Departments of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics
- Medicine and
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158; and
- Department of Medicine, Division of Cardiology, University of California at San Diego, La Jolla, CA 92093-0613J
| | | | - Koroboshka Brand-Arzamendi
- Departments of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics
| | | | - Jeffrey E. Olgin
- Medicine and
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158; and
| | - Robin M. Shaw
- Medicine and
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158; and
| | - Gail R. Martin
- Anatomy, and
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158; and
| | - Didier Y. R. Stainier
- Departments of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158; and
| |
Collapse
|
35
|
Lai D, Liu X, Forrai A, Wolstein O, Michalicek J, Ahmed I, Garratt AN, Birchmeier C, Zhou M, Hartley L, Robb L, Feneley MP, Fatkin D, Harvey RP. Neuregulin 1 sustains the gene regulatory network in both trabecular and nontrabecular myocardium. Circ Res 2010; 107:715-27. [PMID: 20651287 DOI: 10.1161/circresaha.110.218693] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE The cardiac gene regulatory network (GRN) is controlled by transcription factors and signaling inputs, but network logic in development and it unraveling in disease is poorly understood. In development, the membrane-tethered signaling ligand Neuregulin (Nrg)1, expressed in endocardium, is essential for ventricular morphogenesis. In adults, Nrg1 protects against heart failure and can induce cardiomyocytes to divide. OBJECTIVE To understand the role of Nrg1 in heart development through analysis of null and hypomorphic Nrg1 mutant mice. METHODS AND RESULTS Chamber domains were correctly specified in Nrg1 mutants, although chamber-restricted genes Hand1 and Cited1 failed to be activated. The chamber GRN subsequently decayed with individual genes exhibiting decay patterns unrelated to known patterning boundaries. Both trabecular and nontrabecular myocardium were affected. Network demise was spatiotemporally dynamic, the most sensitive region being the central part of the left ventricle, in which the GRN underwent complete collapse. Other regions were partially affected with graded sensitivity. In vitro, Nrg1 promoted phospho-Erk1/2-dependent transcription factor expression, cardiomyocyte maturation and cell cycle inhibition. We monitored cardiac pErk1/2 in embryos and found that expression was Nrg1-dependent and levels correlated with cardiac GRN sensitivity in mutants. CONCLUSIONS The chamber GRN is fundamentally labile and dependent on signaling from extracardiac sources. Nrg1-ErbB1/4-Erk1/2 signaling critically sustains elements of the GRN in trabecular and nontrabecular myocardium, challenging our understanding of Nrg1 function. Transcriptional decay patterns induced by reduced Nrg1 suggest a novel mechanism for cardiac transcriptional regulation and dysfunction in disease, potentially linking biomechanical feedback to molecular pathways for growth and differentiation.
Collapse
Affiliation(s)
- Donna Lai
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinghurst 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Purkinje fibers in cardiac conduction tissue during fatal electrocution. A total of 16 Sprague Dawley rats were divided into 2 groups as follows: the electrocution group and the control group.Animals were deeply anesthetized with sodium pentobarbital and, in the electrocution group, all 8 rats underwent a fatal electrical shock (220 v,50 Hz) followed by cervical dislocation. In the control group, all 8 rats underwent execution by cervical dislocation. Following death, hearts were rapidly excised and perfused with 1% paraformaldehyde before tissues of the left ventricular anterior wall (LVAW) were isolated. The microscopic structure of the Purkinje fibers were subsequently analyzed using conventional hematoxylin and eosin staining. A majority of the Purkinje fibers were located in groups among the cardiac muscle of the LVAW. A significant reduction in Purkinje fiber expression was displayed in the electrocution group compared with the control group (P G 0.05).The mean total number of Purkinje fibers for the electrocution and control groups were 59 T 11 and 3287 T 19 cells, respectively (P G 0.05).The estimated number of Purkinje fibers in the LVAW of the control group was significantly greater than observed in the electrocution group(41.09 T 0.24 vs. 0.7375 T 0.14, P G 0.05). The findings of the current study suggest that such a reduction would be reflected in abnormal cardiac conduction and a possible cause of sudden death.
Collapse
|
37
|
Abstract
The endocardium, the endothelial lining of the heart, plays complex and critical roles in heart development, particularly in the formation of the cardiac valves and septa, the division of the truncus arteriosus into the aortic and pulmonary trunks, the development of Purkinje fibers that form the cardiac conduction system, and the formation of trabecular myocardium. Current data suggest that the endocardium is a regionally specialized endothelium that arises through a process of de novo vasculogenesis from a distinct population of mesodermal cardiogenic precursors in the cardiac crescent. In this article, we review recent developments in the understanding of the embryonic origins of the endocardium. Specifically, we summarize vasculogenesis and specification of endothelial cells from mesodermal precursors, and we review the transcriptional pathways involved in these processes. We discuss the lineage relationships between the endocardium and other endothelial populations and between the endocardium and the myocardium. Finally, we explore unresolved questions about the lineage relationships between the endocardium and the myocardium. One of the central questions involves the timing with which mesodermal cells, which arise in the primitive streak and migrate to the cardiac crescent, become committed to an endocardial fate. Two competing conceptual models of endocardial specification have been proposed. In the first, mesodermal precursor cells in the cardiac crescent are prespecified to become either endocardial or myocardial cells, while in the second, fate plasticity is retained by bipotential cardiogenic cells in the cardiac crescent. We propose a third model that reconciles these two views and suggest future experiments that might resolve this question.
Collapse
Affiliation(s)
- Ian S. Harris
- Cardiovascular Research Institute, University of California, San Francisco, 600 16th Street, Mail Code 2240, San Francisco, CA 94158-2517 USA
| | - Brian L. Black
- Cardiovascular Research Institute, University of California, San Francisco, 600 16th Street, Mail Code 2240, San Francisco, CA 94158-2517 USA
| |
Collapse
|
38
|
Abstract
Diseases of the cardiovascular system that cause sudden cardiac deaths are often caused by lethal arrhythmias that originate from defects in the cardiac conduction system. Development of the cardiac conduction system is a complex biological process that can be wrought with problems. Although several genes involved in mature conduction system function have been identified, their association with development of specific subcomponents of the cardiac conduction system remains challenging. Several transcription factors, including homeodomain proteins and T-box proteins, are essential for cardiac conduction system morphogenesis and activation or repression of key regulatory genes. In addition, several transcription factors modify expression of genes encoding the ion channel proteins that contribute to the electrophysiological properties of the conduction system and govern contraction of the surrounding myocardium. Loss of transcriptional regulation during cardiac development has detrimental effects on cardiogenesis that may lead to arrhythmias. Human genetic mutations in some of these transcription factors have been identified and are known to cause congenital heart diseases that include cardiac conduction system malformations. In this review, we summarize the contributions of several key transcription factors to specification, patterning, maturation, and function of the cardiac conduction system. Further analysis of the molecular programs involved in this process should lead to improved diagnosis and therapy of conduction system disease.
Collapse
Affiliation(s)
- Cathy J Hatcher
- Center for Molecular Cardiology, Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | | |
Collapse
|
39
|
Munshi NV, McAnally J, Bezprozvannaya S, Berry JM, Richardson JA, Hill JA, Olson EN. Cx30.2 enhancer analysis identifies Gata4 as a novel regulator of atrioventricular delay. Development 2009; 136:2665-74. [PMID: 19592579 DOI: 10.1242/dev.038562] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cardiac conduction system comprises a specialized tract of electrically coupled cardiomyocytes responsible for impulse propagation through the heart. Abnormalities in cardiac conduction are responsible for numerous forms of cardiac arrhythmias, but relatively little is known about the gene regulatory mechanisms that control the formation of the conduction system. We demonstrate that a distal enhancer for the connexin 30.2 (Cx30.2, also known as Gjd3) gene, which encodes a gap junction protein required for normal atrioventricular (AV) delay in mice, is necessary and sufficient to direct expression to the developing AV conduction system (AVCS). Moreover, we show that this enhancer requires Tbx5 and Gata4 for proper expression in the conduction system, and Gata4(+/-) mice have short PR intervals indicative of accelerated AV conduction. Thus, our results implicate Gata4 in conduction system function and provide a clearer understanding of the transcriptional pathways that impact normal AV delay.
Collapse
Affiliation(s)
- Nikhil V Munshi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Miquerol L, Kelly RG. Monitoring clonal growth in the developing ventricle. Pediatr Cardiol 2009; 30:603-8. [PMID: 19184177 DOI: 10.1007/s00246-008-9371-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Understanding the etiology of congenital heart defects depends on a detailed knowledge of the morphogenetic events underlying cardiac development. Deciphering the developmental processes and cell behaviors resulting in the formation of a four-chambered heart requires techniques by which the destiny of individual cells can be traced during development. Ideally, such approaches provide information on progenitor cells and growth properties of clonally related myocytes. In the avian system, clonal analysis based on the use of replication-defective retroviral labeling led to a model for growth of the ventricular wall from polyclonal transmural cones of myocardial cells. In the mouse, the nlaacZ retrospective clonal analysis system has proved to be a powerful technique for studying different aspects of cardiac morphogenesis. Morphologic and histologic analyses of clonally related myocytes at early stages of development have provided genetic evidence for the formation of the heart tube from two cell lineages. Additional aspects of cardiac morphogenesis, including formation of the interventricular septum and myocardial outflow tract, and more recently, the origin of the ventricular conduction system, have been studied using this system. This brief review discusses how the nlaacZ system has provided new insights into the divergent properties of clonally related cells in these different regions of the developing heart.
Collapse
Affiliation(s)
- Lucile Miquerol
- Developmental Biology Institute of Marseilles-Luminy, Inserm Avenir Group, UMR 6216 CNRS-Université de Méditerranée, Campus de Luminy, Case 907, Marseille Cedex 9 13288, France
| | | |
Collapse
|
41
|
Orlandi A, Hao H, Ferlosio A, Clément S, Hirota S, Spagnoli LG, Gabbiani G, Chaponnier C. Alpha actin isoforms expression in human and rat adult cardiac conduction system. Differentiation 2009; 77:360-8. [PMID: 19281784 DOI: 10.1016/j.diff.2008.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/16/2008] [Accepted: 12/18/2008] [Indexed: 11/26/2022]
Abstract
In the adult heart, cardiac muscle comprises the working myocardium and the conduction system (CS). The latter includes the sinoatrial node (SAN), the internodal tract or bundle (IB), the atrioventricular node (AVN), the atrioventricular bundle (AVB), the bundle branches (BB) and the peripheral Purkinje fibers (PF). Most of the information concerning the phenotypic features of CS tissue derives from the characterization of avian and rodent developing hearts; data concerning the expression of actin isoforms in adult CS cardiomyocytes are scarce. Using specific antibodies, we investigated the distribution of alpha-skeletal (alpha-SKA), alpha-cardiac (alpha-CA), alpha-smooth muscle (alpha-SMA) actin isoforms and other muscle-typical proteins in the CS of human and rat hearts at different ages. SAN and IB cardiomyocytes were characterized by the presence of alpha-SMA, alpha-CA, calponin and caldesmon, whereas alpha-SKA and vimentin were absent. Double immunofluorescence demonstrated the co-localisation of alpha-SMA and alpha-CA in I-bands of SAN cardiomyocytes. AVN, AVB, BB and PF cardiomyocytes were alpha-SMA, calponin, caldesmon and vimentin negative, and alpha-CA and alpha-SKA positive. No substantial differences in actin isoform distribution were observed in human and rat hearts, except for the presence of isolated subendocardial alpha-SMA positive cardiomyocytes co-expressing alpha-CA in the ventricular septum of the rat. Aging did not influence CS cardiomyocyte actin isoform expression profile. These findings support the concept that cardiomyocytes of SAN retain the phenotype of a developing myogenic cell throughout the entire life span.
Collapse
Affiliation(s)
- Augusto Orlandi
- Institute of Anatomic Pathology, Department of Biopathology and Image Diagnostics, Tor Vergata University of Rome-PTV, Via Montpellier 1, 00133, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
|