1
|
Hayashi S, Suzuki H, Takada S, Takemoto T. Wnt3a is an early regulator of the Wolffian duct directionality via the regulation of apicobasal cell polarity. Dev Biol 2025; 522:136-142. [PMID: 40154784 DOI: 10.1016/j.ydbio.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The Wolffian duct is a pair of epithelial ductal structures along the body axis that induces nephron development by interaction with the metanephric mesenchyme. The interaction between the mesenchyme and the ureteric bud derived from the Wolffian duct is mediated by Wnt ligands, the loss of which results in kidney agenesis. Nonetheless, the early contribution of Wnt signaling to Wolffian duct formation remains unclear. We therefore examined these dynamics in knockout and transgenic mouse embryos. The Wnt signal reporter was active in the extending Wolffian duct, and Wnt3a-knockout embryos exhibited a fragmented and misdirectional Wolffian duct. Apicobasal polarity was disrupted under Wnt3a-deficiency. These findings suggest that Wnt3a plays an important role in Wolffian duct development by regulating apicobasal polarity.
Collapse
Affiliation(s)
- Shinichi Hayashi
- Laboratory of Embryology, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan; Faculty of Medicine, Department of Anatomy, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| | - Hitomi Suzuki
- Laboratory of Embryology, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Shinji Takada
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Tatsuya Takemoto
- Laboratory of Embryology, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
2
|
Iber D, Mederacke M, Vetter R. Coordination of nephrogenesis with branching of the urinary collecting system, the vasculature and the nervous system. Curr Top Dev Biol 2025; 163:45-82. [PMID: 40254350 DOI: 10.1016/bs.ctdb.2024.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Affiliation(s)
- Dagmar Iber
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Malte Mederacke
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Roman Vetter
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
3
|
Kurtzeborn K, El-Dahr SS, Pakkasjärvi N, Tortelote GG, Kuure S. Kidney development at a glance: metabolic regulation of renal progenitor cells. Curr Top Dev Biol 2024; 163:15-44. [PMID: 40254344 DOI: 10.1016/bs.ctdb.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The aberrant regulation of renal progenitor cells during kidney development leads to congenital kidney anomalies and dysplasia. Recently, significant progress has been made in understanding the metabolic needs of renal progenitor cells during mammalian kidney development, with evidence indicating that multiple metabolic pathways play essential roles in determining the cell fates of distinct renal progenitor populations. This review summarizes recent findings and explores the prospects of integrating this novel information into current diagnostic and treatment strategies for renal diseases. Reciprocal interactions between various embryonic kidney progenitor populations establish the foundation for normal kidney organogenesis, with the three principal kidney structures-the nephrons, the collecting duct network, and the stroma-being generated by nephron progenitor cells, ureteric bud/collecting duct progenitor cells, and interstitial progenitor cells. While energy metabolism is well recognized for its importance in organism development, physiological function regulation, and responses to environmental stimuli, research has primarily focused on nephron progenitor metabolism, highlighting its role in maintaining self-renewal. In contrast, studies on the metabolic requirements of ureteric bud/collecting duct and stromal progenitors remain limited. Given the importance of interactions between progenitor populations during kidney development, further research into the metabolic regulation of self-renewal and differentiation in ureteric bud and stromal progenitor cells will be critical.
Collapse
Affiliation(s)
- K Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, Finland; Stem Cells and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Finland
| | - S S El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, United States
| | - N Pakkasjärvi
- Stem Cells and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Finland; Department of Pediatric Surgery, Section of Pediatric Urology, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - G G Tortelote
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, United States.
| | - S Kuure
- Helsinki Institute of Life Science, University of Helsinki, Finland; Stem Cells and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Finland; Laboratory Animal Centre, University of Helsinki, Finland.
| |
Collapse
|
4
|
Clark JF, Soriano P. Diverse Fgfr1 signaling pathways and endocytic trafficking regulate early mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580629. [PMID: 38405698 PMCID: PMC10888970 DOI: 10.1101/2024.02.16.580629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The Fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1 null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth, but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM-interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identify processes regulating early mesoderm development by mechanisms involving both canonical and non-canonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.
Collapse
Affiliation(s)
- James F. Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
5
|
Murphy AJ, Cheng C, Williams J, Shaw TI, Pinto EM, Dieseldorff-Jones K, Brzezinski J, Renfro LA, Tornwall B, Huff V, Hong AL, Mullen EA, Crompton B, Dome JS, Fernandez CV, Geller JI, Ehrlich PF, Mulder H, Oak N, Maciezsek J, Jablonowski CM, Fleming AM, Pichavaram P, Morton CL, Easton J, Nichols KE, Clay MR, Santiago T, Zhang J, Yang J, Zambetti GP, Wang Z, Davidoff AM, Chen X. Genetic and epigenetic features of bilateral Wilms tumor predisposition in patients from the Children's Oncology Group AREN18B5-Q. Nat Commun 2023; 14:8006. [PMID: 38110397 PMCID: PMC10728430 DOI: 10.1038/s41467-023-43730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Developing synchronous bilateral Wilms tumor suggests an underlying (epi)genetic predisposition. Here, we evaluate this predisposition in 68 patients using whole exome or genome sequencing (n = 85 tumors from 61 patients with matched germline blood DNA), RNA-seq (n = 99 tumors), and DNA methylation analysis (n = 61 peripheral blood, n = 29 non-diseased kidney, n = 99 tumors). We determine the predominant events for bilateral Wilms tumor predisposition: 1)pre-zygotic germline genetic variants readily detectable in blood DNA [WT1 (14.8%), NYNRIN (6.6%), TRIM28 (5%), and BRCA-related genes (5%)] or 2)post-zygotic epigenetic hypermethylation at 11p15.5 H19/ICR1 that may require analysis of multiple tissue types for diagnosis. Of 99 total tumor specimens, 16 (16.1%) have 11p15.5 normal retention of imprinting, 25 (25.2%) have 11p15.5 copy neutral loss of heterozygosity, and 58 (58.6%) have 11p15.5 H19/ICR1 epigenetic hypermethylation (loss of imprinting). Here, we ascertain the epigenetic and genetic modes of bilateral Wilms tumor predisposition.
Collapse
Affiliation(s)
- Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, 38105, USA.
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Justin Williams
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Timothy I Shaw
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Emilia M Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | | - Jack Brzezinski
- Department of Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lindsay A Renfro
- Children's Oncology Group and Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Brett Tornwall
- Children's Oncology Group Statistics and Data Center, Monrovia, CA, USA
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew L Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Elizabeth A Mullen
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Brian Crompton
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jeffrey S Dome
- Center for Cancer and Blood Disorders, Children's National Hospital, Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Peter F Ehrlich
- Section of Pediatric Surgery, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ninad Oak
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jamie Maciezsek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Carolyn M Jablonowski
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Andrew M Fleming
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, 38105, USA
| | | | - Christopher L Morton
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael R Clay
- Department of Pathology, University of Colorado Anschutz, Aurora, CO, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gerard P Zambetti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
6
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Murphy AJ, Cheng C, Williams J, Shaw TI, Pinto EM, Dieseldorff-Jones K, Brzezinski J, Renfro LA, Tornwall B, Huff V, Hong AL, Mullen EA, Crompton B, Dome JS, Fernandez CV, Geller JI, Ehrlich PF, Mulder H, Oak N, Maciezsek J, Jablonowski C, Fleming AM, Pichavaram P, Morton CL, Easton J, Nichols KE, Clay MR, Santiago T, Zhang J, Yang J, Zambetti GP, Wang Z, Davidoff AM, Chen X. The Genetic and Epigenetic Features of Bilateral Wilms Tumor Predisposition: A Report from the Children's Oncology Group AREN18B5-Q Study. RESEARCH SQUARE 2023:rs.3.rs-2675436. [PMID: 36993649 PMCID: PMC10055651 DOI: 10.21203/rs.3.rs-2675436/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This study comprehensively evaluated the landscape of genetic and epigenetic events that predispose to synchronous bilateral Wilms tumor (BWT). We performed whole exome or whole genome sequencing, total-strand RNA-seq, and DNA methylation analysis using germline and/or tumor samples from 68 patients with BWT from St. Jude Children's Research Hospital and the Children's Oncology Group. We found that 25/61 (41%) of patients evaluated harbored pathogenic or likely pathogenic germline variants, with WT1 (14.8%), NYNRIN (6.6%), TRIM28 (5%) and the BRCA-related genes (5%) BRCA1, BRCA2, and PALB2 being most common. Germline WT1 variants were strongly associated with somatic paternal uniparental disomy encompassing the 11p15.5 and 11p13/WT1 loci and subsequent acquired pathogenic CTNNB1 variants. Somatic coding variants or genome-wide copy number alterations were almost never shared between paired synchronous BWT, suggesting that the acquisition of independent somatic variants leads to tumor formation in the context of germline or early embryonic, post-zygotic initiating events. In contrast, 11p15.5 status (loss of heterozygosity, loss or retention of imprinting) was shared among paired synchronous BWT in all but one case. The predominant molecular events for BWT predisposition include pathogenic germline variants or post-zygotic epigenetic hypermethylation at the 11p15.5 H19/ICR1 locus (loss of imprinting). This study demonstrates that post-zygotic somatic mosaicism for 11p15.5 hypermethylation/loss of imprinting is the single most common initiating molecular event predisposing to BWT. Evidence of somatic mosaicism for 11p15.5 loss of imprinting was detected in leukocytes of a cohort of BWT patients and long-term survivors, but not in unilateral Wilms tumor patients and long-term survivors or controls, further supporting the hypothesis that post-zygotic 11p15.5 alterations occurred in the mesoderm of patients who go on to develop BWT. Due to the preponderance of BWT patients with demonstrable germline or early embryonic tumor predisposition, BWT exhibits a unique biology when compared to unilateral Wilms tumor and therefore warrants continued refinement of its own treatment-relevant biomarkers which in turn may inform directed treatment strategies in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Brian Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center
| | | | | | | | | | | | - Ninad Oak
- St. Jude Children's Research Hospital
| | | | | | | | | | | | | | | | | | | | | | - Jun Yang
- St. Jude Children's Research Hospital
| | | | | | | | | |
Collapse
|
8
|
Mansour F, Hinze C, Telugu NS, Kresoja J, Shaheed IB, Mosimann C, Diecke S, Schmidt-Ott KM. The centrosomal protein 83 (CEP83) regulates human pluripotent stem cell differentiation toward the kidney lineage. eLife 2022; 11:e80165. [PMID: 36222666 PMCID: PMC9629839 DOI: 10.7554/elife.80165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, the mesoderm undergoes patterning into diverse lineages including axial, paraxial, and lateral plate mesoderm (LPM). Within the LPM, the so-called intermediate mesoderm (IM) forms kidney and urogenital tract progenitor cells, while the remaining LPM forms cardiovascular, hematopoietic, mesothelial, and additional progenitor cells. The signals that regulate these early lineage decisions are incompletely understood. Here, we found that the centrosomal protein 83 (CEP83), a centriolar component necessary for primary cilia formation and mutated in pediatric kidney disease, influences the differentiation of human-induced pluripotent stem cells (hiPSCs) toward IM. We induced inactivating deletions of CEP83 in hiPSCs and applied a 7-day in vitro protocol of IM kidney progenitor differentiation, based on timed application of WNT and FGF agonists. We characterized induced mesodermal cell populations using single-cell and bulk transcriptomics and tested their ability to form kidney structures in subsequent organoid culture. While hiPSCs with homozygous CEP83 inactivation were normal regarding morphology and transcriptome, their induced differentiation into IM progenitor cells was perturbed. Mesodermal cells induced after 7 days of monolayer culture of CEP83-deficient hiPCS exhibited absent or elongated primary cilia, displayed decreased expression of critical IM genes (PAX8, EYA1, HOXB7), and an aberrant induction of LPM markers (e.g. FOXF1, FOXF2, FENDRR, HAND1, HAND2). Upon subsequent organoid culture, wildtype cells differentiated to form kidney tubules and glomerular-like structures, whereas CEP83-deficient cells failed to generate kidney cell types, instead upregulating cardiomyocyte, vascular, and more general LPM progenitor markers. Our data suggest that CEP83 regulates the balance of IM and LPM formation from human pluripotent stem cells, identifying a potential link between centriolar or ciliary function and mesodermal lineage induction.
Collapse
Affiliation(s)
- Fatma Mansour
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Hinze
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Narasimha Swamy Telugu
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Jelena Kresoja
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Iman B Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Sebastian Diecke
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
9
|
Kwon HN, Kurtzeborn K, Iaroshenko V, Jin X, Loh A, Escande-Beillard N, Reversade B, Park S, Kuure S. Omics profiling identifies the regulatory functions of the MAPK/ERK pathway in nephron progenitor metabolism. Development 2022; 149:276992. [PMID: 36189831 PMCID: PMC9641663 DOI: 10.1242/dev.200986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2022]
Abstract
Nephron endowment is defined by fetal kidney growth and crucially dictates renal health in adults. Defects in the molecular regulation of nephron progenitors contribute to only a fraction of reduced nephron mass cases, suggesting alternative causative mechanisms. The importance of MAPK/ERK activation in nephron progenitor maintenance has been previously demonstrated, and here, we characterized the metabolic consequences of MAPK/ERK deficiency. Liquid chromatography/mass spectrometry-based metabolomics profiling identified 42 reduced metabolites, of which 26 were supported by in vivo transcriptional changes in MAPK/ERK-deficient nephron progenitors. Among these, mitochondria, ribosome and amino acid metabolism, together with diminished pyruvate and proline metabolism, were the most affected pathways. In vitro cultures of mouse kidneys demonstrated a dosage-specific function for pyruvate in controlling the shape of the ureteric bud tip, a regulatory niche for nephron progenitors. In vivo disruption of proline metabolism caused premature nephron progenitor exhaustion through their accelerated differentiation in pyrroline-5-carboxylate reductases 1 (Pycr1) and 2 (Pycr2) double-knockout kidneys. Pycr1/Pycr2-deficient progenitors showed normal cell survival, indicating no changes in cellular stress. Our results suggest that MAPK/ERK-dependent metabolism functionally participates in nephron progenitor maintenance by monitoring pyruvate and proline biogenesis in developing kidneys.
Collapse
Affiliation(s)
- Hyuk Nam Kwon
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Vladislav Iaroshenko
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Xing Jin
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Abigail Loh
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore 138648, Singapore
| | - Nathalie Escande-Beillard
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore 138648, Singapore,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Bruno Reversade
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore 138648, Singapore,Medical Genetics Department, School of Medicine, Koç University, Istanbul 34010, Turkey
| | - Sunghyouk Park
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland,GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Author for correspondence ()
| |
Collapse
|
10
|
|
11
|
Comparative whole-genome transcriptome analysis in renal cell populations reveals high tissue specificity of MAPK/ERK targets in embryonic kidney. BMC Biol 2022; 20:112. [PMID: 35550069 PMCID: PMC9102746 DOI: 10.1186/s12915-022-01309-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Background MAPK/ERK signaling is a well-known mediator of extracellular stimuli controlling intracellular responses to growth factors and mechanical cues. The critical requirement of MAPK/ERK signaling for embryonic stem cell maintenance is demonstrated, but specific functions in progenitor regulation during embryonic development, and in particular kidney development remain largely unexplored. We previously demonstrated MAPK/ERK signaling as a key regulator of kidney growth through branching morphogenesis and normal nephrogenesis where it also regulates progenitor expansion. Here, we performed RNA sequencing-based whole-genome expression analysis to identify transcriptional MAPK/ERK targets in two distinct renal populations: the ureteric bud epithelium and the nephron progenitors. Results Our analysis revealed a large number (5053) of differentially expressed genes (DEGs) in nephron progenitors and significantly less (1004) in ureteric bud epithelium, reflecting likely heterogenicity of cell types. The data analysis identified high tissue-specificity, as only a fraction (362) of MAPK/ERK targets are shared between the two tissues. Tissue-specific MAPK/ERK targets participate in the regulation of mitochondrial energy metabolism in nephron progenitors, which fail to maintain normal mitochondria numbers in the MAPK/ERK-deficient tissue. In the ureteric bud epithelium, a dramatic decline in progenitor-specific gene expression was detected with a simultaneous increase in differentiation-associated genes, which was not observed in nephron progenitors. Our experiments in the genetic model of MAPK/ERK deficiency provide evidence that MAPK/ERK signaling in the ureteric bud maintains epithelial cells in an undifferentiated state. Interestingly, the transcriptional targets shared between the two tissues studied are over-represented by histone genes, suggesting that MAPK/ERK signaling regulates cell cycle progression and stem cell maintenance through chromosome condensation and nucleosome assembly. Conclusions Using tissue-specific MAPK/ERK inactivation and RNA sequencing in combination with experimentation in embryonic kidneys, we demonstrate here that MAPK/ERK signaling maintains ureteric bud tip cells, suggesting a regulatory role in collecting duct progenitors. We additionally deliver new mechanistic information on how MAPK/ERK signaling regulates progenitor maintenance through its effects on chromatin accessibility and energy metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01309-z.
Collapse
|
12
|
Schmidt P, Leman E, Lagadec R, Schubert M, Mazan S, Reshef R. Evolutionary Transition in the Regulation of Vertebrate Pronephros Development: A New Role for Retinoic Acid. Cells 2022; 11:1304. [PMID: 35455988 PMCID: PMC9026449 DOI: 10.3390/cells11081304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
The anterior-posterior (AP) axis in chordates is regulated by a conserved set of genes and signaling pathways, including Hox genes and retinoic acid (RA), which play well-characterized roles in the organization of the chordate body plan. The intermediate mesoderm (IM), which gives rise to all vertebrate kidneys, is an example of a tissue that differentiates sequentially along this axis. Yet, the conservation of the spatiotemporal regulation of the IM across vertebrates remains poorly understood. In this study, we used a comparative developmental approach focusing on non-conventional model organisms, a chondrichthyan (catshark), a cyclostome (lamprey), and a cephalochordate (amphioxus), to assess the involvement of RA in the regulation of chordate and vertebrate pronephros formation. We report that the anterior expression boundary of early pronephric markers (Pax2 and Lim1), positioned at the level of somite 6 in amniotes, is conserved in the catshark and the lamprey. Furthermore, RA, driving the expression of Hox4 genes like in amniotes, regulates the anterior pronephros boundary in the catshark. We find no evidence for the involvement of this regulatory hierarchy in the AP positioning of the lamprey pronephros and the amphioxus pronephros homolog, Hatschek's nephridium. This suggests that despite the conservation of Pax2 and Lim1 expressions in chordate pronephros homologs, the responsiveness of the IM, and hence of pronephric genes, to RA- and Hox-dependent regulation is a gnathostome novelty.
Collapse
Affiliation(s)
- Pascal Schmidt
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (P.S.); (E.L.)
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France;
| | - Eva Leman
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (P.S.); (E.L.)
| | - Ronan Lagadec
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (R.L.); (S.M.)
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France;
| | - Sylvie Mazan
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (R.L.); (S.M.)
| | - Ram Reshef
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (P.S.); (E.L.)
| |
Collapse
|
13
|
Lee S, McCabe EM, Rasmussen TP. Modeling the Kidney with Human Pluripotent cells: Applications for Toxicology and Organ Repair. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Chan K, Li X. Current Epigenetic Insights in Kidney Development. Genes (Basel) 2021; 12:genes12081281. [PMID: 34440455 PMCID: PMC8391601 DOI: 10.3390/genes12081281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
The kidney is among the best characterized developing tissues, with the genes and signaling pathways that regulate embryonic and adult kidney patterning and development having been extensively identified. It is now widely understood that DNA methylation and histone modification patterns are imprinted during embryonic development and must be maintained in adult cells for appropriate gene transcription and phenotypic stability. A compelling question then is how these epigenetic mechanisms play a role in kidney development. In this review, we describe the major genes and pathways that have been linked to epigenetic mechanisms in kidney development. We also discuss recent applications of single-cell RNA sequencing (scRNA-seq) techniques in the study of kidney development. Additionally, we summarize the techniques of single-cell epigenomics, which can potentially be used to characterize epigenomes at single-cell resolution in embryonic and adult kidneys. The combination of scRNA-seq and single-cell epigenomics will help facilitate the further understanding of early cell lineage specification at the level of epigenetic modifications in embryonic and adult kidney development, which may also be used to investigate epigenetic mechanisms in kidney diseases.
Collapse
Affiliation(s)
- Katrina Chan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA;
| | - Xiaogang Li
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-266-0110
| |
Collapse
|
15
|
Perens EA, Diaz JT, Quesnel A, Askary A, Crump JG, Yelon D. osr1 couples intermediate mesoderm cell fate with temporal dynamics of vessel progenitor cell differentiation. Development 2021; 148:dev198408. [PMID: 34338289 PMCID: PMC8380454 DOI: 10.1242/dev.198408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/21/2021] [Indexed: 11/20/2022]
Abstract
Transcriptional regulatory networks refine gene expression boundaries to define the dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that establish the boundary between the IM and neighboring vessel progenitors are poorly understood. Here, we delineate roles for the zinc-finger transcription factor Osr1 in kidney and vessel progenitor development. Zebrafish osr1 mutants display decreased IM formation and premature emergence of lateral vessel progenitors (LVPs). These phenotypes contrast with the increased IM and absent LVPs observed with loss of the bHLH transcription factor Hand2, and loss of hand2 partially suppresses osr1 mutant phenotypes. hand2 and osr1 are expressed together in the posterior mesoderm, but osr1 expression decreases dramatically prior to LVP emergence. Overexpressing osr1 during this timeframe inhibits LVP development while enhancing IM formation, and can rescue the osr1 mutant phenotype. Together, our data demonstrate that osr1 modulates the extent of IM formation and the temporal dynamics of LVP development, suggesting that a balance between levels of osr1 and hand2 expression is essential to demarcate the kidney and vessel progenitor territories.
Collapse
Affiliation(s)
- Elliot A. Perens
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
- Division of Pediatric Nephrology, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jessyka T. Diaz
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
- Division of Pediatric Nephrology, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Agathe Quesnel
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Amjad Askary
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - J. Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Hayashi S, Suzuki H, Takemoto T. The nephric mesenchyme lineage of intermediate mesoderm is derived from Tbx6-expressing derivatives of neuro-mesodermal progenitors via BMP-dependent Osr1 function. Dev Biol 2021; 478:155-162. [PMID: 34256037 DOI: 10.1016/j.ydbio.2021.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/07/2021] [Accepted: 07/07/2021] [Indexed: 11/18/2022]
Abstract
In vertebrate embryos, the kidney primordium metanephros is formed from two distinct cell lineages, Wolffian duct and metanephric mesenchyme, which were classically grouped as intermediate mesoderm. Whereas the reciprocal interactions between these two cell populations in kidney development have been studied extensively, the mechanisms generating them remain elusive. Here, we show that the mouse cell lineage that forms nephric mesenchyme develops as a subpopulation of Tbx6-expressing mesodermal precursor derivatives of neuro-mesodermal progenitors (NMPs) under the condition of bone morphogenetic protein (BMP)-signal-dependent Osr1 expression. The Osr1-expressing nephric mesenchyme precursors were confirmed as descendants of NMPs because they were labeled by Sox2 N1 enhancer-EGFP. In Tbx6 mutant embryos, nephric mesenchyme changed its fate into neural tissues, which reflected its NMP origin. In Osr1 mutant embryos, the specific region of the Tbx6-expressing mesoderm precursor, which normally expresses Osr1 and develops into the nephric mesenchyme, instead expressed the somite marker FoxC2. BMP signaling activated Osr1 expression in a region of TBX6-expressing mesoderm and elicited nephric mesenchyme development. This study suggested a new model of cell lineage segregation during gastrulation.
Collapse
Affiliation(s)
- Shinichi Hayashi
- Laboratory of Embryology, Institute of Medical Advanced Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Hitomi Suzuki
- Laboratory of Embryology, Institute of Medical Advanced Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Tatsuya Takemoto
- Laboratory of Embryology, Institute of Medical Advanced Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
17
|
Abstract
The kidney plays an integral role in filtering the blood-removing metabolic by-products from the body and regulating blood pressure. This requires the establishment of large numbers of efficient and specialized blood filtering units (nephrons) that incorporate a system for vascular exchange and nutrient reabsorption as well as a collecting duct system to remove waste (urine) from the body. Kidney development is a dynamic process which generates these structures through a delicately balanced program of self-renewal and commitment of nephron progenitor cells that inhabit a constantly evolving cellular niche at the tips of a branching ureteric "tree." The former cells build the nephrons and the latter the collecting duct system. Maintaining these processes across fetal development is critical for establishing the normal "endowment" of nephrons in the kidney and perturbations to this process are associated both with mutations in integral genes and with alterations to the fetal environment.
Collapse
Affiliation(s)
- Ian M Smyth
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
18
|
Li H, Hohenstein P, Kuure S. Embryonic Kidney Development, Stem Cells and the Origin of Wilms Tumor. Genes (Basel) 2021; 12:genes12020318. [PMID: 33672414 PMCID: PMC7926385 DOI: 10.3390/genes12020318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
The adult mammalian kidney is a poorly regenerating organ that lacks the stem cells that could replenish functional homeostasis similarly to, e.g., skin or the hematopoietic system. Unlike a mature kidney, the embryonic kidney hosts at least three types of lineage-specific stem cells that give rise to (a) a ureter and collecting duct system, (b) nephrons, and (c) mesangial cells together with connective tissue of the stroma. Extensive interest has been raised towards these embryonic progenitor cells, which are normally lost before birth in humans but remain part of the undifferentiated nephrogenic rests in the pediatric renal cancer Wilms tumor. Here, we discuss the current understanding of kidney-specific embryonic progenitor regulation in the innate environment of the developing kidney and the types of disruptions in their balanced regulation that lead to the formation of Wilms tumor.
Collapse
Affiliation(s)
- Hao Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-2941-59395
| |
Collapse
|
19
|
D'Costa K, Kosic M, Lam A, Moradipour A, Zhao Y, Radisic M. Biomaterials and Culture Systems for Development of Organoid and Organ-on-a-Chip Models. Ann Biomed Eng 2020; 48:2002-2027. [PMID: 32285341 PMCID: PMC7334104 DOI: 10.1007/s10439-020-02498-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
The development of novel 3D tissue culture systems has enabled the in vitro study of in vivo processes, thereby overcoming many of the limitations of previous 2D tissue culture systems. Advances in biomaterials, including the discovery of novel synthetic polymers has allowed for the generation of physiologically relevant in vitro 3D culture models. A large number of 3D culture systems, aided by novel organ-on-a-chip and bioreactor technologies have been developed to improve reproducibility and scalability of in vitro organ models. The discovery of induced pluripotent stem cells (iPSCs) and the increasing number of protocols to generate iPSC-derived cell types has allowed for the generation of novel 3D models with minimal ethical limitations. The production of iPSC-derived 3D cultures has revolutionized the field of developmental biology and in particular, the study of fetal brain development. Furthermore, physiologically relevant 3D cultures generated from PSCs or adult stem cells (ASCs) have greatly advanced in vitro disease modelling and drug discovery. This review focuses on advances in 3D culture systems over the past years to model fetal development, disease pathology and support drug discovery in vitro, with a specific focus on the enabling role of biomaterials.
Collapse
Affiliation(s)
- Katya D'Costa
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Milena Kosic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Angus Lam
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Azeen Moradipour
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Yimu Zhao
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
20
|
Herrmann M, Engelke K, Ebert R, Müller-Deubert S, Rudert M, Ziouti F, Jundt F, Felsenberg D, Jakob F. Interactions between Muscle and Bone-Where Physics Meets Biology. Biomolecules 2020; 10:biom10030432. [PMID: 32164381 PMCID: PMC7175139 DOI: 10.3390/biom10030432] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Muscle and bone interact via physical forces and secreted osteokines and myokines. Physical forces are generated through gravity, locomotion, exercise, and external devices. Cells sense mechanical strain via adhesion molecules and translate it into biochemical responses, modulating the basic mechanisms of cellular biology such as lineage commitment, tissue formation, and maturation. This may result in the initiation of bone formation, muscle hypertrophy, and the enhanced production of extracellular matrix constituents, adhesion molecules, and cytoskeletal elements. Bone and muscle mass, resistance to strain, and the stiffness of matrix, cells, and tissues are enhanced, influencing fracture resistance and muscle power. This propagates a dynamic and continuous reciprocity of physicochemical interaction. Secreted growth and differentiation factors are important effectors of mutual interaction. The acute effects of exercise induce the secretion of exosomes with cargo molecules that are capable of mediating the endocrine effects between muscle, bone, and the organism. Long-term changes induce adaptations of the respective tissue secretome that maintain adequate homeostatic conditions. Lessons from unloading, microgravity, and disuse teach us that gratuitous tissue is removed or reorganized while immobility and inflammation trigger muscle and bone marrow fatty infiltration and propagate degenerative diseases such as sarcopenia and osteoporosis. Ongoing research will certainly find new therapeutic targets for prevention and treatment.
Collapse
Affiliation(s)
- Marietta Herrmann
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, IZKF Research Group Tissue regeneration in musculoskeletal diseases, University Hospital Würzburg, University of Wuerzburg, 97070 Würzburg, Germany;
| | - Klaus Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
| | - Regina Ebert
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, IGZ, 97076 Würzburg, Germany; (R.E.)
| | - Sigrid Müller-Deubert
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, IGZ, 97076 Würzburg, Germany; (R.E.)
| | - Maximilian Rudert
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, 97074 Würzburg, Germany;
| | - Fani Ziouti
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany; (F.Z.); (F.J.)
| | - Franziska Jundt
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany; (F.Z.); (F.J.)
| | - Dieter Felsenberg
- Privatpraxis für Muskel- und Knochenkrankheiten, 12163 Berlin Germany;
| | - Franz Jakob
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, IGZ, 97076 Würzburg, Germany; (R.E.)
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, 97074 Würzburg, Germany;
- Correspondence:
| |
Collapse
|
21
|
Kuure S, Sariola H. Mouse Models of Congenital Kidney Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:109-136. [PMID: 32304071 DOI: 10.1007/978-981-15-2389-2_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects, which cause the majority of chronic kidney diseases in children. CAKUT covers a wide range of malformations that derive from deficiencies in embryonic kidney and lower urinary tract development, including renal aplasia, hypodysplasia, hypoplasia, ectopia, and different forms of ureter abnormalities. The majority of the genetic causes of CAKUT remain unknown. Research on mutant mice has identified multiple genes that critically regulate renal differentiation. The data generated from this research have served as an excellent resource to identify the genetic bases of human kidney defects and have led to significantly improved diagnostics. Furthermore, genetic data from human CAKUT studies have also revealed novel genes regulating kidney differentiation.
Collapse
Affiliation(s)
- Satu Kuure
- GM-Unit, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Hannu Sariola
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Paediatric Pathology, HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
22
|
Drake KA, Fessler AR, Carroll TJ. Methods for renal lineage tracing: In vivo and beyond. Methods Cell Biol 2019; 154:121-143. [PMID: 31493814 DOI: 10.1016/bs.mcb.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lineage tracing has resulted in fundamental discoveries in kidney development and disease and remains a powerful technique to study mechanisms of organogenesis, homeostasis, and repair/regeneration. Following decades of research on the cellular and molecular regulation of renal organogenesis, the kidney has become one of the most well-characterized organs, resulting in exciting advancements in pluripotent stem cell differentiation, tissue bioengineering, and the potential for developing novel regenerative therapies for kidney disease. Lineage tracing, or the labeling of progeny cells arising from a single cell or group of cells, allows for spatial and temporal analyses of dynamic in vivo and in vitro processes. As lineage tracing techniques expand across disciplines of developmental biology, stem cell biology, and regenerative medicine, careful experimental design and interpretation, along with an understanding of the basic principles and technical limitations, are essential for utilizing genetically complex lineage tracing models to further understand kidney development and disease.
Collapse
Affiliation(s)
- Keri A Drake
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Alicia R Fessler
- Department of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Thomas J Carroll
- Department of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|