1
|
Viter R, Tepliakova I, Drobysh M, Zbolotnii V, Rackauskas S, Ramanavicius S, Grundsteins K, Liustrovaite V, Ramanaviciene A, Ratautaite V, Brazys E, Chen CF, Prentice U, Ramanavicius A. Photoluminescence-based biosensor for the detection of antibodies against SARS-CoV-2 virus proteins by ZnO tetrapod structure integrated within microfluidic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173333. [PMID: 38763199 DOI: 10.1016/j.scitotenv.2024.173333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
This paper reports on development of an optical biosensor for the detection of antibodies against SARS-CoV-2 virus proteins in blood serum. ZnO nanotetrapods with high surface area and stable room temperature photoluminescence (PL) were selected as transducers. Structure and optical properties of the ZnO tetrapods have been studied by XRD, SEM and Raman spectroscopy. Crystallinity, dimensions and emission peaks of the ZnO tetrapods were determined. The ZnO tetrapods were fixed on glass chip. Silanization of ZnO tetrapods surface resulted in forming of functional surface groups suitable for the immobilization of bioselective layer. Two types of recombinant proteins (rS and rN) have been used to form bioselective layer on the surface of the ZnO tetrapods. Flow through microfluidic system, integrated with optical system, has been used for the determination of antibodies against SARS-CoV-2 virus proteins present in blood samples. The SARS-CoV-2 probes, prepared in PBS solution, have been injected into the measurement chamber with a constant pumping speed. Steady-state photoluminescence spectra and photoluminescence kinetics have been studied before and after injection of the probes. The biosensor signal has been tested to anti-SARS-CoV-2 antibodies in the range of 0.001 nM-1 nM. Control measurements have been performed with blood serum of healthy person. ZnO-SARS-CoV-2-rS and ZnO-SARS-CoV-2-rN biosensors showed high stability and sensitivity to anti-SARS-CoV-2 antibodies in the range of 0.025-0.5 nM (LOD 0.01 nM) and 0.3-1 nM (LOD 0.3 nM), respectively. Gibbs free energy of interaction between ZnO/SARS-CoV-2-rS and ZnO/SARS-CoV-2-rN bioselective layers with anti-SARS-CoV-2 antibodies showed -35.5 and -21.4 kJ/mol, respectively. Average detection time of biosensor integrated within microfluidic system was 15-20 min. The detection time and pumping speed (50 μL/min) were optimized to make detection faster. The developed system and ZnO-SARS-CoV-2-rS nanostructures have good potential for detection of anti-SARS-CoV-2 antibodies from patient's probes.
Collapse
Affiliation(s)
- Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania.
| | - Iryna Tepliakova
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Maryia Drobysh
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Viktor Zbolotnii
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Simas Rackauskas
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, LT-51423 Kaunas, Lithuania
| | - Simonas Ramanavicius
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia; State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| | - Karlis Grundsteins
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Viktorija Liustrovaite
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Vilma Ratautaite
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Ernestas Brazys
- NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan
| | - Urte Prentice
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- State Research Institute Center for Physical and Technological Sciences, LT-10257 Vilnius, Lithuania; NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, 03225 Vilnius, Lithuania.
| |
Collapse
|
2
|
Smith de Diego A, Griffiths OV, Johnson MP, de Montis M, Hughes MP. Optimization of upstream particle concentration from flow using AC electro-osmosis and dielectrophoresis. BIOMICROFLUIDICS 2024; 18:024105. [PMID: 38585002 PMCID: PMC10997383 DOI: 10.1063/5.0189137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
There are many applications where upstream sample processing is required to concentrate dispersed particles in flow; this may be to increase the concentration (e.g., to enhance biosensor accuracy) or to decrease it (e.g., by removing contaminants from flow). The AC electrokinetic phenomenon, dielectrophoresis (DEP), has been used widely for particle trapping for flow, but the magnitude of the force drops reduces rapidly with distance from electrode edges, so that nm-scale particles such as viruses and bacteria are only trapped when near the electrode surface. This limits the usable flow rate in the device and can render the final device unusable for practical applications. Conversely, another electrokinetic phenomenon, AC electro-osmosis (ACEO), can be used to move particles to electrode surfaces but is unable to trap them from flow, limiting their ability for sample cleanup or trap-and-purge concentration. In this paper, we describe the optimization of ACEO electrodes aligned parallel to pressure-driven flow as a precursor/preconditioner to capture particles from a flow stream and concentrate them adjacent to the channel wall to enhance DEP capture. This is shown to be effective at flow rates of up to 0.84 ml min-1. Furthermore, the analysis of the 3D flow structure in the ACEO device by both simulation and confocal microscopy suggests that while the system offers significant benefits, the flow structure in the volume near the channel lid is such that while substantial trapping can occur, particles in this part of the chamber cannot be trapped, independent of the chamber height.
Collapse
Affiliation(s)
| | - Oreoluwa V. Griffiths
- Centre for Biomedical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Matthew P. Johnson
- Centre for Biomedical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Marco de Montis
- Kromek Ltd, Thomas Wright Way, Sedgefield, County Durham, TS21 3FD, United Kingdom
| | | |
Collapse
|
3
|
Ganesh PS, Elugoke SE, Lee SH, Kim SY, Ebenso EE. Smart and emerging point of care electrochemical sensors based on nanomaterials for SARS-CoV-2 virus detection: Towards designing a future rapid diagnostic tool. CHEMOSPHERE 2024; 352:141269. [PMID: 38307334 DOI: 10.1016/j.chemosphere.2024.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
In the recent years, researchers from all over the world have become interested in the fabrication of advanced and innovative electrochemical and/or biosensors for respiratory virus detection with the use of nanotechnology. These fabricated sensors demonstrated a number of benefits, including precision, affordability, accessibility, and miniaturization which makes them a promising test method for point-of-care (PoC) screening for SARS-CoV-2 viral infection. In order to comprehend the principles of electrochemical sensing and the role of various types of sensing interfaces, we comprehensively explored the underlying principles of electroanalytical methods and terminologies related to it in this review. In addition, it is addressed how to fabricate electrochemical sensing devices incorporating nanomaterials as graphene, metal/metal oxides, metal organic frameworks (MOFs), MXenes, quantum dots, and polymers. We took an effort to carefully compile current developments, advantages, drawbacks, possible solutions in nanomaterials based electrochemical sensors.
Collapse
Affiliation(s)
- Pattan Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
4
|
Maulana MY, Raissa R, Nurrudin A, Andreani AS, Angelina M, Septiani NLW, Yuliarto B, Jenie SNA. An ultra-sensitive SARS-CoV-2 antigen optical biosensor based on angiotensin converting enzyme 2 (ACE-2) functionalized magnetic-fluorescent silica nanoparticles. NANOTECHNOLOGY 2024; 35:205702. [PMID: 38330490 DOI: 10.1088/1361-6528/ad27aa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
This work reports on the design and synthesis of an angiotensin-converting enzyme 2 (ACE-2) functionalized magnetic fluorescent silica nanoparticles (Fe-FSNP) as a biosensing platform to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen. Iron oxide (Fe3O4) nanoparticles were synthesized via ultrasonic-assisted coprecipitation and then coated with fluorescent silica nanoparticles (FSNP) through thesol-gelmethod forming the Fe-FSNP samples. Silica obtained from local geothermal powerplant was used in this work and Rhodamine B was chosen as the incorporated fluorescent dye, hence this reports for the first time ACE-2 was immobilized on the natural silica surface. The Fe-FSNP nanoparticle consists of a 18-25 nm magnetic core and a silica shell with a thickness of 30 nm as confirmed from the transmission electron microscopy image. Successful surface functionalization of the Fe-FSNP with ACE-2 as bioreceptor was conducted through hydrosylilation reaction and confirmed through the Fourier transform infrared spectroscopy. The detection of SARS-Cov-2 antigen by Fe-FSNP/ACE2 was measured through the change in its maximum fluorescence intensity at 588 nm where fluorescence- quenching had occurred. The biosensing platform showed a rapid response at 30 min with a linear range of 10-6to 10-2μg ml-1. The magnetic-fluorescent properties of the nanoparticle enables an ultra-sensitive detection of SARS-Cov-2 antigen with the limit of detection as low as 2 fg ml-1.
Collapse
Affiliation(s)
- Muhammad Yovinanda Maulana
- Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
| | - Raissa Raissa
- Doctoral Program of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Department of Chemistry, Universitas Pertamina, Jakarta 12200, Indonesia
| | - Ahmad Nurrudin
- Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
- BRIN and ITB Collaboration Research Centre for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
| | - Agustina Sus Andreani
- BRIN and ITB Collaboration Research Centre for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
- Research Centre for Chemistry, National Research and Innovation Agency (BRIN), Building 452, Kawasan Puspitek, South Tangerang 15314, Indonesia
| | - Marissa Angelina
- BRIN and ITB Collaboration Research Centre for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center (CSC), Bogor, West Java 16911, Indonesia
| | - Ni Luh Wulan Septiani
- Research Centre for Advanced Materials, National Research and Innovation Agency (BRIN), Kawasan Puspitek, South Tangerang 15314, Indonesia
| | - Brian Yuliarto
- Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
- BRIN and ITB Collaboration Research Centre for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia
| | - S N Aisyiyah Jenie
- BRIN and ITB Collaboration Research Centre for Biosensor and Biodevices, Jl. Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
- Research Centre for Chemistry, National Research and Innovation Agency (BRIN), Building 452, Kawasan Puspitek, South Tangerang 15314, Indonesia
| |
Collapse
|
5
|
Dubey S, Verma DK, Kumar M. Severe acute respiratory syndrome Coronavirus-2 GenoAnalyzer and mutagenic anomaly detector using FCMFI and NSCE. Int J Biol Macromol 2024; 258:129051. [PMID: 38159703 DOI: 10.1016/j.ijbiomac.2023.129051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/08/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
In order to deepen our understanding of the virus and help guide the creation of efficient therapies, this study uses artificial intelligence tools to thoroughly explore the genetic sequences of the SARS-CoV-2 virus. The process starts by using the Fuzzy Closure Miner for Frequent Itemsets (FCMFI) on a large corpus of SARS-CoV-2 genomic sequences to reveal hidden patterns, including nucleotides base sequences, repeating motifs, and corresponding interchanges. Then, using the Nucleotide Sequence Comprehension Engine (NSCE) technique, we were able to precisely define the genomic areas for mutation analysis. Structured and unstructured proteins are both strongly impacted by virus mutations, with spike proteins that are linked to the severity of COVID-19 pneumonia being particularly affected. Notably, the Mutagenic Anomaly Detector shows a 65 % efficiency boost in computing genome mutation rates compared to conventional point mutation analysis, while GenoAnalyzer offers a remarkable 93.33 % improvement over existing approaches in recognizing common genomic sequence patterns. These results highlight the potential of FCMFI to reveal complex genomic patterns and significant insights in COVID-19 genetic sequences when combined with mutation analysis. The Mutagenic Anomaly Detector and GenoAnalyzer show promise for revealing hidden genomic patterns and precisely estimating the SARS-CoV-2 mutation rate.
Collapse
Affiliation(s)
- Shivendra Dubey
- Department of Computer Science & Engineering, Jaypee University of Engineering & Technology, Guna, Madhya Pradesh Pin-473226, India.
| | - Dinesh Kumar Verma
- Department of Computer Science & Engineering, Jaypee University of Engineering & Technology, Guna, Madhya Pradesh Pin-473226, India.
| | - Mahesh Kumar
- Department of Computer Science & Engineering, Jaypee University of Engineering & Technology, Guna, Madhya Pradesh Pin-473226, India.
| |
Collapse
|
6
|
Han JJ, Song HA, Pierson SL, Shen-Gunther J, Xia Q. Emerging Infectious Diseases Are Virulent Viruses-Are We Prepared? An Overview. Microorganisms 2023; 11:2618. [PMID: 38004630 PMCID: PMC10673331 DOI: 10.3390/microorganisms11112618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
The recent pandemic caused by SARS-CoV-2 affected the global population, resulting in a significant loss of lives and global economic deterioration. COVID-19 highlighted the importance of public awareness and science-based decision making, and exposed global vulnerabilities in preparedness and response systems. Emerging and re-emerging viral outbreaks are becoming more frequent due to increased international travel and global warming. These viral outbreaks impose serious public health threats and have transformed national strategies for pandemic preparedness with global economic consequences. At the molecular level, viral mutations and variations are constantly thwarting vaccine efficacy, as well as diagnostic, therapeutic, and prevention strategies. Here, we discuss viral infectious diseases that were epidemic and pandemic, currently available treatments, and surveillance measures, along with their limitations.
Collapse
Affiliation(s)
- Jasmine J. Han
- Division of Gynecologic Oncology, Department of Gynecologic Surgery and Obstetrics, Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA
| | - Hannah A. Song
- Department of Bioengineering, University of California, Los Angeles, CA 90024, USA;
| | - Sarah L. Pierson
- Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA;
| | - Jane Shen-Gunther
- Gynecologic Oncology & Clinical Investigation, Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA;
| | - Qingqing Xia
- Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA;
| |
Collapse
|
7
|
Rocha DS, Baldo TA, Silva-Neto HA, Duarte-Junior GF, Bazílio GS, Borges CL, Parente-Rocha JA, de Araujo WR, de Siervo A, Paixão TLRC, Coltro WKT. Disposable and eco-friendly electrochemical immunosensor for rapid detection of SARS-CoV-2. Talanta 2023; 268:125337. [PMID: 39491949 DOI: 10.1016/j.talanta.2023.125337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
This study describes the development of a simple, disposable, and eco-friendly electrochemical immunosensor for rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Electrochemical devices were manufactured by stencil-printing using low-cost materials such as polyester sheets, graphite flakes, and natural resin. The immunosensor comprises gold nanoparticles stabilized with cysteamine, glutaraldehyde, anti-SARS-CoV-2 S protein monoclonal antibody (Ab1) as the biological receptor, and bovine serum albumin as a protective layer. The COVID-19 diagnostic was based on rapid square wave voltammetry measurements (15 min) using [Fe(CN)6]3-/4- as a redox probe. The method presented a linear response in the concentration range from 250 pg mL-1 to 20 μg mL-1 S protein, with a limit of detection of 36.3 pg mL-1. The proposed immunosensor was stable for up to two weeks when stored at 4 °C and it demonstrated excellent clinical performance in diagnosing COVID-19 when applied to a panel of 44 undiluted swab samples collected from symptomatic patients. In comparison with results obtained through the quantitative reverse transcription polymerase chain reaction method, the proposed immunosensor offered 100 % accuracy, thus emerging as a powerful alternative candidate for routine and decentralized testing, which can be helpful in controlling the COVID-19 outbreak.
Collapse
Affiliation(s)
- Danielly S Rocha
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Thaísa A Baldo
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Habdias A Silva-Neto
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | | | - Gabriela S Bazílio
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Clayton L Borges
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Juliana A Parente-Rocha
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - William R de Araujo
- Departamento de Química Analítica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, 13083-970, Brazil
| | - Abner de Siervo
- Instituto de Física "Gleb Wataghin", Departamento de Física Aplicada, Universidade Estadual de Campinas, 13083-859, Campinas, SP, Brazil
| | - Thiago L R C Paixão
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
8
|
Pal D, Amyot M, Liang C, Ariya PA. Real-time 4D tracking of airborne virus-laden droplets and aerosols. COMMUNICATIONS ENGINEERING 2023; 2:41. [PMCID: PMC10955884 DOI: 10.1038/s44172-023-00088-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/06/2023] [Indexed: 06/26/2024]
Abstract
There is currently no real-time airborne virus tracking method, hindering the understanding of rapid virus changes and associated health impacts. Nano-digital in-line holographic microscopy (Nano-DIHM) is a lensless technology that can directly obtain the interference patterns of objects by recording the scattered light information originating from the objects. Here, we provide evidence for real-time physicochemical tracking of virus-laden droplets and aerosols in the air using desktop label-free Nano-DIHM. The virus interference patterns, as single and ensemble particles, were imaged by the Nano-DIHM with 32.5 ms resolution. The next-generation Stingray and Octopus software was used to automate object detection, characterization and classification from the recorded holograms. The detection system was demonstrated to detect active MS2 bacteriophages, inactivated SARS-CoV-2 and RNA fragments, and an MS2 mixture with metallic and organic compounds. This work demonstrates the feasibility of using Nano-DIHM to provide rapid virus detection to improve transmission management in real time. Devendra Pal and coworkers report an imaging system using Nano-Digital in-line Holographic Microscopy (NanoDIHM) to detect airborne viruses in droplets and aerosols in real time. This system is able to detect various viruses in air, water and heterogeneous matrices within one minute, enabling real-time tracking of pollutant particles for efficient epidemic management.
Collapse
Affiliation(s)
- Devendra Pal
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 0B9 Canada
| | - Marc Amyot
- Department of Biological Sciences, Univerité de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3 Canada
| | - Chen Liang
- Department of Medicine, Division of Experimental Medicine, McGill University and Jewish General Hospital, 3755 Cote Sainte Catherine Rd., Montreal, QC G3T 1 E2 Canada
| | - Parisa A. Ariya
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 0B9 Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 2K6 Canada
| |
Collapse
|
9
|
Sen P, Zhang Z, Li P, Adhikari BR, Guo T, Gu J, MacIntosh AR, van der Kuur C, Li Y, Soleymani L. Integrating Water Purification with Electrochemical Aptamer Sensing for Detecting SARS-CoV-2 in Wastewater. ACS Sens 2023; 8:1558-1567. [PMID: 36926840 PMCID: PMC10042147 DOI: 10.1021/acssensors.2c02655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Wastewater analysis of pathogens, particularly SARS-CoV-2, is instrumental in tracking and monitoring infectious diseases in a population. This method can be used to generate early warnings regarding the onset of an infectious disease and predict the associated infection trends. Currently, wastewater analysis of SARS-CoV-2 is almost exclusively performed using polymerase chain reaction for the amplification-based detection of viral RNA at centralized laboratories. Despite the development of several biosensing technologies offering point-of-care solutions for analyzing SARS-CoV-2 in clinical samples, these remain elusive for wastewater analysis due to the low levels of the virus and the interference caused by the wastewater matrix. Herein, we integrate an aptamer-based electrochemical chip with a filtration, purification, and extraction (FPE) system for developing an alternate in-field solution for wastewater analysis. The sensing chip employs a dimeric aptamer, which is universally applicable to the wild-type, alpha, delta, and omicron variants of SARS-CoV-2. We demonstrate that the aptamer is stable in the wastewater matrix (diluted to 50%) and its binding affinity is not significantly impacted. The sensing chip demonstrates a limit of detection of 1000 copies/L (1 copy/mL), enabled by the amplification provided by the FPE system. This allows the integrated system to detect trace amounts of the virus in native wastewater and categorize the amount of contamination into trace (<10 copies/mL), medium (10-1000 copies/mL), or high (>1000 copies/mL) levels, providing a viable wastewater analysis solution for in-field use.
Collapse
Affiliation(s)
- Payel Sen
- Department of Engineering Physics,
McMaster University, Hamilton L8S 4K1,
Canada
| | - Zijie Zhang
- Department of Biochemistry and Biomedical Sciences,
McMaster University, Hamilton L8S 4K1,
Canada
| | - Phoebe Li
- Department of Physics, McMaster
University, Hamilton L8S 4K1, Canada
| | - Bal Ram Adhikari
- Department of Engineering Physics,
McMaster University, Hamilton L8S 4K1,
Canada
| | - Tianyi Guo
- Forsee Instruments, Ltd.,
Hamilton L8P0A1, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences,
McMaster University, Hamilton L8S 4K1,
Canada
| | | | | | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences,
McMaster University, Hamilton L8S 4K1,
Canada
- School of Biomedical Engineering, McMaster
University, Hamilton L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease
Research, McMaster University, Hamilton L8S 4K1,
Canada
| | - Leyla Soleymani
- Department of Engineering Physics,
McMaster University, Hamilton L8S 4K1,
Canada
- School of Biomedical Engineering, McMaster
University, Hamilton L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease
Research, McMaster University, Hamilton L8S 4K1,
Canada
| |
Collapse
|
10
|
Bhattacharjee B, Ikbal AMA, Farooqui A, Sahu RK, Ruhi S, Syed A, Miatmoko A, Khan D, Khan J. Superior possibilities and upcoming horizons for nanoscience in COVID-19: noteworthy approach for effective diagnostics and management of SARS-CoV-2 outbreak. CHEMICKE ZVESTI 2023; 77:1-24. [PMID: 37362791 PMCID: PMC10072050 DOI: 10.1007/s11696-023-02795-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/18/2023] [Indexed: 04/07/2023]
Abstract
The outbreak of COVID-19 has caused great havoc and affected many parts of the world. It has imposed a great challenge to the medical and health fraternity with its ability to continue mutating and increasing the transmission rate. Some challenges include the availability of current knowledge of active drugs against the virus, mode of delivery of the medicaments, its diagnosis, which are relatively limited and do not suffice for further prognosis. One recently developed drug delivery system called nanoparticles is currently being utilized in combating COVID-19. This article highlights the existing methods for diagnosis of COVID-19 such as computed tomography scan, reverse transcription-polymerase chain reaction, nucleic acid sequencing, immunoassay, point-of-care test, detection from breath, nanotechnology-based bio-sensors, viral antigen detection, microfluidic device, magnetic nanosensor, magnetic resonance platform and internet-of-things biosensors. The latest detection strategy based on nanotechnology, biosensor, is said to produce satisfactory results in recognizing SARS-CoV-2 virus. It also highlights the successes in the research and development of COVID-19 treatments and vaccines that are already in use. In addition, there are a number of nanovaccines and nanomedicines currently in clinical trials that have the potential to target COVID-19.
Collapse
Affiliation(s)
- Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, Assam 784501 India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, 788011 India
| | - Atika Farooqui
- The Deccan College of Medical Sciences, Kanchan Bagh, Hyderabad, Telangana 500058 India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand 249161 India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Ayesha Syed
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java 60115 Indonesia
| | - Danish Khan
- Panineeya Institute of Dental Science and Research Centre, Kalonji Narayana Rao University of Health Sciences, Warangal, Telangana 506007 India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, 40100 Shah Alam, Selangor Malaysia
| |
Collapse
|
11
|
Jang HJ, Zhuang W, Sui X, Ryu B, Huang X, Chen M, Cai X, Pu H, Beavis K, Huang J, Chen J. Rapid, Sensitive, Label-Free Electrical Detection of SARS-CoV-2 in Nasal Swab Samples. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15195-15202. [PMID: 36938607 PMCID: PMC10041344 DOI: 10.1021/acsami.3c00331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Rapid diagnosis of coronavirus disease 2019 (COVID-19) is key for the long-term control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) amid renewed threats of mutated SARS-CoV-2 around the world. Here, we report on an electrical label-free detection of SARS-CoV-2 in nasopharyngeal swab samples directly collected from outpatients or in saliva-relevant conditions by using a remote floating-gate field-effect transistor (RFGFET) with a 2-dimensional reduced graphene oxide (rGO) sensing membrane. RFGFET sensors demonstrate rapid detection (<5 min), a 90.6% accuracy from 8 nasal swab samples measured by 4 different devices for each sample, and a coefficient of variation (CV) < 6%. Also, RFGFET sensors display a limit of detection (LOD) of pseudo-SARS-CoV-2 that is 10 000-fold lower than enzyme-linked immunosorbent assays, with a comparable LOD to that of reverse transcription-polymerase chain reaction (RT-PCR) for patient samples. To achieve this, comprehensive systematic studies were performed regarding interactions between SARS-CoV-2 and spike proteins, neutralizing antibodies, and angiotensin-converting enzyme 2, as either a biomarker (detection target) or a sensing probe (receptor) functionalized on the rGO sensing membrane. Taken together, this work may have an immense effect on positioning FET bioelectronics for rapid SARS-CoV-2 diagnostics.
Collapse
Affiliation(s)
- Hyun-June Jang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Wen Zhuang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaoyu Sui
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Byunghoon Ryu
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaodan Huang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Min Chen
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Xiaolei Cai
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Haihui Pu
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kathleen Beavis
- Department
of Pathology, University of Chicago, Chicago, Illinois 60637, United States
| | - Jun Huang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Junhong Chen
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Chemical
Sciences and Engineering Division, Physical Sciences and Engineering
Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
12
|
Cetinkaya A, Kaya SI, Ozkan SA. A Comprehensive Overview of Sensors Applications for the Diagnosis of SARS-CoV-2 and of Drugs Used in its Treatment. Crit Rev Anal Chem 2023; 54:2517-2537. [PMID: 36877165 DOI: 10.1080/10408347.2023.2186693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
During the COVID-19 process, determination-based analytical chemistry studies have had a major place at every stage. Many analytical techniques have been used in both diagnostic studies and drug analysis. Among these, electrochemical sensors are frequently preferred due to their high sensitivity, selectivity, short analysis time, reliability, ease of sample preparation, and low use of organic solvents. For the determination of drugs used in the SARS-CoV-2, such as favipiravir, molnupiravir, ribavirin, etc., electrochemical (nano)sensors are widely used in both pharmaceutical and biological samples. Diagnosis is the most critical step in the management of the disease, and electrochemical sensor tools are widely preferred for this purpose. Diagnostic electrochemical sensor tools can be biosensor-, nano biosensor-, or MIP-based sensors and utilize a wide variety of analytes such as viral proteins, viral RNA, antibodies, etc. This review overviews the sensor applications in SARS-CoV-2 in terms of diagnosis and determination of drugs by evaluating the most recent studies in the literature. In this way, it is aimed to compile the developments so far by shedding light on the most recent studies and giving ideas to researchers for future studies.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
- Graduate School of Health Sciences, Ankara University, Ankara, Türkiye
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Türkiye
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
| |
Collapse
|
13
|
Lomae A, Preechakasedkit P, Hanpanich O, Ozer T, Henry CS, Maruyama A, Pasomsub E, Phuphuakrat A, Rengpipat S, Vilaivan T, Chailapakul O, Ruecha N, Ngamrojanavanich N. Label free electrochemical DNA biosensor for COVID-19 diagnosis. Talanta 2023; 253:123992. [PMID: 36228554 PMCID: PMC9546783 DOI: 10.1016/j.talanta.2022.123992] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/31/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
Abstract
The COVID-19 pandemic has significantly increased the development of the development of point-of-care (POC) diagnostic tools because they can serve as useful tools for detecting and controlling spread of the disease. Most current methods require sophisticated laboratory instruments and specialists to provide reliable, cost-effective, specific, and sensitive POC testing for COVID-19 diagnosis. Here, a smartphone-assisted Sensit Smart potentiostat (PalmSens) was integrated with a paper-based electrochemical sensor to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A disposable paper-based device was fabricated, and the working electrode directly modified with a pyrrolidinyl peptide nucleic acid (acpcPNA) as the biological recognition element to capture the target complementary DNA (cDNA). In the presence of the target cDNA, hybridization with acpcPNA probe blocks the redox conversion of a redox reporter, leading to a decrease in electrochemical response correlating to SARS-CoV-2 concentration. Under optimal conditions, a linear range from 0.1 to 200 nM and a detection limit of 1.0 pM were obtained. The PNA-based electrochemical paper-based analytical device (PNA-based ePAD) offers high specificity toward SARS-CoV-2 N gene because of the highly selective PNA-DNA binding. The developed sensor was used for amplification-free SARS-CoV-2 detection in 10 nasopharyngeal swab samples (7 SARS-CoV-2 positive and 3 SARS-CoV-2 negative), giving a 100% agreement result with RT-PCR.
Collapse
Affiliation(s)
- Atchara Lomae
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Pattarachaya Preechakasedkit
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12 Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Orakan Hanpanich
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Charles S. Henry
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12 Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand,Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259 B-57, Yokohama, 226-8501, Japan
| | - Ekawat Pasomsub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Angsana Phuphuakrat
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sirirat Rengpipat
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand,Qualified Diagnostic Development Center, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Nipapan Ruecha
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand,Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12 Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand,Corresponding author. Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12 Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Nattaya Ngamrojanavanich
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand,Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand,Corresponding author. Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
14
|
Ong V, Soleimani A, Amirghasemi F, Khazaee Nejad S, Abdelmonem M, Razaviyayn M, Hosseinzadeh P, Comai L, Mousavi MPS. Impedimetric Sensing: An Emerging Tool for Combating the COVID-19 Pandemic. BIOSENSORS 2023; 13:204. [PMID: 36831970 PMCID: PMC9953732 DOI: 10.3390/bios13020204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/12/2023]
Abstract
The COVID-19 pandemic revealed a pressing need for the development of sensitive and low-cost point-of-care sensors for disease diagnosis. The current standard of care for COVID-19 is quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). This method is sensitive, but takes time, effort, and requires specialized equipment and reagents to be performed correctly. This make it unsuitable for widespread, rapid testing and causes poor individual and policy decision-making. Rapid antigen tests (RATs) are a widely used alternative that provide results quickly but have low sensitivity and are prone to false negatives, particularly in cases with lower viral burden. Electrochemical sensors have shown much promise in filling this technology gap, and impedance spectroscopy specifically has exciting potential in rapid screening of COVID-19. Due to the data-rich nature of impedance measurements performed at different frequencies, this method lends itself to machine-leaning (ML) algorithms for further data processing. This review summarizes the current state of impedance spectroscopy-based point-of-care sensors for the detection of the SARS-CoV-2 virus. This article also suggests future directions to address the technology's current limitations to move forward in this current pandemic and prepare for future outbreaks.
Collapse
Affiliation(s)
- Victor Ong
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Ali Soleimani
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Sina Khazaee Nejad
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mona Abdelmonem
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Meisam Razaviyayn
- Daniel J. Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Parisa Hosseinzadeh
- Knight Campus Center Department of Bioengineering, University of Oregon, Eugene, OR 97403, USA
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Maral P. S. Mousavi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
15
|
Neyama D, Fakhruddin SMB, Inoue KY, Kurita H, Osana S, Miyamoto N, Tayama T, Chiba D, Watanabe M, Shiku H, Narita F. Batteryless wireless magnetostrictive Fe 30Co 70/Ni clad plate for human coronavirus 229E detection. SENSORS AND ACTUATORS. A, PHYSICAL 2023; 349:114052. [PMID: 36447950 PMCID: PMC9686060 DOI: 10.1016/j.sna.2022.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been garnered increasing for its rapid worldwide spread. Each country had implemented city-wide lockdowns and immigration regulations to prevent the spread of the infection, resulting in severe economic consequences. Materials and technologies that monitor environmental conditions and wirelessly communicate such information to people are thus gaining considerable attention as a countermeasure. This study investigated the dynamic characteristics of batteryless magnetostrictive alloys for energy harvesting to detect human coronavirus 229E (HCoV-229E). Light and thin magnetostrictive Fe-Co/Ni clad plate with rectification, direct current (DC) voltage storage capacitor, and wireless information transmission circuits were developed for this purpose. The power consumption was reduced by improving the energy storage circuit, and the magnetostrictive clad plate under bending vibration stored a DC voltage of 1.9 V and wirelessly transmitted a signal to a personal computer once every 5 min and 10 s under bias magnetic fields of 0 and 10 mT, respectively. Then, on the clad plate surface, a novel CD13 biorecognition layer was immobilized using a self-assembled monolayer of -COOH groups, thus forming an amide bond with -NH2 groups for the detection of HCoV-229E. A bending vibration test demonstrated the resonance frequency changes because of HCoV-229E binding. The fluorescence signal demonstrated that HCoV-229E could be successfully detected. Thus, because HCoV-229E changed the dynamic characteristics of this plate, the CD13-modified magnetostrictive clad plate could detect HCoV-229E from the interval of wireless communication time. Therefore, a monitoring system that transmits/detects the presence of human coronavirus without batteries will be realized soon.
Collapse
Key Words
- AC, alternating current
- APS, aminopropyl silane
- BSA, bovine serum albumin
- CD13
- CTF, corrected total fluorescence
- DC, direct current
- EDC, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide
- Energy harvesting
- Fluorescence microscopy
- HCoV, human coronavirus
- IC, integrated circuit
- IoT, Internet of things
- MES, 2-(N-morpholino) ethanesulfonic acid
- MUA, mercaptoundecanoic acid
- NHS, N-hydroxysulfosuccinimide
- PBS, phosphate-buffered saline
- RC, rectifier circuit
- SAM, self-assembled monolayer
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- Virrari effect
- Virus detection
- Wireless communications
Collapse
Affiliation(s)
- Daiki Neyama
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Siti Masturah Binti Fakhruddin
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Kumi Y Inoue
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
- Center for Basic Education, Faculty of Engineering, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Hiroki Kurita
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Naoto Miyamoto
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Tsuyoki Tayama
- Advanced Material Division, Tohoku Steel Co. Ltd., Muratamachi, Shibatagun, Japan
| | - Daiki Chiba
- Advanced Material Division, Tohoku Steel Co. Ltd., Muratamachi, Shibatagun, Japan
| | - Masahito Watanabe
- Research and Development Department, Tohoku Steel Co. Ltd., Muratamachi, Shibatagun, Japan
| | - Hitoshi Shiku
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Fumio Narita
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Bordbar MM, Samadinia H, Sheini A, Aboonajmi J, Javid M, Sharghi H, Ghanei M, Bagheri H. Non-invasive detection of COVID-19 using a microfluidic-based colorimetric sensor array sensitive to urinary metabolites. Mikrochim Acta 2022; 189:316. [PMID: 35927498 PMCID: PMC9361914 DOI: 10.1007/s00604-022-05423-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/15/2022] [Indexed: 01/17/2023]
Abstract
A colorimetric sensor array designed on a paper substrate with a microfluidic structure has been developed. This array is capable of detecting COVID-19 disease by tracking metabolites of urine samples. In order to determine minor metabolic changes, various colorimetric receptors consisting of gold and silver nanoparticles, metalloporphyrins, metal ion complexes, and pH-sensitive indicators are used in the array structure. By injecting a small volume of the urine sample, the color pattern of the sensor changes after 7 min, which can be observed visually. The color changes of the receptors (recorded by a scanner) are subsequently calculated by image analysis software and displayed as a color difference map. This study has been performed on 130 volunteers, including 60 patients infected by COVID-19, 55 healthy controls, and 15 cured individuals. The resulting array provides a fingerprint response for each category due to the differences in the metabolic profile of the urine sample. The principal component analysis-discriminant analysis confirms that the assay sensitivity to the correctly detected patient, healthy, and cured participants is equal to 73.3%, 74.5%, and 66.6%, respectively. Apart from COVID-19, other diseases such as chronic kidney disease, liver disorder, and diabetes may be detectable by the proposed sensor. However, this performance of the sensor must be tested in the studies with a larger sample size. These results show the possible feasibility of the sensor as a suitable alternative to costly and time-consuming standard methods for rapid detection and control of viral and bacterial infectious diseases and metabolic disorders.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hosein Samadinia
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dashte Azadegan, Khuzestan, Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mohammad Javid
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Pandey SK, Mohanta GC, Kumar V, Gupta K. Diagnostic Tools for Rapid Screening and Detection of SARS-CoV-2 Infection. Vaccines (Basel) 2022; 10:1200. [PMID: 36016088 PMCID: PMC9414050 DOI: 10.3390/vaccines10081200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/11/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has severely impacted human health and the health management system globally. The ongoing pandemic has required the development of more effective diagnostic strategies for restricting deadly disease. For appropriate disease management, accurate and rapid screening and isolation of the affected population is an efficient means of containment and the decimation of the disease. Therefore, considerable efforts are being directed toward the development of rapid and robust diagnostic techniques for respiratory infections, including SARS-CoV-2. In this article, we have summarized the origin, transmission, and various diagnostic techniques utilized for the detection of the SARS-CoV-2 virus. These higher-end techniques can also detect the virus copy number in asymptomatic samples. Furthermore, emerging rapid, cost-effective, and point-of-care diagnostic devices capable of large-scale population screening for COVID-19 are discussed. Finally, some breakthrough developments based on spectroscopic diagnosis that could revolutionize the field of rapid diagnosis are discussed.
Collapse
Affiliation(s)
- Satish Kumar Pandey
- Department of Biotechnology, School of Life Sciences, Mizoram University (Central University), Aizawl 796004, India
| | - Girish C. Mohanta
- Materials Science and Sensor Applications, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh 160030, India;
| | - Vinod Kumar
- Department of Dermatology, Venerology and Leprology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India;
| | - Kuldeep Gupta
- Russel H. Morgan, Department of Radiology and Radiological Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
18
|
Alexaki K, Kyriazi ME, Greening J, Taemaitree L, El-Sagheer AH, Brown T, Zhang X, Muskens OL, Kanaras AG. A SARS-Cov-2 sensor based on upconversion nanoparticles and graphene oxide. RSC Adv 2022; 12:18445-18449. [PMID: 35799935 PMCID: PMC9215703 DOI: 10.1039/d2ra03599e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, there has been an increased need for the development of novel diagnostic solutions that can accurately and rapidly detect SARS-CoV-2 infection. In this work, we demonstrate the targeting of viral oligonucleotide markers within minutes without the requirement of a polymerase chain reaction (PCR) amplification step via the use of oligonucleotide-coated upconversion nanoparticles (UCNPs) and graphene oxide (GO).
Collapse
Affiliation(s)
- Konstantina Alexaki
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton Southampton SO17 1BJ UK
| | - Maria Eleni Kyriazi
- College of Engineering and Technology, American University of the Middle East Kuwait
| | - Joshua Greening
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton Southampton SO17 1BJ UK
| | - Lapatrada Taemaitree
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University Suez 43721 Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Xunli Zhang
- School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton Southampton SO17 1BJ UK
- Institute for Life Sciences, University of Southampton Southampton SO171BJ UK
| | - Otto L Muskens
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton Southampton SO17 1BJ UK
- Institute for Life Sciences, University of Southampton Southampton SO171BJ UK
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton Southampton SO17 1BJ UK
- Institute for Life Sciences, University of Southampton Southampton SO171BJ UK
| |
Collapse
|
19
|
Yang S, Tong Y, Chen L, Yu W. Human Identical Sequences, hyaluronan, and hymecromone ─ the new mechanism and management of COVID-19. MOLECULAR BIOMEDICINE 2022; 3:15. [PMID: 35593963 PMCID: PMC9120813 DOI: 10.1186/s43556-022-00077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 caused by SARS-CoV-2 has created formidable damage to public health and market economy. Currently, SARS-CoV-2 variants has exacerbated the transmission from person-to-person. Even after a great deal of investigation on COVID-19, SARS-CoV-2 is still rampaging globally, emphasizing the urgent need to reformulate effective prevention and treatment strategies. Here, we review the latest research progress of COVID-19 and provide distinct perspectives on the mechanism and management of COVID-19. Specially, we highlight the significance of Human Identical Sequences (HIS), hyaluronan, and hymecromone ("Three-H") for the understanding and intervention of COVID-19. Firstly, HIS activate inflammation-related genes to influence COVID-19 progress through NamiRNA-Enhancer network. Accumulation of hyaluronan induced by HIS-mediated HAS2 upregulation is a substantial basis for clinical manifestations of COVID-19, especially in lymphocytopenia and pulmonary ground-glass opacity. Secondly, detection of plasma hyaluronan can be effective for evaluating the progression and severity of COVID-19. Thirdly, spike glycoprotein of SARS-CoV-2 may bind to hyaluronan and further serve as an allergen to stimulate allergic reaction, causing sudden adverse effects after vaccination or the aggravation of COVID-19. Finally, antisense oligonucleotides of HIS or inhibitors of hyaluronan synthesis (hymecromone) or antiallergic agents could be promising therapeutic agents for COVID-19. Collectively, Three-H could hold the key to understand the pathogenic mechanism and create effective therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Ying Tong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Lu Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
20
|
Ismail Z, W Idris WF, Abdullah AH. Graphene-based temperature, humidity, and strain sensor: A review on progress, characterization, and potential applications during Covid-19 pandemic. SENSORS INTERNATIONAL 2022; 3:100183. [PMID: 35633818 PMCID: PMC9126002 DOI: 10.1016/j.sintl.2022.100183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Graphene's potential as material for wearable, highly sensitive and robust sensor in various fields of technology has been widely investigated until now in order to capitalize on its unique intrinsic physical and chemical properties. In the wake of Covid-19 pandemic, it has been noticed that there are various potentials roles that can be fulfilled by graphene-based temperature, humidity and strain sensor, whose roles has not been widely explored to date. This paper takes the liberty to mainly highlight the progress layout and characterization technique for graphene-based sensor while including a brief discussion on the possible strategy of sensing data analysis that can be employed to minimize and prevent the risk of Covid-19 infection within a living community. While majority of the reported sensor is still in the in-progress status, its highlighted role in this work may provide a brief idea on how the ongoing research in graphene-based sensor may lead to the future implementation of the device for routine healthcare check-up and diagnostic point-care during and post-pandemic era. On the other hand, the sensitivity and response time data against working temperature, humidity and strain range that are provided could serve as a reference for benchmarking purpose, which certainly would help enthusiast in the development of a graphene-based sensor with a better performance for the future.
Collapse
|
21
|
Ravina, Gill PS, kumar A, Narang J, Prasad M, Mohan H. Molecular detection of H1N1 virus by conventional reverse transcription PCR coupled with nested PCR. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Aghamirza Moghim Aliabadi H, Eivazzadeh‐Keihan R, Beig Parikhani A, Fattahi Mehraban S, Maleki A, Fereshteh S, Bazaz M, Zolriasatein A, Bozorgnia B, Rahmati S, Saberi F, Yousefi Najafabadi Z, Damough S, Mohseni S, Salehzadeh H, Khakyzadeh V, Madanchi H, Kardar GA, Zarrintaj P, Saeb MR, Mozafari M. COVID-19: A systematic review and update on prevention, diagnosis, and treatment. MedComm (Beijing) 2022; 3:e115. [PMID: 35281790 PMCID: PMC8906461 DOI: 10.1002/mco2.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 01/09/2023] Open
Abstract
Since the rapid onset of the COVID-19 or SARS-CoV-2 pandemic in the world in 2019, extensive studies have been conducted to unveil the behavior and emission pattern of the virus in order to determine the best ways to diagnosis of virus and thereof formulate effective drugs or vaccines to combat the disease. The emergence of novel diagnostic and therapeutic techniques considering the multiplicity of reports from one side and contradictions in assessments from the other side necessitates instantaneous updates on the progress of clinical investigations. There is also growing public anxiety from time to time mutation of COVID-19, as reflected in considerable mortality and transmission, respectively, from delta and Omicron variants. We comprehensively review and summarize different aspects of prevention, diagnosis, and treatment of COVID-19. First, biological characteristics of COVID-19 were explained from diagnosis standpoint. Thereafter, the preclinical animal models of COVID-19 were discussed to frame the symptoms and clinical effects of COVID-19 from patient to patient with treatment strategies and in-silico/computational biology. Finally, the opportunities and challenges of nanoscience/nanotechnology in identification, diagnosis, and treatment of COVID-19 were discussed. This review covers almost all SARS-CoV-2-related topics extensively to deepen the understanding of the latest achievements (last updated on January 11, 2022).
Collapse
Affiliation(s)
- Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry LaboratoryDepartment of Medical BiotechnologyBiotechnology Research CenterPasteur Institute of IranTehranIran
- Advance Chemical Studies LaboratoryFaculty of ChemistryK. N. Toosi UniversityTehranIran
| | | | - Arezoo Beig Parikhani
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | | | - Ali Maleki
- Department of ChemistryIran University of Science and TechnologyTehranIran
| | | | - Masoume Bazaz
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | | | | | - Saman Rahmati
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | - Fatemeh Saberi
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Zeinab Yousefi Najafabadi
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
- ImmunologyAsthma & Allergy Research InstituteTehran University of Medical SciencesTehranIran
| | - Shadi Damough
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | - Sara Mohseni
- Non‐metallic Materials Research GroupNiroo Research InstituteTehranIran
| | | | - Vahid Khakyzadeh
- Department of ChemistryK. N. Toosi University of TechnologyTehranIran
| | - Hamid Madanchi
- School of MedicineSemnan University of Medical SciencesSemnanIran
- Drug Design and Bioinformatics UnitDepartment of Medical BiotechnologyBiotechnology Research CenterPasteur Institute of IranTehranIran
| | - Gholam Ali Kardar
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
- ImmunologyAsthma & Allergy Research InstituteTehran University of Medical SciencesTehranIran
| | - Payam Zarrintaj
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Mohammad Reza Saeb
- Department of Polymer TechnologyFaculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
23
|
Electrochemical Biosensor Based on Laser-Induced Graphene for COVID-19 Diagnosing: Rapid and Low-Cost Detection of SARS-CoV-2 Biomarker Antibodies. SURFACES 2022. [DOI: 10.3390/surfaces5010012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The severe acute respiratory syndrome originated by the new coronavirus (SARS-CoV-2) that emerged in late 2019, known to be a highly transmissible and pathogenic disease, has caused the COVID-19 global pandemic outbreak. Thus, diagnostic devices that help epidemiological public safety measures to reduce undetected cases and isolation of infected patients, in addition to significantly help to control the population’s immune response to vaccine, are required. To address the negative issues of clinical research, we developed a Diagnostic on a Chip platform based on a disposable electrochemical biosensor containing laser-induced graphene and a protein (SARS-CoV-2 specific antigen) for the detection of SARS-CoV-2 antibodies. The biosensors were produced via direct laser writing using a CO2 infrared laser cutting machine on commercial polyimide sheets. The presence of specific antibodies reacting with the protein and the K3[Fe(CN)6] redox indicator produced characteristic and concentration-dependent electrochemical signals, with mean current values of 9.6757 and 8.1812 µA for reactive and non-reactive samples, respectively, proving the effectiveness of testing in clinical samples of serum from patients. Thus, the platform is being expanded to be measured in a portable microcontrolled potentiostat to be applied as a fast and reliable monitoring and mapping tool, aiming to assess the vaccinal immune response of the population.
Collapse
|
24
|
Simultaneous detection of antibody responses to multiple SARS-CoV-2 antigens by a Western blot serological assay. Appl Microbiol Biotechnol 2022; 106:8183-8194. [PMID: 36404356 PMCID: PMC9676789 DOI: 10.1007/s00253-022-12288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022]
Abstract
The nucleic acid test is still the standard assessment for the diagnosis of coronavirus disease 2019 (COVID-19), which is caused by human infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to supporting the confirmation of disease cases, serological assays are used for the analysis of antibody status and epidemiological surveys. In this study, a single Western blot strip (WBS) coated with multiple Escherichia coli (E. coli)-expressed SARS-CoV-2 antigens was developed for comprehensive studies of antibody profiles in COVID-19 patient sera. The levels of specific antibodies directed to SARS-CoV-2 spike (S), S2, and nucleocapsid (N) proteins were gradually increased with the same tendency as the disease progressed after hospitalization. The signal readouts of S, S2, and N revealed by the multi-antigen-coated WBS (mWBS)-based serological assay (mWBS assay) also demonstrated a positive correlation with the SARS-CoV-2 neutralizing potency of the sera measured by the plaque reduction neutralization test (PRNT) assays. Surprisingly, the detection signals against the unstructured receptor-binding domain (RBD) purified from E. coli inclusion bodies were not observed, although the COVID-19 patient sera exhibited strong neutralizing potency in the PRNT assays, suggesting that the RBD-specific antibodies in patient sera mostly recognize the conformational epitopes. Furthermore, the mWBS assay identified a unique and major antigenic epitope at the residues 1148, 1149, 1152, 1155, and 1156 located within the 1127-1167 fragment of the S2 subunit, which was specifically recognized by the COVID-19 patient serum. The mWBS assay can be finished within 14-16 min by using the automatic platform of Western blotting by thin-film direct coating with suction (TDCS WB). Collectively, the mWBS assay can be applied for the analysis of antibody responses, prediction of the protective antibody status, and identification of the specific epitope. KEY POINTS: • A Western blot strip (WBS) coated with multiple SARS-CoV-2 antigens was developed for the serological assay. • The multi-antigen-coated WBS (mWBS) can be utilized for the simultaneous detection of antibody responses to multiple SARS-CoV-2 antigens. • The mWBS-based serological assay (mWBS assay) identified a unique epitope recognized by the COVID-19 patient serum.
Collapse
|
25
|
Data-Driven Analytics Leveraging Artificial Intelligence in the Era of COVID-19: An Insightful Review of Recent Developments. Symmetry (Basel) 2021. [DOI: 10.3390/sym14010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This paper presents the role of artificial intelligence (AI) and other latest technologies that were employed to fight the recent pandemic (i.e., novel coronavirus disease-2019 (COVID-19)). These technologies assisted the early detection/diagnosis, trends analysis, intervention planning, healthcare burden forecasting, comorbidity analysis, and mitigation and control, to name a few. The key-enablers of these technologies was data that was obtained from heterogeneous sources (i.e., social networks (SN), internet of (medical) things (IoT/IoMT), cellular networks, transport usage, epidemiological investigations, and other digital/sensing platforms). To this end, we provide an insightful overview of the role of data-driven analytics leveraging AI in the era of COVID-19. Specifically, we discuss major services that AI can provide in the context of COVID-19 pandemic based on six grounds, (i) AI role in seven different epidemic containment strategies (a.k.a non-pharmaceutical interventions (NPIs)), (ii) AI role in data life cycle phases employed to control pandemic via digital solutions, (iii) AI role in performing analytics on heterogeneous types of data stemming from the COVID-19 pandemic, (iv) AI role in the healthcare sector in the context of COVID-19 pandemic, (v) general-purpose applications of AI in COVID-19 era, and (vi) AI role in drug design and repurposing (e.g., iteratively aligning protein spikes and applying three/four-fold symmetry to yield a low-resolution candidate template) against COVID-19. Further, we discuss the challenges involved in applying AI to the available data and privacy issues that can arise from personal data transitioning into cyberspace. We also provide a concise overview of other latest technologies that were increasingly applied to limit the spread of the ongoing pandemic. Finally, we discuss the avenues of future research in the respective area. This insightful review aims to highlight existing AI-based technological developments and future research dynamics in this area.
Collapse
|
26
|
Mandal M, Dutta N, Dutta G. Aptamer-based biosensors and their implications in COVID-19 diagnosis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5400-5417. [PMID: 34751684 DOI: 10.1039/d1ay01519b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel infectious member of the coronavirus family, has caused millions of cases of infection and deaths all over the world, and been declared a pandemic by the World Health Organization. Conventional laboratory-based diagnostic testing has faced extreme difficulties in meeting the overwhelming demand for testing worldwide, and this has brought about a pressing need for cost-effective rapid diagnosis. There has been a surge in the number of prototypes of diagnostic kits developed, although many of these have been found to be lacking in terms of their accuracy and sensitivity. One type of chip-based diagnostic platform is the aptamer-based biosensor. Aptamers are artificially synthesized oligonucleotides that are capable of specifically binding to a target antigen. As of now, some aptamers have been reported for SARS-CoV-2. Although many ultrasensitive aptasensors have been developed for viruses, few have been successfully adapted for SARS-CoV-2 detection. Our review discusses the recent developments in the domain of SARS-CoV-2 specific aptamer isolation, the design of electrochemical and optical aptasensors, and the implications of aptasensor-based COVID-19 diagnosis.
Collapse
Affiliation(s)
- Mukti Mandal
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| | - Nirmita Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| | - Gorachand Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
27
|
Pradhan A, Lahare P, Sinha P, Singh N, Gupta B, Kuca K, Ghosh KK, Krejcar O. Biosensors as Nano-Analytical Tools for COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:7823. [PMID: 34883826 PMCID: PMC8659776 DOI: 10.3390/s21237823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022]
Abstract
Selective, sensitive and affordable techniques to detect disease and underlying health issues have been developed recently. Biosensors as nanoanalytical tools have taken a front seat in this context. Nanotechnology-enabled progress in the health sector has aided in disease and pandemic management at a very early stage efficiently. This report reflects the state-of-the-art of nanobiosensor-based virus detection technology in terms of their detection methods, targets, limits of detection, range, sensitivity, assay time, etc. The article effectively summarizes the challenges with traditional technologies and newly emerging biosensors, including the nanotechnology-based detection kit for COVID-19; optically enhanced technology; and electrochemical, smart and wearable enabled nanobiosensors. The less explored but crucial piezoelectric nanobiosensor and the reverse transcription-loop mediated isothermal amplification (RT-LAMP)-based biosensor are also discussed here. The article could be of significance to researchers and doctors dedicated to developing potent, versatile biosensors for the rapid identification of COVID-19. This kind of report is needed for selecting suitable treatments and to avert epidemics.
Collapse
Affiliation(s)
- Anchal Pradhan
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Preeti Lahare
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Priyank Sinha
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University, Nerul, Navi Mumbai 400706, India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Bhanushree Gupta
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Kallol K. Ghosh
- Center for Basic Sciences, Department of Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India; (A.P.); (P.L.); (P.S.); (K.K.G.)
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India
| | - Ondrej Krejcar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
28
|
Islam F, Bibi S, Meem AFK, Islam MM, Rahaman MS, Bepary S, Rahman MM, Rahman MM, Elzaki A, Kajoak S, Osman H, ElSamani M, Khandaker MU, Idris AM, Emran TB. Natural Bioactive Molecules: An Alternative Approach to the Treatment and Control of COVID-19. Int J Mol Sci 2021; 22:12638. [PMID: 34884440 PMCID: PMC8658031 DOI: 10.3390/ijms222312638] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Several coronaviruses (CoVs) have been associated with serious health hazards in recent decades, resulting in the deaths of thousands around the globe. The recent coronavirus pandemic has emphasized the importance of discovering novel and effective antiviral medicines as quickly as possible to prevent more loss of human lives. Positive-sense RNA viruses with group spikes protruding from their surfaces and an abnormally large RNA genome enclose CoVs. CoVs have already been related to a range of respiratory infectious diseases possibly fatal to humans, such as MERS, SARS, and the current COVID-19 outbreak. As a result, effective prevention, treatment, and medications against human coronavirus (HCoV) is urgently needed. In recent years, many natural substances have been discovered with a variety of biological significance, including antiviral properties. Throughout this work, we reviewed a wide range of natural substances that interrupt the life cycles for MERS and SARS, as well as their potential application in the treatment of COVID-19.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China;
- International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650091, China
| | - Atkia Farzana Khan Meem
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Mohaimenul Islam
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Sristy Bepary
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Mizanur Rahman
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Md. Mominur Rahman
- Department of Pharmacy, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (A.F.K.M.); (M.M.I.); (M.S.R.); (S.B.); (M.M.R.); (M.M.R.)
| | - Amin Elzaki
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Samih Kajoak
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Mohamed ElSamani
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.E.); (S.K.); (H.O.); (M.E.)
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
29
|
Saied EM, El-Maradny YA, Osman AA, Darwish AMG, Abo Nahas HH, Niedbała G, Piekutowska M, Abdel-Rahman MA, Balbool BA, Abdel-Azeem AM. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Pharmaceutics 2021; 13:1759. [PMID: 34834174 PMCID: PMC8624722 DOI: 10.3390/pharmaceutics13111759] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
In 2019, the world suffered from the emergence of COVID-19 infection, one of the most difficult pandemics in recent history. Millions of confirmed deaths from this pandemic have been reported worldwide. This disaster was caused by SARS-CoV-2, which is the last discovered member of the family of Coronaviridae. Various studies have shown that natural compounds have effective antiviral properties against coronaviruses by inhibiting multiple viral targets, including spike proteins and viral enzymes. This review presents the classification and a detailed explanation of the SARS-CoV-2 molecular characteristics and structure-function relationships. We present all currently available crystal structures of different SARS-CoV-2 proteins and emphasized on the crystal structure of different virus proteins and the binding modes of their ligands. This review also discusses the various therapeutic approaches for COVID-19 treatment and available vaccinations. In addition, we highlight and compare the existing data about natural compounds extracted from algae, fungi, plants, and scorpion venom that were used as antiviral agents against SARS-CoV-2 infection. Moreover, we discuss the repurposing of select approved therapeutic agents that have been used in the treatment of other viruses.
Collapse
Affiliation(s)
- Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Yousra A. El-Maradny
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt;
| | - Alaa A. Osman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, Newgiza, km 22 Cairo-Alexandria Desert Road, Cairo 12256, Egypt;
| | - Amira M. G. Darwish
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA City), Alexandria 21934, Egypt;
| | - Hebatallah H. Abo Nahas
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (H.H.A.N.); (M.A.A.-R.)
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Magdalena Piekutowska
- Department of Geoecology and Geoinformation, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Partyzantów 27, 76-200 Słupsk, Poland;
| | - Mohamed A. Abdel-Rahman
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (H.H.A.N.); (M.A.A.-R.)
| | - Bassem A. Balbool
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12585, Egypt;
| | - Ahmed M. Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|