1
|
Shlyk NP, Yurchenko EA, Leshchenko EV, Chingizova EA, Chingizov AR, Chausova VE, Kirichuk NN, Khudyakova YV, Pivkin MV, Antonov AS, Popov RS, Isaeva MP, Yurchenko AN. The secondary metabolites of the alga-derived fungus Aspergillus niveoglaucus КММ 4176 and their antimicrobial and antibiofilm activities. J Antibiot (Tokyo) 2025; 78:314-329. [PMID: 39984736 DOI: 10.1038/s41429-025-00811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
Marine alga-derived fungal strain КММ 4176 was identified as Aspergillus niveoglaucus based on ITS region BenA, CaM and RPB2 gene sequence analysis. The anthraquinone derivatives emodin anthrone (1) and 4-hydroxyemodin anthrone (2), chromone derivative aloesone (3), and indole diketopiperazine alkaloid neoechinulin B (4) were isolated from the ethyl acetate extract of this fungus. In addition, UPLC MS data analysis of the KMM 4176 extract showed the presence of 17 echinulin-family alkaloids, as well as their biogenetic precursor cyclo(L-alanyl-L-tryptophyl) and a number of polyketide compounds. Emodin anthrone and 4-hydroxyemodin anthrone were found as inhibitors of biofilm formation by Staphylococcus aureus with half-maximal inhibitory concentrations (IC50) of 5.5 µM and 23.7 µM, respectively. Moreover, emodin anthrone (1) and 4-hydroxyemodin anthrone (2) inhibited staphylococcal sortase A activity with IC50 of 9.2 µM and 37.6 µM, respectively. Aloesone (3) also inhibited S. aureus biofilm formation but was less active. The first data on neoechinulin B (4) antibiofilm activity and sortase A inhibition were obtained. The positive effects of the isolated compounds on the growth of HaCaT keratinocytes infected with S. aureus were also observed.
Collapse
Affiliation(s)
- Nadezhda P Shlyk
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
- Far Eastern Federal University, Vladivostok, 690922, Russian Federation
| | - Ekaterina A Yurchenko
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Elena V Leshchenko
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Ekaterina A Chingizova
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Artur R Chingizov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Viktoria E Chausova
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Natalya N Kirichuk
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Yuliya V Khudyakova
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Mikhail V Pivkin
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Alexandr S Antonov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Roman S Popov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Marina P Isaeva
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Anton N Yurchenko
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation.
| |
Collapse
|
2
|
Bidon B, Yaakoub H, Lanoue A, Géry A, Séguin V, Magot F, Hoffmann C, Courdavault V, Bouchara JP, Gangneux JP, Frisvad JC, Rokas A, Goldman GH, Nevez G, Le Gal S, Davolos D, Garon D, Papon N. Tracing the Origin and Evolution of the Fungal Mycophenolic Acid Biosynthesis Pathway. Genome Biol Evol 2025; 17:evaf039. [PMID: 40052422 PMCID: PMC11934065 DOI: 10.1093/gbe/evaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Like bacteria and plants, fungi produce a remarkable diversity of small molecules with potent activities for human health known as natural products or secondary metabolites. One such example is mycophenolic acid, a powerful immunosuppressant drug that is administered daily to millions of transplant recipients worldwide. Production of mycophenolic acid is restricted to a very limited number of filamentous fungi, and little is known about its biosynthetic modalities. It is therefore a particular challenge to improve our knowledge of the biosynthesis of this valuable natural compound, as this would contribute to a better understanding of the specialized metabolism of fungi and could also lead to the identification of new fungal producers for the supply of immunosuppressants. Here, we were interested in deciphering the origin and evolution of the fungal mycophenolic acid biosynthetic pathway. Large-scale analyses of fungal genomic resources led us to identify several new species that harbor a gene cluster for mycophenolic acid biosynthesis. Phylogenomic analysis suggests that the mycophenolic acid biosynthetic gene cluster originated early in a common ancestor of the fungal family Aspergillaceae but was repeatedly lost and it is now present in a narrow but diverse set of filamentous fungi. Moreover, a comparison of the inosine 5'-monophosphate dehydrogenase protein sequences that are the target of the mycophenolic acid drug as well as analysis of mycophenolic acid production and susceptibility suggest that all mycophenolic acid fungal producers are resistant to this toxic compound, but that this resistance is likely to be based on different molecular mechanisms. Our study provides new insight into the evolution of the biosynthesis of the important secondary metabolite mycophenolic acid in fungi.
Collapse
Affiliation(s)
- Baptiste Bidon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
- Centre for Genomics and Precision Medicine, National Taiwan University, Taipei, Taiwan (R.O.C.)
| | - Hajar Yaakoub
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
- Nantes Université, INRAE UMR-1280 PhAN, F-44000 Nantes, France
| | | | - Antoine Géry
- ABTE EA 4651-ToxEMAC, Normandie Université, UNICAEN, UNIROUEN, Caen, France
| | - Virginie Séguin
- ABTE EA 4651-ToxEMAC, Normandie Université, UNICAEN, UNIROUEN, Caen, France
| | | | - Claire Hoffmann
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Brest, France
- Parasitology-Mycology Unit, Brest University Hospital, Brest, France
| | | | | | - Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
- Parasitology-Mycology Unit, Rennes University Hospital, European Excellence Center in Medical Mycology (ECMM EC), Centre National de Référence pour les mycoses et antifongiques-laboratoire associé Aspergilloses chroniques (CNRMA-LA AspC), Rennes, France
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gilles Nevez
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Brest, France
- Parasitology-Mycology Unit, Brest University Hospital, Brest, France
| | - Solène Le Gal
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Brest, France
- Parasitology-Mycology Unit, Brest University Hospital, Brest, France
| | - Domenico Davolos
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DIT), INAIL Research Area, Rome, Italy
| | - David Garon
- ABTE EA 4651-ToxEMAC, Normandie Université, UNICAEN, UNIROUEN, Caen, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
| |
Collapse
|
3
|
Hatim L, Denning DW. Aspergillus IgG antibody testing in the diagnosis of hypersensitivity pneumonitis: A scoping review. Chron Respir Dis 2025; 22:14799731251326592. [PMID: 40237653 PMCID: PMC12033569 DOI: 10.1177/14799731251326592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 04/18/2025] Open
Abstract
BackgroundDiagnosis of hypersensitivity pneumonitis (HP) or extrinsic allergic alveolitis requires a combination of tests with antibody testing playing a supportive role to identify exposures.ObjectivesWe conducted a scoping review on Aspergillus antibody testing in Aspergillus-related HP to identify the utility and diagnostic cutoffs proposed in the literature. We compared these cutoffs with studies of chronic pulmonary aspergillosis (CPA) and manufacturers' cutoffs.Eligibility criteriaOnly studies addressing the diagnostic value of Aspergillus IgG or precipitins for HP were included. Separately papers defining cutoffs for CPA were tabulated.Sources of evidencePublished papers were identified in literature searches in Embase, Web of Science, and Medline.ResultsWe identified 414 papers, of which 12 were included, all published between 1965 and 2005. Occupational HP linked to Aspergillus spp. exposure included Farmer's Lung, Malt-Worker's Lung, Esparto Worker's Lung, and Woodworker's lung (Sawmill-workers). No studies directly addressed serological testing in Tobacco Worker's lung, Compost Lung, or poultry workers. Among Aspergillus species exposure, A. fumigatus was most commonly described; others included A. umbrosus (now A. glaucus), A. clavatus, and A. niger. Antibody tests included ELISA, BALISA, precipitin tests and ImmunoCAP, with a higher sensitivity of ELISA and ImmunoCAP tests compared to precipitin tests. Patients with HP linked to Aspergillus exposures, were positive in 156/290 (53.8%) compared to 96/615 (15.6%) in those with similar occupational exposures without HP. In malt workers with HP 35/53 (66%) had detectable A. clavatus IgG antibody compared to 0/53 A. fumigatus IgG, and 13/74 (18%) exposed but unaffected workers, but are not commercially available.ConclusionsImproved means of establishing or ruling out Aspergillus exposure are required, given the negative consequences for patients of continued Aspergillus inhalation. Modern studies with commercially available Aspergillus IgG antibody assays are required to define appropriate cutoffs for HP, given numerous studies published for chronic pulmonary aspergillosis.
Collapse
Affiliation(s)
- Lana Hatim
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, UK
| | - David W Denning
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, UK
| |
Collapse
|
4
|
Lee HB, Nguyen TTT, Noh SJ, Kim DH, Kang KH, Kim SJ, Kirk PM, Avery SV, Medina A, Hallsworth JE. Aspergillus ullungdoensis sp. nov., Penicillium jeongsukae sp. nov., and other fungi from Korea. Fungal Biol 2024; 128:2479-2492. [PMID: 39653494 DOI: 10.1016/j.funbio.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 01/05/2025]
Abstract
Eurotiales fungi are thought to be distributed worldwide but there is a paucity of information about their occurrence on diverse substrates or hosts and at specific localities. Some of the Eurotiales, including Aspergillus and Penicillium species, produce an array of secondary metabolites of use for agricultural, medicinal, and pharmaceutical applications. Here, we carried out a survey of the Eurotiales in South Korea, focusing on soil, freshwater, and plants (dried persimmon fruits and seeds of Perilla frutescens, known commonly as shiso). We obtained 11 species that-based on morphology, physiology, and multi-locus (ITS, BenA, CaM, and RPB2) phylogenetic analyses-include two new species, Aspergillus ullungdoensis sp. nov. and Penicillium jeongsukae sp. nov., and nine species that were known, but previously not described in South Korea, Aspergillus aculeatinus, Aspergillus aurantiacoflavus, Aspergillus croceiaffinis, Aspergillus pseudoviridinutans, Aspergillus uvarum, Penicillium ferraniaense, Penicillium glaucoroseum, Penicillium sajarovii, and one, Penicillium charlesii, that was isolated from previously unknown host, woodlouse (Porcellio scaber). We believe that biodiversity survey and identifying new species can contribute to set a baseline for future changes in the context of humanitarian crises such as climate change.
Collapse
Affiliation(s)
- Hyang Burm Lee
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Thuong T T Nguyen
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - So Jeong Noh
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dong Hee Kim
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ki Hyun Kang
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Su Jin Kim
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Paul M Kirk
- Biodiversity Informatics and Spatial Analysis, Jodrell Laboratory, Royal Botanic Gardens Kew, Surrey, TW9 3DS, UK
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Angel Medina
- Applied Mycology, Cranfield University, Cranfield, MK43 0AL, UK
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| |
Collapse
|
5
|
Shen S, Fu J, Fan R, Zhang J, Sun H, Wang Y, Ning J, Yue P, Zhang L, Gao X. Changes in the key odorants of loose-leaf dark tea fermented by Eurotium cristatum during aging for one year: Focus on the stale aroma. Food Res Int 2024; 197:115244. [PMID: 39593326 DOI: 10.1016/j.foodres.2024.115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Aging process has been recognized as one of the means to improve the quality of microbial fermented teas. The evolution of the characteristic stale aroma, a key odorant of microbial fermented tea, throughout the aging process remains unknown. To investigate the changes in key odorants of the fermented tea during aging, the loose-leaf dark tea (LDT) used in this study was prepared by solid-state fermentation using Eurotium cristatum and was aged for 0, 3, 6, 9, 12 months, producing varied aged LDT samples. Quantitative descriptive analysis (QDA) showed that the intensity of stale aroma in the LDT increased gradually during aging for one year. The volatile compounds from different aged samples were extracted using solvent-assisted flavor evaporation (SAFE) combined with liquid-liquid extraction, and ninety-six aroma-active compounds were further identified by gas chromatography-mass spectrometry/olfactometry (GC - MS/O) combined with modified detection frequency (MF) values. Among them, alcohols and esters showed an increasing trend, while nitrogenous compounds showed a decreasing trend during aging. The stale aroma attribute of the LDT were closely associated with several key odorants produced from the biotransformation by Eurotium cristatum, including cedrol, β-ionone, 1-octen-3-one, 1-octen-3-ol, and 4-vinylguaiacol, their aroma contributions were confirmed by further addition tests. These findings provide a theoretical basis for the future optimization of the aging process of fermented tea.
Collapse
Affiliation(s)
- Shanshan Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jialin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ranqin Fan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Haoran Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pengxiang Yue
- Fujian Provincial Key Laboratory of Plant Extraction Technology for Beverages, Zhangzhou, 363005, Fujian, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xueling Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
6
|
Xiao Y, Chen H, Chen Y, Ho CT, Wang Y, Cai T, Li S, Ma J, Guo T, Zhang L, Liu Z. Effect of inoculation with different Eurotium cristatum strains on the microbial communities and volatile organic compounds of Fu brick tea. Food Res Int 2024; 197:115219. [PMID: 39593304 DOI: 10.1016/j.foodres.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Eurotium cristatum is the primary fungus in Fu brick tea (FBT) and plays a crucial role in its special flavor. This study investigated the effect of inoculation with different E. cristatum strains (i.e., ZJ, GX, GZ, HN, and SX) on the microbial communities and volatile organic compounds (VOCs) of FBT. A total of 113 VOCs were identified in all samples, with the concentration of VOCs (alcohols, aldehydes, and ketones) significantly higher in GXE FBT than in other samples. The core VOCs of GXE (19), GZE (16), HNE (19), SXE (15), and ZJE (13) FBT were identified using orthogonal partial least squares discriminant analysis and relative odor activity value (ROAV) analysis. Methional (a27), butanal (a41), 1-octen-3-one (a69), and ethyl acetate (a77) were key markers for inoculated FBTs, and 1-octen-3-ol, dimethyl disulfide, and acetoin-M were the specific markers of HNE. Linalool and (E)-2-octenal were particularly prominent in GXE, and isoamyl acetate-D was an important aroma component of GZE. Differences in microbial diversity were observed among the different inoculated fermented FBTs, and E. cristatum inoculation remarkably influenced the richness and diversity of bacterial communities. The VOCs were closely associated with fungi and bacteria, and 19 potentially dominant microorganisms (10 fungal and 9 bacterial genera) correlated with VOCs were identified. Among them, Aspergillus (fungi) and Pseudomonas (bacteria) exerted the greatest role. The FBT inoculated with E. cristatum from ZJ had the highest content of theaflavins and theabrownins, which intensified the red and yellow colors of the tea. E. cristatum greatly decreased the free amino acids and fatty acids, contributing to the aroma formation of FBT. Therefore, inoculating FBT with E. cristatum remarkably influenced the microbial communities and improved its flavor profile. This work provides a theoretical foundation on the role of E. cristatum in the formation and regulation of FBT flavor.
Collapse
Affiliation(s)
- Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| | - Hui Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ting Cai
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China
| | - Shi Li
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jinrong Ma
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tianyang Guo
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
7
|
Pócsi I, Dijksterhuis J, Houbraken J, de Vries RP. Biotechnological potential of salt tolerant and xerophilic species of Aspergillus. Appl Microbiol Biotechnol 2024; 108:521. [PMID: 39560743 DOI: 10.1007/s00253-024-13338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Xerophilic fungi occupy versatile environments owing to their rich arsenal helping them successfully adapt to water constraints as a result of low relative humidity, high-osmolarity, and high-salinity conditions. The general term xerophilic fungi relates to organisms that tolerate and/or require reduced water activity, while halophilic and osmophilic are applied to specialized groups that require high salt concentrations or increased osmotic pressure, respectively. Species belonging to the family Aspergillaceae, and especially those classified in Aspergillus subgenus Aspergillus (sections Restricti and Aspergillus) and Polypaecilum, are particularly enriched in the group of osmophilic and salt-tolerant filamentous fungi. They produce an unprecedently wide spectrum of salt tolerant enzymes including proteases, peptidases, glutaminases, γ-glutamyl transpeptidases, various glycosidases such as cellulose-decomposing and starch-degrading hydrolases, lipases, tannases, and oxidareductases. These extremophilic fungi also represent a huge untapped treasure chest of yet-to-be-discovered, highly valuable, biologically active secondary metabolites. Furthermore, these organisms are indispensable agents in decolorizing textile dyes, degrading xenobiotics and removing excess ions in high-salt environments. They could also play a role in fermentation processes at low water activity leading to the preparation of daqu, meju, and tea. Considering current and future agricultural applications, salt-tolerant and osmophilic Aspergilli may contribute to the biosolubilization of phosphate in soil and the amelioration salt stress in crops. Transgenes from halophile Aspergilli may find promising applications in the engineering of salt stress and drought-tolerant agricultural crops. Aspergilli may also spoil feed and food and raise mycotoxin concentrations above the permissible doses and, therefore, the development of novel feed and food preservation technologies against these Aspergillus spp. is also urgently needed. On the other hand, some xerophilic Aspergilli have been shown to be promising biological control agents against mites. KEY POINTS: • Salt tolerant and osmophilic Aspergilli can be found in versatile environments • These fungi are rich resources of valuable enzymes and secondary metabolites • Biotechnological and agricultural applications of these fungi are expanding.
Collapse
Affiliation(s)
- István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
- HUN-REN-UD Fungal Stress Biology Research Group, Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| | - Jan Dijksterhuis
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
8
|
Kaur M, Thakur P, Verma N, Choksket S, Harshvardhan, Korpole S, Bandarupalli D, Grover V. Invasive Fungal Infections in Immunocompromised Conditions: Emphasis on COVID-19. Curr Microbiol 2024; 81:400. [PMID: 39384659 DOI: 10.1007/s00284-024-03916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
The COVID-19 pandemic caused death of 6 million lives globally, primarily from respiratory failure, but also a significant number from invasive fungal co-infections in these patients, owing to the immune dysfunction in hospitalized patients. Such complications occurred more often in critically ill, hospitalized patients particularly those admitted in intensive care units and were reported as the major reason associated with a high mortality rate worldwide. Fungal pathogens most commonly associated with COVID-19 patients comprise members of the Mucorales (such as Rhizopus, Mucor, and Lichtheimia), as well as genera Aspergillus and Candida. In India, the prevalence rate of mucormycosis is relatively high than aspergillosis and candidiasis, and the predisposing risk factors associated with such infections included uncontrolled diabetes, underlying lung disease, leukopenia, neutropenia, malignancies and prolonged steroid therapy. However, co-infection with other fungi, including Alternaria and Scedosporium was also sporadically reported. These devastating invasive fungal infections are associated with differential mortality (high-low) and morbidity rates even after active management. The diagnosis of such infections is often challenging due to lack of sensitivity in contemporary diagnostic methods and poses an enormous challenge to healthcare experts. Thus, the role of early and accurate diagnosis, and management of such fungal infections, is vital in preventing life-threatening situations. Hence, this review focusses primarily on the epidemiology, predisposing risk factors, host environment, diagnosis and treatment of the most common medically important invasive fungal infections in immunocompromised conditions associated with COVID-19.
Collapse
Affiliation(s)
- Mahaldeep Kaur
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Payal Thakur
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Nandini Verma
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Stanzin Choksket
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Harshvardhan
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suresh Korpole
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devadatha Bandarupalli
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vishakha Grover
- Dr. HS Judge Institute of Dental Sciences and Hospital, Panjab University, Sector 25, Chandigarh, India.
| |
Collapse
|
9
|
Debonne E, Thys M, Eeckhout M, Devlieghere F. The potential of UVC decontamination to prolong shelf-life of par-baked bread. FOOD SCI TECHNOL INT 2024; 30:636-645. [PMID: 36908224 DOI: 10.1177/10820132231162170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The effect of UVC (254 nm) treatment on the mould-free shelf-life of par-baked wholemeal, rye and six-grain bread was examined. Currently, these breads are par-baked, wrapped in high-density polyethylene (HDPE)-foil and transported or stored at room temperature for a couple of days before being full-baked and sold/consumed. Generally, after five days, these breads show signs of mould spoilage. A shelf-life increase in one or more days would already offer immense economical and logistic benefits for the baker or retailer. In this study, the parameters fluence rate (irradiation intensity), fluence (UV dose), distance to the UV-lamp (DTL) and number of layers of a common wrapping HDPE-foil (20 µm) were diversified. The breads were subjected to a UVC treatment (0-2502 mJ/cm²), packed and stored at room temperature for a period of 15 days (21.5 ± 0.8 °C). Similar as for the breads, agar plates with mould spores of Aspergillus niger, Aspergillus montevidensis and Penicillium roqueforti were UVC treated (0-1664 mJ/cm²) and checked daily for visible mould growth during 15 days (25 °C). Aspergillus niger showed the strongest resistance towards UVC, a fluence of 800 mJ/cm² was needed to inhibit growth during 15 days of storage, whereas for P. roqueforti and A. montevidensis, respectively, UV levels of 291 and 133 mJ/cm² were found sufficient. Furthermore, the shelf-life of wholemeal, rye and six-grain bread can be prolonged from 5 to 6, 8 and 9 days, respectively, using 2502 mJ/cm². The effect of higher UVC dosage on shelf-life reached a maximal level and was strongly impacted by the wide spread on data of mould-free shelf-life. The main factors influencing the potential of UV decontamination were the rough bread surface, differences in DTL, the possibility of post-contamination and UV permeability of packaging materials.
Collapse
Affiliation(s)
- Els Debonne
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Margaux Thys
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Mia Eeckhout
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Frank Devlieghere
- Laboratory of Applied Mycology (MYCOLAB), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Mageswari A, Lee D, Thao LD, Kang D, Kim DH, Hong SB. Re-identification of Strains from Aspergillus Section Aspergillus and Description of Three Unrecorded Species from Korea. MYCOBIOLOGY 2024; 52:267-277. [PMID: 39649146 PMCID: PMC11619013 DOI: 10.1080/12298093.2024.2387952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 12/10/2024]
Abstract
The section Aspergillus includes xerophilic fungi that are economically significant and broadly distributed in natural settings as well as human habitats and are recognized for their sustenance on substrates with low water activity. Accurate identification of fungal species is essential for any reliable advances in mycological research. In this study, 108 strains from the section Aspergillus, originating from Korea and conserved at the Korean Agricultural Culture Collection, were subjected to re-identification using a combined dataset that included partial sequences of β-tubulin (BenA), Calmodulin (CaM), and RNA polymerase II second largest subunit (RPB2) genes, along with their morphological characteristics. We confirmed the presence of 12 species among the 108 strains originally isolated from Korea. Of them, nine species have been formerly reported in Korea (Aspergillus chevalieri, Aspergillus cibarius, Aspergillus cumulatus, Aspergillus glaucus, Aspergillus montevidensis, Aspergillus proliferans, Aspergillus pseudoglaucus, Aspergillus ruber, and Aspergillus tonophilus), and 3 species (Aspergillus aurantiacoflavus, Aspergillus intermedius, and Aspergillus niveoglaucus) were found to be previously unreported to be isolated from Korea. Here, the detailed characteristic features of these three unexplored species are presented, including specific morphological traits, genetic variations, and ecological niches in Korea.
Collapse
Affiliation(s)
- Anbazhagan Mageswari
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| | - Daseul Lee
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| | - Le Dinh Thao
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| | - Donghun Kang
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| | - Dong-Hyun Kim
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| | - Seung-Beom Hong
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju, Republic of Korea
| |
Collapse
|
11
|
Ainousah BE, Ibrahim SRM, Alzain AA, Mohamed SGA, Hussein HGA, Ashour A, Abdallah HM, Mohamed GA. Exploring the potential of Aspergillus wentii: secondary metabolites and biological properties. Arch Microbiol 2024; 206:216. [PMID: 38619638 DOI: 10.1007/s00203-024-03934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Fungi are of considerable importance due to their capacity to biosynthesize various secondary metabolites with bioactive properties that draw high attention in new drug discovery with beneficial uses for improving human well-being and life quality. Aspergillus genus members are widespread and cosmopolitan species with varying economic significance in the fields of industry, medicine, and agriculture. Its species are renowned for their biosynthesis of secondary metabolites, characterized by both potent biological activity and structural novelty, making them a substantial reservoir for the development of new pharmaceuticals. The current work aimed at focusing on one species of this genus, Aspergillus wentii Wehmer, including its reported secondary metabolites in the period from 1951 to November 2023. A total of 97 compounds, including nitro-compounds, terpenoids, anthraquinones, xanthones, benzamides, and glucans. A summary of their bioactivities, as well as their biosynthesis was highlighted. Additionally, the reported applications of this fungus and its enzymes have been discussed. This review offers a useful reference that can direct future research into this fungus and its active metabolites, as well as their possible pharmacological and biotechnological applications.
Collapse
Affiliation(s)
- Bayan E Ainousah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, 21442, Jeddah, Saudi Arabia.
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Medani, Gezira, Sudan
| | - Shaimaa G A Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo, 11837, Egypt
| | - Hazem G A Hussein
- Preparatory Year Program, Batterjee Medical College, 21442, Jeddah, Saudi Arabia
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Zhiyuan H, Lin C, Yihan W, Meng D, Yanzi L, Zhenggang X. Reexamination of Aspergillus cristatus phylogeny in dark tea: Characteristics of the mitochondrial genome. Open Life Sci 2024; 19:20220838. [PMID: 38585639 PMCID: PMC10997147 DOI: 10.1515/biol-2022-0838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 04/09/2024] Open
Abstract
To enhance our understanding of Aspergillus cristatus, an important functional microorganism, the characteristics of its mitochondrial genome were analyzed and compared with related species. The mitochondrial genome of A. cristatus was determined to be 77,649 bp in length, with 15 protein-coding regions. Notably, its length surpassed that of the other species, primarily attributable to the intron length. Gene order exhibited significant variations, with greater conservation observed in the genus Penicillium compared to Aspergillus. Phylogenetic tree analyses indicated that the genera Aspergillus and Penicillium are closely related but monophyletic. Furthermore, the phylogenetic tree constructed based on protein-coding genes effectively distinguished all strains with high branching confidence. This approach provides a robust reflection of the evolutionary relationship between A. cristatus and its related species, offering potential for the development of molecular markers suitable for Aspergillus and Penicillium.
Collapse
Affiliation(s)
- Hu Zhiyuan
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
| | - Chen Lin
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
| | - Wang Yihan
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
| | - Dong Meng
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
| | - Li Yanzi
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
| | - Xu Zhenggang
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang413000, Hunan, China
- College of Forestry, Northwest A & F University, Yangling712100, Shaanxi, China
| |
Collapse
|
13
|
Barnés-Guirado M, Stchigel AM, Cano-Lira JF. A New Genus of the Microascaceae (Ascomycota) Family from a Hypersaline Lagoon in Spain and the Delimitation of the Genus Wardomyces. J Fungi (Basel) 2024; 10:236. [PMID: 38667907 PMCID: PMC11051006 DOI: 10.3390/jof10040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The Saladas de Sástago-Bujaraloz is an endorheic and arheic complex of lagoons located in the Ebro Basin and protected by the Ramsar Convention on Wetlands. Due to the semi-arid climate of the region and the high salinity of their waters, these lagoons constitute an extreme environment. We surveyed the biodiversity of salt-tolerant and halophilic fungi residents of the Laguna de Pito, a lagoon belonging to this complex. Therefore, we collected several samples of water, sediments, and soil of the periphery. Throughout the study, we isolated 21 fungal species, including a strain morphologically related to the family Microascaceae. However, this strain did not morphologically match any of genera within this family. After an in-depth morphological characterization and phylogenetic analysis using a concatenated sequence dataset of four phylogenetically informative molecular markers (the internal transcribed spacer region (ITS) of the nuclear ribosomal DNA (nrDNA); the D1-D2 domains of the 28S gene of the nuclear ribosomal RNA (LSU); and a fragment of the translation elongation factor 1-alpha (EF-1α) and the β-tubulin (tub2) genes), we established the new genus Dactyliodendromyces, with Dactyliodendromyces holomorphus as its species. Additionally, as a result of our taxonomic study, we reclassified the paraphyletic genus Wardomyces into three different genera: Wardomyces sensu stricto, Parawardomyces gen. nov., and Pseudowardomyces gen. nov., with Parawardomyces ovalis (formerly Wardomyces ovalis) and Pseudowardomyces humicola (formerly Wardomyces humicola) as the type species of their respective genera. Furthermore, we propose new combinations, including Parawardomyces giganteus (formerly Wardomyces giganteus) and Pseudowardomyces pulvinatus (formerly Wardomyces pulvinatus).
Collapse
Affiliation(s)
| | - Alberto Miguel Stchigel
- Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain; (M.B.-G.); (J.F.C.-L.)
| | | |
Collapse
|
14
|
Nguyen TTT, Kang KH, Kim DH, Kim SJ, Mun HY, Cheon W, Lee HB. Additions to the Knowledge of the Fungal Order Eurotiales in Korea: Eight Undescribed Species. MYCOBIOLOGY 2023; 51:417-435. [PMID: 38179116 PMCID: PMC10763837 DOI: 10.1080/12298093.2023.2290759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Eurotiales is a relatively large order of Ascomycetes, well-known for their ability to produce secondary metabolites with potential beneficial applications. To understand their diversity and distribution, different environmental sources including soil, freshwater, insect, and indoor air were investigated. Eight strains of Eurotiales were isolated and identified based on their morphological characters and a multi-gene phylogenetic analysis of the ITS, BenA, CaM, and RPB2 regions. We identified eight taxa that were previously not reported from Korea: Aspergillus baeticus, A. griseoaurantiacus, A. spinulosporus, Penicillium anthracinoglaciei, P. labradorum, P. nalgiovense, Talaromyces atroroseus, and T. georgiensis. Detailed descriptions, illustrations, and phylogenetic tree for the eight new records species are presented, and information regarding the records is also discussed.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Ki Hyun Kang
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Dong Hee Kim
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Su Jin Kim
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Hye Yeon Mun
- Microbial Research Department, Fungal Research Team, Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Wonsu Cheon
- Microbial Research Department, Fungal Research Team, Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Hyang Burm Lee
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
15
|
Le MM, Zhong LW, Ren ZW, An MQ, Long YH, Ling TJ. Dynamic Changes in the Microbial Community and Metabolite Profile during the Pile Fermentation Process of Fuzhuan Brick Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19142-19153. [PMID: 37827989 DOI: 10.1021/acs.jafc.3c04459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The pile fermentation process of Fuzhuan brick tea is unique in that it involves preheating without the use of starter cultures. The detailed metabolite changes and their drivers during this procedure are not known. Characterizing these unknown changes that occur in the metabolites and microbes during pile fermentation of Fuzhuan brick tea is important for industrial modernization of this traditional fermented food. Using microbial DNA amplicon sequencing, mass spectrometry-based untargeted metabolomics, and feature-based molecular networking, we herein reveal that significant changes in the microbial community occur before changes in the metabolite profile. These changes were characterized by a decrease in Klebsiella and Aspergillus, alongside an increase in Bacillus and Eurotium. The decrease in lysophosphatidylcholines, unsaturated fatty acids, and some astringent flavan-3-ols and bitter amino acids, as well as the increase in some less astringent flavan-3-ols and sweet or umami amino acids, contributed importantly to the overall changes observed in the metabolite profile. The majority of these changes was caused by bacterial metabolism and the corresponding heat generated by it.
Collapse
Affiliation(s)
- Miao-Miao Le
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- Xianyang Jingwei Fu Tea Co. Ltd., Xianyang 712044, Shaanxi, China
| | - Li-Wen Zhong
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Zhi-Wei Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Mao-Qiang An
- Yiyang Fu Cha Industry Development Co. Ltd., 690 North Datao Road, Yiyang 413000, Hunan, P. R. China
| | - Yan-Hua Long
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| |
Collapse
|
16
|
Zadravec M, Lešić T, Brnić D, Pleadin J, Kraak B, Jakopović Ž, Perković I, Vahčić N, Tkalec VJ, Houbraken J. Regional distribution and diversity of Aspergillus and Penicillium species on Croatian traditional meat products. Int J Food Microbiol 2023; 406:110404. [PMID: 37778241 DOI: 10.1016/j.ijfoodmicro.2023.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Various factors, such as weather and production practices (e.g., environmental hygiene, process duration, raw material quality, ripening temperature, and relative humidity), in combination with the intrinsic product properties (e.g., pH, aw, salt content), significantly affect the growth of surface moulds. The aim of this study was to isolate and identify surface moulds retrieved from traditional meat products (TMPs) and correlate these data to the production region and production technology. The surface of 250 TMPs (dry-fermented sausages, n = 108; dry-cured meat products, n = 142) from five Croatian regions were sampled during a two-year period. Dry-fermented sausages had a significantly higher pH and a lower salt concentration when compared to dry-cured meat products. In total, 528 isolates were obtained, comprising 20 Penicillium and 17 Aspergillus species. The species most frequently isolated from the dry-fermented sausages were P. commune (32.4 %), A. proliferans (33 %), and P. solitum (14.8 %), while A. proliferans (52.1 %), P. commune (28.9 %) and P. citrinum (19.7 %) predominated in dry-cured meat products. Aspergillus predominated on the TMPs from southern Croatia, while Penicillium was prevalent on products from the other four regions, possibly due to differences in weather conditions. Seven potentially mycotoxigenic species (A. creber, A. flavus, A. niger, A. westerdijkiae, P. citrinum, P. commune, and P. nordicum) were isolated and identified. Regular monitoring of mould species and their toxigenic metabolites present on traditional meat products is of the utmost importance from the public health perspective, while the results of such a monitoring can prove beneficial for the tailoring of the production technology development.
Collapse
Affiliation(s)
- Manuela Zadravec
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Tina Lešić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Dragan Brnić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Jelka Pleadin
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.
| | - Željko Jakopović
- Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Irena Perković
- Croatian Veterinary Institute, Veterinary Department Vinkovci, J. Kozarca 24, 32100 Vinkovci, Croatia.
| | - Nada Vahčić
- Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Vesna Jaki Tkalec
- Croatian Veterinary Institute, Veterinary Department Križevci, Ivana Zakmardija Dijankovečkog 10, 48260 Križevci, Croatia.
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.
| |
Collapse
|
17
|
Davies LR, Barbero-López A, Lähteenmäki VM, Salonen A, Fedorik F, Haapala A, Watts PC. Microbes within the building envelope-a case study on the patterns of colonization and potential sampling bias. PeerJ 2023; 11:e16355. [PMID: 38025723 PMCID: PMC10658902 DOI: 10.7717/peerj.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Humans are exposed to diverse communities of microbes every day. With more time spent indoors by humans, investigations into the communities of microbes inhabiting occupied spaces have become important to deduce the impacts of these microbes on human health and building health. Studies so far have given considerable insight into the communities of the indoor microbiota humans interact with, but mainly focus on sampling surfaces or indoor dust from filters. Beneath the surfaces though, building envelopes have the potential to contain environments that would support the growth of microbial communities. But due to design choices and distance from ground moisture, for example, the temperature and humidity across a building will vary and cause environmental gradients. These microenvironments could then influence the composition of the microbial communities within the walls. Here we present a case study designed to quantify any patterns in the compositions of fungal and bacterial communities existing in a building envelope and determine some of the key variables, such as cardinal direction, distance from floor or distance from wall joinings, that may influence any microbial community composition variation. By drilling small holes across walls of a house, we extracted microbes onto air filters and conducted amplicon sequencing. We found sampling height (distance from the floor) and cardinal direction the wall was facing caused differences in the diversity of the microbial communities, showing that patterns in the microbial composition will be dependent on sampling location within the building. By sampling beneath the surfaces, our approach provides a more complete picture of the microbial condition of a building environment, with the significant variation in community composition demonstrating a potential sampling bias if multiple sampling locations across a building are not considered. By identifying features of the built environment that promote/retard microbial growth, improvements to building designs can be made to achieve overall healthier occupied spaces.
Collapse
Affiliation(s)
- Lucy R. Davies
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | | | - Antti Salonen
- Civil Engineering, Faculty of Technology, University of Oulu, Oulu, Finland
| | - Filip Fedorik
- Civil Engineering, Faculty of Technology, University of Oulu, Oulu, Finland
| | - Antti Haapala
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Phillip C. Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
18
|
Santos de Almeida T, Alves Dos Santos B, Stefanello A, Duarte Dos Santos I, Copetti Fracari J, Silva M, Giongo C, Wagner R, Silveira Nalério E, Venturini Copetti M. Spontaneously growing fungi on the surface and processing areas of matured sheep ham and volatile compounds produced. Food Res Int 2023; 173:113287. [PMID: 37803600 DOI: 10.1016/j.foodres.2023.113287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 10/08/2023]
Abstract
Raw ham is a dried and matured product traditionally made from pork leg, but other animals, such as sheep, can be used. The natural presence of bacteria and fungi in this product influences its characteristics throughout the process. This study analysed the fungal populations present during raw sheep hams' processing. Two types of products were developed: without and with the addition of seasonings. Mycological analyses were carried out from the ingredients, seasonings, facilities air, as well as on the surfaces of the hams and the air in the chamber throughout the maturation period (0, 45, 90, and 180 days) using 18 % dichloran glycerol agar and the data were submitted to Principal Component Analysis. Volatile compounds were evaluated at the end of the sheep ham manufacturing process through a gas chromatograph coupled to a mass spectrometer. At 45 days of aging, a more remarkable similarity was observed between the fungi present on the non-seasoned hams and those in the ripening chamber's air, while the seasoned hams showed a more evident relation with those fungi present in the spices. With time, the fungi in the air of the ripening chamber started to be influenced by Aspergillus ser. Aspergillus and Aspergillus ser. Rubri already installed in the seasoned hams at 45 days, and then it probably dispersed the non-seasoned ones due to the airborne spores, becoming the most prevalent in both treatments at 90 days. At the end of ripening, the mycobiota of both raw hams was composed mainly by xerophilic species of Aspergillus section Aspergillus. The total fungal count was 5.78 log CFU/cm2 for the non-seasoned and 7.19 log CFU/cm2 for the seasoned ones. A potentially ochratoxigenic Aspergillus ser. Circumdati was detected at the end of aging in raw, unseasoned hams. In conclusion, seasoning directly influences the species developing on the surface of seasoned hams throughout the ripening process, and indirectly affects the mycobiota of the non-seasoned hams when sharing the same ripening chamber. The presence of fungi in the matured sheep ham seems to contribute to the formation of volatile compounds, which are related to the sensory quality of these products.
Collapse
Affiliation(s)
- Tiago Santos de Almeida
- Graduate Program in Food Science and Technology, Rural Sciences Center, Federal University of Santa Maria - UFSM, CEP: 97105-900 Santa Maria, RS, Brazil
| | - Bibiana Alves Dos Santos
- Graduate Program in Food Science and Technology, Rural Sciences Center, Federal University of Santa Maria - UFSM, CEP: 97105-900 Santa Maria, RS, Brazil
| | - Andrieli Stefanello
- Graduate Program in Food Science and Technology, Rural Sciences Center, Federal University of Santa Maria - UFSM, CEP: 97105-900 Santa Maria, RS, Brazil
| | - Ingrid Duarte Dos Santos
- Graduate Program in Food Science and Technology, Rural Sciences Center, Federal University of Santa Maria - UFSM, CEP: 97105-900 Santa Maria, RS, Brazil
| | - Juliana Copetti Fracari
- Graduate Program in Food Science and Technology, Rural Sciences Center, Federal University of Santa Maria - UFSM, CEP: 97105-900 Santa Maria, RS, Brazil
| | - Marina Silva
- Graduate Program in Food Science and Technology, Rural Sciences Center, Federal University of Santa Maria - UFSM, CEP: 97105-900 Santa Maria, RS, Brazil
| | - Citieli Giongo
- Embrapa Southern Livestock, Highway BR-153, Km 633, Industrial Village, Countryside, CEP: 96401-970 Bagé, RS, Brazil
| | - Roger Wagner
- Graduate Program in Food Science and Technology, Rural Sciences Center, Federal University of Santa Maria - UFSM, CEP: 97105-900 Santa Maria, RS, Brazil
| | - Elen Silveira Nalério
- Embrapa Southern Livestock, Highway BR-153, Km 633, Industrial Village, Countryside, CEP: 96401-970 Bagé, RS, Brazil
| | - Marina Venturini Copetti
- Graduate Program in Food Science and Technology, Rural Sciences Center, Federal University of Santa Maria - UFSM, CEP: 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
19
|
Wijayawardene NN, Boonyuen N, Ranaweera CB, de Zoysa HKS, Padmathilake RE, Nifla F, Dai DQ, Liu Y, Suwannarach N, Kumla J, Bamunuarachchige TC, Chen HH. OMICS and Other Advanced Technologies in Mycological Applications. J Fungi (Basel) 2023; 9:688. [PMID: 37367624 PMCID: PMC10302638 DOI: 10.3390/jof9060688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi play many roles in different ecosystems. The precise identification of fungi is important in different aspects. Historically, they were identified based on morphological characteristics, but technological advancements such as polymerase chain reaction (PCR) and DNA sequencing now enable more accurate identification and taxonomy, and higher-level classifications. However, some species, referred to as "dark taxa", lack distinct physical features that makes their identification challenging. High-throughput sequencing and metagenomics of environmental samples provide a solution to identifying new lineages of fungi. This paper discusses different approaches to taxonomy, including PCR amplification and sequencing of rDNA, multi-loci phylogenetic analyses, and the importance of various omics (large-scale molecular) techniques for understanding fungal applications. The use of proteomics, transcriptomics, metatranscriptomics, metabolomics, and interactomics provides a comprehensive understanding of fungi. These advanced technologies are critical for expanding the knowledge of the Kingdom of Fungi, including its impact on food safety and security, edible mushrooms foodomics, fungal secondary metabolites, mycotoxin-producing fungi, and biomedical and therapeutic applications, including antifungal drugs and drug resistance, and fungal omics data for novel drug development. The paper also highlights the importance of exploring fungi from extreme environments and understudied areas to identify novel lineages in the fungal dark taxa.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Chathuranga B. Ranaweera
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University Sri Lanka, Kandawala Road, Rathmalana 10390, Sri Lanka;
| | - Heethaka K. S. de Zoysa
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Rasanie E. Padmathilake
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Pulliyankulama, Anuradhapura 50000, Sri Lanka;
| | - Faarah Nifla
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Dong-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
| | - Yanxia Liu
- Guizhou Academy of Tobacco Science, No.29, Longtanba Road, Guanshanhu District, Guiyang 550000, China;
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Huan-Huan Chen
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
20
|
Song Z, Cai Y, Liu G, Yu G. Fungal aerosols in rabbit breeding environment: Metagenetic insight into PM 2.5 based on third-generation sequencing technology. ENVIRONMENTAL RESEARCH 2023; 224:115480. [PMID: 36796612 DOI: 10.1016/j.envres.2023.115480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Fungal aerosols are a vital environmental hazard factor impeding the development of the rabbit breeding industry and threatening public health. This study aimed to determine fungal abundance, diversity, composition, diffusion, and variability in aerosols in rabbit breeding environments. Twenty PM2.5 filter samples were collected from five sampling sites (i.e. En5, In, Ex5, Ex15, and Ex45) in a modern rabbit farm in Linyi City, China. Fungal component diversity at the species level was analyzed in all samples using third-generation sequencing technology. Results revealed that fungal diversity and community composition in PM2.5 significantly differed across different sampling sites, and different pollution levels. The highest concentrations of PM2.5 and fungal aerosols (i.e., 102.5 μg/m3 and 18.8 × 103 CFU/m3, respectively) were found at Ex5, and these concentrations were found to decrease as the distance from the exit increased. However, no significant correlation was observed between the internal transcribed spacer (ITS) gene abundance and overall PM2.5 levels, except for Aspergillus ruber and Alternaria eichhorniae. Although most fungi are not pathogenic to humans, zoonotic pathogenic microorganisms that cause pulmonary aspergillosis (e.g., Aspergillus ruber) and invasive fusariosis (e.g., Fusarium pseudensiforme) were observed. The relative abundance of A. ruber was higher at Ex5 than that at In, Ex15, and Ex45 (p < 0.01), and the relative abundance of the fungal species decreased with an increase in distance from the rabbit houses. Moreover, four potential novel strains of Aspergillus ruber were discovered, with 82.9%-90.3% of the nucleotide and amino acid sequences similar to those of reference strains. This study highlights the importance of rabbit environments as a source in shaping fungal aerosol microbial communities. To the best of our knowledge, this is the first study to uncover the initial characteristics of fungal biodiversity and dispersion of PM2.5 in rabbit breeding environments, contributing to infectious disease control and prevention in rabbits.
Collapse
Affiliation(s)
- Zhicheng Song
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yumei Cai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Gongyan Liu
- Institute of Animal Husbandry and Veterinary, Shandong Academy of Agricultural Sciences, Jinan, 251000, China
| | - Guanliu Yu
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
21
|
Rodrigues P, Jelassi A, Kanoun E, Sulyok M, Correia P, Ramalhosa E, Pereira EL. Effect of different storage conditions on the stability and safety of almonds. J Food Sci 2023; 88:848-859. [PMID: 36633227 DOI: 10.1111/1750-3841.16453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Almond production in Portugal is of great importance for the economy of their main producing areas. However, the contamination of these nut fruits with fungi and mycotoxins poses a significant risk to food safety and security. This work intended to evaluate the influence of storage conditions on the microbial and mycotoxin stability and safety of almonds throughout long-term storage. Two almond varieties-Lauranne and Guara-were submitted to three different storage conditions, namely, 4°C with noncontrolled relative humidity (RH), 60% RH at 25°C, and 70% RH at 25°C, for a storage period of 9 months. Samples were collected after 0, 3, 6, and 9 months of storage and analyzed for microbial loads (aerobic mesophiles, yeasts, and molds), mold incidence and diversity, and mycotoxin contamination. In total, 26 species were identified belonging to 6 genera: Aspergillus, Cladosporium, Fusarium, Penicillium, Paecilomyces, and Talaromyces. For the variety Guara, mycotoxins related to Aspergillus sect. Flavi, such as aflatoxins, averufin, versicolorin C, and norsolorinic acid, were detected only after 9 months of storage at 70% and 60% RH. Penicillium mycotoxins, such as quinolactacin A and roquefortine C, were also detected. For the variety Lauranne, Penicillium mycotoxins were detected, such as citrinin, quinolactacins A and B, roquefortines C and D, cyclopenin, cyclopenol, penitrem A, viridicatin, and viridicatol. Mycotoxins related to Aspergillus, such as aspulvinone E, flavoglaucin, paspalin, asperglaucide, asperphenamate, cyclo(L-Pro-L-Tyr), and cyclo(L-Pro-L-Val), were also detected. PRACTICAL APPLICATION: (Optional, for JFS Research Articles ONLY) The quality of almonds depends on the storage period and the RH and temperature at which they are stored. Storage of almonds at 60% RH at 25°C is a good storage condition to maintain the stability and safety of nuts in terms of microbial and mycotoxin contaminations.
Collapse
Affiliation(s)
- Paula Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Arij Jelassi
- Ecole Polytechnique, Université Libre de Tunis, Tunis, Tunisia
| | - Elifa Kanoun
- Ecole Polytechnique, Université Libre de Tunis, Tunis, Tunisia
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paula Correia
- CERNAS Research Centre, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Elsa Ramalhosa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Ermelinda Lopes Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| |
Collapse
|
22
|
Berry O, Briand E, Bagot A, Chaigné M, Meslet-Cladière L, Wang J, Grovel O, Jansen JJ, Ruiz N, du Pont TR, Pouchus YF, Hess P, Bertrand S. Deciphering interactions between the marine dinoflagellate Prorocentrum lima and the fungus Aspergillus pseudoglaucus. Environ Microbiol 2023; 25:250-267. [PMID: 36333915 PMCID: PMC10100339 DOI: 10.1111/1462-2920.16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
The comprehension of microbial interactions is one of the key challenges in marine microbial ecology. This study focused on exploring chemical interactions between the toxic dinoflagellate Prorocentrum lima and a filamentous fungal species, Aspergillus pseudoglaucus, which has been isolated from the microalgal culture. Such interspecies interactions are expected to occur even though they were rarely studied. Here, a co-culture system was designed in a dedicated microscale marine-like condition. This system allowed to explore microalgal-fungal physical and metabolic interactions in presence and absence of the bacterial consortium. Microscopic observation showed an unusual physical contact between the fungal mycelium and dinoflagellate cells. To delineate specialized metabolome alterations during microalgal-fungal co-culture metabolomes were monitored by high-performance liquid chromatography coupled to high-resolution mass spectrometry. In-depth multivariate statistical analysis using dedicated approaches highlighted (1) the metabolic alterations associated with microalgal-fungal co-culture, and (2) the impact of associated bacteria in microalgal metabolome response to fungal interaction. Unfortunately, only a very low number of highlighted features were fully characterized. However, an up-regulation of the dinoflagellate toxins okadaic acid and dinophysistoxin 1 was observed during co-culture in supernatants. Such results highlight the importance to consider microalgal-fungal interactions in the study of parameters regulating toxin production.
Collapse
Affiliation(s)
- Olivier Berry
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | | | - Alizé Bagot
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
- IFREMER, PHYTOX, Nantes, France
| | - Maud Chaigné
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
- IFREMER, PHYTOX, Nantes, France
| | - Laurence Meslet-Cladière
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | - Julien Wang
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | - Olivier Grovel
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | - Jeroen J Jansen
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - Nicolas Ruiz
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | - Thibaut Robiou du Pont
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | - Yves François Pouchus
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| | | | - Samuel Bertrand
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes, France
| |
Collapse
|
23
|
Glässnerová K, Sklenář F, Jurjević Ž, Houbraken J, Yaguchi T, Visagie C, Gené J, Siqueira J, Kubátová A, Kolařík M, Hubka V. A monograph of Aspergillus section Candidi. Stud Mycol 2022; 102:1-51. [PMID: 36760463 PMCID: PMC9903906 DOI: 10.3114/sim.2022.102.01] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023] Open
Abstract
Aspergillus section Candidi encompasses white- or yellow-sporulating species mostly isolated from indoor and cave environments, food, feed, clinical material, soil and dung. Their identification is non-trivial due to largely uniform morphology. This study aims to re-evaluate the species boundaries in the section Candidi and present an overview of all existing species along with information on their ecology. For the analyses, we assembled a set of 113 strains with diverse origin. For the molecular analyses, we used DNA sequences of three house-keeping genes (benA, CaM and RPB2) and employed species delimitation methods based on a multispecies coalescent model. Classical phylogenetic methods and genealogical concordance phylogenetic species recognition (GCPSR) approaches were used for comparison. Phenotypic studies involved comparisons of macromorphology on four cultivation media, seven micromorphological characters and growth at temperatures ranging from 10 to 45 °C. Based on the integrative approach comprising four criteria (phylogenetic and phenotypic), all currently accepted species gained support, while two new species are proposed (A. magnus and A. tenebricus). In addition, we proposed the new name A. neotritici to replace an invalidly described A. tritici. The revised section Candidi now encompasses nine species, some of which manifest a high level of intraspecific genetic and/or phenotypic variability (e.g., A. subalbidus and A. campestris) while others are more uniform (e.g., A. candidus or A. pragensis). The growth rates on different media and at different temperatures, colony colours, production of soluble pigments, stipe dimensions and vesicle diameters contributed the most to the phenotypic species differentiation. Taxonomic novelties: New species: Aspergillus magnus Glässnerová & Hubka; Aspergillus neotritici Glässnerová & Hubka; Aspergillus tenebricus Houbraken, Glässnerová & Hubka. Citation: Glässnerová K, Sklenář F, Jurjević Ž, Houbraken J, Yaguchi T, Visagie CM, Gené J, Siqueira JPZ, Kubátová A, Kolařík M, Hubka V (2022). A monograph of Aspergillus section Candidi. Studies in Mycology 102: 1-51. doi: 10.3114/sim.2022.102.01.
Collapse
Affiliation(s)
- K. Glässnerová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - F. Sklenář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ž. Jurjević
- EMSL Analytical, Cinnaminson, New Jersey, USA
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - T. Yaguchi
- Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - J. Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J.P.Z. Siqueira
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
- Laboratório de Microbiologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - A. Kubátová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - M. Kolařík
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
- Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
24
|
Fernandes L, Graeff F, Jelassi A, Sulyok M, Garcia C, Rodrigues N, Pereira JA, Bento A, Kanoun A, Rodrigues P, Pereira EL, Ramalhosa E. Effect of relative humidity on the quality and safety of peeled almond kernels (
Prunus dulcis
Mill.) during simulated maritime transport/storage. J Food Sci 2022; 87:5363-5374. [DOI: 10.1111/1750-3841.16369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Luana Fernandes
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
- MORE, Laboratório Colaborativo Montanhas de Investigação ‐ Associação BragançaPortugal
| | - Francieli Graeff
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- School of Food ScienceFederal TechnologicalUniversity of Paraná, UTFPR MedianeiraBrazil
| | - Arij Jelassi
- Ecole Polytechnique Université Libre de Tunis TunisTunisia
| | - Michael Sulyok
- Institute of Bioanalytics and Agro‐MetabolomicsUniversity of Natural Resources and Life Sciences ViennaAustria
| | - Carolina Garcia
- School of Food ScienceFederal TechnologicalUniversity of Paraná, UTFPR MedianeiraBrazil
| | - Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| | - Albino Bento
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| | - Alifa Kanoun
- Ecole Polytechnique Université Libre de Tunis TunisTunisia
| | - Paula Rodrigues
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| | - Ermelinda Lopes Pereira
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| | - Elsa Ramalhosa
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| |
Collapse
|
25
|
Borzęcka J, Suchodolski J, Dudek B, Matyaszczyk L, Spychała K, Ogórek R. The First Comprehensive Biodiversity Study of Culturable Fungal Communities Inhabiting Cryoconite Holes in the Werenskiold Glacier on Spitsbergen (Svalbard Archipelago, Arctic). BIOLOGY 2022; 11:1224. [PMID: 36009851 PMCID: PMC9405543 DOI: 10.3390/biology11081224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Cryoconite holes on glacier surfaces are a source of cold-adapted microorganisms, but little is known about their fungal inhabitants. Here, we provide the first report of distinctive fungal communities in cryoconite holes in the Werenskiold Glacier on Spitsbergen (Svalbard Archipelago, Arctic). Due to a combination of two incubation temperatures (7 °C and 24 ± 0.5 °C) and two media during isolation (PDA, YPG), as well as classical and molecular identification approaches, we were able to identify 23 different fungi (21 species and 2 unassigned species). Most of the fungi cultured from cryoconite sediment were ascomycetous filamentous micromycetes. However, four representatives of macromycetes were also identified (Bjerkandera adusta, Holwaya mucida, Orbiliaceae sp., and Trametes versicolor). Some of the described fungi possess biotechnological potential (Aspergillus pseudoglaucus, A. sydowii, Penicillium expansum, P. velutinum, B. adusta, and T. versicolor), thus, we propose the Arctic region as a source of new strains for industrial applications. In addition, two phytopathogenic representatives were present (P. sumatraense, Botrytis cinerea), as well as one potentially harmful to humans (Cladosporium cladosporioides). To the best of our knowledge, we are the first to report the occurrence of A. pseudoglaucus, C. allicinum, C. ramotenellum, P. sumatraense, P. velutinum, P. cumulodentata, B. adusta, and T. versicolor in polar regions. In all likelihood, two unassigned fungus species (Orbiliaceae and Dothideomycetes spp.) might also be newly described in such environments. Additionally, due to experimenting with 10 sampling sites located at different latitudes, we were able to conclude that the number of fungal spores decreases as one moves down the glacier. Considering the prevalence and endangerment of glacial environments worldwide, such findings suggest their potential as reservoirs of fungal diversity, which should not be overlooked.
Collapse
Affiliation(s)
- Justyna Borzęcka
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| | - Jakub Suchodolski
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| | - Bartłomiej Dudek
- Department of Microbiology, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| | - Lena Matyaszczyk
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| | - Klaudyna Spychała
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| | - Rafał Ogórek
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| |
Collapse
|
26
|
Safety evaluation and comparative genomics analysis of the industrial strain Aspergillus flavus SU-16 used for huangjiu brewing. Int J Food Microbiol 2022; 380:109859. [DOI: 10.1016/j.ijfoodmicro.2022.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
|
27
|
Xiang M, Chu J, Cai W, Ma H, Zhu W, Zhang X, Ren J, Xiao L, Liu D, Liu X. Microbial Succession and Interactions During the Manufacture of Fu Brick Tea. Front Microbiol 2022; 13:892437. [PMID: 35814693 PMCID: PMC9261264 DOI: 10.3389/fmicb.2022.892437] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Fu Brick tea is a very popular post-fermented tea that is known for its "golden flower fungus," Aspergillus cristatus, which becomes the dominant microbe during the maturation process. This study used both culture-dependent methods and high-throughput sequencing to track microbial succession and interactions during the development of the golden flower fungus, a crucial component of the manufacturing process of Fu Brick tea. Among the bacterial communities, Klebsiella and Lactobacillus were consistently cultured from both fresh tea leaves and in post-fermentation Fu Brick tea. Methylobacterium, Pelomonas, and Sphingomonas were dominant genera in fresh tea leaves but declined once fermentation started, while Bacillus, Kluyvera, and Paenibacillus became dominant after piling fermentation. The abundance of A. cristatus increased during the manufacturing process, accounting for over 98% of all fungi present after the golden flower bloom in the Fu Brick tea product. Despite their consistent presence during culture work, network analysis showed Lactobacillus and Klebsiella to be negatively correlated with A. cristatus. Bacillus spp., as expected from culture work, positively correlated with the presence of golden flower fungus. This study provides complete insights about the succession of microbial communities and highlights the importance of co-occurrence microbes with A. cristatus during the manufacturing process of Fu Brick tea.
Collapse
Affiliation(s)
- Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Chu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenjiao Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haikun Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weijing Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoling Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lizheng Xiao
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Dongbo Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
28
|
Silva JJ, Fungaro MHP, Soto TS, Taniwaki MH, Iamanaka BT. Low-cost, specific PCR assays to identify the main aflatoxigenic species of Aspergillus section Flavi. METHODS IN MICROBIOLOGY 2022; 196:106470. [PMID: 35447279 DOI: 10.1016/j.mimet.2022.106470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/26/2022] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
Aflatoxins are fungal metabolites that are present as contaminants in food globally. Most aflatoxigenic species belong to Aspergillus section Flavi, and the main ones are grouped in the A. flavus clade, where many cryptic species that are difficult to discriminate are found. In this study, we investigated inter- and intraspecific diversity of the A. flavus clade to develop low-cost, species-specific PCR assays for identifying aflatoxigenic species. A total of 269 sequences of the second largest subunit of RNA polymerase II (RPB2) locus were retrieved from GenBank, and primer pairs were designed using data mining to identify A. flavus, A. parasiticus, and A. novoparasiticus. Species-specific amplicons of approximately 620, 350, and 860 bp enabled identification of target species as A. flavus, A. parasiticus, and A. novoparasiticus, respectively.
Collapse
Affiliation(s)
- Josué J Silva
- Institute of Food Technology - ITAL, Campinas, SP, Brazil.
| | | | | | | | | |
Collapse
|
29
|
Abel Palacios H, Stefanello A, García Gavilánez MS, Castro Demera DA, Garcia MV, Vásquez Castillo WA, Almeida Marcano MA, Samaniego Maigua IR, Copetti MV. Relationship between the Fungal Incidence, Water Activity, Humidity, and Aflatoxin Content in Maize Samples from the Highlands and Coast of Ecuador. Toxins (Basel) 2022; 14:toxins14030196. [PMID: 35324693 PMCID: PMC8953395 DOI: 10.3390/toxins14030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/19/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
This study evaluated the fungal incidence through direct plating in Agar Dichloran Glycerol, and the presence of aflatoxins in maize samples from the Highlands and Coast of Ecuador by HPLC, investigating the influence of the temperature, altitude, water activity, and humidity of the collection regions on the maize samples’ contamination using Principal Components Analysis (PCA). The overall kernel infection by fungi was usually lower in samples from the Highlands, and no aflatoxins or Aspergillus series Flavi were detected in the samples from this region. In the coastal samples, Aspergillus sp. were isolated from all samples, while the potentially aflatoxigenic A. Flavi contaminated about 80% of them. Aflatoxins were present in 50% of these samples, in ranges from 0.42 to 107.69 µg/kg. PCA was able to segregate the samples according to their collection region, and showed that the maximum and minimum temperatures are closely and positively related to the presence of A. Flavi. A highly positive relationship was also observed between the water activity of the sample and aflatoxin contamination. On the other hand, the altitude had a very strong—but negative—relationship with the variables studied. This study is relevant because data regarding fungi and aflatoxin occurrence, as well the main factor influencing the contamination of Ecuadoran maize, are scarce; it clearly shows that aflatoxins are a hazard present in maize from the Ecuadorian Coast but not the Highlands.
Collapse
Affiliation(s)
- Héctor Abel Palacios
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 09-01.5863, Ecuador
- Facultad de Ingeniería Agroindustrial, Universidad de las Américas, UDLA, Quito 170513, Ecuador; (M.S.G.G.); (D.A.C.D.); (W.A.V.C.); (M.A.A.M.)
- Correspondence: or (H.A.P.); (M.V.C.); Tel.: +593-042-269-351 or +593-23981000 (ext. 2605) (H.A.P.); +55-(55)-3220-8254 (M.V.C.)
| | - Andrieli Stefanello
- Graduate Program of Food Science and Technology (PPGCTA), Universidade Federal de Santa Maria, UFSM, Santa Maria 97105-900, RS, Brazil;
| | - Margarita Susana García Gavilánez
- Facultad de Ingeniería Agroindustrial, Universidad de las Américas, UDLA, Quito 170513, Ecuador; (M.S.G.G.); (D.A.C.D.); (W.A.V.C.); (M.A.A.M.)
| | - Dicke Alejandro Castro Demera
- Facultad de Ingeniería Agroindustrial, Universidad de las Américas, UDLA, Quito 170513, Ecuador; (M.S.G.G.); (D.A.C.D.); (W.A.V.C.); (M.A.A.M.)
| | | | - Wilson Arturo Vásquez Castillo
- Facultad de Ingeniería Agroindustrial, Universidad de las Américas, UDLA, Quito 170513, Ecuador; (M.S.G.G.); (D.A.C.D.); (W.A.V.C.); (M.A.A.M.)
| | - Marcelo Alejandro Almeida Marcano
- Facultad de Ingeniería Agroindustrial, Universidad de las Américas, UDLA, Quito 170513, Ecuador; (M.S.G.G.); (D.A.C.D.); (W.A.V.C.); (M.A.A.M.)
| | | | - Marina Venturini Copetti
- Graduate Program of Food Science and Technology (PPGCTA), Universidade Federal de Santa Maria, UFSM, Santa Maria 97105-900, RS, Brazil;
- Correspondence: or (H.A.P.); (M.V.C.); Tel.: +593-042-269-351 or +593-23981000 (ext. 2605) (H.A.P.); +55-(55)-3220-8254 (M.V.C.)
| |
Collapse
|
30
|
Qi Z, Zhou X, Tian L, Zhang H, Cai L, Tang F. Temporal and spatial variation of microbial communities in stored rice grains from two major depots in China. Food Res Int 2022; 152:110876. [DOI: 10.1016/j.foodres.2021.110876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/16/2021] [Accepted: 12/04/2021] [Indexed: 01/26/2023]
|
31
|
Recommendations To Prevent Taxonomic Misidentification of Genome-Sequenced Fungal Strains. Microbiol Resour Announc 2021; 10:e0107420. [PMID: 34854710 PMCID: PMC8638587 DOI: 10.1128/mra.01074-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
32
|
Krstić M, Stupar M, Đukić-Ćosić D, Baralić K, Mračević SĐ. Health risk assessment of toxic metals and toxigenic fungi in commercial herbal tea samples from Belgrade, Serbia. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Du Y, Shi N, Ruan H, Chen F. Three Mycogone Species, Including a New Species, Cause Wet Bubble Disease of Agaricus bisporus in China. PLANT DISEASE 2021; 105:3967-3977. [PMID: 34261355 DOI: 10.1094/pdis-03-21-0651-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
White button mushroom, Agaricus bisporus (Lange) Imbach, is the most extensively cultivated and edible mushroom worldwide. The production of A. bisporus is commonly affected by wet bubble disease (WBD), imposing a significant economic burden in China. Although studies have shown that this disease is caused by fungi of the Mycogone genus, the pathogen has not been fully characterized. In this study, 802 samples of diseased fruiting bodies of A. bisporus were collected from nine major mushroom-cultivating provinces in China, yielding a total of 586 Mycogone isolates. The morphologic characteristics of these isolates were observed and compared, and multilocus phylogenetic analyses (internal transcribed spacer [ITS], ACT, TEF1-α, TUB, RPB2, and large ribosomal subunit [LSU]) were performed on the selected representative isolates. Three Mycogone species were identified: a new species, M. xinjiangensis; M. perniciosa; and M. rosea. Mycogone rosea was the first ever reported in China. Furthermore, M. rosea was found to be the most prevalent species (54.95% of all isolates) in all the sampled areas, except in Hubei and Xinjiang, followed by M. perniciosa (39.93%) and M. xinjiangensis (5.12%). Pathogenicity tests on the fruiting body and mushroom bed substantiated Koch's postulates by the development of mildly different symptoms after inoculation with each species. This study, therefore, enhances our knowledge of the species associated with WBD in A. bisporus and provides useful insights for preventing WBD and allied diseases.
Collapse
Affiliation(s)
- Yixin Du
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, 350013, China
| | - Niuniu Shi
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, 350013, China
| | - Hongchun Ruan
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, 350013, China
| | - Furu Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, Fujian, 350013, China
| |
Collapse
|
34
|
Sterilization of food packaging by UV-C irradiation: Is Aspergillus brasiliensis ATCC 16404 the best target microorganism for industrial bio-validations? Int J Food Microbiol 2021; 357:109383. [PMID: 34509931 DOI: 10.1016/j.ijfoodmicro.2021.109383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022]
Abstract
In food industries UV-C irradiation is used to achieve decontamination of some packaging devices, such as plastic caps or laminated foils, and of those smooth surfaces that can be directly irradiated. Since its effectiveness can be checked by microbial validation tests, some ascospore-forming molds (Aspergillus hiratsukae, Talaromyces bacillisporus, Aspergillus montevidensis, and Chaetomium globosum) were compared with one of the target microorganisms actually used in industrial bio-validations (Aspergillus brasiliensis ATCC 16404) to find the species most resistant to UV-C. Tests were carried out with an UV-C lamp (irradiance = 127 μW/cm2; emission peak = 253.7 nm) by inoculating HDPE caps with one or more layers of spores. Inactivation kinetics of each strain were studied and both the corresponding 1D-values and the number of Logarithmic Count Reductions (LCR) achieved were calculated. Our results showed the important role played by the type of inoculum (one or more layers) and by the differences in cell structure (thickness, presence of protective solutes, pigmentation, etc.) of the strains tested. With a single-layer inoculum, Chaetomium globosum showed the highest resistance to UV-C irradiation (1D-value = 100 s). With a multi-layer inoculum, Aspergillus brasiliensis ATCC 16404 was the most resistant fungus (1D-value = 188 s), even if it reached a number of logarithmic reductions that was higher than those of some ascospore-forming mycetes (Aspergillus montevidensis, Talaromyces bacillisporus) tested.
Collapse
|
35
|
Peng L, Qin B, Shen Z, Wang S. Characterization of fungal communities on shared bicycles in Southwest China. BMC Microbiol 2021; 21:283. [PMID: 34663233 PMCID: PMC8523008 DOI: 10.1186/s12866-021-02338-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The widespread use of shared bicycles has increased the demand and sanitary requirements for shared bicycles. Previous studies have identified potentially pathogenic bacteria on the surfaces of shared bicycles, but fungal communities have not been investigated. METHODS We sampled shared-bicycle handles and saddles from five selected locations in a metropolis (Chengdu, China, n = 98) and used surrounding air deposition samples as controls (n = 12). Full-length ITS sequencing and multiple bioinformatic analyses were utilized to reveal fungal community structures and differences. RESULTS Aspergillus was dominant on both the handles and saddles of shared bicycles, and Alternaria and Cladosporium were the most abundant families in the air samples. Significant differences in fungal community structures were found among the three groups. The handle samples contained higher abundances of Aureobasidium melanogenum and Filobasidium magnum than the saddle and air samples. The saddle samples had a higher abundance of Cladosporium tenuissimum than the other two sample types (P < 0·05). A higher abundance of fungal animal pathogens on shared-bicycle surfaces than in air by FUNGuild (P < 0·05). Moreover, the co-occurrence network of fungi on handles was more stable than that on saddles. CONCLUSION There were more potential pathogens, including Aspergillus pseudoglaucus, Aureobasidium melanogenum, Kazachstania pintolopesii, Filobasidium magnum, Candida tropicalis, and Malassezia globose were found on shared bicycles than in air, suggesting that hands should not contact mucous membrane after cycling, especially in susceptible individuals, and hygiene management of shared bicycles should be given more attention by relevant organizations worldwide.
Collapse
Affiliation(s)
- Lu Peng
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, No.32, Western 2nd Section, 1st Ring Rd, Qingyang District, Chengdu, 610072, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Bi Qin
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Department of Dermatology, Acupuncture & Moxibustion Research Institute, Sichuan Academy of Traditional Chinese Medicine, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, 610031, Sichuan, China
| | - Zhu Shen
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, No.32, Western 2nd Section, 1st Ring Rd, Qingyang District, Chengdu, 610072, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Siyu Wang
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, No.32, Western 2nd Section, 1st Ring Rd, Qingyang District, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
36
|
Perkins AK, Rose AL, Grossart HP, Rojas-Jimenez K, Barroso Prescott SK, Oakes JM. Oxic and Anoxic Organic Polymer Degradation Potential of Endophytic Fungi From the Marine Macroalga, Ecklonia radiata. Front Microbiol 2021; 12:726138. [PMID: 34733248 PMCID: PMC8558676 DOI: 10.3389/fmicb.2021.726138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Cellulose and chitin are the most abundant polymeric, organic carbon source globally. Thus, microbes degrading these polymers significantly influence global carbon cycling and greenhouse gas production. Fungi are recognized as important for cellulose decomposition in terrestrial environments, but are far less studied in marine environments, where bacterial organic matter degradation pathways tend to receive more attention. In this study, we investigated the potential of fungi to degrade kelp detritus, which is a major source of cellulose in marine systems. Given that kelp detritus can be transported considerable distances in the marine environment, we were specifically interested in the capability of endophytic fungi, which are transported with detritus, to ultimately contribute to kelp detritus degradation. We isolated 10 species and two strains of endophytic fungi from the kelp Ecklonia radiata. We then used a dye decolorization assay to assess their ability to degrade organic polymers (lignin, cellulose, and hemicellulose) under both oxic and anoxic conditions and compared their degradation ability with common terrestrial fungi. Under oxic conditions, there was evidence that Ascomycota isolates produced cellulose-degrading extracellular enzymes (associated with manganese peroxidase and sulfur-containing lignin peroxidase), while Mucoromycota isolates appeared to produce both lignin and cellulose-degrading extracellular enzymes, and all Basidiomycota isolates produced lignin-degrading enzymes (associated with laccase and lignin peroxidase). Under anoxic conditions, only three kelp endophytes degraded cellulose. We concluded that kelp fungal endophytes can contribute to cellulose degradation in both oxic and anoxic environments. Thus, endophytic kelp fungi may play a significant role in marine carbon cycling via polymeric organic matter degradation.
Collapse
Affiliation(s)
- Anita K. Perkins
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
- Southern Cross Geoscience, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Andrew L. Rose
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
- Southern Cross Geoscience, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Hans-Peter Grossart
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Experimental Limnology, Berlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Selva K. Barroso Prescott
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Joanne M. Oakes
- Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
37
|
Christiansen JV, Isbrandt T, Petersen C, Sondergaard TE, Nielsen MR, Pedersen TB, Sørensen JL, Larsen TO, Frisvad JC. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 2021; 105:8157-8193. [PMID: 34625822 DOI: 10.1007/s00253-021-11597-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Quinones represent an important group of highly structurally diverse, mainly polyketide-derived secondary metabolites widely distributed among filamentous fungi. Many quinones have been reported to have important biological functions such as inhibition of bacteria or repression of the immune response in insects. Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many quinones are known to protect their producing organisms from exposure to sunlight. Most recently, quinones have also attracted a lot of industrial interest since their electron-donating and -accepting properties make them good candidates as electrolytes in redox flow batteries, like their often highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by fungal cultivation has great prospects since fungi can often be grown in industrially scaled bioreactors, producing valuable metabolites on cheap substrates. In order to give a better overview of the secondary metabolite quinones produced by and shared between various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium, this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones, and xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from which they are derived, whenever applicable. The production of these quinone families is compared between the different genera, based on recently revised taxonomy. KEY POINTS: • Quinones represent an important group of secondary metabolites widely distributed in important fungal genera such as Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. • Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as electrolytes in redox flow batteries. • Quinones are grouped into families and compared between genera according to the revised taxonomy.
Collapse
Affiliation(s)
- J V Christiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - T Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - C Petersen
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - T E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - M R Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T B Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - J L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
38
|
Genome sequencing of the neotype strain CBS 554.65 reveals the MAT1-2 locus of Aspergillus niger. BMC Genomics 2021; 22:679. [PMID: 34548025 PMCID: PMC8454179 DOI: 10.1186/s12864-021-07990-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Background Aspergillus niger is a ubiquitous filamentous fungus widely employed as a cell factory thanks to its abilities to produce a wide range of organic acids and enzymes. Its genome was one of the first Aspergillus genomes to be sequenced in 2007, due to its economic importance and its role as model organism to study fungal fermentation. Nowadays, the genome sequences of more than 20 A. niger strains are available. These, however, do not include the neotype strain CBS 554.65. Results The genome of CBS 554.65 was sequenced with PacBio. A high-quality nuclear genome sequence consisting of 17 contigs with a N50 value of 4.07 Mbp was obtained. The assembly covered all the 8 centromeric regions of the chromosomes. In addition, a complete circular mitochondrial DNA assembly was obtained. Bioinformatic analyses revealed the presence of a MAT1-2-1 gene in this genome, contrary to the most commonly used A. niger strains, such as ATCC 1015 and CBS 513.88, which contain a MAT1-1-1 gene. A nucleotide alignment showed a different orientation of the MAT1–1 locus of ATCC 1015 compared to the MAT1–2 locus of CBS 554.65, relative to conserved genes flanking the MAT locus. Within 24 newly sequenced isolates of A. niger half of them had a MAT1–1 locus and the other half a MAT1–2 locus. The genomic organization of the MAT1–2 locus in CBS 554.65 is similar to other Aspergillus species. In contrast, the region comprising the MAT1–1 locus is flipped in all sequenced strains of A. niger. Conclusions This study, besides providing a high-quality genome sequence of an important A. niger strain, suggests the occurrence of genetic flipping or switching events at the MAT1–1 locus of A. niger. These results provide new insights in the mating system of A. niger and could contribute to the investigation and potential discovery of sexuality in this species long thought to be asexual. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07990-8.
Collapse
|
39
|
Hu Z, Liu S, Xu Z, Liu S, Li T, Yu S, Zhao W. Comparison of
Aspergillus chevalieri
and related species in dark tea at different aspects: Morphology, enzyme activity and mitochondrial genome. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhi‐Yuan Hu
- College of Food Science and Technology Hunan Agricultural University Changsha China
- Hunan Provincial Key Lab of Dark Tea and Jin‐hua Hunan City University Yiyang China
| | - Su‐Chun Liu
- College of Food Science and Technology Hunan Agricultural University Changsha China
| | - Zheng‐Gang Xu
- Key Laboratory of National Forestry and Grassland Administration on Management of Western College of Forestry Northwest A & F University Yangling China
| | - Shi‐Quan Liu
- Hunan Provincial Key Lab of Dark Tea and Jin‐hua Hunan City University Yiyang China
| | - Tao‐Tao Li
- Hunan Provincial Key Lab of Dark Tea and Jin‐hua Hunan City University Yiyang China
| | - Song‐Lin Yu
- Hunan Provincial Key Lab of Dark Tea and Jin‐hua Hunan City University Yiyang China
| | - Wei‐Ping Zhao
- College of Business Hunan Agricultural University Changsha China
| |
Collapse
|
40
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
41
|
Lee H, Lee S, Kyung S, Ryu J, Kang S, Park M, Lee C. Metabolite Profiling and Anti-Aging Activity of Rice Koji Fermented with Aspergillus oryzae and Aspergillus cristatus: A Comparative Study. Metabolites 2021; 11:524. [PMID: 34436465 PMCID: PMC8398186 DOI: 10.3390/metabo11080524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
Rice koji, used as a starter for maximizing fermentation benefits, produces versatile end products depending on the inoculum microbes used. Here, we performed metabolite profiling to compare rice koji fermented with two important filamentous fungus, Aspergillus oryzae and A. cristatus, during 8 days. The multivariate analyses showed distinct patterns of primary and secondary metabolites in the two kojis. The rice koji fermented with A. oryzae (RAO) showed increased α-glucosidase activity and higher contents of sugar derivatives than the one fermented with A. cristatus (RAC). RAC showed enhanced β-glucosidase activity and increased contents of flavonoids and lysophospholipids, compared to RAO. Overall, at the final fermentation stage (8 days), the antioxidant activities and anti-aging effects were higher in RAC than in RAO, corresponding to the increased metabolites such as flavonoids and auroglaucin derivatives in RAC. This comparative metabolomic approach can be applied in production optimization and quality control analyses of koji products.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.L.); (S.L.)
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.L.); (S.L.)
| | - Seoyeon Kyung
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Jeoungjin Ryu
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Seunghyun Kang
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Myeongsam Park
- COSMAX BTI R&I Center, Pangyo inno Valley E, 255 Pangyo-ro, Bundang-gu, Seongnam-si 13486, Korea; (S.K.); (J.R.); (S.K.); (M.P.)
| | - Choonghwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (H.L.); (S.L.)
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
42
|
Takenaka S, Ogawa C, Uemura M, Umeki T, Kimura Y, Yokota S, Doi M. Identification and characterization of extracellular enzymes secreted by Aspergillus spp. involved in lipolysis and lipid-antioxidation during katsuobushi fermentation and ripening. Int J Food Microbiol 2021; 353:109299. [PMID: 34153828 DOI: 10.1016/j.ijfoodmicro.2021.109299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/17/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
A mild-flavored soup stock made from katsuobushi is an important element of traditional Japanese cuisine and is the basic seasoning responsible for the taste. Fermented and ripened katsuobushi, known as karebushi, is manufactured by simmering skipjack tuna that is then smoke-dried, fermented, and ripened in a repeated molding process by five dominant Aspergillus species. Here, our aim was to characterize and identify the lipolytic enzymes secreted by the dominant Aspergillus species, especially A. chevalieri and A. pseudoglaucus, which are involved in hydrolyzing lipids during the molding process. The crude enzyme preparations from the five Aspergillus spp. cultivated on katsuobushi solid medium hydrolyzed triglycerides in fish oil, and more saturated and unsaturated fatty acids (C16:0, C16:1, C18:0, C18:1) were produced than major polyunsaturated fatty acids (C20:5, C22:6). On the basis of ion exchange chromatograms, the composition of the lipolytic enzymes was different in the five species. There was at least one active fraction with high hydrolytic activity toward fish oil in four of the Aspergillus spp., but not A. sydowii; the lipolytic enzyme secreted by A. sydowii had quite high activity toward the artificial substrate p-nitrophenyl butyrate, but low activity toward the natural oil. The lipolytic fractions from A. chevalieri and A. pseudoglaucus were further purified by hydrophobic interaction chromatography then gel-filtration chromatography; LC-MS-MS Mascot analysis identified a variety of lipolytic enzymes, including cutinase, esterase, phospholipase, and carboxyl esterase in the lipolytic fractions from these species. The identified enzymes had 30%-70% identity to previously reported or manually annotated lipases or esterases from taxa other than Aspergillus. The different lipolytic enzymes likely acted on triglycerides in the katsuobushi fish oil. Furthermore, catalase B and Cu/Zn superoxide dismutase, which limit oxidative damage of lipids, were also identified. These antioxidant enzymes may prevent lipid oxidation and rancidity as the lipolytic enzymes hydrolyze lipids during the long fermentation and ripening process. Umami and richness tastes tended to increase in extracts from culture of protease- and peptidase-producing A. sydowii. Our results will aid in the selection and application of desirable strains of Aspergillus species as starter cultures to improve the storage and quality of fermented and ripened karebushi.
Collapse
Affiliation(s)
- Shinji Takenaka
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.
| | - Chiaki Ogawa
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Mariko Uemura
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tomoya Umeki
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Yukihiro Kimura
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Satoko Yokota
- Marutomo Co., Ltd., 1696 Kominato, Iyo, Ehime 799-3192, Japan
| | - Mikiharu Doi
- Marutomo Co., Ltd., 1696 Kominato, Iyo, Ehime 799-3192, Japan
| |
Collapse
|
43
|
Kifer D, Sulyok M, Jakšić D, Krska R, Šegvić Klarić M. Fungi and their metabolites in grain from individual households in Croatia. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2021; 14:98-109. [PMID: 33583343 DOI: 10.1080/19393210.2021.1883746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A total of 117 fungal metabolites were detected in grains collected in Gunja-G (flooded village) and Gornji Stupnik-GS (control village), located in the Zagreb County, Croatia. Major mycotoxins and derivatives (17), ergot alkaloids (14), Fusarium (23), Aspergillus (18), Penicillium (18), Alternaria (7) and other fungal and unspecific metabolites (20) were found. A higher number of metabolites co-occurred per sample in grains from G (115) than in GS (91). Regulated mycotoxins were below maximum limits except fumonisins B1,2 in 15-20% of grains and aflatoxin B1. Fusarium metabolites contaminated more than 50% of grains at both locations. Besides FB1,2, bikaverin, aurofusarin, culmorin and 15-hidroxyculmorin were detected at relatively high concentrations. Ergot alkaloids were detected at 2-18 times higher concentrations in grains from G as compared to GS. Majority of Aspergillus mycotoxins were present at a low frequency (5-15%). Penicillium metabolites recovered with higher frequency in GS (55-70%) than in G (20-55%). Alteranaria metabolites prevailed in grains from G (60-80%).
Collapse
Affiliation(s)
- Domagoj Kifer
- Department of Biophysics, University of Zagreb, Zagreb, Croatia
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (Ifa-tulln), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniela Jakšić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (Ifa-tulln), University of Natural Resources and Life Sciences, Vienna, Austria.,Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, UK
| | - Maja Šegvić Klarić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
44
|
Sklenář F, Jurjević Ž, Houbraken J, Kolařík M, Arendrup M, Jørgensen K, Siqueira J, Gené J, Yaguchi T, Ezekiel C, Silva Pereira C, Hubka V. Re-examination of species limits in Aspergillus section Flavipedes using advanced species delimitation methods and description of four new species. Stud Mycol 2021; 99:100120. [PMID: 35003383 PMCID: PMC8688885 DOI: 10.1016/j.simyco.2021.100120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Since the last revision in 2015, the taxonomy of section Flavipedes evolved rapidly along with the availability of new species delimitation techniques. This study aims to re-evaluate the species boundaries of section Flavipedes members using modern delimitation methods applied to an extended set of strains (n = 90) collected from various environments. The analysis used DNA sequences of three house-keeping genes (benA, CaM, RPB2) and consisted of two steps: application of several single-locus (GMYC, bGMYC, PTP, bPTP) and multi-locus (STACEY) species delimitation methods to sort the isolates into putative species, which were subsequently validated using DELINEATE software that was applied for the first time in fungal taxonomy. As a result, four new species are introduced, i.e. A. alboluteus, A. alboviridis, A. inusitatus and A. lanuginosus, and A. capensis is synonymized with A. iizukae. Phenotypic analyses were performed for the new species and their relatives, and the results showed that the growth parameters at different temperatures and colonies characteristics were useful for differentiation of these taxa. The revised section harbors 18 species, most of them are known from soil. However, the most common species from the section are ecologically diverse, occurring in the indoor environment (six species), clinical samples (five species), food and feed (four species), droppings (four species) and other less common substrates/environments. Due to the occurrence of section Flavipedes species in the clinical material/hospital environment, we also evaluated the susceptibility of 67 strains to six antifungals (amphotericin B, itraconazole, posaconazole, voriconazole, isavuconazole, terbinafine) using the reference EUCAST method. These results showed some potentially clinically relevant differences in susceptibility between species. For example, MICs higher than those observed for A. fumigatus wild-type were found for both triazoles and amphotericin B for A. ardalensis, A. iizukae, and A. spelaeus whereas A. lanuginosus, A. luppiae, A. movilensis, A. neoflavipes, A. olivimuriae and A. suttoniae were comparable to or more susceptible as A. fumigatus. Finally, terbinafine was in vitro active against all species except A. alboviridis.
Collapse
Affiliation(s)
- F. Sklenář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | | | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - M. Kolařík
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - M.C. Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - K.M. Jørgensen
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
| | - J.P.Z. Siqueira
- Laboratório de Microbiologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J. Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - T. Yaguchi
- Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| | - C.N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - C. Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
- Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
45
|
Calado MDL, Silva J, Alves C, Susano P, Santos D, Alves J, Martins A, Gaspar H, Pedrosa R, Campos MJ. Marine endophytic fungi associated with Halopteris scoparia (Linnaeus) Sauvageau as producers of bioactive secondary metabolites with potential dermocosmetic application. PLoS One 2021; 16:e0250954. [PMID: 33983974 PMCID: PMC8118457 DOI: 10.1371/journal.pone.0250954] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Marine fungi and, particularly, endophytic species have been recognised as one of the most prolific sources of structurally new and diverse bioactive secondary metabolites with multiple biotechnological applications. Despite the increasing number of bioprospecting studies, very few have already evaluated the cosmeceutical potential of marine fungal compounds. Thus, this study focused on a frequent seaweed in the Portuguese coast, Halopteris scoparia, to identify the endophytic marine fungi associated with this host, and assess their ability to biosynthesise secondary metabolites with antioxidative, enzymatic inhibitory (hyaluronidase, collagenase, elastase and tyrosinase), anti-inflammatory, photoprotective, and antimicrobial (Cutibacterium acnes, Staphylococcus epidermidis and Malassezia furfur) activities. The results revealed eight fungal taxa included in the Ascomycota, and in the most representative taxonomic classes in marine ecosystems (Eurotiomycetes, Sordariomycetes and Dothideomycetes). These fungi were reported for the first time in Portugal and in association with H. scoparia, as far as it is known. The screening analyses showed that most of these endophytic fungi were producers of compounds with relevant biological activities, though those biosynthesised by Penicillium sect. Exilicaulis and Aspergillus chevalieri proved to be the most promising ones for being further exploited by dermocosmetic industry. The chemical analysis of the crude extract from an isolate of A. chevalieri revealed the presence of two bioactive compounds, echinulin and neoechinulin A, which might explain the high antioxidant and UV photoprotective capacities exhibited by the extract. These noteworthy results emphasised the importance of screening the secondary metabolites produced by these marine endophytic fungal strains for other potential bioactivities, and the relevance of investing more efforts in understanding the ecology of halo/osmotolerant fungi.
Collapse
Affiliation(s)
- Maria da Luz Calado
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Joana Silva
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Celso Alves
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Patrícia Susano
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Débora Santos
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Joana Alves
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Alice Martins
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Helena Gaspar
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Rui Pedrosa
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - Maria Jorge Campos
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| |
Collapse
|
46
|
Guo Y, Ding L, Ghidinelli S, Gotfredsen CH, de la Cruz M, Mackenzie TA, Ramos MC, Sánchez P, Vicente F, Genilloud O, Coriani S, Larsen RW, Frisvad JC, Larsen TO. Taxonomy Driven Discovery of Polyketides from Aspergillus californicus. JOURNAL OF NATURAL PRODUCTS 2021; 84:979-985. [PMID: 33656895 DOI: 10.1021/acs.jnatprod.0c00866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Five new polyketides were isolated from the rare filamentous fungus Aspergillus californicus IBT 16748 including calidiol A (1); three phthalide derivatives califuranones A1, A2, and B (2-4); and a pair of enantiomers (-)-calitetralintriol A (-5) and (+)-calitetralintriol A (+5) together with four known metabolites (6-9). The structures of the new products were established by extensive spectroscopic analyses including HRMS and 1D and 2D NMR. The absolute configurations of two diastereomers 2 and 3 and the enantiomers (-5) and (+5) were assigned by comparing their experimental and calculated ECD data, whereas the absolute configuration of 4 was proposed by analogy. Compound 1 showed moderate activity against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Yaojie Guo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Simone Ghidinelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Charlotte H Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Mercedes de la Cruz
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Thomas A Mackenzie
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Maria C Ramos
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Pilar Sánchez
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - René W Larsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
47
|
Rasheed U, Ain QU, Yaseen M, Yao X, Liu B. Synthesis and characterization of tannic acid pillared bentonite composite for the efficient adsorption of aflatoxins. Colloids Surf B Biointerfaces 2021; 202:111679. [PMID: 33752087 DOI: 10.1016/j.colsurfb.2021.111679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/04/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
Tannic acid (TA) is a hydrolysable polyphenol with established antioxidant and antibacterial activity along with its tendency to bind both organic and inorganic ions/molecules. In the present study, the sequestration performance of TA pillared bentonite for various aflatoxins (AFs) including AFB1, AFB2, AFG1 and AFG2 from aqueous solutions and simulated poultry gastrointestinal model solution was studied via adsorption. The adsorbents were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), N2 adsorption-desorption study and X-ray photoelectron spectroscopy (XPS). The reaction conditions including pH, agitation time, initial toxin concentration and temperature were systematically optimized. The Langmuir adsorption capacity of the adsorbent reached to 86, 71, 74 and 149 mg/g for AFB1, AFB2, AFG1 and AFG2 respectively. Adsorption kinetics and thermodynamic studies showed rapid AFs uptake and the exothermicity of the adsorption reaction respectively. Simultaneous removal of AFs by BTA3 revealed their independent and uninterrupted adsorption and the adsorption mechanism of AFs over BTA3 was elaborated with the help of XPS results. The outstanding AFs sequestering capability of BTA3 in aqueous solution and simulated poultry gastrointestinal model can be envisioned of great promise for the remediation of AFs and other hazardous pollutants from food and poultry industrial products.
Collapse
Affiliation(s)
- Usman Rasheed
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, 530005, China.
| | - Qurat Ul Ain
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China; College of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, 25120, KP, Pakistan.
| | - Xiaohua Yao
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, 530005, China.
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
48
|
Cardot Martin E, Renaux C, Catherinot E, Limousin L, Couderc LJ, Vasse M. Rapid identification of fungi from respiratory samples by Bruker Biotyper matrix-assisted laser desorption/ionisation time-of-flight using ID-FUNGI plates. Eur J Clin Microbiol Infect Dis 2021; 40:391-395. [PMID: 32808108 DOI: 10.1007/s10096-020-04007-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022]
Abstract
Identification of moulds is crucial for the clinical management of patients. The goal of this study was to evaluate the new ID-FUNGI plate (IDFP) for the identification of moulds by MALDI Biotyper. IDFP was compared with Sabouraud with gentamicin and chloramphenicol plate (SAB) for the identification of 80 moulds from respiratory samples and eight reference strains. With the direct transfer method, species identification rose from 6% with SAB to 68% with IDFP using score cut-off 2 and from 20 to 75% using cut-off 1.7 (p < 0.001). Our study highlights that the new IDFP improves mycological diagnostic and workflow in laboratories.
Collapse
Affiliation(s)
| | - Claudine Renaux
- Department of Microbiology, Foch Hospital, 92150, Suresnes, France
| | | | - Lucie Limousin
- Department of Microbiology, Foch Hospital, 92150, Suresnes, France
| | - Louis Jean Couderc
- Department of Pneumonology, Foch Hospital, 92150, Suresnes, France
- UPRES EA 220, Department of Pneumonology, Faculty of Life Sciences Simone Veil, University Paris-Saclay, 91190, Saint-Aubin, France
| | - Marc Vasse
- Department of Microbiology, Foch Hospital, 92150, Suresnes, France
| |
Collapse
|
49
|
Andersen B, Frisvad JC, Dunn RR, Thrane U. A Pilot Study on Baseline Fungi and Moisture Indicator Fungi in Danish Homes. J Fungi (Basel) 2021; 7:jof7020071. [PMID: 33498446 PMCID: PMC7909426 DOI: 10.3390/jof7020071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
In many complaint cases regarding bad indoor environments, there is no evidence of visible fungal growth. To determine if the problems are fungi-related, dust sampling is the method of choice among building surveyors. However, there is a need to differentiate between species belonging to a normal, dry indoor environment and species belonging to a damp building envelope. The purposes of this pilot study were to examine which fungal species are present in problem-free Danish homes and to evaluate different detection and identification methods. Analyses showed that the fungal diversity outside was different from the diversity inside and that the composition of fungal species growing indoors was different compared to those found as spores, both indoors and outdoors. Common for most homes were Pseudopithomyceschartarum, Cladosporiumallicinum and Alternaria sect. Infectoriae together with Botrytis spp., Penicilliumdigitatum and Pen. glabrum. The results show that ITS sequencing of dust samples is adequate if supported by thorough building inspections and that food products play as large a role in the composition of the baseline spora as the outdoor air and surrounding vegetation. This pilot study provides a list of baseline fungal species found in Danish homes with a good indoor environment.
Collapse
Affiliation(s)
- Birgitte Andersen
- Division of Energy Efficiency, Indoor Climate and Sustainability of Buildings, Department of the Built Environment, Aalborg University, A.C. Meyers Vænge 15, DK-2450 Copenhagen SV, Denmark
- Correspondence: ; Tel.: +45-9940-2312
| | - Jens C. Frisvad
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kongens Lyngby, Denmark;
| | - Robert R. Dunn
- Department of Applied Ecology, Campus Box 7617, NC State University Campus, Raleigh, NC 27695-7617, USA;
| | - Ulf Thrane
- Wood and Biomaterials, Building and Construction, Danish Technological Institute, Gregersensvej 1, DK-2630 Taastrup, Denmark;
| |
Collapse
|
50
|
Ortiz-Lemus JF, Campoy S, Cañedo LM, Liras P, Martín JF. Purification and Chemical Characterization of a Potent Acaricide and a Closely Related Inactive Metabolite Produced by Eurotium rubrum C47. Antibiotics (Basel) 2020; 9:antibiotics9120881. [PMID: 33316875 PMCID: PMC7763031 DOI: 10.3390/antibiotics9120881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 11/24/2022] Open
Abstract
Mites are arthropods and some of them infest dry meat cured products and produce allergic reactions. Some mites, such as Tyrolichus casei, Tyrophagus putrescentiae, or Tyrophagus longior feed on filamentous fungi that grow during the meat curing process. Removal of mite infestation of meat products is extremely difficult and there are no adequate miticidal compounds. The filamentous fungus Eurotium rubrum growing on the surface of ham is able to exert a biocontrol of the population of mites due to the production of miticidal compound(s). We have purified two compounds by silica gel chromatography, gel filtration, semipreparative and analytical HPLC and determined their miticidal activity against T. casei using a mite feeding assay. Mass spectrometry and NMR analysis showed that these two compounds are prenylated salicilyl aldehydes with a C-7 alkyl chain differing in a double bond in the C-7 alkyl chain. Structures correspond to those of flavoglaucin and aspergin. Pure flavoglaucin has a miticidal activity resulting in more than 90% mite mortality whereas aspergin does not affect the mites. Both compounds were formed simultaneously by E. rubrum C47 cultures in different media suggesting that they are synthesized by the same pathway. Production of both compounds was higher in solid culture media and the products were associated with abundant formation of cleistothecia. In liquid cultures both compounds remained mainly cell-associated and only about 10% of the total compounds was released to the culture broth. This miticidal compound may be used to combat efficiently mite infestation in different habitats. These results, will promote further advances on the utilization of flavoglaucin in food preservation and in human health since this compound has antitumor activity.
Collapse
Affiliation(s)
- José F. Ortiz-Lemus
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006 León, Spain; (J.F.O.-L.); (S.C.); (P.L.)
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
- Departamento de Microbiología, Universidad de Pamplona, Pamplona 543050, Colombia
| | - Sonia Campoy
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006 León, Spain; (J.F.O.-L.); (S.C.); (P.L.)
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Librada M. Cañedo
- Research and Development Department, PharmaMar S.A., 28770 Madrid, Spain;
| | - Paloma Liras
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006 León, Spain; (J.F.O.-L.); (S.C.); (P.L.)
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Juan F. Martín
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006 León, Spain; (J.F.O.-L.); (S.C.); (P.L.)
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
- Correspondence:
| |
Collapse
|