1
|
Gugole PM, Zannoni A, Forni M, Iacono E, Zambelli F, Merlo B. Effects of holding and the addition of naloxone on vitrification of equine immature oocytes. Theriogenology 2025; 239:117359. [PMID: 40088710 DOI: 10.1016/j.theriogenology.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
This study investigates the effects of overnight holding and naloxone (Nx) supplementation on the vitrification outcomes of equine immature oocytes. Oocytes were divided into six experimental groups based on treatment combinations: fresh (F) and held (H) control oocytes, oocytes vitrified with or without Nx (10-8 M) (VIT and VIT-Nx), oocytes vitrified after overnight holding with or without Nx (10-8 M) (H-VIT and H-VIT-Nx). They were assessed for survival, meiotic competence, intracellular oxidative stress, mitochondrial activity and distribution, apoptosis, and apoptotic gene expression. At survival rate determination, the degeneration rate was higher in VIT and VIT-Nx compared to F (P < 0.05). The highest maturation rate was observed in VIT-Nx. A significant reduction in ROS levels was observed in H compared to F (P < 0.05). ROS levels were similar between F and VIT, while the Nx supplementation tended to increase them (VIT-Nx vs F: P = 0.053; VIT-Nx vs VIT: P = 0.069). Conversely, in oocytes vitrified after overnight holding, vitrification induced an increase in ROS levels (H vs VIT: P < 0.05), which was not observed in H-VIT-Nx. GSH intracellular levels showed significant differences only in held oocytes, with higher GH levels in H compared to H-VIT and H-VIT-Nx (P < 0.05). All treatments induced an increase in HMMP levels compared to F (P < 0.05). In H oocytes, mitochondria were distributed throughout the entire oolemma (TOMM20) and active mitochondria (D-LAT) were detected in the outermost region. Incontrast, in H-VIT-Nx, potentially active mitochondria were spread throughout the cytoplasm. AnnexinV/PI staining revealed that the percentage of viable oocytes was higher (P < 0.05) in F and H than in all vitrified/warmed oocytes, and H-VIT-Nx had the highest degeneration rate (P < 0.05). RT-PCR analysis confirmed the detection for both reference genes, and target genes BCL2 and Survivin in all samples. In contrast, BAX and p53 transcripts were consistently undetectable. No significant differences were observed in the expression of BCL2 and Survivin between groups. In conclusion, overnight holding at uncontrolled room temperature can alter oocyte characteristics and lead to variable results after vitrification. Nx demonstrated contrasting antioxidant effects depending on the vitrification timing, but it appeared to improve IVM outcomes in oocytes vitrified immediately after collection.
Collapse
Affiliation(s)
- Penelope Maria Gugole
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, Ozzano Emilia, 40064, Bologna, Italy.
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, Ozzano Emilia, 40064, Bologna, Italy; Health Science and Technologies Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy.
| | - Monica Forni
- Health Science and Technologies Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138, Bologna, Italy.
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, Ozzano Emilia, 40064, Bologna, Italy; Health Science and Technologies Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy.
| | | | - Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, via Tolara di Sopra 50, Ozzano Emilia, 40064, Bologna, Italy; Health Science and Technologies Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Moura JP, Oliveira PJ, Urbano AM. Mitochondria: An overview of their origin, genome, architecture, and dynamics. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167803. [PMID: 40118291 DOI: 10.1016/j.bbadis.2025.167803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Mitochondria are traditionally viewed as the powerhouses of eukaryotic cells, i.e., the main providers of the metabolic energy required to maintain their viability and function. However, the role of these ubiquitous intracellular organelles far extends energy generation, encompassing a large suite of functions, which they can adjust to changing physiological conditions. These functions rely on a sophisticated membrane system and complex molecular machineries, most of which imported from the cytosol through intricate transport systems. In turn, mitochondrial plasticity is rooted on mitochondrial biogenesis, mitophagy, fusion, fission, and movement. Dealing with all these aspects and terminology can be daunting for newcomers to the field of mitochondria, even for those with a background in biological sciences. The aim of the present educational article, which is part of a special issue entitled "Mitochondria in aging, cancer and cell death", is to present these organelles in a simple and concise way. Complex molecular mechanisms are deliberately omitted, as their inclusion would defeat the stated purpose of the article. Also, considering the wide scope of the article, coverage of each topic is necessarily limited, with the reader directed to excellent reviews, in which the different topics are discussed in greater depth than is possible here. In addition, the multiple cell type-specific genotypic and phenotypic differences between mitochondria are largely ignored, focusing instead on the characteristics shared by most of them, with an emphasis on mitochondria from higher eukaryotes. Also ignored are highly degenerate mitochondrion-related organelles, found in various anaerobic microbial eukaryotes lacking canonical mitochondria.
Collapse
Affiliation(s)
- João P Moura
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - Ana M Urbano
- Molecular Physical-Chemistry R&D Unit, Centre for Investigation in Environment, Genetics and Oncobiology (CIMAGO), Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
3
|
Kahlon U, Ricca FD, Pillai SJ, Olivetta M, Tharp KM, Jao LE, Dudin O, McDonald K, Aydogan MG. A mitochondrial redox switch licenses the onset of morphogenesis in animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620733. [PMID: 39553983 PMCID: PMC11565760 DOI: 10.1101/2024.10.28.620733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Embryos undergo pre-gastrulation cleavage cycles to generate a critical cell mass before transitioning to morphogenesis. The molecular underpinnings of this transition have traditionally centered on zygotic chromatin remodeling and genome activation1,2, as their repression can prevent downstream processes of differentiation and organogenesis. Despite precedents that oxygen depletion can similarly suspend development in early embryos3-6, hinting at a pivotal role for oxygen metabolism in this transition, whether there is a bona fide chemical switch that licenses the onset of morphogenesis remains unknown. Here we discover that a mitochondrial oxidant acts as a metabolic switch to license the onset of animal morphogenesis. Concomitant with the instatement of mitochondrial membrane potential, we found a burst-like accumulation of mitochondrial superoxide (O2 -) during fly blastoderm formation. In vivo chemistry experiments revealed that an electron leak from site IIIQo at ETC Complex III is responsible for O2 - production. Importantly, depleting mitochondrial O2 - fully mimics anoxic conditions and, like anoxia, induces suspended animation prior to morphogenesis, but not after. Specifically, H2O2, and not ONOO-, NO, or HO•, can single-handedly account for this mtROS-based response. We demonstrate that depleting mitochondrial O2 - similarly prevents the onset of morphogenetic events in vertebrate embryos and ichthyosporea, close relatives of animals. We postulate that such redox-based metabolic licensing of morphogenesis is an ancient trait of holozoans that couples the availability of oxygen to development, conserved from early-diverging animal relatives to vertebrates.
Collapse
Affiliation(s)
- Updip Kahlon
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- Touro College of Osteopathic Medicine, Touro University, USA
- These authors have contributed equally
| | - Francesco Dalla Ricca
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- Dev. & Stem Cell Biology Graduate Program, University of California, San Francisco, USA
- These authors have contributed equally
| | - Saraswathi J. Pillai
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- These authors have contributed equally
| | - Marine Olivetta
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Kevin M. Tharp
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis, USA
| | - Omaya Dudin
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Switzerland
| | - Kent McDonald
- Electron Microscope Lab, University of California, Berkeley, USA
| | - Mustafa G. Aydogan
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
- Nutrition and Obesity Research Center, University of California, San Francisco, USA
| |
Collapse
|
4
|
Considine MJ, Foyer CH. Redox regulation of meristem quiescence: outside/in. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6037-6046. [PMID: 38676562 PMCID: PMC11480653 DOI: 10.1093/jxb/erae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/26/2024] [Indexed: 04/29/2024]
Abstract
Quiescence is an essential property of meristematic cells, which restrains the cell cycle while retaining the capacity to divide. This crucial process not only facilitates life-long tissue homeostasis and regenerative capacity but also provides protection against adverse environmental conditions, enabling cells to conserve the proliferative potency while minimizing DNA damage. As a survival attribute, quiescence is inherently regulated by the products of aerobic life, in particular reactive oxygen species (ROS) and the redox (reduction/oxidation) mechanisms that plant have evolved to channel these into pervasive signals. Adaptive responses allow quiescent cells to compensate for reduced oxygen tension (hypoxia) in a reversible manner, while the regulated production of the superoxide anion (O2·-) facilitates cell division and the maintenance of stem cells. Here we discuss the role of ROS and redox reactions in the control of the quiescent state in plant meristems, and how this process is integrated with cellular energy and hormone biochemistry. We consider the pathways that sense and transmit redox signals with a focus on the central significance of redox regulation in the mitochondria and nucleus, which is a major regulator of quiescence in meristems. We discuss recent studies that suggest that ROS are a critical component of the feedback loops that control stem cell identity and fate, and suggest that the ROS/hypoxia interface is an important 'outside/in' positional cue for plant cells, particularly in meristems.
Collapse
Affiliation(s)
- Michael J Considine
- The UWA Institute of Agriculture, and the School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
- The Department of Primary Industries and Regional Development, Perth, Western Australia 6000, Australia
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
5
|
Shi J, Jin Y, Lin S, Li X, Zhang D, Wu J, Qi Y, Li Y. Mitochondrial non-energetic function and embryonic cardiac development. Front Cell Dev Biol 2024; 12:1475603. [PMID: 39435335 PMCID: PMC11491369 DOI: 10.3389/fcell.2024.1475603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The initial contraction of the heart during the embryonic stage necessitates a substantial energy supply, predominantly derived from mitochondrial function. However, during embryonic heart development, mitochondria influence beyond energy supplementation. Increasing evidence suggests that mitochondrial permeability transition pore opening and closing, mitochondrial fusion and fission, mitophagy, reactive oxygen species production, apoptosis regulation, Ca2+ homeostasis, and cellular redox state also play critical roles in early cardiac development. Therefore, this review aims to describe the essential roles of mitochondrial non-energetic function embryonic cardiac development.
Collapse
Affiliation(s)
- Jingxian Shi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuxi Jin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Jinlin Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Mikucki EE, O’Leary TS, Lockwood BL. Heat tolerance, oxidative stress response tuning and robust gene activation in early-stage Drosophila melanogaster embryos. Proc Biol Sci 2024; 291:20240973. [PMID: 39163981 PMCID: PMC11335408 DOI: 10.1098/rspb.2024.0973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
In organisms with complex life cycles, life stages that are most susceptible to environmental stress may determine species persistence in the face of climate change. Early embryos of Drosophila melanogaster are particularly sensitive to acute heat stress, yet tropical embryos have higher heat tolerance than temperate embryos, suggesting adaptive variation in embryonic heat tolerance. We compared transcriptomic responses to heat stress among tropical and temperate embryos to elucidate the gene regulatory basis of divergence in embryonic heat tolerance. The transcriptomes of tropical and temperate embryos differed in both constitutive and heat-stress-induced responses of the expression of relatively few genes, including genes involved in oxidative stress. Most of the transcriptomic response to heat stress was shared among all embryos. Embryos shifted the expression of thousands of genes, including increases in the expression of heat shock genes, suggesting robust zygotic gene activation and demonstrating that, contrary to previous reports, early embryos are not transcriptionally silent. The involvement of oxidative stress genes corroborates recent reports on the critical role of redox homeostasis in coordinating developmental transitions. By characterizing adaptive variation in the transcriptomic basis of embryonic heat tolerance, this study is a novel contribution to the literature on developmental physiology and developmental genetics.
Collapse
Affiliation(s)
- Emily E. Mikucki
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | | |
Collapse
|
7
|
Zhou D, Liu H, Zheng L, Liu A, Zhuan Q, Luo Y, Zhou G, Meng L, Hou Y, Wu G, Li J, Fu X. Metformin alleviates cryoinjuries in porcine oocytes by reducing membrane fluidity through the suppression of mitochondrial activity. Commun Biol 2024; 7:925. [PMID: 39090373 PMCID: PMC11294456 DOI: 10.1038/s42003-024-06631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Plasma membrane damage in vitrified oocytes is closely linked to mitochondrial dysfunction. However, the mechanism underlying mitochondria-regulated membrane stability is not elucidated. A growing body of evidence indicates that mitochondrial activity plays a pivotal role in cell adaptation. Since mitochondria work at a higher temperature than the constant external temperature of the cell, we hypothesize that suppressing mitochondrial activity would protect oocytes from extreme stimuli during vitrification. Here we show that metformin suppresses mitochondrial activity by reducing mitochondrial temperature. In addition, metformin affects the developmental potential of oocytes and improves the survival rate after vitrification. Transmission electron microscopy results show that mitochondrial abnormalities are markedly reduced in vitrified oocytes pretreated with metformin. Moreover, we find that metformin transiently inhibits mitochondrial activity. Interestingly, metformin pretreatment decreases cell membrane fluidity after vitrification. Furthermore, transcriptome results demonstrate that metformin pretreatment modulates the expression levels of genes involved in fatty acid elongation process, which is further verified by the increased long-chain saturated fatty acid contents in metformin-pretreated vitrified oocytes by lipidomic profile analysis. In summary, our study indicates that metformin alleviates cryoinjuries by reducing membrane fluidity via mitochondrial activity regulation.
Collapse
Affiliation(s)
- Dan Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongyu Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lv Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingrui Zhuan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuwen Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guizhen Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoquan Wu
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China.
| |
Collapse
|
8
|
Liu K, Li X, Liu Z, Ming X, Han B, Cai W, Yang X, Huang Z, Shi Z, Wu J, Hao B, Chen X. Orientin Promotes Antioxidant Capacity, Mitochondrial Biogenesis, and Fiber Transformation in Skeletal Muscles through the AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6226-6235. [PMID: 38492240 DOI: 10.1021/acs.jafc.3c08039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The sleep-breathing condition obstructive sleep apnea (OSA) is characterized by repetitive upper airway collapse, which can exacerbate oxidative stress and free radical generation, thereby detrimentally impacting both motor and sensory nerve function and inducing muscular damage. OSA development is promoted by increasing proportions of fast-twitch muscle fibers in the genioglossus. Orientin, a water-soluble dietary C-glycosyl flavonoid with antioxidant properties, increased the expression of slow myosin heavy chain (MyHC) and signaling factors associated with AMP-activated protein kinase (AMPK) activation both in vivo and in vitro. Inhibiting AMPK signaling diminished the effects of orientin on slow MyHC, fast MyHC, and Sirt1 expression. Overall, orientin enhanced type I muscle fibers in the genioglossus, enhanced antioxidant capacity, increased mitochondrial biogenesis through AMPK signaling, and ultimately improved fatigue resistance in C2C12 myotubes and mouse genioglossus. These findings suggest that orientin may contribute to upper airway stability in patients with OSA, potentially preventing airway collapse.
Collapse
Affiliation(s)
- Keshu Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xufeng Li
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, China
| | - Zhihui Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoping Ming
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Baoai Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Weisong Cai
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiuping Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zilin Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhenxiang Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianghao Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Bin Hao
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
9
|
Zhang L, Zhang X, Liu H, Yang C, Yu J, Zhao W, Guo J, Zhou B, Jiang N. MTFR2-dependent mitochondrial fission promotes HCC progression. J Transl Med 2024; 22:73. [PMID: 38238834 PMCID: PMC10795309 DOI: 10.1186/s12967-023-04845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The role of mitochondrial dynamics, encompassing fission, fusion, and mitophagy, in cancer progression has been extensively studied. However, the specific impact of mitochondrial dynamics on hepatocellular carcinoma (HCC) is still under investigation. METHODS In this study, mitochondrial dynamic genes were obtained from the MitoCarta 3.0 database, and gene expression data were collected from The Cancer Genome Atlas (TCGA) database. Based on the expression of these dynamic genes and differentially expressed genes (DEGs), patients were stratified into two clusters. Subsequently, a prognostic model was constructed using univariate COX regression and the least absolute shrinkage and selection operator (LASSO) regression, and the prognostic signature was evaluated. We analyzed the interaction between these model genes and dynamic genes to identify hub genes and reveal mitochondrial status. Furthermore, we assessed immune infiltration, tumor mutational burden (TMB), tumor stemness indices (TSI), and the response to immune checkpoint block (ICB) therapy using the TIDE algorithm and risk scores. Additionally, transmission electron microscopy (TEM), hematoxylin-eosin (H&E) staining, immunohistochemistry (IHC), western blotting (WB), and immunofluorescence (IF) were conducted to afford detailed visualization of the morphology of the mitochondria and the expression patterns of fission-associated proteins. RESULTS Patients in Cluster 2 exhibited heightened mitochondrial fission and had a worse prognosis. The up-regulated dynamic genes in Cluster 2 were identified as fission genes. GO/KEGG analyses reconfirmed the connection of Cluster 2 to augmented mitochondrial fission activities. Subsequently, a ten-gene prognostic signature based on the differentially expressed genes between the two clusters was generated, with all ten genes being up-regulated in the high-risk group. Moreover, the potential links between these ten signature genes and mitochondrial dynamics were explored, suggesting their involvement in mediating mitochondrial fission through interaction with MTFR2. Further investigation revealed that the high-risk group had an unfavorable prognosis, with a higher mutation frequency of TP53, increased immune checkpoint expression, a higher TIS score, and a lower TIDE score. The mitochondrial imbalance characterized by increased fission and upregulated MTFR2 and DNM1L expression was substantiated in both HCC specimens and cell lines. CONCLUSIONS In conclusion, we developed a novel MTFR2-related prognostic signature comprising ten mitochondrial dynamics genes. These genes play crucial roles in mitochondrial fission and have the potential to serve as important predictors and therapeutic targets for HCC.
Collapse
Affiliation(s)
- La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiuzhen Zhang
- School of Basic Medical Science, Chongqing Medical University, Chongqing, People's Republic of China
| | - Haichuan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jiyao Yu
- The Second Clinical College of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wei Zhao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jiao Guo
- School of Basic Medical Science, Chongqing Medical University, Chongqing, People's Republic of China
| | - Baoyong Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| | - Ning Jiang
- Department of Pathology, School of Basic Medical Science, Chongqing Medical University, Chongqing, People's Republic of China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China.
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Song J, Fang X, Zhou K, Bao H, Li L. Sepsis‑induced cardiac dysfunction and pathogenetic mechanisms (Review). Mol Med Rep 2023; 28:227. [PMID: 37859613 PMCID: PMC10619129 DOI: 10.3892/mmr.2023.13114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
Sepsis is a manifestation of the immune and inflammatory response to infection, which may lead to multi‑organ failure. Health care advances have improved outcomes in critical illness, but it still remains the leading cause of death. Septic cardiomyopathy is heart dysfunction brought on by sepsis. Septic cardiomyopathy is a common consequence of sepsis and has a mortality rate of up to 70%. There is a lack of understanding of septic cardiomyopathy pathogenesis; knowledge of its pathogenesis and the identification of potential therapeutic targets may reduce the mortality rate of patients with sepsis and lead to clinical improvements. The present review aimed to summarize advances in the pathogenesis of cardiac dysfunction in sepsis, with a focus on mitochondrial dysfunction, metabolic changes and cell death modalities and pathways. The present review summarized diagnostic criteria and outlook for sepsis treatment, with the goal of identifying appropriate treatment methods for this disease.
Collapse
Affiliation(s)
- Jiayu Song
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Xiaolei Fang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Kaixuan Zhou
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Huiwei Bao
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Lijing Li
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| |
Collapse
|
11
|
Considine MJ, Foyer CH. Metabolic regulation of quiescence in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1132-1148. [PMID: 36994639 PMCID: PMC10952390 DOI: 10.1111/tpj.16216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 05/31/2023]
Abstract
Quiescence is a crucial survival attribute in which cell division is repressed in a reversible manner. Although quiescence has long been viewed as an inactive state, recent studies have shown that it is an actively monitored process that is influenced by environmental stimuli. Here, we provide a perspective of the quiescent state and discuss how this process is tuned by energy, nutrient and oxygen status, and the pathways that sense and transmit these signals. We not only highlight the governance of canonical regulators and signalling mechanisms that respond to changes in nutrient and energy status, but also consider the central significance of mitochondrial functions and cues as key regulators of nuclear gene expression. Furthermore, we discuss how reactive oxygen species and the associated redox processes, which are intrinsically linked to energy carbohydrate metabolism, also play a key role in the orchestration of quiescence.
Collapse
Affiliation(s)
- Michael J. Considine
- The UWA Institute of Agriculture and the School of Molecular SciencesThe University of Western AustraliaPerthWestern Australia6009Australia
- The Department of Primary Industries and Regional DevelopmentPerthWestern Australia6000Australia
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
12
|
Rideout EJ, Tennessen JM. Editorial. Semin Cell Dev Biol 2023; 138:81-82. [PMID: 35970667 DOI: 10.1016/j.semcdb.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47404, USA.
| |
Collapse
|