1
|
Xavier S, Nguyen V, Khairnar V, Phan A, Yang L, Nelson MS, Shukla RP, Wang J, Li A, Geng H, Lee J, Sadras T, Pham LV, Weisenburger DD, Chan WC, Lang KS, Shouse GP, Danilov AV, Song JY, Parekh S, Müschen M, Ngo VN. CEACAM1 as a mediator of B-cell receptor signaling in mantle cell lymphoma. Nat Commun 2025; 16:4967. [PMID: 40436855 PMCID: PMC12120064 DOI: 10.1038/s41467-025-60208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 05/19/2025] [Indexed: 06/01/2025] Open
Abstract
B-cell receptor (BCR) signaling plays an important role in the pathogenesis of mantle cell lymphoma (MCL), but the detailed mechanisms are not fully understood. In this study, through a genome-wide loss-of-function screen, we identify carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) as an essential factor in a subset of MCL tumors. Our signal transduction studies reveal that CEACAM1 plays a critical role in BCR activation through involvement in two dynamic processes. First, following BCR engagement, CEACAM1 co-localizes to the membrane microdomains (lipid rafts) by anchoring to the F-actin cytoskeleton through the adaptor protein filamin A. Second, CEACAM1 recruits and increases the abundance of SYK in the BCR complex leading to BCR activation. These activities of CEACAM1 require its cytoplasmic tail and the N-terminal ectodomain. Considering that previous studies have extensively characterized CEACAM1 as an ITIM-bearing inhibitory receptor, our findings regarding its activating role are both surprising and context-dependent, which may have implications for BCR-targeting therapies.
Collapse
MESH Headings
- Lymphoma, Mantle-Cell/metabolism
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/pathology
- Humans
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Signal Transduction
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/genetics
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Syk Kinase/metabolism
- Membrane Microdomains/metabolism
- Cell Line, Tumor
- Animals
- Filamins/metabolism
- Mice
- Actin Cytoskeleton/metabolism
Collapse
Affiliation(s)
- Serene Xavier
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Vivian Nguyen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Vishal Khairnar
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - An Phan
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Lu Yang
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Michael S Nelson
- Light Microscopy and Digital Imaging Core, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ravi P Shukla
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jinhui Wang
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Aimin Li
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jaewoong Lee
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale University, New Haven, CT, USA
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Korea
| | - Teresa Sadras
- Olivia Newton-John Cancer Research Institute, Heidelberg, Melbourne, VIC, Australia
| | - Lan V Pham
- Oncology Discovery, Abbvie Inc., South San Francisco, CA, USA
| | - Dennis D Weisenburger
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA
| | - Karl S Lang
- Institute of Immunology, University Hospital Essen, Essen, Germany
| | - Geoffrey P Shouse
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, USA
| | - Alexey V Danilov
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, USA
| | - Joo Y Song
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA
| | - Samir Parekh
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Vu N Ngo
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA.
| |
Collapse
|
2
|
Svistunov VO, Ehrmann KJ, Lencer WI, Schmieder SS. Sorting of complex sphingolipids within the cellular endomembrane systems. Front Cell Dev Biol 2025; 12:1490870. [PMID: 40078962 PMCID: PMC11897003 DOI: 10.3389/fcell.2024.1490870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025] Open
Abstract
Cells contain a plethora of structurally diverse lipid species, which are unevenly distributed across the different cellular membrane compartments. Some of these lipid species require vesicular trafficking to reach their subcellular destinations. Here, we review recent advances made in the field that contribute to understanding lipid sorting during endomembrane trafficking.
Collapse
Affiliation(s)
- Victor O. Svistunov
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
| | - Kigumbi J. Ehrmann
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
| | - Wayne I. Lencer
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Harvard Digestive Diseases Center, Boston, MA, United States
| | - S. S. Schmieder
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Eskandari T, Eivazzadeh Y, Khaleghinia F, Kashi F, Oksenych V, Haghmorad D. Lipid Antigens: Revealing the Hidden Players in Adaptive Immune Responses. Biomolecules 2025; 15:84. [PMID: 39858478 PMCID: PMC11763959 DOI: 10.3390/biom15010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Traditionally, research on the adaptive immune system has focused on protein antigens, but emerging evidence has underscored the essential role of lipid antigens in immune modulation. Lipid antigens are presented by CD1 molecules and activate invariant natural killer T (iNKT) cells and group 1 CD1-restricted T cells, whereby they impact immune responses to pathogens and tumors. Recent advances in mass spectrometry, imaging techniques, and lipidomics have revolutionized the identification and characterization of lipid antigens and enhanced our understanding of their structural diversity and functional significance. These advancements have paved the way for lipid-based vaccines and immunotherapies through the application of nanoparticles and synthetic lipid antigens designed to boost immune responses against cancers and infectious diseases. Lipid trafficking, CD1 molecule interactions, and the immune system's response to lipid antigens are yet to be completely understood, particularly in the context of autoimmunity and microbial infections. In the years to come, continued research efforts are needed to uncover its underlying biological mechanisms and to exploit the full potential of therapies directed against lipid antigens.
Collapse
Affiliation(s)
- Tamana Eskandari
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Yasamin Eivazzadeh
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Fatemeh Khaleghinia
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Fatemeh Kashi
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | | | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| |
Collapse
|
4
|
Bauvois B, Nguyen-Khac F, Merle-Béral H, Susin SA. CD38/NAD + glycohydrolase and associated antigens in chronic lymphocytic leukaemia: From interconnected signalling pathways to therapeutic strategies. Biochimie 2024; 227:135-151. [PMID: 39009062 DOI: 10.1016/j.biochi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogenous disease characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes. The spreading of the leukaemia relies on the CLL cell's ability to survive in the blood and migrate to and proliferate within the bone marrow and lymphoid tissues. Some patients with CLL are either refractory to the currently available therapies or relapse after treatment; this emphasizes the need for novel therapeutic strategies that improving clinical responses and overcome drug resistance. CD38 is a marker of a poor prognosis and governs a set of survival, proliferation and migration signals that contribute to the pathophysiology of CLL. The literature data evidence a spatiotemporal association between the cell surface expression of CD38 and that of other CLL antigens, such as the B-cell receptor (BCR), CD19, CD26, CD44, the integrin very late antigen 4 (VLA4), the chemokine receptor CXCR4, the vascular endothelial growth factor receptor-2 (VEGF-R2), and the neutrophil gelatinase-associated lipocalin receptor (NGAL-R). Most of these proteins contribute to CLL cell survival, proliferation and trafficking, and cooperate with CD38 in multilayered signal transduction processes. In general, these antigens have already been validated as therapeutic targets in cancer, and a broad repertoire of specific monoclonal antibodies and derivatives are available. Here, we review the state of the art in this field and examine the therapeutic opportunities for cotargeting CD38 and its partners in CLL, e.g. by designing novel bi-/trispecific antibodies.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/immunology
- Signal Transduction
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/immunology
- Animals
Collapse
Affiliation(s)
- Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France.
| | - Hélène Merle-Béral
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| |
Collapse
|
5
|
Peeters R, Jellusova J. Lipid metabolism in B cell biology. Mol Oncol 2024; 18:1795-1813. [PMID: 38013654 PMCID: PMC11223608 DOI: 10.1002/1878-0261.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
In recent years, the field of immunometabolism has solidified its position as a prominent area of investigation within the realm of immunological research. An expanding body of scientific literature has unveiled the intricate interplay between energy homeostasis, signalling molecules, and metabolites in relation to fundamental aspects of our immune cells. It is now widely accepted that disruptions in metabolic equilibrium can give rise to a myriad of pathological conditions, ranging from autoimmune disorders to cancer. Emerging evidence, although sometimes fragmented and anecdotal, has highlighted the indispensable role of lipids in modulating the behaviour of immune cells, including B cells. In light of these findings, this review aims to provide a comprehensive overview of the current state of knowledge regarding lipid metabolism in the context of B cell biology.
Collapse
Affiliation(s)
- Rens Peeters
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| | - Julia Jellusova
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| |
Collapse
|
6
|
Patton JT, Woyach JA. Targeting the B cell receptor signaling pathway in chronic lymphocytic leukemia. Semin Hematol 2024; 61:100-108. [PMID: 38749798 DOI: 10.1053/j.seminhematol.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 06/09/2024]
Abstract
Aberrant signal transduction through the B cell receptor (BCR) plays a critical role in the pathogenesis of chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). BCR-dependent signaling is necessary for the growth and survival of neoplastic cells, making inhibition of down-stream pathways a logical therapeutic strategy. Indeed, selective inhibitors against Bruton's tyrosine kinase (BTK) and phosphoinositide 3-kinase (PI3K) have been shown to induce high rates of response in CLL and other B cell lymphomas. In particular, the development of BTK inhibitors revolutionized the treatment approach to CLL, demonstrating long-term efficacy. While BTK inhibitors are widely used for multiple lines of treatment, PI3K inhibitors are much less commonly utilized, mainly due to toxicities. CLL remains an incurable disease and effective treatment options after relapse or development of TKI resistance are greatly needed. This review provides an overview of BCR signaling, a summary of the current therapeutic landscape, and a discussion of the ongoing trials targeting BCR-associated kinases.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Signal Transduction/drug effects
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Molecular Targeted Therapy
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Phosphoinositide-3 Kinase Inhibitors/therapeutic use
- Phosphoinositide-3 Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- John T Patton
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH.
| |
Collapse
|
7
|
Marques-da-Silva D, Lagoa R. Rafting on the Evidence for Lipid Raft-like Domains as Hubs Triggering Environmental Toxicants' Cellular Effects. Molecules 2023; 28:6598. [PMID: 37764374 PMCID: PMC10536579 DOI: 10.3390/molecules28186598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The plasma membrane lipid rafts are cholesterol- and sphingolipid-enriched domains that allow regularly distributed, sub-micro-sized structures englobing proteins to compartmentalize cellular processes. These membrane domains can be highly heterogeneous and dynamic, functioning as signal transduction platforms that amplify the local concentrations and signaling of individual components. Moreover, they participate in cell signaling routes that are known to be important targets of environmental toxicants affecting cell redox status and calcium homeostasis, immune regulation, and hormonal functions. In this work, the evidence that plasma membrane raft-like domains operate as hubs for toxicants' cellular actions is discussed, and suggestions for future research are provided. Several studies address the insertion of pesticides and other organic pollutants into membranes, their accumulation in lipid rafts, or lipid rafts' disruption by polychlorinated biphenyls (PCBs), benzo[a]pyrene (B[a]P), and even metals/metalloids. In hepatocytes, macrophages, or neurons, B[a]P, airborne particulate matter, and other toxicants caused rafts' protein and lipid remodeling, oxidative changes, or amyloidogenesis. Different studies investigated the role of the invaginated lipid rafts present in endothelial cells in mediating the vascular inflammatory effects of PCBs. Furthermore, in vitro and in vivo data strongly implicate raft-localized NADPH oxidases, the aryl hydrocarbon receptor, caveolin-1, and protein kinases in the toxic mechanisms of occupational and environmental chemicals.
Collapse
Affiliation(s)
- Dorinda Marques-da-Silva
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Ricardo Lagoa
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| |
Collapse
|
8
|
Shelby SA, Castello-Serrano I, Wisser KC, Levental I, Veatch SL. Membrane phase separation drives responsive assembly of receptor signaling domains. Nat Chem Biol 2023; 19:750-758. [PMID: 36997644 PMCID: PMC10771812 DOI: 10.1038/s41589-023-01268-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/17/2023] [Indexed: 04/01/2023]
Abstract
Plasma membrane heterogeneity has been tied to a litany of cellular functions and is often explained by analogy to membrane phase separation; however, models based on phase separation alone fall short of describing the rich organization available within cell membranes. Here we present comprehensive experimental evidence motivating an updated model of plasma membrane heterogeneity in which membrane domains assemble in response to protein scaffolds. Quantitative super-resolution nanoscopy measurements in live B lymphocytes detect membrane domains that emerge upon clustering B cell receptors (BCRs). These domains enrich and retain membrane proteins based on their preference for the liquid-ordered phase. Unlike phase-separated membranes that consist of binary phases with defined compositions, membrane composition at BCR clusters is modulated through the protein constituents in clusters and the composition of the membrane overall. This tunable domain structure is detected through the variable sorting of membrane probes and impacts the magnitude of BCR activation.
Collapse
Affiliation(s)
- Sarah A Shelby
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | | | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Sarah L Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Britt RD, Porter N, Grayson MH, Gowdy KM, Ballinger M, Wada K, Kim HY, Guerau-de-Arellano M. Sterols and immune mechanisms in asthma. J Allergy Clin Immunol 2023; 151:47-59. [PMID: 37138729 PMCID: PMC10151016 DOI: 10.1016/j.jaci.2022.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The field of sterol and oxysterol biology in lung disease has recently gained attention, revealing a unique need for sterol uptake and metabolism in the lung. The presence of cholesterol transport, biosynthesis, and sterol/oxysterol-mediated signaling in immune cells suggests a role in immune regulation. In support of this idea, statin drugs that inhibit the cholesterol biosynthesis rate-limiting step enzyme, hydroxymethyl glutaryl coenzyme A reductase, show immunomodulatory activity in several models of inflammation. Studies in human asthma reveal contradicting results, whereas promising retrospective studies suggest benefits of statins in severe asthma. Here, we provide a timely review by discussing the role of sterols in immune responses in asthma, analytical tools to evaluate the role of sterols in disease, and potential mechanistic pathways and targets relevant to asthma. Our review reveals the importance of sterols in immune processes and highlights the need for further research to solve critical gaps in the field.
Collapse
Affiliation(s)
- Rodney D. Britt
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus
- Department of Pediatrics, The Ohio State University, Columbus
| | - Ned Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville
| | - Mitchell H. Grayson
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, Columbus
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, Wexner Medical Center, Columbus
| | - Megan Ballinger
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, Wexner Medical Center, Columbus
| | - Kara Wada
- Department of Otolaryngology, Wexner Medical Center, Columbus
| | - Hye-Young Kim
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, Columbus
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus
- Department of Neuroscience, The Ohio State University, Columbus
| |
Collapse
|
10
|
Iatan I, Choi HY, Genest J. High-Density Lipoprotein and Cardiovascular Disease-Where do We Stand? Endocrinol Metab Clin North Am 2022; 51:557-572. [PMID: 35963628 DOI: 10.1016/j.ecl.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Decades of research have shown that high-density lipoprotein cholesterol (HDL-C) levels in humans are associated with atherosclerotic cardiovascular disease (ASCVD). This association is strong and coherent across populations and remains after the elimination of covariates. Animal studies show that increasing HDL particles prevent atherosclerosis, and basic work on the biology of HDL supports a strong biological plausibility for a therapeutic target. This enthusiasm is dampened by Mendelian randomization data showing that HDL-C may not be causal in ASCVD. Furthermore, drugs that increase HDL-C have largely failed to prevent or treat ASCVD.
Collapse
Affiliation(s)
- Iulia Iatan
- Research Institute of the McGill University Health Center, 1001 Decarie Boulevard, Bloc E, EM12212, Montreal, Quebec H4A 3J1, Canada
| | - Hong Y Choi
- Research Institute of the McGill University Health Center, 1001 Decarie Boulevard, Bloc E, EM12212, Montreal, Quebec H4A 3J1, Canada
| | - Jacques Genest
- Research Institute of the McGill University Health Center, 1001 Decarie Boulevard, Bloc E, EM12212, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
11
|
Fosdick MG, Loftus S, Phillips I, Zacharias ZR, Houtman JCD. Glycerol monolaurate inhibition of human B cell activation. Sci Rep 2022; 12:13506. [PMID: 35931746 PMCID: PMC9355977 DOI: 10.1038/s41598-022-17432-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Glycerol monolaurate (GML) is a naturally occurring antimicrobial agent used commercially in numerous products and food items. GML is also used as a homeopathic agent and is being clinically tested to treat several human diseases. In addition to its anti-microbial function, GML suppresses immune cell proliferation and inhibits primary human T cell activation. GML suppresses T cell activation by altering membrane dynamics and disrupting the formation of protein clusters necessary for intracellular signaling. The ability of GML to disrupt cellular membranes suggests it may alter other cell types. To explore this possibility, we tested how GML affects human B cells. We found that GML inhibits BCR-induced cytokine production, phosphorylation of signaling proteins, and protein clustering, while also changing cellular membrane dynamics and dysregulating cytoskeleton rearrangement. Although similar, there are also differences between how B cells and T cells respond to GML. These differences suggest that unique intrinsic features of a cell may result in differential responses to GML treatment. Overall, this study expands our understanding of how GML impacts the adaptive immune response and contributes to a broader knowledge of immune modulating monoglycerides.
Collapse
Affiliation(s)
- Micaela G Fosdick
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA
| | - Shannon Loftus
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Isabella Phillips
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Zeb R Zacharias
- Human Immunology Core, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Jon C D Houtman
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA.
- Human Immunology Core, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
12
|
Inimitable Impacts of Ceramides on Lipid Rafts Formed in Artificial and Natural Cell Membranes. MEMBRANES 2022; 12:membranes12080727. [PMID: 35893445 PMCID: PMC9330320 DOI: 10.3390/membranes12080727] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/02/2023]
Abstract
Ceramide is the simplest precursor of sphingolipids and is involved in a variety of biological functions ranging from apoptosis to the immune responses. Although ceramide is a minor constituent of plasma membranes, it drastically increases upon cellular stimulation. However, the mechanistic link between ceramide generation and signal transduction remains unknown. To address this issue, the effect of ceramide on phospholipid membranes has been examined in numerous studies. One of the most remarkable findings of these studies is that ceramide induces the coalescence of membrane domains termed lipid rafts. Thus, it has been hypothesised that ceramide exerts its biological activity through the structural alteration of lipid rafts. In the present article, we first discuss the characteristic hydrogen bond functionality of ceramides. Then, we showed the impact of ceramide on the structures of artificial and cell membranes, including the coalescence of the pre-existing lipid raft into a large patch called a signal platform. Moreover, we proposed a possible structure of the signal platform, in which sphingomyelin/cholesterol-rich and sphingomyelin/ceramide-rich domains coexist. This structure is considered to be beneficial because membrane proteins and their inhibitors are separately compartmentalised in those domains. Considering the fact that ceramide/cholesterol content regulates the miscibility of those two domains in model membranes, the association and dissociation of membrane proteins and their inhibitors might be controlled by the contents of ceramide and cholesterol in the signal platform.
Collapse
|
13
|
Devin J, Cañeque T, Lin YL, Mondoulet L, Veyrune JL, Abouladze M, Garcia De Paco E, Karmous Gadacha O, Cartron G, Pasero P, Bret C, Rodriguez R, Moreaux J. Targeting Cellular Iron Homeostasis with Ironomycin in Diffuse Large B-cell Lymphoma. Cancer Res 2022; 82:998-1012. [PMID: 35078814 PMCID: PMC9359736 DOI: 10.1158/0008-5472.can-21-0218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/14/2021] [Accepted: 01/21/2022] [Indexed: 01/19/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common hematological malignancy. Although more than half of patients with DLBCL achieve long-term remission, the majority of remaining patients succumb to the disease. As abnormal iron homeostasis is implicated in carcinogenesis and the progression of many tumors, we searched for alterations in iron metabolism in DLBCL that could be exploited to develop novel therapeutic strategies. Analysis of the iron metabolism gene expression profile of large cohorts of patients with DLBCL established the iron score (IS), a gene expression-based risk score enabling identification of patients with DLBCL with a poor outcome who might benefit from a suitable targeted therapy. In a panel of 16 DLBCL cell lines, ironomycin, a promising lysosomal iron-targeting small molecule, inhibited DLBCL cell proliferation at nanomolar concentrations compared with typical iron chelators. Ironomycin also induced significant cell growth inhibition, ferroptosis, and autophagy. Ironomycin treatment resulted in accumulation of DNA double-strand breaks, delayed progression of replication forks, and increased RPA2 phosphorylation, a marker of replication stress. Ironomycin significantly reduced the median number of viable primary DLBCL cells of patients without major toxicity for nontumor cells from the microenvironment and presented low toxicity in hematopoietic progenitors compared with conventional treatments. Significant synergistic effects were also observed by combining ironomycin with doxorubicin, BH3 mimetics, BTK inhibitors, or Syk inhibitors. Altogether, these data demonstrate that a subgroup of high-risk patients with DLBCL can be identified with the IS that can potentially benefit from targeting iron homeostasis. SIGNIFICANCE Iron homeostasis represents a potential therapeutic target for high-risk patients with DLBCL that can be targeted with ironomycin to induce cell death and to sensitize tumor cells to conventional treatments.
Collapse
Affiliation(s)
- Julie Devin
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Tatiana Cañeque
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France; PSL Université, Paris, France; CNRS UMR 3666, Paris, France; INSERM U1143, Paris, France
| | - Yea-Lih Lin
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | | | - Jean-Luc Veyrune
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Matthieu Abouladze
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elvira Garcia De Paco
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Ouissem Karmous Gadacha
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | | | - Philippe Pasero
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Caroline Bret
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,University of Montpellier, UFR Medicine, Montpellier, France.,Corresponding Authors: Jerome Moreaux, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337903; Fax: 33(0)467337036; E-mail: ; Raphaël Rodriguez, Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris, France. Phone: 33-0-448482191; E-mail: ; and Caroline Bret, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337031; Fax: 33-0-467337036; E-mail:
| | - Raphaël Rodriguez
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France; PSL Université, Paris, France; CNRS UMR 3666, Paris, France; INSERM U1143, Paris, France.,Corresponding Authors: Jerome Moreaux, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337903; Fax: 33(0)467337036; E-mail: ; Raphaël Rodriguez, Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris, France. Phone: 33-0-448482191; E-mail: ; and Caroline Bret, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337031; Fax: 33-0-467337036; E-mail:
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France.,University of Montpellier, UFR Medicine, Montpellier, France.,Institut Universitaire de France (IUF), Paris, France.,Corresponding Authors: Jerome Moreaux, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337903; Fax: 33(0)467337036; E-mail: ; Raphaël Rodriguez, Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris, France. Phone: 33-0-448482191; E-mail: ; and Caroline Bret, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337031; Fax: 33-0-467337036; E-mail:
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This study reviews the mechanisms of HDL cholesterol immunomodulation in the context of the mechanisms of chronic inflammation and immunosuppression causing persistent inflammation, immunosuppression and catabolism syndrome (PICS) and describes potential therapies and gaps in current research. RECENT FINDINGS Low HDL cholesterol is predictive of acute sepsis severity and outcome. Recent research has indicated apolipoprotein is a prognostic indicator of long-term outcomes. The pathobiologic mechanisms of PICS have been elucidated in the past several years. Recent research of the interaction of HDL pathways in related chronic inflammatory diseases may provide insights into further mechanisms and therapeutic targets. SUMMARY HDL significantly influences innate and adaptive immune pathways relating to chronic disease and inflammation. Further research is needed to better characterize these interactions in the setting of PICS.
Collapse
Affiliation(s)
- Grant Barker
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville
| | - Julia R Winer
- University of Florida College of Medicine, Gainesville, Florida
| | - Faheem W Guirgis
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville
| | - Srinivasa Reddy
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| |
Collapse
|
15
|
Jiang XN, Zhang Y, Wang WG, Sheng D, Zhou XY, Li XQ. Alteration of Cholesterol Metabolism by Metformin Is Associated With Improved Outcome in Type II Diabetic Patients With Diffuse Large B-Cell Lymphoma. Front Oncol 2021; 11:608238. [PMID: 34195068 PMCID: PMC8236717 DOI: 10.3389/fonc.2021.608238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 04/20/2021] [Indexed: 01/15/2023] Open
Abstract
Recent studies have demonstrated the benefits of metformin on patients with lymphomas. B-cell receptor (BCR)-PI3K-AKT pathway-dependent cholesterol synthesis may represent a positive feedback mechanism responsible for the pathogenesis of BCR-dependent diffuse large B-cell lymphomas (DLBCLs). Thus, restriction of lipid synthesis would affect the integrity of lipid-forming membranes and block the BCR signaling pathway. Our in vitro findings suggested that the blocking effect of metformin on BCR signaling pathway is possibly exerted via blocking the biosynthesis of cholesterol. A retrospective case-control study was subsequently conducted on type II diabetic patients with DLBCL who were on metformin. Metformin was identified to be associated with improved response rate and PFS in diabetic patients and appeared to be an effective therapeutic drug against DLBCL.
Collapse
Affiliation(s)
- Xiang-Nan Jiang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei-Ge Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dong Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Qiu Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Cholesterol metabolism: a new molecular switch to control inflammation. Clin Sci (Lond) 2021; 135:1389-1408. [PMID: 34086048 PMCID: PMC8187928 DOI: 10.1042/cs20201394] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022]
Abstract
The immune system protects the body against harm by inducing inflammation. During the immune response, cells of the immune system get activated, divided and differentiated in order to eliminate the danger signal. This process relies on the metabolic reprogramming of both catabolic and anabolic pathways not only to produce energy in the form of ATP but also to generate metabolites that exert key functions in controlling the response. Equally important to mounting an appropriate effector response is the process of immune resolution, as uncontrolled inflammation is implicated in the pathogenesis of many human diseases, including allergy, chronic inflammation and cancer. In this review, we aim to introduce the reader to the field of cholesterol immunometabolism and discuss how both metabolites arising from the pathway and cholesterol homeostasis are able to impact innate and adaptive immune cells, staging cholesterol homeostasis at the centre of an adequate immune response. We also review evidence that demonstrates the clear impact that cholesterol metabolism has in both the induction and the resolution of the inflammatory response. Finally, we propose that emerging data in this field not only increase our understanding of immunometabolism but also provide new tools for monitoring and intervening in human diseases, where controlling and/or modifying inflammation is desirable.
Collapse
|
17
|
Use of Streptolysin O (SLO) to Study the Function of Lipid Rafts. Methods Mol Biol 2021. [PMID: 32430837 DOI: 10.1007/978-1-0716-0467-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Group A Streptococcus (GAS) produces the pore-forming toxin, streptolysin O (SLO). SLO sequesters cholesterol and induces a plasma membrane repair process that removes the pores via a lipid raft-mediated endocytosis. The impact SLO has on membranes makes it an effective toxin for investigating the function of lipid rafts in cellular processes. Lipid rafts are essential for B-cell activation. Indeed, antigen-stimulated B-cell receptors (BCRs) require localization with lipid rafts for efficient signaling and internalization. SLO treatment impairs BCR activation by competing for lipid rafts. Here, disrupting lipid rafts using SLO and assessing the effects on BCR activation by fluorescence microscopy and flow cytometry are described.
Collapse
|
18
|
Morris G, Puri BK, Bortolasci CC, Carvalho A, Berk M, Walder K, Moreira EG, Maes M. The role of high-density lipoprotein cholesterol, apolipoprotein A and paraoxonase-1 in the pathophysiology of neuroprogressive disorders. Neurosci Biobehav Rev 2021; 125:244-263. [PMID: 33657433 DOI: 10.1016/j.neubiorev.2021.02.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Lowered high-density lipoprotein (HDL) cholesterol has been reported in major depressive disorder, bipolar disorder, first episode of psychosis, and schizophrenia. HDL, its major apolipoprotein component, ApoA1, and the antioxidant enzyme paraoxonase (PON)1 (which is normally bound to ApoA1) all have anti-atherogenic, antioxidant, anti-inflammatory, and immunomodulatory roles, which are discussed in this paper. The paper details the pathways mediating the anti-inflammatory effects of HDL, ApoA1 and PON1 and describes the mechanisms leading to compromised HDL and PON1 levels and function in an environment of chronic inflammation. The molecular mechanisms by which changes in HDL, ApoA1 and PON1 might contribute to the pathophysiology of the neuroprogressive disorders are explained. Moreover, the anti-inflammatory actions of ApoM-mediated sphingosine 1-phosphate (S1P) signalling are reviewed as well as the deleterious effects of chronic inflammation and oxidative stress on ApoM/S1P signalling. Finally, therapeutic interventions specifically aimed at improving the levels and function of HDL and PON1 while reducing levels of inflammation and oxidative stress are considered. These include the so-called Mediterranean diet, extra virgin olive oil, polyphenols, flavonoids, isoflavones, pomegranate juice, melatonin and the Mediterranean diet combined with the ketogenic diet.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Chiara C Bortolasci
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.
| | - Andre Carvalho
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Estefania G Moreira
- Post-Graduation Program in Health Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Michael Maes
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
19
|
Suhaj A, Gowland D, Bonini N, Owen DM, Lorenz CD. Laurdan and Di-4-ANEPPDHQ Influence the Properties of Lipid Membranes: A Classical Molecular Dynamics and Fluorescence Study. J Phys Chem B 2020; 124:11419-11430. [PMID: 33275430 DOI: 10.1021/acs.jpcb.0c09496] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Environmentally sensitive (ES) dyes have been used for many decades to study the lipid order of cell membranes, as different lipid phases play a crucial role in a wide variety of cell processes. Yet, the understanding of how ES dyes behave, interact, and affect membranes at the atomistic scale is lacking, partially due to the lack of molecular dynamics (MD) models of these dyes. Here, we present ground- and excited-state MD models of commonly used ES dyes, Laurdan and di-4-ANEPPDHQ, and use MD simulations to study the behavior of these dyes in a disordered and an ordered membrane. We also investigate the effect that these two dyes have on the hydration and lipid order of the membranes, where we see a significant effect on the hydration of lipids proximal to the dyes. These findings are combined with experimental fluorescence experiments of ordered and disordered vesicles and live HeLa cells stained by the aforementioned dyes, where the generalized polarization (GP) values were measured at different concentrations of the dyes. We observe a small but significant decrease of GP at higher Laurdan concentrations in vesicles, while the same effect is not observed in cell membranes. The opposite effect is observed with di-4-ANEPPDHQ where no significant change in GP is seen for vesicles but a very substantial and significant decrease is seen in cell membranes. Together, our results show the profound effect that ES dyes have on membranes, and the presented MD models will be important for further understanding of these effects.
Collapse
Affiliation(s)
- Adam Suhaj
- Biological Physics and Soft Matter Group, Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Duncan Gowland
- Theory & Simulation of Condensed Matter Group, Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Nicola Bonini
- Theory & Simulation of Condensed Matter Group, Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Dylan M Owen
- Institute of Immunology and Immunotherapy, Department of Mathematics and Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Christian D Lorenz
- Biological Physics and Soft Matter Group, Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| |
Collapse
|
20
|
Beauchamp E, Yap MC, Iyer A, Perinpanayagam MA, Gamma JM, Vincent KM, Lakshmanan M, Raju A, Tergaonkar V, Tan SY, Lim ST, Dong WF, Postovit LM, Read KD, Gray DW, Wyatt PG, Mackey JR, Berthiaume LG. Targeting N-myristoylation for therapy of B-cell lymphomas. Nat Commun 2020; 11:5348. [PMID: 33093447 PMCID: PMC7582192 DOI: 10.1038/s41467-020-18998-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 09/18/2020] [Indexed: 01/05/2023] Open
Abstract
Myristoylation, the N-terminal modification of proteins with the fatty acid myristate, is critical for membrane targeting and cell signaling. Because cancer cells often have increased N-myristoyltransferase (NMT) expression, NMTs were proposed as anti-cancer targets. To systematically investigate this, we performed robotic cancer cell line screens and discovered a marked sensitivity of hematological cancer cell lines, including B-cell lymphomas, to the potent pan-NMT inhibitor PCLX-001. PCLX-001 treatment impacts the global myristoylation of lymphoma cell proteins and inhibits early B-cell receptor (BCR) signaling events critical for survival. In addition to abrogating myristoylation of Src family kinases, PCLX-001 also promotes their degradation and, unexpectedly, that of numerous non-myristoylated BCR effectors including c-Myc, NFκB and P-ERK, leading to cancer cell death in vitro and in xenograft models. Because some treated lymphoma patients experience relapse and die, targeting B-cell lymphomas with a NMT inhibitor potentially provides an additional much needed treatment option for lymphoma.
Collapse
Affiliation(s)
- Erwan Beauchamp
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada.,Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada
| | - Megan C Yap
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada.,Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada
| | - Aishwarya Iyer
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Maneka A Perinpanayagam
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada.,Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada
| | - Jay M Gamma
- Departments of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Krista M Vincent
- Departments of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Manikandan Lakshmanan
- Mouse Models of Human Cancer Unit, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Anandhkumar Raju
- Advanced Molecular Pathology Lab, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673.,Department of Pathology, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Advanced Molecular Pathology Lab, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673.,Department of Pathology, National University of Singapore, Singapore, Singapore
| | - Soo Yong Tan
- Advanced Molecular Pathology Lab, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673.,Department of Pathology, National University of Singapore, Singapore, Singapore
| | - Soon Thye Lim
- Department of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Outram Road, Singapore, 169610, Singapore
| | - Wei-Feng Dong
- Departments of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Lynne M Postovit
- Departments of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Kevin D Read
- Drug Discovery Unit, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - David W Gray
- Drug Discovery Unit, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - Paul G Wyatt
- Drug Discovery Unit, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK
| | - John R Mackey
- Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada.,Departments of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada
| | - Luc G Berthiaume
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, AB, Canada. .,Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada.
| |
Collapse
|
21
|
Nazir S, Jankowski V, Bender G, Zewinger S, Rye KA, van der Vorst EP. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration! Adv Drug Deliv Rev 2020; 159:94-119. [PMID: 33080259 DOI: 10.1016/j.addr.2020.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/20/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
High-density lipoprotein (HDL) plays an important role in lipid metabolism and especially contributes to the reverse cholesterol transport pathway. Over recent years it has become clear that the effect of HDL on immune-modulation is not only dependent on HDL concentration but also and perhaps even more so on HDL function. This review will provide a concise general introduction to HDL followed by an overview of post-translational modifications of HDL and a detailed overview of the role of HDL in inflammatory diseases. The clinical potential of HDL and its main apolipoprotein constituent, apoA-I, is also addressed in this context. Finally, some conclusions and remarks that are important for future HDL-based research and further development of HDL-focused therapies are discussed.
Collapse
|
22
|
Adamiak M, Abdel-Latif A, Bujko K, Thapa A, Anusz K, Tracz M, Brzezniakiewicz-Janus K, Ratajczak J, Kucia M, Ratajczak MZ. Nlrp3 Inflammasome Signaling Regulates the Homing and Engraftment of Hematopoietic Stem Cells (HSPCs) by Enhancing Incorporation of CXCR4 Receptor into Membrane Lipid Rafts. Stem Cell Rev Rep 2020; 16:954-967. [PMID: 32661868 PMCID: PMC7456406 DOI: 10.1007/s12015-020-10005-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fast and efficient homing and engraftment of hematopoietic stem progenitor cells (HSPCs) is crucial for positive clinical outcomes from transplantation. We found that this process depends on activation of the Nlrp3 inflammasome, both in the HSPCs to be transplanted and in the cells in the recipient bone marrow (BM) microenvironment. For the first time we provide evidence that functional deficiency in the Nlrp3 inflammasome in transplanted cells or in the host microenvironment leads to defective homing and engraftment. At the molecular level, functional deficiency of the Nlrp3 inflammasome in HSPCs leads to their defective migration in response to the major BM homing chemoattractant stromal-derived factor 1 (SDF-1) and to other supportive chemoattractants, including sphingosine-1-phosphate (S1P) and extracellular adenosine triphosphate (eATP). We report that activation of the Nlrp3 inflammasome increases autocrine release of eATP, which promotes incorporation of the CXCR4 receptor into membrane lipid rafts at the leading surface of migrating cells. On the other hand, a lack of Nlrp3 inflammasome expression in BM conditioned for transplantation leads to a decrease in expression of SDF-1 and danger-associated molecular pattern molecules (DAMPs), which are responsible for activation of the complement cascade (ComC), which in turn facilitates the homing and engraftment of HSPCs.
Collapse
Affiliation(s)
- Mateusz Adamiak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at, Medical University of Warsaw, Warsaw, Poland
| | - Ahmed Abdel-Latif
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, USA
| | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Arjun Thapa
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Krzysztof Anusz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Michał Tracz
- Institute of Veterinary Medicine, Department of Food Hygiene and Public Health Protection, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | | | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Trinder M, Walley KR, Boyd JH, Brunham LR. Causal Inference for Genetically Determined Levels of High-Density Lipoprotein Cholesterol and Risk of Infectious Disease. Arterioscler Thromb Vasc Biol 2020; 40:267-278. [PMID: 31694394 PMCID: PMC6946100 DOI: 10.1161/atvbaha.119.313381] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/25/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE HDL (high-density lipoprotein) cholesterol (HDL-C) and LDL (low-density lipoprotein) cholesterol (LDL-C) are inversely associated with infectious hospitalizations. Whether these represent causal relationships is unknown. Approach and Results: Adults of 40 to 69 years of age were recruited from across the United Kingdom between 2006 and 2010 and followed until March 31, 2016, as part of the UK Biobank. We determined HDL-C, LDL-C, and triglyceride polygenic scores for UK Biobank participants of British white ancestry (n=407 558). We examined the association of lipid levels and polygenic scores with infectious hospitalizations, antibiotic usage, and 28-day sepsis survival using Cox proportional hazards or logistic regression models. Measured levels of HDL-C and LDL-C were inversely associated with risk of infectious hospitalizations, while triglycerides displayed a positive association. A 1-mmol/L increase in genetically determined levels of HDL-C associated with a hazard ratio for infectious disease of 0.84 ([95% CI, 0.75-0.95]; P=0.004). Mendelian randomization using genetic variants associated with HDL-C as an instrumental variable was consistent with a causal relationship between elevated HDL-C and reduced risk of infectious hospitalizations (inverse weighted variance method, P=0.001). Furthermore, of 3222 participants who experienced an index episode of sepsis, there was a significant inverse association between continuous HDL-C polygenic score and 28-day mortality (adjusted hazard ratio, 0.37 [95% CI, 0.14-0.96] per 1 mmol/L increase; P=0.04). LDL-C and triglyceride polygenic scores were not significantly associated with hospitalization for infection, antibiotic use, or sepsis mortality. CONCLUSIONS Our results provide causal inference for an inverse relationship between HDL-C, but not LDL-C or triglycerides, and risk of an infectious hospitalization.
Collapse
Affiliation(s)
- Mark Trinder
- From the Centre for Heart Lung Innovation (M.T., K.R.W., J.H.B., L.R.B.), associated with the University of British Columbia, Vancouver, Canada
- Department of Experimental Medicine Program (M.T., J.H.B., L.R.B.), associated with the University of British Columbia, Vancouver, Canada
| | - Keith R. Walley
- From the Centre for Heart Lung Innovation (M.T., K.R.W., J.H.B., L.R.B.), associated with the University of British Columbia, Vancouver, Canada
- Department of Medicine (K.R.W., J.H.B., L.R.B.) associated with the University of British Columbia, Vancouver, Canada
| | - John H. Boyd
- From the Centre for Heart Lung Innovation (M.T., K.R.W., J.H.B., L.R.B.), associated with the University of British Columbia, Vancouver, Canada
- Department of Experimental Medicine Program (M.T., J.H.B., L.R.B.), associated with the University of British Columbia, Vancouver, Canada
- Department of Medicine (K.R.W., J.H.B., L.R.B.) associated with the University of British Columbia, Vancouver, Canada
| | - Liam R. Brunham
- From the Centre for Heart Lung Innovation (M.T., K.R.W., J.H.B., L.R.B.), associated with the University of British Columbia, Vancouver, Canada
- Department of Experimental Medicine Program (M.T., J.H.B., L.R.B.), associated with the University of British Columbia, Vancouver, Canada
- Department of Medicine (K.R.W., J.H.B., L.R.B.) associated with the University of British Columbia, Vancouver, Canada
| |
Collapse
|
24
|
Apolipoprotein A-I (ApoA-I), Immunity, Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11081097. [PMID: 31374929 PMCID: PMC6721368 DOI: 10.3390/cancers11081097] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I), the major protein component of high-density lipoproteins (HDL) is a multifunctional protein, involved in cholesterol traffic and inflammatory and immune response regulation. Many studies revealing alterations of ApoA-I during the development and progression of various types of cancer suggest that serum ApoA-I levels may represent a useful biomarker contributing to better estimation of cancer risk, early cancer diagnosis, follow up, and prognosis stratification of cancer patients. In addition, recent in vitro and animal studies disclose a more direct, tumor suppressive role of ApoA-I in cancer pathogenesis, which involves anti-inflammatory and immune-modulatory mechanisms. Herein, we review recent epidemiologic, clinicopathologic, and mechanistic studies investigating the role of ApoA-I in cancer biology, which suggest that enhancing the tumor suppressive activity of ApoA-I may contribute to better cancer prevention and treatment.
Collapse
|
25
|
Kalappurakkal JM, Anilkumar AA, Patra C, van Zanten TS, Sheetz MP, Mayor S. Integrin Mechano-chemical Signaling Generates Plasma Membrane Nanodomains that Promote Cell Spreading. Cell 2019; 177:1738-1756.e23. [PMID: 31104842 PMCID: PMC6879320 DOI: 10.1016/j.cell.2019.04.037] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 11/15/2018] [Accepted: 04/17/2019] [Indexed: 01/19/2023]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a major class of lipid-anchored plasma membrane proteins. GPI-APs form nanoclusters generated by cortical acto-myosin activity. While our understanding of the physical principles governing this process is emerging, the molecular machinery and functional relevance of GPI-AP nanoclustering are unknown. Here, we first show that a membrane receptor signaling pathway directs nanocluster formation. Arg-Gly-Asp motif-containing ligands bound to the β1-integrin receptor activate src and focal adhesion kinases, resulting in RhoA signaling. This cascade triggers actin-nucleation via specific formins, which, along with myosin activity, drive the nanoclustering of membrane proteins with actin-binding domains. Concurrently, talin-mediated activation of the mechano-transducer vinculin is required for the coupling of the acto-myosin machinery to inner-leaflet lipids, thereby generating GPI-AP nanoclusters. Second, we show that these nanoclusters are functional; disruption of their formation either in GPI-anchor remodeling mutants or in vinculin mutants impairs cell spreading and migration, hallmarks of integrin function.
Collapse
Affiliation(s)
- Joseph Mathew Kalappurakkal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India
| | - Anupama Ambika Anilkumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India; St. Johns Research Institute, Bangalore, India
| | - Chandrima Patra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India
| | - Thomas S van Zanten
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, India; Institute for Stem Cell Biology and Regenerative Medicine, Bellary Road, Bangalore, India.
| |
Collapse
|
26
|
Genest G, Genest J. High-Density Lipoproteins and Inflammatory Diseases: Full Circle Ahead. Clin Chem 2019; 65:607-608. [PMID: 30872374 DOI: 10.1373/clinchem.2019.302364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Genevieve Genest
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, McGill University, Montreal, Quebec, Canada
| | - Jacques Genest
- Department of Medicine, Division of Cardiology, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
27
|
Vásquez A, Baena A, González LA, Restrepo M, Muñoz CH, Vanegas-García A, Ortiz-Reyes B, Abdoel N, Rojas M, García LF, Vásquez G. Altered recruitment of Lyn, Syk and ZAP-70 into lipid rafts of activated B cells in Systemic Lupus Erythematosus. Cell Signal 2019; 58:9-19. [PMID: 30840855 DOI: 10.1016/j.cellsig.2019.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
There is evidence that B cells from patients with Systemic Lupus Erythematosus (SLE) could be hyperactivated due to changes in their lipid rafts (LR) composition, leading to altered BCR-dependent signals. This study aimed to characterize possible alterations in the recruitment of protein tyrosine kinases (PTK) into B cells LR from SLE patients. Fifteen patients with SLE and ten healthy controls were included. Circulating B cells were isolated by negative selection and stimulated with goat Fab´2 anti-human IgM/IgG. LR were isolated with a non-ionic detergent and ultracentrifuged on 5-45% discontinuous sucrose gradients. Proteins from each fraction were analyzed by Western Blot. Total levels of Lyn, Syk, and ZAP-70 in resting B cells were similar in SLE patients and healthy controls. Upon BCR activation, Lyn, Syk and ZAP-70 recruitment into LR increased significantly in B cells of healthy controls and patients with inactive SLE. In contrast, in active SLE patients there was a great heterogeneity in the recruitment of signaling molecules and the recruitment of ZAP-70 was mainly observed in patients with decreased Syk recruitment into LR of activated B cells. The reduction in Flotilin-1 and Lyn recruitment in SLE patients seem to be associated with disease activity. These findings suggest that in SLE patients the PTK recruitment into B cell LR is dysregulated and that B cells are under constant activation through BCR signaling. The decrease of Lyn and Syk, the expression of ZAP-70 by B cells and the increase in Calcium fluxes in response to BCR stimulation in active SLE patients, further support that B cells from SLE patients are under constant activation through BCR signaling, as has been proposed.
Collapse
Affiliation(s)
- Ana Vásquez
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Carrera 53, # 61-30, Medellín, Colombia
| | - Andrés Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Carrera 53, # 61-30, Medellín, Colombia
| | - Luis A González
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Mauricio Restrepo
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Carlos H Muñoz
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Sección Reumatología, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Adriana Vanegas-García
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Sección Reumatología, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Blanca Ortiz-Reyes
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Carrera 53, # 61-30, Medellín, Colombia
| | - Nursamaa Abdoel
- Centro Nacional de Enfermedades Reumáticas, Hospital Universitario de Caracas, Carcas, Venezuela
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Carrera 53, # 61-30, Medellín, Colombia; Unidad de Citometria, Universidad de Antioquia, Colombia
| | - Luis F García
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Carrera 53, # 61-30, Medellín, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Carrera 53, # 61-30, Medellín, Colombia; Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
28
|
Abstract
It has been long recognized that cholesterol is a critical molecule in mammalian cell biology, primarily for its contribution to the plasma membrane's composition and its role in assuring proper transmembrane receptor signaling as part of lipid rafts. Efforts have also been made to characterize the cholesterol biosynthetic pathway, cholesterol homeostasis, and cholesterol-derived metabolites in order to gain insights into their dysregulation during metabolic diseases. Despite the central role cholesterol metabolism plays in shaping human health, its regulation during immune activation, such as immune response to pathogens or autoimmune/autoinflammatory diseases, is poorly understood. The immune system is composed of several type of cells with distinct developmental origin, life span, molecular requirements, and gene expressions. It is unclear whether the same array of cholesterol metabolism regulators are equally employed by different immune cells and whether distinct cholesterol metabolites have similar biological consequences in different immune cells. In this review, we will describe how cholesterol metabolism is controlled during the adaptive and the innate immune response and the role for intracellular and extracellular receptors for cholesterol and its derivatives.
Collapse
Affiliation(s)
- Andrea Reboldi
- Department of Pathology, University of Massachussetts Medical School, Worcester, Massachusetts, 01605, USA
| | - Eric Dang
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, 94158, USA
| |
Collapse
|
29
|
Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 2018; 14:576-590. [PMID: 30046148 DOI: 10.1038/s41574-018-0059-4] [Citation(s) in RCA: 1801] [Impact Index Per Article: 257.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing and age-related diseases share some basic mechanistic pillars that largely converge on inflammation. During ageing, chronic, sterile, low-grade inflammation - called inflammaging - develops, which contributes to the pathogenesis of age-related diseases. From an evolutionary perspective, a variety of stimuli sustain inflammaging, including pathogens (non-self), endogenous cell debris and misplaced molecules (self) and nutrients and gut microbiota (quasi-self). A limited number of receptors, whose degeneracy allows them to recognize many signals and to activate the innate immune responses, sense these stimuli. In this situation, metaflammation (the metabolic inflammation accompanying metabolic diseases) is thought to be the form of chronic inflammation that is driven by nutrient excess or overnutrition; metaflammation is characterized by the same mechanisms underpinning inflammaging. The gut microbiota has a central role in both metaflammation and inflammaging owing to its ability to release inflammatory products, contribute to circadian rhythms and crosstalk with other organs and systems. We argue that chronic diseases are not only the result of ageing and inflammaging; these diseases also accelerate the ageing process and can be considered a manifestation of accelerated ageing. Finally, we propose the use of new biomarkers (DNA methylation, glycomics, metabolomics and lipidomics) that are capable of assessing biological versus chronological age in metabolic diseases.
Collapse
Affiliation(s)
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
- Laboratory of Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
- CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| | - Paolo Parini
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.
- Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy.
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Haghikia A, Landmesser U. High-Density Lipoproteins: Effects on Vascular Function and Role in the Immune Response. Cardiol Clin 2018; 36:317-327. [PMID: 29609761 DOI: 10.1016/j.ccl.2017.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The focus in studies of high-density lipoproteins was on their capacity to remove excess cholesterol and deliver it to the liver. Other functions and vascular effects have been described. Clinical trials and translational/genetic studies have led to a refined understanding of the role of high-density lipoprotein; it is likely not a causal cardiovascular risk factor. In healthy subjects, it limits lipid oxidation, protects endothelial cell functions/integrity, and exerts antiinflammatory/antiapoptotic effects. In patients with coronary disease or diabetes, it undergoes modifications/remodeling, resulting in dysfunctional high-density lipoprotein. We summarize recent findings about the regulation of its function and discuss the clinical implications.
Collapse
Affiliation(s)
- Arash Haghikia
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Postfach 65 21 33, Berlin 13316, Germany.
| | - Ulf Landmesser
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Postfach 65 21 33, Berlin 13316, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, Berlin 10178, Germany
| |
Collapse
|
31
|
Raghunathan K, Kenworthy AK. Dynamic pattern generation in cell membranes: Current insights into membrane organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2018-2031. [PMID: 29752898 DOI: 10.1016/j.bbamem.2018.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
It has been two decades since the lipid raft hypothesis was first presented. Even today, whether these nanoscale cholesterol-rich domains are present in cell membranes is not completely resolved. However, especially in the last few years, a rich body of literature has demonstrated both the presence and the importance of non-random distribution of biomolecules on the membrane, which is the focus of this review. These new developments have pushed the experimental limits of detection and have brought us closer to observing lipid domains in the plasma membrane of live cells. Characterization of biomolecules associated with lipid rafts has revealed a deep connection between biological regulation and function and membrane compositional heterogeneities. Finally, tantalizing new developments in the field have demonstrated that lipid domains might not just be associated with the plasma membrane of eukaryotes but could potentially be a ubiquitous membrane-organizing principle in several other biological systems. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Krishnan Raghunathan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, PA 15224, USA.
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
32
|
Hunte R, Alonso P, Thomas R, Bazile CA, Ramos JC, van der Weyden L, Dominguez-Bendala J, Khan WN, Shembade N. CADM1 is essential for KSHV-encoded vGPCR-and vFLIP-mediated chronic NF-κB activation. PLoS Pathog 2018; 14:e1006968. [PMID: 29698475 PMCID: PMC5919438 DOI: 10.1371/journal.ppat.1006968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Approximately 12% of all human cancers worldwide are caused by infections with oncogenic viruses. Kaposi's sarcoma herpesvirus/human herpesvirus 8 (KSHV/HHV8) is one of the oncogenic viruses responsible for human cancers, including Kaposi's sarcoma (KS), Primary Effusion Lymphoma (PEL), and the lymphoproliferative disorder multicentric Castleman's disease (MCD). Chronic inflammation mediated by KSHV infection plays a decisive role in the development and survival of these cancers. NF-κB, a family of transcription factors regulating inflammation, cell survival, and proliferation, is persistently activated in KSHV-infected cells. The KSHV latent and lytic expressing oncogenes involved in NF-κB activation are vFLIP/K13 and vGPCR, respectively. However, the mechanisms by which NF-κB is activated by vFLIP and vGPCR are poorly understood. In this study, we have found that a host molecule, Cell Adhesion Molecule 1 (CADM1), is robustly upregulated in KSHV-infected PBMCs and KSHV-associated PEL cells. Further investigation determined that both vFLIP and vGPCR interacted with CADM1. The PDZ binding motif localized at the carboxyl terminus of CADM1 is essential for both vGPCR and vFLIP to maintain chronic NF-κB activation. Membrane lipid raft associated CADM1 interaction with vFLIP is critical for the initiation of IKK kinase complex and NF-κB activation in the PEL cells. In addition, CADM1 played essential roles in the survival of KSHV-associated PEL cells. These data indicate that CADM1 plays key roles in the activation of NF-κB pathways during latent and lytic phases of the KSHV life cycle and the survival of KSHV-infected cells.
Collapse
MESH Headings
- Cell Adhesion Molecule-1/genetics
- Cell Adhesion Molecule-1/metabolism
- Herpesvirus 8, Human/pathogenicity
- Humans
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/virology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/virology
- Tumor Cells, Cultured
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Richard Hunte
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Patricia Alonso
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Remy Thomas
- Qatar Biomedical Research Institute, Doha, Qatar
| | - Cassandra Alexandria Bazile
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Juan Carlos Ramos
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, and Center for AIDS Research and Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Wasif Noor Khan
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| | - Noula Shembade
- Department of Microbiology and Immunology, Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, The University of Miami, Miami, FL, United States of America
| |
Collapse
|
33
|
Hirpara JL, Loh T, Ng SB, Chng WJ, Pervaiz S. Aberrant localization of apoptosis protease activating factor-1 in lipid raft sub-domains of diffuse large B cell lymphomas. Oncotarget 2018; 7:83964-83975. [PMID: 27863378 PMCID: PMC5356638 DOI: 10.18632/oncotarget.13336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022] Open
Abstract
Resistance to chemotherapy remains a challenge in the clinical management of diffuse B cell lymphomas despite aggressive chemotherapy such as CHOP and monoclonal CD20. Here we provide evidence that the apoptosome adaptor protein, Apaf-1, is mislocalized in primary cells derived from patients with diffuse large B cell lymphomas (DLBCL). Whereas, the total expression of Apaf-1 did not change, its sub-cellular localization was significantly different in DLBCL, compared to T cell lymphomas as well as cells derived from reactive lymphadenopathy biopsies. As expected, Apaf-1 was detected in the cytosolic fractions of non-B cell lymphomas and non-cancerous tissues; however, in B cell derived lymphomas the protein was detected in membrane raft sub-domains rather than the cytosol. Disruption of lipid raft structures resulted in the redistribution of Apaf-1 to the cytosol and restored apoptosis sensitivity of DLBCL. Furthermore, we identified novel small molecule compounds that target DLBCL by promoting Apaf-1 release form lipid rafts via mechanisms that involve an increase in intracellular reactive oxygen species production. Taken together, our results implicate Apaf-1 mislocalization as a potential diagnostic and prognostic marker for DLBCL, and provide a novel therapeutic strategy for circumventing the drug refractory nature of this sub-class of B cell lymphoma.
Collapse
Affiliation(s)
- Jayshree L Hirpara
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Experimental Therapeutics Program, Cancer Science Institute, National University Healthcare System, Singapore
| | - Thomas Loh
- Department of Otolaryngology, National University Healthcare System, Singapore
| | - Siok Bian Ng
- Department of Pathology, National University Healthcare System, Singapore
| | - Wee Joo Chng
- Cancer Science Institute, National University Healthcare System, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,National University Cancer Institute, National University Healthcare System,.,School of Biomedical Sciences, Curtin University, Perth, Australia
| |
Collapse
|
34
|
Suhaj A, Le Marois A, Williamson DJ, Suhling K, Lorenz CD, Owen DM. PRODAN differentially influences its local environment. Phys Chem Chem Phys 2018; 20:16060-16066. [DOI: 10.1039/c8cp00543e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PRODAN influences its local environment at the nanoscale differently between ordered and disordered phases as shown by MD simulations.
Collapse
Affiliation(s)
- Adam Suhaj
- Department of Physics and Randall Division of Cell and Molecular Biophysics
- King's College London
- London
- UK
| | | | - David J. Williamson
- Randall Division of Cell and Molecular Biophysics
- King's College London
- London
- UK
| | | | | | - Dylan M. Owen
- Department of Physics and Randall Division of Cell and Molecular Biophysics
- King's College London
- London
- UK
| |
Collapse
|
35
|
Iwabuchi K. Gangliosides in the Immune System: Role of Glycosphingolipids and Glycosphingolipid-Enriched Lipid Rafts in Immunological Functions. Methods Mol Biol 2018; 1804:83-95. [PMID: 29926405 DOI: 10.1007/978-1-4939-8552-4_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although individuals are constantly exposed to infectious agents, these agents are generally resisted by the innate and acquired immune systems. Both the innate and acquired immune systems protect against invading organisms, but they differ functionally in several ways. The innate immune system is the body's inborn defense mechanism and the first line of defense against invading organisms, such as bacteria, fungi, and viruses. Glycosphingolipids (GSLs), which are expressed on the outer leaflet of plasma membranes (Murate et al., J Cell Sci 128(8):1627-1638, 2015), are involved in both innate and acquired immunity (Inokuchi et al., Biochim Biophys Acta 1851(1):98-106, 2015; Nakayama et al., Arch Immunol Ther Exp (Warsz) 61(3):217-228, 2013; Rueda, Br J Nutr 98(Suppl 1):S68-73, 2007; Popa and Portoukalian, Pathol Biol (Paris) 51(5):253-255, 2003).Recent studies have indicated that innate immunity is not a "nonspecific" immune system. Large numbers of viruses, bacteria, and bacterial toxins have been reported to bind to host surface carbohydrates, a number of which are components of GSLs (Schengrund, Biochem Pharmacol 65(5):699-707, 2003). Binding studies have also demonstrated that some glycolipids function as receptors for microorganisms and bacterial toxins (Yates and Rampersaud, Ann N Y Acad Sci 845:57-71, 1998). These findings clearly indicate that GSLs are involved in host-pathogen interactions.GSLs are composed of hydrophobic ceramide and hydrophilic sugar moieties (Hakomori, Annu Rev Biochem 50:733-764, 1980). The ceramide moiety of sphingolipids and the cholesterol sterol-ring system are thought to interact via hydrogen bonds and hydrophobic van der Waal's forces (Mukherjee and Maxfield, Annu Rev Cell Dev Biol 20:839-866, 2004). Additional hydrophilic cis interactions among GSL headgroups have been found to promote their lateral associations with surrounding lipid and protein membrane components. These interactions result in the separation in cell membranes of lipid rafts, which are lipid domains rich in GSLs, cholesterol, glycosylphosphatidylinositol (GPI)-anchored proteins and membrane-anchored signaling molecules (Pike, J Lipid Res 47(7):1597-1598, 2006). These GSL-enriched lipid rafts play important roles in immunological functions (Inokuchi et al., Biochim Biophys Acta 1851(1):98-106, 2015; Iwabuchi et al., Mediators Inflamm 2015:120748, 2015; Anderson and Roche, Biochim Biophys Acta 1853(4):775-780, 2015; Zuidscherwoude et al., J Leukoc Biol 95(2):251-263, 2014; Dykstra et al., Annu Rev Immunol 21:457-481, 2003). This introductory chapter describes the roles of GSLs and their lipid rafts in the immune system.
Collapse
Affiliation(s)
- Kazuhisa Iwabuchi
- Infection Control Nursing, Graduate School of Health Care and Nursing, Juntendo University, Chiba, Japan.
- Institute for Environmental and Gender Specific Medicine, Graduate school of Medicine, Juntendo University, Chiba, Japan.
| |
Collapse
|
36
|
|
37
|
Marshall MJE, Stopforth RJ, Cragg MS. Therapeutic Antibodies: What Have We Learnt from Targeting CD20 and Where Are We Going? Front Immunol 2017; 8:1245. [PMID: 29046676 PMCID: PMC5632755 DOI: 10.3389/fimmu.2017.01245] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) have become one of the fastest growing classes of drugs in recent years and are approved for the treatment of a wide range of indications, from cancer to autoimmune disease. Perhaps the best studied target is the pan B-cell marker CD20. Indeed, the first mAb to receive approval by the Food and Drug Administration for use in cancer treatment was the CD20-targeting mAb rituximab (Rituxan®). Since its approval for relapsed/refractory non-Hodgkin's lymphoma in 1997, rituximab has been licensed for use in the treatment of numerous other B-cell malignancies, as well as autoimmune conditions, including rheumatoid arthritis. Despite having a significant impact on the treatment of these patients, the exact mechanisms of action of rituximab remain incompletely understood. Nevertheless, numerous second- and third-generation anti-CD20 mAbs have since been developed using various strategies to enhance specific effector functions thought to be key for efficacy. A plethora of knowledge has been gained during the development and testing of these mAbs, and this knowledge can now be applied to the design of novel mAbs directed to targets beyond CD20. As we enter the "post-rituximab" era, this review will focus on the lessons learned thus far through investigation of anti-CD20 mAb. Also discussed are current and future developments relating to enhanced effector function, such as the ability to form multimers on the target cell surface. These strategies have potential applications not only in oncology but also in the improved treatment of autoimmune disorders and infectious diseases. Finally, potential approaches to overcoming mechanisms of resistance to anti-CD20 therapy are discussed, chiefly involving the combination of anti-CD20 mAbs with various other agents to resensitize patients to treatment.
Collapse
Affiliation(s)
- Michael J. E. Marshall
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Richard J. Stopforth
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
38
|
Minguet S, Kläsener K, Schaffer AM, Fiala GJ, Osteso-Ibánez T, Raute K, Navarro-Lérida I, Hartl FA, Seidl M, Reth M, Del Pozo MA. Caveolin-1-dependent nanoscale organization of the BCR regulates B cell tolerance. Nat Immunol 2017; 18:1150-1159. [PMID: 28805811 PMCID: PMC5608079 DOI: 10.1038/ni.3813] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
Caveolin-1 (Cav1) regulates the nanoscale organization and compartmentalization of the plasma membrane. Here we found that Cav1 controlled the distribution of nanoclusters of isotype-specific B cell antigen receptors (BCRs) on the surface of B cells. In mature B cells stimulated with antigen, the immunoglobulin M BCR (IgM-BCR) gained access to lipid domains enriched for GM1 glycolipids, by a process that was dependent on the phosphorylation of Cav1 by the Src family of kinases. Antigen-induced reorganization of nanoclusters of IgM-BCRs and IgD-BCRs regulated BCR signaling in vivo. In immature Cav1-deficient B cells, altered nanoscale organization of IgM-BCRs resulted in a failure of receptor editing and a skewed repertoire of B cells expressing immunoglobulin-μ heavy chains with hallmarks of poly- and auto-reactivity, which ultimately led to autoimmunity in mice. Thus, Cav1 emerges as a cell-intrinsic regulator that prevents B cell-induced autoimmunity by means of its role in plasma-membrane organization.
Collapse
Affiliation(s)
- Susana Minguet
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Mechanoadaptation &Caveolae Biology Lab, Cell Biology &Physiology Program; Cell &Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Kathrin Kläsener
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunology and Epigenetics, Freiburg, Germany
| | - Anna-Maria Schaffer
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gina J Fiala
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Teresa Osteso-Ibánez
- Mechanoadaptation &Caveolae Biology Lab, Cell Biology &Physiology Program; Cell &Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Katrin Raute
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School for Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Inmaculada Navarro-Lérida
- Mechanoadaptation &Caveolae Biology Lab, Cell Biology &Physiology Program; Cell &Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Frederike A Hartl
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Michael Reth
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunology and Epigenetics, Freiburg, Germany
| | - Miguel A Del Pozo
- Mechanoadaptation &Caveolae Biology Lab, Cell Biology &Physiology Program; Cell &Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
39
|
Plotnikov EY, Silachev DN, Popkov VA, Zorova LD, Pevzner IB, Zorov SD, Jankauskas SS, Babenko VA, Sukhikh GT, Zorov DB. Intercellular Signalling Cross-Talk: To Kill, To Heal and To Rejuvenate. Heart Lung Circ 2017; 26:648-659. [DOI: 10.1016/j.hlc.2016.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 11/22/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022]
|
40
|
Castiello MC, Pala F, Sereni L, Draghici E, Inverso D, Sauer AV, Schena F, Fontana E, Radaelli E, Uva P, Cervantes-Luevano KE, Benvenuti F, Poliani PL, Iannacone M, Traggiai E, Villa A, Bosticardo M. In Vivo Chronic Stimulation Unveils Autoreactive Potential of Wiskott-Aldrich Syndrome Protein-Deficient B Cells. Front Immunol 2017; 8:490. [PMID: 28512459 PMCID: PMC5411424 DOI: 10.3389/fimmu.2017.00490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/10/2017] [Indexed: 11/13/2022] Open
Abstract
Wiskott–Aldrich syndrome (WAS) is a primary immunodeficiency caused by mutations in the gene encoding the hematopoietic-specific WAS protein (WASp). WAS is frequently associated with autoimmunity, indicating a critical role of WASp in maintenance of tolerance. The role of B cells in the induction of autoreactive immune responses in WAS has been investigated in several settings, but the mechanisms leading to the development of autoimmune manifestations have been difficult to evaluate in the mouse models of the disease that do not spontaneously develop autoimmunity. We performed an extensive characterization of Was−/− mice that provided evidence of the potential alteration in B cell selection, because of the presence of autoantibodies against double-stranded DNA, platelets, and tissue antigens. To uncover the mechanisms leading to the activation of the potentially autoreactive B cells in Was−/− mice, we performed in vivo chronic stimulations with toll-like receptors agonists (LPS and CpG) and apoptotic cells or infection with lymphocytic choriomeningitis virus. All treatments led to increased production of autoantibodies, increased proteinuria, and kidney tissue damage in Was−/− mice. These findings demonstrate that a lower clearance of pathogens and/or self-antigens and the resulting chronic inflammatory state could cause B cell tolerance breakdown leading to autoimmunity in WAS.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Pala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Sereni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Draghici
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Donato Inverso
- Dynamics of Immune Responses, Division of Immunology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Aisha V Sauer
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Schena
- Laboratory of Immunology and Rheumatic Disease, IGG, Genova, Italy
| | - Elena Fontana
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia, Brescia, Italy
| | - Enrico Radaelli
- VIB11 Center for the Biology of Disease, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Pula, Italy
| | - Karla E Cervantes-Luevano
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Pietro L Poliani
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia, Brescia, Italy
| | - Matteo Iannacone
- Vita-Salute San Raffaele University, Milan, Italy.,Dynamics of Immune Responses, Division of Immunology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Marita Bosticardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
41
|
Saha AK, Osmulski P, Dallo SF, Gaczynska M, Huang THM, Ramasubramanian AK. Cholesterol Regulates Monocyte Rolling through CD44 Distribution. Biophys J 2017; 112:1481-1488. [PMID: 28402890 DOI: 10.1016/j.bpj.2017.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 10/19/2022] Open
Abstract
Cholesterol is an important risk factor of atherosclerosis, due to its active uptake by monocytes/macrophages. Monocyte recruitment from flowing blood to atherosclerotic foci is the key first step in the development of atherosclerosis. Cholesterol content alters cell membrane stiffness, and lateral lipid and protein diffusion. We hypothesized that cholesterol content will modulate the recruitment of monocytes to inflamed endothelial surface by altering the dynamics of adhesion receptors. We depleted or enriched the cellular cholesterol levels using methyl-β-cyclodextran in freshly isolated human monocytes. We investigated the effect of these changes on the mechanics of monocyte rolling on E-selectin surfaces at 1 dyn/cm2 in microchannels. Using imaging flow cytometry and atomic force microscopy, we characterized the distribution of lipid rafts and the E-selectin counterreceptor CD44 on the monocyte surface. We observed that lower levels of cholesterol resulted in the uniform, CD44-mediated rolling of monocytes on the E-selectin-coated surfaces. We also observed that cells depleted of cholesterol had higher membrane fluidity, and more uniform distribution of CD44 counterreceptor, which resulted in smooth motion of the cells compared to cells enriched with cholesterol. This work demonstrates that cholesterol can modulate monocyte adhesion by regulating the receptor mobility, and our results provide insights into the biophysical regulation of inflammation for the better understanding of diseases like atherosclerosis and hypercholesterolemia.
Collapse
Affiliation(s)
- Amit K Saha
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas
| | - Pawel Osmulski
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Shatha F Dallo
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas
| | - Maria Gaczynska
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Tim H-M Huang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Anand K Ramasubramanian
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas; Department of Biomedical, Chemical and Materials Engineering, San José State University, San José, California.
| |
Collapse
|
42
|
Stone MB, Shelby SA, Núñez MF, Wisser K, Veatch SL. Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. eLife 2017; 6. [PMID: 28145867 PMCID: PMC5373823 DOI: 10.7554/elife.19891] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
Diverse cellular signaling events, including B cell receptor (BCR) activation, are hypothesized to be facilitated by domains enriched in specific plasma membrane lipids and proteins that resemble liquid-ordered phase-separated domains in model membranes. This concept remains controversial and lacks direct experimental support in intact cells. Here, we visualize ordered and disordered domains in mouse B lymphoma cell membranes using super-resolution fluorescence localization microscopy, demonstrate that clustered BCR resides within ordered phase-like domains capable of sorting key regulators of BCR activation, and present a minimal, predictive model where clustering receptors leads to their collective activation by stabilizing an extended ordered domain. These results provide evidence for the role of membrane domains in BCR signaling and a plausible mechanism of BCR activation via receptor clustering that could be generalized to other signaling pathways. Overall, these studies demonstrate that lipid mediated forces can bias biochemical networks in ways that broadly impact signal transduction. DOI:http://dx.doi.org/10.7554/eLife.19891.001 Membranes made of molecules called lipids surround every living cell to protect the cell's contents. Cells also communicate with the outside environment via their membranes. Proteins in the membrane receive information from the environment and trigger signaling pathways inside the cell to relay this information to the center of cell. The way in which proteins are organized on the membrane has a major influence on their signaling activity. Some areas of the membrane are more crowded with certain lipids and signaling proteins than others. Lipid and protein molecules of particular types can come together and form distinct areas called “ordered” and “disordered” domains. The lipids in ordered domains are more tightly packed than disordered domains and it is thought that this difference allows domains to selectively exclude or include certain proteins. Ordered domains are also known as "lipid rafts". Lipid rafts and disordered domains may help cells to control the activities of signaling pathways, however, technical limitations have made it difficult to study the roles of these domains. The membranes surrounding immune cells called B cells contain a protein called the B cell receptor, which engages with proteins from microbes and other foreign invaders. When the B cell receptor binds to a foreign protein it forms clusters with other B cell receptors and becomes active, triggering a signaling pathway that leads to immune responses. Stone, Shelby et al. examined lipid rafts and disordered domains in B cells from mice using a technique called super-resolution fluorescence microscopy. The results show that clusters of B cell receptors are present within lipid rafts. These clusters made the lipid rafts larger and more stable. A protein that is needed during the early stages of B cell receptor signaling was also found in the same lipid rafts. Another protein that terminates signaling was excluded because it prefers disordered domains. Together, this provides a local environment in certain areas of the membrane that favors receptor activity and supports the subsequent immune response. Future work is needed to understand how cells control the make-up of lipids and proteins within their membranes, and how defects in this regulation can alter signaling activity and lead to disease. DOI:http://dx.doi.org/10.7554/eLife.19891.002
Collapse
Affiliation(s)
- Matthew B Stone
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Sarah A Shelby
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Marcos F Núñez
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Kathleen Wisser
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| |
Collapse
|
43
|
Chu EP, Elso CM, Pollock AH, Alsayb MA, Mackin L, Thomas HE, Kay TW, Silveira PA, Mansell AS, Gaus K, Brodnicki TC. Disruption of Serinc1, which facilitates serine-derived lipid synthesis, fails to alter macrophage function, lymphocyte proliferation or autoimmune disease susceptibility. Mol Immunol 2017; 82:19-33. [DOI: 10.1016/j.molimm.2016.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
|
44
|
Gaibelet G, Tercé F, Allart S, Lebrun C, Collet X, Jamin N, Orlowski S. Fluorescent probes for detecting cholesterol-rich ordered membrane microdomains: entangled relationships between structural analogies in the membrane and functional homologies in the cell. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.1.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
45
|
Robertson KA, Ghazal P. Interferon Control of the Sterol Metabolic Network: Bidirectional Molecular Circuitry-Mediating Host Protection. Front Immunol 2016; 7:634. [PMID: 28066443 PMCID: PMC5179542 DOI: 10.3389/fimmu.2016.00634] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
The sterol metabolic network is emerging center stage in inflammation and immunity. Historically, observational clinical studies show that hypocholesterolemia is a common side effect of interferon (IFN) treatment. More recently, comprehensive systems-wide investigations of the macrophage IFN response reveal a direct molecular link between cholesterol metabolism and infection. Upon infection, flux through the sterol metabolic network is acutely moderated by the IFN response at multiple regulatory levels. The precise mechanisms by which IFN regulates the mevalonate-sterol pathway—the spine of the network—are beginning to be unraveled. In this review, we discuss our current understanding of the multifactorial mechanisms by which IFN regulates the sterol pathway. We also consider bidirectional communications resulting in sterol metabolism regulation of immunity. Finally, we deliberate on how this fundamental interaction functions as an integral element of host protective responses to infection and harmful inflammation.
Collapse
Affiliation(s)
- Kevin A Robertson
- Division of Infection and Pathway Medicine, University of Edinburgh , Edinburgh , UK
| | - Peter Ghazal
- Division of Infection and Pathway Medicine, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
46
|
Cizmecioglu O, Ni J, Xie S, Zhao JJ, Roberts TM. Rac1-mediated membrane raft localization of PI3K/p110β is required for its activation by GPCRs or PTEN loss. eLife 2016; 5. [PMID: 27700986 PMCID: PMC5050018 DOI: 10.7554/elife.17635] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 09/22/2016] [Indexed: 11/26/2022] Open
Abstract
We aimed to understand how spatial compartmentalization in the plasma membrane might contribute to the functions of the ubiquitous class IA phosphoinositide 3-kinase (PI3K) isoforms, p110α and p110β. We found that p110β localizes to membrane rafts in a Rac1-dependent manner. This localization potentiates Akt activation by G-protein-coupled receptors (GPCRs). Thus genetic targeting of a Rac1 binding-deficient allele of p110β to rafts alleviated the requirement for p110β-Rac1 association for GPCR signaling, cell growth and migration. In contrast, p110α, which does not play a physiological role in GPCR signaling, is found to reside in nonraft regions of the plasma membrane. Raft targeting of p110α allowed its EGFR-mediated activation by GPCRs. Notably, p110β dependent, PTEN null tumor cells critically rely upon raft-associated PI3K activity. Collectively, our findings provide a mechanistic account of how membrane raft localization regulates differential activation of distinct PI3K isoforms and offer insight into why PTEN-deficient cancers depend on p110β. DOI:http://dx.doi.org/10.7554/eLife.17635.001
Collapse
Affiliation(s)
- Onur Cizmecioglu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Jing Ni
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Shaozhen Xie
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| |
Collapse
|
47
|
mTORC1-Activated Monocytes Increase Tregs and Inhibit the Immune Response to Bacterial Infections. Mediators Inflamm 2016; 2016:7369351. [PMID: 27746591 PMCID: PMC5056273 DOI: 10.1155/2016/7369351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
The TSC1/2 heterodimer, a key upstream regulator of the mTOR, can inhibit the activation of mTOR, which plays a critical role in immune responses after bacterial infections. Monocytes are an innate immune cell type that have been shown to be involved in bacteremia. However, how the mTOR pathway is involved in the regulation of monocytes is largely unknown. In our study, TSC1 KO mice and WT mice were infected with E. coli. When compared to WT mice, we found higher mortality, greater numbers of bacteria, decreased expression of coactivators in monocytes, increased numbers of Tregs, and decreased numbers of effector T cells in TSC1 KO mice. Monocytes obtained from TSC1 KO mice produced more ROS, IL-6, IL-10, and TGF-β and less IL-1, IFN-γ, and TNF-α. Taken together, our results suggest that the inhibited immune functioning in TSC1 KO mice is influenced by mTORC1 activation in monocytes. The reduced expression of coactivators resulted in inhibited effector T cell proliferation. mTORC1-activated monocytes are harmful during bacterial infections. Therefore, inhibiting mTORC1 signaling through rapamycin administration could rescue the harmful aspects of an overactive immune response, and this knowledge provides a new direction for clinical therapy.
Collapse
|
48
|
Thompson N, Isenberg DA, Jury EC, Ciurtin C. Exploring BAFF: its expression, receptors and contribution to the immunopathogenesis of Sjögren's syndrome. Rheumatology (Oxford) 2016; 55:1548-55. [PMID: 26790457 DOI: 10.1093/rheumatology/kev420] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 12/11/2022] Open
Abstract
SS is an autoimmune condition characterized by exocrine gland destruction, autoantibody production, immune complex deposition and systemic complications associated with lymphocytic infiltration of many organs. Genetic, environmental and viral factors play a role in disease aetiology, however, the exact mechanisms driving the immunopathogenesis of SS remain uncertain. Here we discuss a role for B cell activating factor (BAFF), whereby B cell hyperactivity and increased BAFF secretion observed in patients and animal models of the disease can be explained by the altered expression of cell-specific BAFF/BAFF receptor (BAFF-R) variants in several immune cell types. Understanding the role of BAFF/BAFF-R heterogeneity in SS pathogenesis could help to facilitate new treatment strategies for patients.
Collapse
Affiliation(s)
- Nicolyn Thompson
- Centre for Rheumatology Research, Department of Medicine, University College London, London, UK
| | - David A Isenberg
- Centre for Rheumatology Research, Department of Medicine, University College London, London, UK
| | - Elizabeth C Jury
- Centre for Rheumatology Research, Department of Medicine, University College London, London, UK
| | - Coziana Ciurtin
- Centre for Rheumatology Research, Department of Medicine, University College London, London, UK
| |
Collapse
|
49
|
Pore D, Gupta N. The ezrin-radixin-moesin family of proteins in the regulation of B-cell immune response. Crit Rev Immunol 2016; 35:15-31. [PMID: 25746045 DOI: 10.1615/critrevimmunol.2015012327] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dynamic reorganization of the cortical cytoskeleton is essential for numerous cellular processes, including B- and T-cell activation and migration. The ezrin-radixin-moesin (ERM) family of proteins plays structural and regulatory roles in the rearrangement of plasma membrane flexibility and protrusions through its members' reversible interaction with cortical actin filaments and the plasma membrane. Recent studies demonstrated that ERM proteins not only are involved in cytoskeletal organization but also offer a platform for the transmission of signals in response to a variety of extracellular stimuli through their ability to cross-link transmembrane receptors with downstream signaling components. In this review, we summarize present knowledge relating to ERMs and recent progress made toward elucidating a novel role for them in the regulation of B-cell function in health and disease.
Collapse
Affiliation(s)
- Debasis Pore
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Neetu Gupta
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
50
|
Camicia R, Winkler HC, Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Mol Cancer 2015; 14:207. [PMID: 26654227 PMCID: PMC4676894 DOI: 10.1186/s12943-015-0474-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous lymphoid malignancy and the most common subtype of non-Hodgkin's lymphoma in adults, with one of the highest mortality rates in most developed areas of the world. More than half of DLBLC patients can be cured with standard R-CHOP regimens, however approximately 30 to 40 % of patients will develop relapsed/refractory disease that remains a major cause of morbidity and mortality due to the limited therapeutic options.Recent advances in gene expression profiling have led to the identification of at least three distinct molecular subtypes of DLBCL: a germinal center B cell-like subtype, an activated B cell-like subtype, and a primary mediastinal B-cell lymphoma subtype. Moreover, recent findings have not only increased our understanding of the molecular basis of chemotherapy resistance but have also helped identify molecular subsets of DLBCL and rational targets for drug interventions that may allow for subtype/subset-specific molecularly targeted precision medicine and personalized combinations to both prevent and treat relapsed/refractory DLBCL. Novel agents such as lenalidomide, ibrutinib, bortezomib, CC-122, epratuzumab or pidilizumab used as single-agent or in combination with (rituximab-based) chemotherapy have already demonstrated promising activity in patients with relapsed/refractory DLBCL. Several novel potential drug targets have been recently identified such as the BET bromodomain protein (BRD)-4, phosphoribosyl-pyrophosphate synthetase (PRPS)-2, macrodomain-containing mono-ADP-ribosyltransferase (ARTD)-9 (also known as PARP9), deltex-3-like E3 ubiquitin ligase (DTX3L) (also known as BBAP), NF-kappaB inducing kinase (NIK) and transforming growth factor beta receptor (TGFβR).This review highlights the new insights into the molecular basis of relapsed/refractory DLBCL and summarizes the most promising drug targets and experimental treatments for relapsed/refractory DLBCL, including the use of novel agents such as lenalidomide, ibrutinib, bortezomib, pidilizumab, epratuzumab, brentuximab-vedotin or CAR T cells, dual inhibitors, as well as mechanism-based combinatorial experimental therapies. We also provide a comprehensive and updated list of current drugs, drug targets and preclinical and clinical experimental studies in DLBCL. A special focus is given on STAT1, ARTD9, DTX3L and ARTD8 (also known as PARP14) as novel potential drug targets in distinct molecular subsets of DLBCL.
Collapse
Affiliation(s)
- Rosalba Camicia
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Stem Cell Research Laboratory, NHS Blood and Transplant, Nuffield Division of Clinical, Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.,MRC-UCL Laboratory for Molecular Cell Biology Unit, University College London, Gower Street, London, WC1E6BT, UK
| | - Hans C Winkler
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|