1
|
Ivanova Y, Spittaels S, Gao LJ, Schols D, Van Meervelt L, Froeyen M, Dehaen W, De Jonghe S. Synthesis and evaluation of isothiazolo[4,5- b]pyridines as cyclin G-associated kinase (GAK) inhibitors. Org Biomol Chem 2024; 22:7373-7389. [PMID: 39171941 DOI: 10.1039/d4ob00908h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Isothiazolo[4,3-b]pyridines have been extensively explored as inhibitors of cyclin G-associated kinase (GAK). In order to expand the structure-activity relationship study and to discover other chemotypes that act as GAK inhibitors, the closely related isothiazolo[4,5-b]pyridine scaffold was explored. An easy and efficient synthetic procedure to access 3,5- and 3,6-dihalogenated isothiazolo[4,5-b]pyridines as key building blocks was developed. Regioselective functionalization with various substituents was performed. None of the newly synthesized isothiazolo[4,5-b]pyridines were active as GAK inhibitors. Molecular modeling was applied to rationalise their inactivity as GAK binders.
Collapse
Affiliation(s)
- Yulia Ivanova
- KU Leuven, Department of Chemistry, Sustainable Chemistry for Metals and Molecules, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sander Spittaels
- KU Leuven, Department of Chemistry, Sustainable Chemistry for Metals and Molecules, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Ling-Jie Gao
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, box 1030, 3000 Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, 3000 Leuven, Belgium.
| | - Luc Van Meervelt
- KU Leuven, Department of Chemistry, Biomolecular Architecture, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Mathy Froeyen
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, box 1030, 3000 Leuven, Belgium
| | - Wim Dehaen
- KU Leuven, Department of Chemistry, Sustainable Chemistry for Metals and Molecules, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, 3000 Leuven, Belgium.
| |
Collapse
|
2
|
Leemans B, Gadella BM, Marchand JHEAM, Van Soom A, Stout TAE. Induction of in vivo-like ciliation in confluent monolayers of re-differentiated equine oviduct epithelial cells†. Biol Reprod 2024; 111:580-599. [PMID: 38847468 PMCID: PMC11402525 DOI: 10.1093/biolre/ioae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 06/05/2024] [Indexed: 09/17/2024] Open
Abstract
We recently developed re-differentiated equine oviduct epithelial cell (REOEC) monolayers demonstrating various in vivo morphological characteristics, but lacking secondary ciliation. In this study, we evaluated the effects of fetal bovine serum, reproductive steroid hormones, Wnt- and Notch ligands and inhibitors, and different EOEC seeding densities, in both conventional wells and on microporous membranes, on EOEC morphology and, in particular, secondary ciliation. REOEC monolayers were assessed by confocal microscopy after combined staining of nuclei, cilia, and the cytoskeleton. Only Wnt ligands, Notch inhibitors and oviduct explant cell concentration affected EOEC morphology. Undesirable epithelial-mesenchymal transition was observed in REOEC monolayers exposed to Wnt3a containing medium and Wnt ligand CHIR 99021. With respect to secondary ciliation, only the combined effect of oviduct explant cell concentration and Notch inhibition steered REOEC monolayers to in vivo-like ciliation patterns. De-differentiated EOECs, formed 10 days after oviduct explant cell seeding, were reseeded on inserts; only at initial oviduct explant cell concentrations of 1 and 5 × 106 cells per well was the formation of REOEC monolayers with a high rate of diffuse ciliation supported. Within 1 month after air-liquid interface introduction, >40% and >20% of the REOECs showed secondary cilia, respectively. At higher oviduct explant cell seeding densities secondary ciliation was not supported after re-differentiation. Additionally, Notch inhibition helped boost secondary ciliation rates to >60% in REOEC monolayers with diffuse ciliation only. These monolayers demonstrated higher clathrin expression under follicular phase conditions. Overall, the ciliated REOEC monolayers better resemble in vivo oviduct epithelial cells than previous models.
Collapse
Affiliation(s)
- Bart Leemans
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Internal Medicine, Reproduction, Population Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Bart M Gadella
- Department of Internal Medicine, Reproduction, Population Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht,The Netherlands
- Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Josephine H E A M Marchand
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction, Population Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Tom A E Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Ravi S, Martin LC, Krishnan M, Kumaresan M, Manikandan B, Ramar M. Interactions between macrophage membrane and lipid mediators during cardiovascular diseases with the implications of scavenger receptors. Chem Phys Lipids 2024; 258:105362. [PMID: 38006924 DOI: 10.1016/j.chemphyslip.2023.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The onset and progression of cardiovascular diseases with the major underlying cause being atherosclerosis, occur during chronic inflammatory persistence in the vascular system, especially within the arterial wall. Such prolonged maladaptive inflammation is driven by macrophages and their key mediators are generally attributed to a disparity in lipid metabolism. Macrophages are the primary cells of innate immunity, endowed with expansive membrane domains involved in immune responses with their signalling systems. During atherosclerosis, the membrane domains and receptors control various active organisations of macrophages. Their scavenger/endocytic receptors regulate the trafficking of intracellular and extracellular cargo. Corresponding influence on lipid metabolism is mediated by their dynamic interaction with scavenger membrane receptors and their integrated mechanisms such as pinocytosis, phagocytosis, cholesterol export/import, etc. This interaction not only results in the functional differentiation of macrophages but also modifies their structural configurations. Here, we reviewed the association of macrophage membrane biomechanics and their scavenger receptor families with lipid metabolites during the event of atherogenesis. In addition, the membrane structure of macrophages and the signalling pathways involved in endocytosis integrated with lipid metabolism are detailed. This article establishes future insights into the scavenger receptors as potential targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
4
|
Wang D, Jiang Q, Dong Z, Meng T, Hu F, Wang J, Yuan H. Nanocarriers transport across the gastrointestinal barriers: The contribution to oral bioavailability via blood circulation and lymphatic pathway. Adv Drug Deliv Rev 2023; 203:115130. [PMID: 37913890 DOI: 10.1016/j.addr.2023.115130] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Oral administration is the preferred route of drug delivery in clinical practice due to its noninvasiveness, safety, convenience, and high patient compliance. The gastrointestinal tract (GIT) plays a crucial role in facilitating the targeted delivery of oral drugs. However, the GIT presents multiple barriers that impede drug absorption, including the gastric barrier in the stomach and the mucus and epithelial barriers in the intestine. In recent decades, nanotechnology has emerged as a promising approach for overcoming these challenges by utilizing nanocarrier-based drug delivery systems such as liposomes, micelles, polymeric nanoparticles, solid lipid nanoparticles, and inorganic nanoparticles. Encapsulating drugs within nanocarriers not only protects them from degradation but also enhances their transport and absorption across the GIT, ultimately improving oral bioavailability. The aim of this review is to elucidate the mechanisms underlying nanocarrier-mediated transportation across the GIT into systemic circulation via both the blood circulation and lymphatic pathway.
Collapse
Affiliation(s)
- Ding Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Qi Jiang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Zhefan Dong
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jianwei Wang
- The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, PR China; China Jinhua Institute of Zhejiang University, Jinhua 321299, PR China.
| |
Collapse
|
5
|
Kohno T, Kojima T. Atypical Macropinocytosis Contributes to Malignant Progression: A Review of Recent Evidence in Endometrioid Endometrial Cancer Cells. Cancers (Basel) 2022; 14:cancers14205056. [PMID: 36291839 PMCID: PMC9599675 DOI: 10.3390/cancers14205056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary A novel type of macropinocytosis has been identified as a trigger for the malignant progression of endometrial cancer. Transiently reducing epithelial barrier homeostasis leads to macropinocytosis by splitting between adjacent cells in endometrioid endometrial cancer. Macropinocytosis causes morphological changes in well-differentiated to poorly differentiated cancer cells. Inhibition of macropinocytosis promotes a persistent dormant state in the intrinsic KRAS-mutated cancer cell line Sawano. This review focuses on the mechanisms of atypical macropinocytosis and its effects on cellular function, and it describes the physiological processes involved in inducing resting conditions in endometrioid endometrial cancer cells. Abstract Macropinocytosis is an essential mechanism for the non-specific uptake of extracellular fluids and solutes. In recent years, additional functions have been identified in macropinocytosis, such as the intracellular introduction pathway of drugs, bacterial and viral infection pathways, and nutritional supplement pathway of cancer cells. However, little is known about the changes in cell function after macropinocytosis. Recently, it has been reported that macropinocytosis is essential for endometrial cancer cells to initiate malignant progression in a dormant state. Macropinocytosis is formed by a temporary split of adjacent bicellular junctions of epithelial sheets, rather than from the apical surface or basal membrane, as a result of the transient reduction of tight junction homeostasis. This novel type of macropinocytosis has been suggested to be associated with the malignant pathology of endometriosis and endometrioid endometrial carcinoma. This review outlines the induction of malignant progression of endometrial cancer cells by macropinocytosis based on a new mechanism and the potential preventive mechanism of its malignant progression.
Collapse
|
6
|
Prichard KL, O'Brien NS, Murcia SR, Baker JR, McCluskey A. Role of Clathrin and Dynamin in Clathrin Mediated Endocytosis/Synaptic Vesicle Recycling and Implications in Neurological Diseases. Front Cell Neurosci 2022; 15:754110. [PMID: 35115907 PMCID: PMC8805674 DOI: 10.3389/fncel.2021.754110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Endocytosis is a process essential to the health and well-being of cell. It is required for the internalisation and sorting of “cargo”—the macromolecules, proteins, receptors and lipids of cell signalling. Clathrin mediated endocytosis (CME) is one of the key processes required for cellular well-being and signalling pathway activation. CME is key role to the recycling of synaptic vesicles [synaptic vesicle recycling (SVR)] in the brain, it is pivotal to signalling across synapses enabling intracellular communication in the sensory and nervous systems. In this review we provide an overview of the general process of CME with a particular focus on two key proteins: clathrin and dynamin that have a central role to play in ensuing successful completion of CME. We examine these two proteins as they are the two endocytotic proteins for which small molecule inhibitors, often of known mechanism of action, have been identified. Inhibition of CME offers the potential to develop therapeutic interventions into conditions involving defects in CME. This review will discuss the roles and the current scope of inhibitors of clathrin and dynamin, providing an insight into how further developments could affect neurological disease treatments.
Collapse
|
7
|
Huang Z, He L, Sang W, Wang L, Huang Q, Lei C. Potential role of lysine succinylation in the response of moths to artificial light at night stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112334. [PMID: 34020284 DOI: 10.1016/j.ecoenv.2021.112334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Artificial light at night (ALAN) is a widespread environmental pollutant and stressor. Many nocturnal insects have been shown to experience ALAN stress. However, few studies have been conducted to uncover the mechanism by which nocturnal insects respond to ALAN stress. Previous studies suggest that lysine succinylation (Ksuc) is a potential mechanism that coordinates energy metabolism and antioxidant activity under stressful conditions. Mythimna separata (Walker) (M. separata) is a nocturnal insect that has been stressed by ALAN. In this study, we quantified the relative proteomic Ksuc levels in ALAN-stressed M. separata. Of the 466 identified Ksuc-modified proteins, 103 were hypersuccinylated/desuccinylated in ALAN-stressed moths. The hypersuccinylated/desuccinylated proteins were shown to be involved in various biological processes. In particular, they were enriched in metabolic processes, reactive oxygen species (ROS) homeostasis and the neuromuscular system. Furthermore, we demonstrated that Ksuc might affect moth locomotion by intervening with and coordinating these systems under ALAN stress. These findings suggest that Ksuc plays a vital role in the moth response to ALAN stress and moth locomotion behavior and provide a new perspective on the impact of ALAN on nocturnal insect populations and species communities.
Collapse
Affiliation(s)
- Zhijuan Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Li He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wen Sang
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China.
| | - Lijun Wang
- College of Life Sciences, Yantai University, Yantai 264005, China.
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Wang H, Zhou L, Zheng Y, Wang K, Song B, Yan X, Wojtas L, Wang X, Jiang X, Wang M, Sun Q, Xu B, Yang H, Sue AC, Chan Y, Sessler JL, Jiao Y, Stang PJ, Li X. Double‐Layered Supramolecular Prisms Self‐Assembled by Geometrically Non‐equivalent Tetratopic Subunits. Angew Chem Int Ed Engl 2020; 60:1298-1305. [DOI: 10.1002/anie.202010805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Yu Zheng
- Department of Physics Arizona State University Tempe AZ 85287 USA
| | - Kun Wang
- Department of Physics and Astronomy Department of Chemistry Mississippi State University Mississippi State MS 39762 USA
| | - Bo Song
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Bingqian Xu
- College of Engineering and Nanoscale Science and Engineering Center University of Georgia Athens GA 30602 USA
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Andrew C.‐H. Sue
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology Tianjin University Tianjin 300072 China
| | - Yi‐Tsu Chan
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan
| | | | - Yang Jiao
- Department of Physics Arizona State University Tempe AZ 85287 USA
| | - Peter J. Stang
- Department of Chemistry University of Utah Salt Lake City UT 84112 USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 China
| |
Collapse
|
9
|
Wang H, Zhou L, Zheng Y, Wang K, Song B, Yan X, Wojtas L, Wang X, Jiang X, Wang M, Sun Q, Xu B, Yang H, Sue AC, Chan Y, Sessler JL, Jiao Y, Stang PJ, Li X. Double‐Layered Supramolecular Prisms Self‐Assembled by Geometrically Non‐equivalent Tetratopic Subunits. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Yu Zheng
- Department of Physics Arizona State University Tempe AZ 85287 USA
| | - Kun Wang
- Department of Physics and Astronomy Department of Chemistry Mississippi State University Mississippi State MS 39762 USA
| | - Bo Song
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Bingqian Xu
- College of Engineering and Nanoscale Science and Engineering Center University of Georgia Athens GA 30602 USA
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Andrew C.‐H. Sue
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology Tianjin University Tianjin 300072 China
| | - Yi‐Tsu Chan
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan
| | | | - Yang Jiao
- Department of Physics Arizona State University Tempe AZ 85287 USA
| | - Peter J. Stang
- Department of Chemistry University of Utah Salt Lake City UT 84112 USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 China
| |
Collapse
|
10
|
Bayat N, McOrist N, Ariotti N, Lai M, Sia KC, Li Y, Grace JL, Quinn JF, Whittaker MR, Kavallaris M, Davis TP, Lock RB. Thiol-Reactive Star Polymers Functionalized with Short Ethoxy-Containing Moieties Exhibit Enhanced Uptake in Acute Lymphoblastic Leukemia Cells. Int J Nanomedicine 2019; 14:9795-9808. [PMID: 31853178 PMCID: PMC6914812 DOI: 10.2147/ijn.s220326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/16/2019] [Indexed: 01/27/2023] Open
Abstract
Purpose Directing nanoparticles to cancer cells without using antibodies is of great interest. Subtle changes to the surface chemistry of nanoparticles can significantly affect their biological fate, including their propensity to associate with different cell populations. For instance, nanoparticles functionalized with thiol-reactive groups can potentially enhance association with cells that over-express cell-surface thiol groups. The potential of such an approach for enhancing drug delivery for childhood acute lymphoblastic leukemia (ALL) cells has not been investigated. Herein, we investigate the impact of thiol-reactive star polymers on the cellular association and the mechanisms of uptake of the nanoparticles. Methods We prepared fluorescently labeled star polymers functionalized with an mPEG brush corona and pyridyl disulfide to examine how reactivity to exofacial thiols impacts cellular association with ALL cells. We also studied how variations to the mPEG brush composition could potentially be used as a secondary method for controlling the extent of cell association. Specifically, we examined how the inclusion of shorter diethylene glycol brush moieties into the nanoparticle corona could be used to further influence cell association. Results Star polymers incorporating both thiol-reactive and diethylene glycol brush moieties exhibited the highest cellular association, followed by those functionalized solely with thiol reactive groups compared to control nanoparticles in T and B pediatric ALL patient-derived xenografts harvested from the spleens and bone marrow of immunodeficient mice. Transfection of cells with an early endosomal marker and imaging with correlative light and electron microscopy confirmed cellular uptake. Endocytosis inhibitors revealed dynamin-dependent clathrin-mediated endocytosis as the main uptake pathway for all the star polymers. Conclusion Thiol-reactive star polymers having an mPEG brush corona that includes a proportion of diethylene glycol brush moieties represent a potential strategy for improved leukemia cell delivery.
Collapse
Affiliation(s)
- Narges Bayat
- Leukemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Nathan McOrist
- Leukemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Nicholas Ariotti
- Electron Microscope Unit, Mark Wainwright Analytical Centre, Chemical Sciences Building, University of New South Wales, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - May Lai
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Keith Cs Sia
- Leukemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - James L Grace
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Maria Kavallaris
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Tumor Biology and Targeting Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Department of Chemistry, University of Warwick, Coventry, UK.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Richard B Lock
- Leukemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Pennington MR, Saha A, Painter DF, Gavazzi C, Ismail AM, Zhou X, Chodosh J, Rajaiya J. Disparate Entry of Adenoviruses Dictates Differential Innate Immune Responses on the Ocular Surface. Microorganisms 2019; 7:E351. [PMID: 31540200 PMCID: PMC6780103 DOI: 10.3390/microorganisms7090351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Human adenovirus infection of the ocular surface is associated with severe keratoconjunctivitis and the formation of subepithelial corneal infiltrates, which may persist and impair vision for months to years following infection. Long term pathology persists well beyond the resolution of viral replication, indicating that the prolonged immune response is not virus-mediated. However, it is not clear how these responses are sustained or even initiated following infection. This review discusses recent work from our laboratory and others which demonstrates different entry pathways specific to both adenovirus and cell type. These findings suggest that adenoviruses may stimulate specific pattern recognition receptors in an entry/trafficking-dependent manner, leading to distinct immune responses dependent on the virus/cell type combination. Additional work is needed to understand the specific connections between adenoviral entry and the stimulation of innate immune responses by the various cell types present on the ocular surface.
Collapse
Affiliation(s)
- Matthew R Pennington
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Amrita Saha
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - David F Painter
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Christina Gavazzi
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Ashrafali M Ismail
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Xiaohong Zhou
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - James Chodosh
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Jaya Rajaiya
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
12
|
Ali NM, Niada S, Brini AT, Morris MR, Kurusamy S, Alholle A, Huen D, Antonescu CR, Tirode F, Sumathi V, Latif F. Genomic and transcriptomic characterisation of undifferentiated pleomorphic sarcoma of bone. J Pathol 2018; 247:166-176. [PMID: 30281149 DOI: 10.1002/path.5176] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/24/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Abstract
Undifferentiated pleomorphic sarcoma of bone (UPSb) is a rare primary bone sarcoma that lacks a specific line of differentiation. There is very little information about the genetic alterations leading to tumourigenesis or malignant transformation. Distinguishing between UPSb and other malignant bone sarcomas, including dedifferentiated chondrosarcoma and osteosarcoma, can be challenging due to overlapping features. To explore the genomic and transcriptomic landscape of UPSb tumours, whole-exome sequencing (WES) and RNA sequencing (RNA-Seq) were performed on UPSb tumours. All tumours lacked hotspot mutations in IDH1/2 132 or 172 codons, thereby excluding the diagnosis of dedifferentiated chondrosarcoma. Recurrent somatic mutations in TP53 were identified in four of 14 samples (29%). Moreover, recurrent mutations in histone chromatin remodelling genes, including H3F3A, ATRX and DOT1L, were identified in five of 14 samples (36%), highlighting the potential role of deregulated chromatin remodelling pathways in UPSb tumourigenesis. The majority of recurrent mutations in chromatin remodelling genes identified here are reported in COSMIC, including the H3F3A G34 and K36 hotspot residues. Copy number alteration analysis identified gains and losses in genes that have been previously altered in UPSb or UPS of soft tissue. Eight somatic gene fusions were identified by RNA-Seq, two of which, CLTC-VMP1 and FARP1-STK24, were reported previously in multiple cancers. Five gene fusions were genomically characterised. Hierarchical clustering analysis, using RNA-Seq data, distinctly clustered UPSb tumours from osteosarcoma and other sarcomas, thus molecularly distinguishing UPSb from other sarcomas. RNA-Seq expression profiling analysis and quantitative reverse transcription-polymerase chain reaction showed an elevated expression in FGF23, which can be a potential molecular biomarker for UPSb. To our knowledge, this study represents the first comprehensive WES and RNA-Seq analysis of UPSb tumours revealing novel protein-coding recurrent gene mutations, gene fusions and identifying a potential UPSb molecular biomarker, thereby broadening the understanding of the pathogenic mechanisms and highlighting the possibility of developing novel targeted therapeutics. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Naser M Ali
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stefania Niada
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Anna T Brini
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Mark R Morris
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Sathishkumar Kurusamy
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Abdullah Alholle
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David Huen
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Franck Tirode
- Department of Translational Research and Innovation, Centre Léon Bérard, Université Claude Bernard Lyon 1, CNRS 5286, INSERM U1052, Cancer Research Center of Lyon, Lyon, France
| | - Vaiyapuri Sumathi
- Department of Musculoskeletal Pathology, The Royal Orthopaedic Hospital, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, UK
| | - Farida Latif
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Bairwa G, Caza M, Horianopoulos L, Hu G, Kronstad J. Role of clathrin-mediated endocytosis in the use of heme and hemoglobin by the fungal pathogen Cryptococcus neoformans. Cell Microbiol 2018; 21:e12961. [PMID: 30291809 DOI: 10.1111/cmi.12961] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022]
Abstract
Heme is a major source of iron for pathogens of humans, and its use is critical in determining the outcome of infection and disease. Cryptococcus neoformans is an encapsulated fungal pathogen that causes life-threatening infections in immunocompromised individuals. C. neoformans effectively uses heme as an iron source, but the underlying mechanisms are poorly defined. Non-iron metalloporphyrins (MPPs) are toxic analogues of heme and are thought to enter microbial cells via endogenous heme acquisition systems. We therefore carried out a mutant screen for susceptibility against manganese MPP (MnMPP) to identify new components for heme uptake in C. neoformans. We identified several genes involved in signalling, DNA repair, sugar metabolism, and trafficking that play important roles in susceptibility to MnMPP and in the use of heme as an iron source. We focused on investigating the role of clathrin-mediated endocytosis (CME) and found that several components of CME including Chc1, Las17, Rvs161, and Rvs167 are required for growth on heme and hemoglobin and for endocytosis and intracellular trafficking of these molecules. We show that the hemoglobin uptake process in C. neoformans involves clathrin heavy chain, Chc1, which appears to colocalise with hemoglobin-containing vesicles and to potentially assist in proper delivery of hemoglobin to the vacuole. Additionally, C. neoformans strains lacking Chc1, Las17, Rvs161, or Rvs167 were defective in the elaboration of several key virulence factors, and a las17 mutant was avirulent in a mouse model of cryptococcosis. Overall, this study unveils crucial functions of CME in the use of heme iron by C. neoformans and reveals a role for CME in fungal pathogenesis.
Collapse
Affiliation(s)
- Gaurav Bairwa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Mélissa Caza
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Linda Horianopoulos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - James Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Giani M, den Otter WK, Briels WJ. Clathrin Assembly Regulated by Adaptor Proteins in Coarse-Grained Models. Biophys J 2017; 111:222-35. [PMID: 27410749 DOI: 10.1016/j.bpj.2016.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/29/2016] [Accepted: 06/01/2016] [Indexed: 11/18/2022] Open
Abstract
The assembly of clathrin triskelia into polyhedral cages during endocytosis is regulated by adaptor proteins (APs). We explore how APs achieve this by developing coarse-grained models for clathrin and AP2, employing a Monte Carlo click interaction, to simulate their collective aggregation behavior. The phase diagrams indicate that a crucial role is played by the mechanical properties of the disordered linker segment of AP. We also present a statistical-mechanical theory for the assembly behavior of clathrin, yielding good agreement with our simulations and experimental data from the literature. Adaptor proteins are found to regulate the formation of clathrin coats under certain conditions, but can also suppress the formation of cages.
Collapse
Affiliation(s)
- Matteo Giani
- Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands; Computational BioPhysics, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Wouter K den Otter
- Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands; Computational BioPhysics, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.
| | - Wim J Briels
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands; Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
15
|
Giani M, den Otter WK, Briels WJ. Early stages of clathrin aggregation at a membrane in coarse-grained simulations. J Chem Phys 2017; 146:155102. [DOI: 10.1063/1.4979985] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- M. Giani
- Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - W. K. den Otter
- Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - W. J. Briels
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Forschungszentrum Jülich, ICS 3, D-52425 Jülich, Germany
| |
Collapse
|
16
|
Nikitidou E, Khoonsari PE, Shevchenko G, Ingelsson M, Kultima K, Erlandsson A. Increased Release of Apolipoprotein E in Extracellular Vesicles Following Amyloid-β Protofibril Exposure of Neuroglial Co-Cultures. J Alzheimers Dis 2017; 60:305-321. [PMID: 28826183 PMCID: PMC5676865 DOI: 10.3233/jad-170278] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2017] [Indexed: 12/30/2022]
Abstract
Extracellular vesicles (EVs), including exosomes and larger microvesicles, have been implicated to play a role in several conditions, including Alzheimer's disease (AD). Since the EV content mirrors the intracellular environment, it could contribute with important information about ongoing pathological processes and may be a useful source for biomarkers, reflecting the disease progression. The aim of the present study was to analyze the protein content of EVs specifically released from a mixed co-culture of primary astrocytes, neurons, and oligodendrocytes treated with synthetic amyloid-β (Aβ42) protofibrils. The EV isolation was performed by ultracentrifugation and validated by transmission electron microscopy. Mass spectrometry analysis of the EV content revealed a total of 807 unique proteins, of which five displayed altered levels in Aβ42 protofibril exposed cultures. The most prominent protein was apolipoprotein E (apoE), and by western blot analysis we could confirm a threefold increase of apoE in EVs from Aβ42 protofibril exposed cells, compared to unexposed cells. Moreover, immunoprecipitation studies demonstrated that apoE was primarily situated inside the EVs, whereas immunocytochemistry indicated that the EVs most likely derived from the astrocytes and the neurons in the culture. The identified Aβ-induced sorting of apoE into EVs from cultured neuroglial cells suggests a possible role for intercellular transfer of apoE in AD pathology and encourage future studies to fully elucidate the clinical relevance of this event.
Collapse
Affiliation(s)
- Elisabeth Nikitidou
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Payam Emami Khoonsari
- Department of Medical Sciences, Clinical Chemistry, Uppsala University Academic Hospital, Uppsala, Sweden
| | - Ganna Shevchenko
- Department of Chemistry-BMC, AnalyticalChemistry, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University Academic Hospital, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Abstract
The voltage-dependent anion channel (VDAC) is the main interface between the cytosol and mitochondria of cells. It plays a crucial role in both mitochondrial metabolism and cell death. The main basic function of this channel is to mediate and gate the flux of small ions, metabolites, and adenosine triphosphate. Changes in its structure, and thus conformation, are expected to affect its activity and modulate the ability of cancer cells to expand. In this review, we describe a novel mechanism by which mitochondria of cells in hypoxia, a low level of oxygen, protects from apoptosis. In hypoxia, some mitochondria become enlarged due to hyperfusion. These mitochondria possess a truncated form of VDAC1 (VDAC1-ΔC), which is linked to the higher metabolic capacity and the greater resistance to cell death of hypoxic cells. However, not all of the VDAC1 protein is truncated, but the amount of the full-length form is diminished compared to the amount in normoxic cells. First, we describe how such a decrease effects cell proliferation, respiration, glycolysis, and other processes. Second, we report on a novel mitochondrial-endolysosomal crosstalk that leads to VDAC1 truncation. By pharmacological targeting of VDAC1-ΔC, the production of energy could be turned off and the sensitivity to cell death restored. This could counteract the favorable microenvironment that gives cancer cells a growth advantage and thereby disrupts the balance between life and death, which is controlled by VDAC1.
Collapse
Affiliation(s)
- N M Mazure
- CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice, Nice, France; CNRS GDR 3697 Micronit (www.micronit.fr)
| |
Collapse
|
18
|
Huang L, Wickramasekara SI, Akinyeke T, Stewart BS, Jiang Y, Raber J, Maier CS. Ion mobility-enhanced MS(E)-based label-free analysis reveals effects of low-dose radiation post contextual fear conditioning training on the mouse hippocampal proteome. J Proteomics 2016; 140:24-36. [PMID: 27020882 PMCID: PMC5029422 DOI: 10.1016/j.jprot.2016.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/15/2022]
Abstract
UNLABELLED Recent advances in the field of biodosimetry have shown that the response of biological systems to ionizing radiation is complex and depends on the type and dose of radiation, the tissue(s) exposed, and the time lapsed after exposure. The biological effects of low dose radiation on learning and memory are not well understood. An ion mobility-enhanced data-independent acquisition (MS(E)) approach in conjunction with the ISOQuant software tool was utilized for label-free quantification of hippocampal proteins with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-rays, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. Global proteome analysis revealed deregulation of 73 proteins (out of 399 proteins). Deregulated proteins indicated adverse effects of irradiation on myelination and perturbation of energy metabolism pathways involving a shift from the TCA cycle to glutamate oxidation. Our findings also indicate that proteins associated with synaptic activity, including vesicle recycling and neurotransmission, were altered in the irradiated mice. The elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which would be consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. SIGNIFICANCE This study is significant because the biological consequences of low dose radiation on learning and memory are complex and not yet well understood. We conducted a IMS-enhanced MS(E)-based label-free quantitative proteomic analysis of hippocampal tissue with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-ray, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. The IMS-enhanced MS(E) approach in conjunction with ISOQuant software was robust and accurate with low median CV values of 0.99% for the technical replicates of samples from both the sham and irradiated group. The biological variance was as low as 1.61% for the sham group and 1.31% for the irradiated group. The applied data generation and processing workflow allowed the quantitative evaluation of 399 proteins. The current proteomic analysis indicates that myelination is sensitive to low dose radiation. The observed protein level changes imply modulation of energy metabolism pathways in the radiation exposed group, specifically changes in protein abundance levels suggest a shift from TCA cycle to glutamate oxidation to satisfy energy demands. Most significantly, our study reveals deregulation of proteins involved in processes that govern synaptic activity including enhanced synaptic vesicle cycling, and altered long-term potentiation (LTP) and depression (LTD). An elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which is consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. Overall, our results underscore the importance of low dose radiation experiments for illuminating the sensitivity of biochemical pathways to radiation, and the modulation of potential repair and compensatory response mechanisms. This kind of studies and associated findings may ultimately lead to the design of strategies for ameliorating hippocampal and CNS injury following radiation exposure as part of medical therapies or as a consequence of occupational hazards.
Collapse
Affiliation(s)
- Lin Huang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | | | - Tunde Akinyeke
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Blair S Stewart
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
| |
Collapse
|
19
|
Pereira ASA, Cavalcanti MGS, Zingali RB, Lima-Filho JL, Chaves MEC. Isoforms of Hsp70-binding human LDL in adult Schistosoma mansoni worms. Parasitol Res 2015; 114:1145-52. [PMID: 25573694 DOI: 10.1007/s00436-014-4292-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/23/2014] [Indexed: 12/15/2022]
Abstract
Schistosoma mansoni is one of the most common parasites infecting humans. They are well adapted to the host, and this parasite's longevity is a consequence of effective escape from the host immune system. In the blood circulation, lipoproteins not only help to conceal the worm from attack by host antibodies but also act as a source of lipids for S. mansoni. Previous SEM studies showed that the low-density lipoprotein (LDL) particles present on the surface of adult S. mansoni worms decreased in size when the incubation time increased. In this study, immunocytochemical and proteomic analyses were used to locate and identify S. mansoni binding proteins to human plasma LDL. Ultrathin sections of adult worms were cut transversely from the anterior, medial and posterior regions of the parasite. Immunocytochemical experiments revealed particles of gold in the tegument, muscle region and spine in male worms and around vitelline cells in females. Immunoblotting and 2D-electrophoresis using incubations with human serum, anti-LDL antibodies and anti-chicken IgG peroxidase conjugate were performed to identify LDL-binding proteins in S. mansoni. Analysis of the binding proteins using LC-MS identified two isoforms of the Hsp70 chaperone in S. mansoni. Hsp70 is involved in the interaction with apoB in the cytoplasm and its transport to the endoplasmic reticulum. However, further studies are needed to clarify the functional role of Hsp70 in S. mansoni, mainly related to the interaction with human LDL.
Collapse
Affiliation(s)
- Adriana S A Pereira
- Laboratório de Expressão Gênica em Eucariotos, Instituto de Química - Departamento de Bioquímica, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, sala 1200, São Paulo, SP, 05508-000, Brazil,
| | | | | | | | | |
Collapse
|
20
|
Posiri P, Kondo H, Hirono I, Panyim S, Ongvarrasopone C. Successful yellow head virus infection of Penaeus monodon requires clathrin heavy chain. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2015; 435:480-487. [PMID: 32287457 PMCID: PMC7112056 DOI: 10.1016/j.aquaculture.2014.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/10/2014] [Accepted: 10/12/2014] [Indexed: 06/01/2023]
Abstract
Viral disease caused by the Yellow head virus (YHV) had great impact on economic loss in the aquaculture industry. Prevention or curing YHV disease is still not possible due to the lack of understanding of the basic mechanisms of YHV infection. In this report, the endocytosis inhibitors (chlorpromazine (CPZ), amiloride and methyl-β-cyclodextrin (MβCD)) were used to identify the cellular entry pathway of YHV. Pretreating shrimp with CPZ but not amiloride or MβCD followed by YHV challenge resulted in a significant reduction of YHV levels, suggesting that YHV entered the shrimp cells via clathrin-mediated endocytosis. Next, the major component of the clathrin-coated vesicle, Penaeus monodon clathrin heavy chain (PmCHC) was cloned and characterized. The complete coding sequence of PmCHC is 5055 bp encoding a putative protein of 1684 amino acids. Specific silencing of PmCHC mRNA by dsRNA-PmCHC showed an inhibition of YHV replication for 48 h post YHV injection as well as exhibiting a delay in shrimp mortality. These results indicated that PmCHC was an essential component for YHV infection of shrimp cells.
Collapse
Affiliation(s)
- Pratsaneeyaporn Posiri
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), Nakhon Pathom 73170 Thailand
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University (Salaya Campus), Nakhon Pathom 73170 Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
21
|
Gürol G, Demiralp DÖ, Yılmaz AK, Akman Ö, Ateş N, Karson A. Comparative proteomic approach in rat model of absence epilepsy. J Mol Neurosci 2014; 55:632-43. [PMID: 25323782 DOI: 10.1007/s12031-014-0402-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/11/2014] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate cellular proteins in the pathogenesis of the genetic rat model of absence epilepsy. Protein spots were identified with peptide mass fingerprinting analysis using matrix-assisted laser desorption ionization time of flight mass spectrometry. Data were gathered from the frontoparietal cortex and thalamus of Wistar Albino Glaxo/Rij (WAG/Rij) and Wistar by using two-dimensional gel electrophoresis (2D-PAGE). Six proteins (Clathrin light chain-A protein, Transmembrane EMP24 Domain-Containing Protein, Stathmin-4, Myosin Light Chain4, Rheb, phosphoserine phosphatase) were found to be differentially expressed in the frontoparietal cortex of WAG/Rij and Wistar rats in both age groups. Another set of six proteins (Protein FAM89A and Oasl1, Gemin2, NuDEL1, Pur-beta, 3-alpha HSD) were found to be differentially expressed in the thalamus of WAG/Rij and Wistar rats. Findings from the frontoparietal cortex suggest the presence of altered serine metabolism and increased vesicular trafficking in the frontoparietal cortex of WAG/Rij rats compared with Wistar rats. These differences in the protein levels might reflect the crucial role of these proteins and related pathways in the generation of absence seizures. In the thalamic specimens, age-dependent changes in protein expression were remarkable, suggesting that this phenomenon may be a precursor or a consequence of absence seizures. Our findings further highlight the potential role of the mTOR signaling pathway in absence epilepsy.
Collapse
Affiliation(s)
- Gönül Gürol
- Department of Physiology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | | | | | | | | | | |
Collapse
|
22
|
Ilie IM, den Otter WK, Briels WJ. Rotational Brownian Dynamics simulations of clathrin cage formation. J Chem Phys 2014; 141:065101. [DOI: 10.1063/1.4891306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Ioana M. Ilie
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wouter K. den Otter
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wim J. Briels
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
23
|
Abstract
Background Clathrin-mediated vesicular trafficking, the mechanism by which proteins and lipids are transported between membrane-bound organelles, accounts for a large proportion of import from the plasma membrane (endocytosis) and transport from the trans-Golgi network towards the endosomal system. Clathrin-mediated events are still poorly understood in the protozoan Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. In this study, clathrin heavy (TcCHC) and light (TcCLC) chain gene expression and protein localization were investigated in different developmental forms of T. cruzi (epimastigotes, trypomastigotes and amastigotes), using both polyclonal and monoclonal antibodies raised against T. cruzi recombinant proteins. Results Analysis by confocal microscopy revealed an accumulation of TcCHC and TcCLC at the cell anterior, where the flagellar pocket and Golgi complex are located. TcCLC partially colocalized with the Golgi marker TcRAB7-GFP and with ingested albumin, but did not colocalize with transferrin, a protein mostly ingested via uncoated vesicles at the cytostome/cytopharynx complex. Conclusion Clathrin heavy and light chains are expressed in T. cruzi. Both proteins typically localize anterior to the kinetoplast, at the flagellar pocket and Golgi complex region. Our data also indicate that in T. cruzi epimastigotes clathrin-mediated endocytosis of albumin occurs at the flagellar pocket, while clathrin-independent endocytosis of transferrin occurs at the cytostome/cytopharynx complex.
Collapse
|
24
|
|
25
|
Shen Q, He B, Lu N, Conradt B, Grant BD, Zhou Z. Phagocytic receptor signaling regulates clathrin and epsin-mediated cytoskeletal remodeling during apoptotic cell engulfment in C. elegans. Development 2013; 140:3230-43. [PMID: 23861060 PMCID: PMC3931732 DOI: 10.1242/dev.093732] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The engulfment and subsequent degradation of apoptotic cells by phagocytes is an evolutionarily conserved process that efficiently removes dying cells from animal bodies during development. Here, we report that clathrin heavy chain (CHC-1), a membrane coat protein well known for its role in receptor-mediated endocytosis, and its adaptor epsin (EPN-1) play crucial roles in removing apoptotic cells in Caenorhabditis elegans. Inactivating epn-1 or chc-1 disrupts engulfment by impairing actin polymerization. This defect is partially suppressed by inactivating UNC-60, a cofilin ortholog and actin server/depolymerization protein, further indicating that EPN-1 and CHC-1 regulate actin assembly during pseudopod extension. CHC-1 is enriched on extending pseudopods together with EPN-1, in an EPN-1-dependent manner. Epistasis analysis places epn-1 and chc-1 in the same cell-corpse engulfment pathway as ced-1, ced-6 and dyn-1. CED-1 signaling is necessary for the pseudopod enrichment of EPN-1 and CHC-1. CED-1, CED-6 and DYN-1, like EPN-1 and CHC-1, are essential for the assembly and stability of F-actin underneath pseudopods. We propose that in response to CED-1 signaling, CHC-1 is recruited to the phagocytic cup through EPN-1 and acts as a scaffold protein to organize actin remodeling. Our work reveals novel roles of clathrin and epsin in apoptotic-cell internalization, suggests a Hip1/R-independent mechanism linking clathrin to actin assembly, and ties the CED-1 pathway to cytoskeleton remodeling.
Collapse
Affiliation(s)
- Qian Shen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
26
|
Agarwal S, Rastogi R, Gupta D, Patel N, Raje M, Mukhopadhyay A. Clathrin-mediated hemoglobin endocytosis is essential for survival of Leishmania. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1065-77. [DOI: 10.1016/j.bbamcr.2013.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 12/21/2012] [Accepted: 01/08/2013] [Indexed: 11/27/2022]
|
27
|
Graf C, Gao Q, Schütz I, Noufele CN, Ruan W, Posselt U, Korotianskiy E, Nordmeyer D, Rancan F, Hadam S, Vogt A, Lademann J, Haucke V, Rühl E. Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7598-613. [PMID: 22524440 DOI: 10.1021/la204913t] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The influence of the surface functionalization of silica particles on their colloidal stability in physiological media is studied and correlated with their uptake in cells. The surface of 55 ± 2 nm diameter silica particles is functionalized by amino acids or amino- or poly(ethylene glycol) (PEG)-terminated alkoxysilanes to adjust the zeta potential from highly negative to positive values in ethanol. A transfer of the particles into water, physiological buffers, and cell culture media reduces the absolute value of the zeta potential and changes the colloidal stability. Particles stabilized by L-arginine, L-lysine, and amino silanes with short alkyl chains are only moderately stable in water and partially in PBS or TRIS buffer, but aggregate in cell culture media. Nonfunctionalized, N-(6-aminohexyl)-3-aminopropyltrimethoxy silane (AHAPS), and PEG-functionalized particles are stable in all media under study. The high colloidal stability of positively charged AHAPS-functionalized particles scales with the ionic strength of the media, indicating a mainly electrostatical stabilization. PEG-functionalized particles show, independently from the ionic strength, no or only minor aggregation due to additional steric stabilization. AHAPS stabilized particles are readily taken up by HeLa cells, likely as the positive zeta potential enhances the association with the negatively charged cell membrane. Positively charged particles stabilized by short alkyl chain aminosilanes adsorb on the cell membrane, but are weakly taken up, since aggregation inhibits their transport. Nonfunctionalized particles are barely taken up and PEG-stabilized particles are not taken up at all into HeLa cells, despite their high colloidal stability. The results indicate that a high colloidal stability of nanoparticles combined with an initial charge-driven adsorption on the cell membrane is essential for efficient cellular uptake.
Collapse
Affiliation(s)
- Christina Graf
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Protein-protein interactions in clathrin vesicular assembly: radial distribution of evolutionary constraints in interfaces. PLoS One 2012; 7:e31445. [PMID: 22384024 PMCID: PMC3285160 DOI: 10.1371/journal.pone.0031445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 01/10/2012] [Indexed: 11/19/2022] Open
Abstract
In eukaryotic organisms clathrin-coated vesicles are instrumental in the processes of endocytosis as well as intracellular protein trafficking. Hence, it is important to understand how these vesicles have evolved across eukaryotes, to carry cargo molecules of varied shapes and sizes. The intricate nature and functional diversity of the vesicles are maintained by numerous interacting protein partners of the vesicle system. However, to delineate functionally important residues participating in protein-protein interactions of the assembly is a daunting task as there are no high-resolution structures of the intact assembly available. The two cryoEM structures closely representing intact assembly were determined at very low resolution and provide positions of Cα atoms alone. In the present study, using the method developed by us earlier, we predict the protein-protein interface residues in clathrin assembly, taking guidance from the available low-resolution structures. The conservation status of these interfaces when investigated across eukaryotes, revealed a radial distribution of evolutionary constraints, i.e., if the members of the clathrin vesicular assembly can be imagined to be arranged in spherical manner, the cargo being at the center and clathrins being at the periphery, the detailed phylogenetic analysis of these members of the assembly indicated high-residue variation in the members of the assembly closer to the cargo while high conservation was noted in clathrins and in other proteins at the periphery of the vesicle. This points to the strategy adopted by the nature to package diverse proteins but transport them through a highly conserved mechanism.
Collapse
|
29
|
Ramanan V, Agrawal NJ, Liu J, Engles S, Toy R, Radhakrishnan R. Systems biology and physical biology of clathrin-mediated endocytosis. Integr Biol (Camb) 2011; 3:803-15. [PMID: 21792431 PMCID: PMC3153420 DOI: 10.1039/c1ib00036e] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this review, we describe the application of experimental data and modeling of intracellular endocytic trafficking mechanisms with a focus on the process of clathrin-mediated endocytosis. A detailed parts-list for the protein-protein interactions in clathrin-mediated endocytosis has been available for some time. However, recent experimental, theoretical, and computational tools have proved to be critical in establishing a sequence of events, cooperative dynamics, and energetics of the intracellular process. On the experimental front, total internal reflection fluorescence microscopy, photo-activated localization microscopy, and spinning-disk confocal microscopy have focused on assembly and patterning of endocytic proteins at the membrane, while on the theory front, minimal theoretical models for clathrin nucleation, biophysical models for membrane curvature and bending elasticity, as well as methods from computational structural and systems biology, have proved insightful in describing membrane topologies, curvature mechanisms, and energetics.
Collapse
Affiliation(s)
- Vyas Ramanan
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Neeraj J. Agrawal
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Jin Liu
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Sean Engles
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Randall Toy
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Zhu XD, Zhuang Y, Ben JJ, Qian LL, Huang HP, Bai H, Sha JH, He ZG, Chen Q. Caveolae-dependent endocytosis is required for class A macrophage scavenger receptor-mediated apoptosis in macrophages. J Biol Chem 2011; 286:8231-8239. [PMID: 21205827 DOI: 10.1074/jbc.m110.145888] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SR-A (class A macrophage scavenger receptor) is a transmembrane receptor that can bind many different ligands, including modified lipoproteins that are relevant to the development of vascular diseases. However, the precise endocytic pathways of SR-A/mediated ligands internalization are not fully characterized. In this study, we show that the SR-A/ligand complex can be endocytosed by both clathrin- and caveolae-dependent pathways. Internalizations of SR-A-lipoprotein (such as acLDL) complexes primarily go through clathrin-dependent endocytosis. In contrast, macrophage apoptosis triggered by SR-A-fucoidan internalization requires caveolae-dependent endocytosis. The caveolae-dependent process activates p38 kinase and JNK signaling, whereas the clathrin-mediated endocytosis elicits ERK signaling. Our results suggest that different SR-A endocytic pathways have distinct functional consequences due to the activation of different signaling cascades in macrophages.
Collapse
Affiliation(s)
- Xu-Dong Zhu
- From the Institute of Reproductive Medicine and; Atherosclerosis Research Center, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, China and
| | - Yan Zhuang
- Atherosclerosis Research Center, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, China and
| | - Jing-Jing Ben
- Atherosclerosis Research Center, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, China and
| | - Ling-Ling Qian
- Atherosclerosis Research Center, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, China and
| | - Han-Peng Huang
- Atherosclerosis Research Center, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, China and
| | - Hui Bai
- Atherosclerosis Research Center, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, China and
| | - Jia-Hao Sha
- From the Institute of Reproductive Medicine and
| | - Zhi-Gang He
- the Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Qi Chen
- From the Institute of Reproductive Medicine and; Atherosclerosis Research Center, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, China and.
| |
Collapse
|
31
|
den Otter WK, Renes MR, Briels WJ. Asymmetry as the key to clathrin cage assembly. Biophys J 2010; 99:1231-8. [PMID: 20713007 DOI: 10.1016/j.bpj.2010.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/14/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022] Open
Abstract
The self-assembly of clathrin proteins into polyhedral cages is simulated for the first time (to our knowledge) by introducing a coarse-grain triskelion particle modeled after clathrin's characteristic shape. The simulations indicate that neither this shape, nor the antiparallel binding of four legs along the lattice edges, is sufficient to induce cage formation from a random solution. Asymmetric intersegmental interactions, which probably result from a patchy distribution of interactions along the legs' surfaces, prove to be crucial for the efficient self-assembly of cages.
Collapse
Affiliation(s)
- Wouter K den Otter
- Computational BioPhysics, University of Twente, Enschede, The Netherlands.
| | | | | |
Collapse
|
32
|
Hussain KM, Leong KLJ, Ng MML, Chu JJH. The essential role of clathrin-mediated endocytosis in the infectious entry of human enterovirus 71. J Biol Chem 2010; 286:309-21. [PMID: 20956521 DOI: 10.1074/jbc.m110.168468] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Little is currently known about the infectious entry process of human enterovirus 71 (HEV71) into host cells, which may represent potential anti-viral targeting sites. In this study a targeted small-interfering RNA (siRNA) screening platform assay was established and validated to identify and profile key cellular genes involved in processes of endocytosis, cytoskeletal dynamics, and endosomal trafficking essential for HEV71 infection. Screen evaluation was conducted via the expression of well characterized dominant-negative mutants, bioimaging studies (double-labeled immunofluorescence assays, transmission electron microscopy analysis), secondary siRNA-based dosage dependence studies, and drug inhibition assays. The infectious entry of HEV71 into rhabdomyosarcoma cells was shown to be significantly inhibited by siRNAs targeting genes associated with clathrin-mediated endocytosis (CME) that include AP2A1, ARRB1, CLTC, CLTCL1, SYNJ1, ARPC5, PAK1, ROCK1, and WASF1. The functional role of CME was verified by the observation of strong co-localization between HEV71 particles and clathrin as well as dose-dependent inhibition of HEV71 infection upon siRNA knockdown of CME-associated genes. HEV71 entry by CME was further confirmed via inhibition by dominant-negative EPS15 mutants and treatment of CME drug inhibitors, with more than 80% inhibition observed at 20 μm chlorpromazine. Furthermore, HEV71 infection was shown to be sensitive to the disruption of human genes in regulating early to late endosomal trafficking as well as endosomal acidic pH. The identification of clathrin-mediated endocytosis as the entry pathway for HEV71 infection of susceptible host cells contributes to a better understanding of HEV71 pathogenesis and enables future development of anti-viral strategies against HEV71 infection.
Collapse
Affiliation(s)
- Khairunnisa' Mohamed Hussain
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597
| | | | | | | |
Collapse
|
33
|
Different rotavirus strains enter MA104 cells through different endocytic pathways: the role of clathrin-mediated endocytosis. J Virol 2010; 84:9161-9. [PMID: 20631149 DOI: 10.1128/jvi.00731-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rotaviruses, the single most important agents of acute severe gastroenteritis in children, are nonenveloped viruses formed by a three-layered capsid that encloses a genome formed by 11 segments of double-stranded RNA. The mechanism of entry of these viruses into the host cell is not well understood. The best-studied strain, RRV, which is sensitive to neuraminidase (NA) treatment of the cells, uses integrins alpha2 beta1 and alphav beta3 and the heat shock protein hsc70 as receptors and enters MA104 cells through a non-clathrin-, non-caveolin-mediated pathway that depends on a functional dynamin and on the presence of cholesterol on the cell surface. In this work, using a combination of pharmacological, biochemical, and genetic approaches, we compared the entry characteristics of four rotavirus strains known to have different receptor requirements. We chose four rotavirus strains that represent all phenotypic combinations of NA resistance or sensitivity and integrin dependence or independence. We found that even though all the strains share their requirements for hsc70, dynamin, and cholesterol, three of them differ from the simian strain RRV in the endocytic pathway used. The human strain Wa, porcine strain TFR-41, and bovine strain UK seem to enter the cell through clathrin-mediated endocytosis, since treatments that inhibit this pathway block their infectivity; consistent with this entry route, these strains were sensitive to changes in the endosomal pH. The inhibition of other endocytic mechanisms, such as macropinocytosis or caveola-mediated uptake, had no effect on the internalization of the rotavirus strains tested here.
Collapse
|
34
|
Windler SL, Bilder D. Endocytic internalization routes required for delta/notch signaling. Curr Biol 2010; 20:538-43. [PMID: 20226669 PMCID: PMC2845733 DOI: 10.1016/j.cub.2010.01.049] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 01/25/2010] [Accepted: 01/25/2010] [Indexed: 12/15/2022]
Abstract
The internalization of transmembrane receptors from the cell surface plays a central role in signal regulation. Receptor internalization can occur through different routes; however, because of the difficulty in selectively blocking these routes in vivo, their roles in signaling are poorly understood. Here we use null mutations in Drosophila dynamin, clathrin, and AP-2 adaptor subunits to analyze internalization requirements for the Delta ligand and its receptor, Notch. Bulk Notch is internalized via AP-2-dependent endocytosis, but signaling by Notch requires AP-2-independent clathrin-dependent endocytosis, highlighting a distinction between Notch endocytic routes required for degradation versus signaling activation. Signaling by Delta requires dynamin, but whether this generates a pulling force of Delta on Notch or allows for Delta entry into a recycling pathway to gain signaling competence is widely debated. Surprisingly, we show that signaling by Delta in germline cells can occur by clathrin-independent endocytosis, when endosomal entry is blocked, and when activity of Rab11 or its effectors is reduced, suggesting that Delta need not pass through a recognized recycling pathway to achieve signaling competence. The absolute requirement for dynamin-dependent endocytosis but not endosomal entry or Rab11 activity supports "pulling force" rather than "recycling" models for Delta activation.
Collapse
Affiliation(s)
- Sarah L. Windler
- University of California, Berkeley, Department of Molecular and Cell Biology, 142 Life Sciences Addition #3200, Berkeley, CA 94720-3200
| | - David Bilder
- University of California, Berkeley, Department of Molecular and Cell Biology, 142 Life Sciences Addition #3200, Berkeley, CA 94720-3200
| |
Collapse
|
35
|
den Otter WK, Renes MR, Briels WJ. Self-assembly of three-legged patchy particles into polyhedral cages. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:104103. [PMID: 21389437 DOI: 10.1088/0953-8984/22/10/104103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The self-assembly of rigid three-legged building blocks into polyhedral cages is investigated by patchy particle simulations. A four-site anisotropic interaction potential is introduced to make pairs of overlapping legs bind in an anti-parallel fashion, thereby forming the edges of a polyhedron of pentagons and hexagons. A torsional potential, reflecting an asymmetry or polarity in the legs' binding potential, proves crucial for the successful formation of closed fullerene-like cages. Self-assembly proceeds by a nucleation-and-growth mechanism, with a high success rate of cage closure. The size distribution of the self-assembled buckyballs is largely determined by the pucker angle of the particle. Nature explores a similar building block, the clathrin triskelion, to regulate vesicle formation at the cell membrane during endocytosis.
Collapse
Affiliation(s)
- Wouter K den Otter
- Computational Biophysics Group, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | | | | |
Collapse
|
36
|
Abstract
Endocytosis occurs at the cell surface and involves internalization of the plasma membrane (PM) along with its constituent membrane proteins and lipids. Endocytosis is involved in sampling of the extracellular milieu and also serves to regulate various processes initiated at the cell surface. These include nutrient uptake, signaling from cell-surface receptors, and many other processes essential for cell and tissue functioning in metazoans. It is also central to the maintenance of PM lipid and protein homeostasis. There are multiple means of internalization that operate concurrently, at the cell surface. With advancement in high-resolution visualization techniques, it is now possible to track multiple endocytic cargo at the same time, revealing a remarkable diversity of endocytic processes in a single cell. A combination of live cell imaging and efficient genetic manipulations has also aided in understanding the functional hierarchy of molecular players in these mechanisms of internalization. Here we provide an account of various endocytic routes, their mechanisms of operation and occurrence across phyla.
Collapse
|
37
|
Small interference RNA profiling reveals the essential role of human membrane trafficking genes in mediating the infectious entry of dengue virus. Virol J 2010; 7:24. [PMID: 20122152 PMCID: PMC2825209 DOI: 10.1186/1743-422x-7-24] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 02/01/2010] [Indexed: 12/23/2022] Open
Abstract
Background Dengue virus (DENV) is the causative agent of Dengue fever and the life-threatening Dengue Haemorrhagic fever or Dengue shock syndrome. In the absence of anti-viral agents or vaccine, there is an urgent need to develop an effective anti-viral strategy against this medically important viral pathogen. The initial interplay between DENV and the host cells may represent one of the potential anti-viral targeting sites. Currently the involvements of human membrane trafficking host genes or factors that mediate the infectious cellular entry of dengue virus are not well defined. Results In this study, we have used a targeted small interfering RNA (siRNA) library to identify and profile key cellular genes involved in processes of endocytosis, cytoskeletal dynamics and endosome trafficking that are important and essential for DENV infection. The infectious entry of DENV into Huh7 cells was shown to be potently inhibited by siRNAs targeting genes associated with clathrin-mediated endocytosis. The important role of clathrin-mediated endocytosis was confirmed by the expression of well-characterized dominant-negative mutants of genes in this pathway and by using the clathrin endocytosis inhibitor chlorpromazine. Furthermore, DENV infection was shown to be sensitive to the disruption of human genes in regulating the early to late endosomal trafficking as well as the endosomal acidic pH. The importance and involvement of both actin and microtubule dynamics in mediating the infectious entry of DENV was also revealed in this study. Conclusions Together, the findings from this study have provided a detail profiling of the human membrane trafficking cellular genes and the mechanistic insight into the interplay of these host genes with DENV to initiate an infection, hence broadening our understanding on the entry pathway of this medically important viral pathogen. These data may also provide a new potential avenue for development of anti-viral strategies and treatment of DENV infection.
Collapse
|
38
|
Bogdanovic E, Coombs N, Dumont DJ. Oligomerized Tie2 localizes to clathrin-coated pits in response to angiopoietin-1. Histochem Cell Biol 2009; 132:225-37. [PMID: 19424712 DOI: 10.1007/s00418-009-0603-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2009] [Indexed: 12/27/2022]
Abstract
The tyrosine kinase receptor Tie2 is expressed on endothelial cells, and together with its ligand angiopoietin-1 (Ang1), is important for angiogenesis and vascular stability. Upon activation by Ang1, Tie2 is rapidly internalized and degraded, a mechanism most likely necessary to attenuate receptor activity. Using immunogold electron microscopy, we show that on the surface of endothelial cells, Tie2 is arranged in variably sized clusters containing dimers and higher order oligomers. Clusters of Tie2 were expressed on the apical and basolateral plasma membranes, and on the tips of microvilli. Upon activation by Ang1, Tie2 co-localized with the clathrin heavy chain at the apical and basolateral plasma membranes and within endothelial cells indicating that Tie2 internalizes through clathrin-coated pits. Inhibiting cellular endocytosis by depleting cellular potassium or by acidifying the cytosol blocked the internalization of Tie2 in response to Ang1. Our results suggest that one pathway mediating the internalization of Tie2 in response to Ang1 is through clathrin-coated pits.
Collapse
Affiliation(s)
- Elena Bogdanovic
- Molecular and Cellular Biology Research, Sunnybrook Research Institute, 2075 Bayview Avenue, Research Building, S-218, Toronto, ON, M4N 3M5, Canada
| | | | | |
Collapse
|
39
|
Abstract
The term "biological complexes" broadly encompasses particles as diverse as multisubunit enzymes, viral capsids, transport cages, molecular nets, ribosomes, nucleosomes, biological membrane components and amyloids. The complexes represent a broad range of stability and composition. Atomic force microscopy offers a wealth of structural and functional data about such assemblies. For this review, we choose to comment on the significance of AFM to study various aspects of biology of selected nonmembrane protein assemblies. Such particles are large enough to reveal many structural details under the AFM probe. Importantly, the specific advantages of the method allow for gathering dynamic information about their formation, stability or allosteric structural changes critical for their function. Some of them have already found their way to nanomedical or nanotechnological applications. Here we present examples of studies where the AFM provided pioneering information about the biology of complexes, and examples of studies where the simplicity of the method is used toward the development of potential diagnostic applications.
Collapse
|
40
|
Abstract
Phagosome maturation is the process by which internalized particles (such as bacteria and apoptotic cells) are trafficked into a series of increasingly acidified membrane-bound structures, leading to particle degradation. The characterization of the phagosomal proteome and studies in model organisms and mammals have led to the identification of numerous candidate proteins that cooperate to control the maturation of phagosomes containing different particles. A subset of these candidate proteins makes up the first pathway to be identified for the maturation of apoptotic cell-containing phagosomes. This suggests that a machinery that is distinct from receptor-mediated endocytosis is used in phagosome maturation.
Collapse
Affiliation(s)
- Jason M Kinchen
- Beirne B. Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22902, USA.
| | | |
Collapse
|
41
|
López-Soto F, González-Robles A, Salazar-Villatoro L, León-Sicairos N, Piña-Vázquez C, Salazar EP, de la Garza M. Entamoeba histolytica uses ferritin as an iron source and internalises this protein by means of clathrin-coated vesicles. Int J Parasitol 2008; 39:417-26. [PMID: 18848948 DOI: 10.1016/j.ijpara.2008.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/27/2008] [Accepted: 08/31/2008] [Indexed: 01/05/2023]
Abstract
Entamoeba histolytica is a parasitic protozoan that produces dysentery and often reaches the liver, leading to abscess formation. Ferritin is an iron-storage protein that is mainly found in liver and spleen in mammals. The liver contains a plentiful source of iron for amoebae multiplying in that organ, making it a prime target for infection since iron is essential for the growth of this parasite. The aim of this study was to determine whether trophozoites are able to take up ferritin and internalise this protein for their growth in axenic culture. Interaction between the amoebae and ferritin was studied by flow cytometry, confocal laser-scanning microscopy and transmission electron microscopy. Amoebae were viable in iron supplied by ferritin. Trophozoites quickly internalised ferritin via clathrin-coated vesicles, a process that was initiated within the first 2 min of incubation. In 30 min, ferritin was found colocalizing with the LAMP-2 protein at vesicles in the cytosol. The uptake of ferritin was time- temperature- and concentration-dependent, specific and saturated at 46 nM of ferritin. Haemoglobin and holo-transferrin did not compete with ferritin for binding to amoebae. Amoebae cleaved ferritin leading to the production of several different sized fragments. Cysteine proteases of 100, 75 and 50 kDa from amoeba extracts were observed in gels copolymerised with ferritin. For a pathogen such as E. histolytica, the capacity to utilise ferritin as an iron source may well explain its high pathogenic potential in the liver.
Collapse
Affiliation(s)
- Fernando López-Soto
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México DF 07000, Mexico
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Anterograde transport in the early secretory pathway is mediated by COPII-coated vesicles. Stagg et al. (2008) have now visualized the double-layered COPII coat using electron cryomicroscopy, providing insight into how coats are assembled to accommodate cargo of different sizes.
Collapse
Affiliation(s)
- Frederick M Hughson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
43
|
Stagg SM, LaPointe P, Razvi A, Gürkan C, Potter CS, Carragher B, Balch WE. Structural basis for cargo regulation of COPII coat assembly. Cell 2008; 134:474-84. [PMID: 18692470 PMCID: PMC2649882 DOI: 10.1016/j.cell.2008.06.024] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 05/01/2008] [Accepted: 06/09/2008] [Indexed: 11/30/2022]
Abstract
Using cryo-electron microscopy, we have solved the structure of an icosidodecahedral COPII coat involved in cargo export from the endoplasmic reticulum (ER) coassembled from purified cargo adaptor Sec23-24 and Sec13-31 lattice-forming complexes. The coat structure shows a tetrameric assembly of the Sec23-24 adaptor layer that is well positioned beneath the vertices and edges of the Sec13-31 lattice. Fitting the known crystal structures of the COPII proteins into the density map reveals a flexible hinge region stemming from interactions between WD40 beta-propeller domains present in Sec13 and Sec31 at the vertices. The structure shows that the hinge region can direct geometric cage expansion to accommodate a wide range of bulky cargo, including procollagen and chylomicrons, that is sensitive to adaptor function in inherited disease. The COPII coat structure leads us to propose a mechanism by which cargo drives cage assembly and membrane curvature for budding from the ER.
Collapse
Affiliation(s)
- Scott M Stagg
- National Resource for Automated Molecular Microscopy, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|