1
|
Feng D, Zhang M, Xu J, Gao Q, Liu J, Li C, Sun X, Xu W. Revelation of mechanisms associated with strengthening plant cold tolerance through using exogenous substances. FRONTIERS IN PLANT SCIENCE 2025; 16:1478692. [PMID: 40260434 PMCID: PMC12009806 DOI: 10.3389/fpls.2025.1478692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 03/10/2025] [Indexed: 04/23/2025]
Abstract
Cold stress (CS) is one of the main factors that limits the crop or plant growth and development in many regions of the world. Many researchers have been endeavoring to break the natural temperature barrier to grow plants in extremely cold areas or to alleviate erratic cold devastation on crops in temperate or subtropical regions for years. Numerous studies and research papers published recently for the last two decades have proven that exogenous substances (ESs) are effective and practical in helping plants tolerate CS. Here, we systematically summarize and characterize all 72 ESs that have been tried against CS, analyze research hotspots in the Web of Science database from 2000 to 2024 using VOSviewer with the keywords "cold stress" and "exogenous substances", and grouped them accordingly. Based on their underlying mechanisms, five categories of ESs are clearly defined, described and discussed: 1) enhancement of cell osmotic adjustment, 2) improvement of antioxidant pathways, 3) involvement in phytohormone regulation, 4) promotion of photosynthesis; 5) enrichment of nutritional status. After clarifying these five categories, a detailed plant responses and their possible interactions through a signal cross-talk are proposed and followed by discussions on future perspectives on using ESs to fortify plants against CS. The accumulative knowledge and information provided here will be ultimately used to increase plant productivity and agricultural sustainability under CS through chemical and microbial approaches.
Collapse
Affiliation(s)
- Di Feng
- Key Laboratory of Saline–alkali Soil Improvement and Utilization (Saline–alkali Land in Arid and Semiarid Regions), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Xinjiang Academy of Agricultural Sciences, Urumchi, China
| | - Mingxia Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Xu
- Jia Sixie College of Agriculture, Weifang University of Science and Technology, Weifang, Shandong, China
| | - Qian Gao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiao Liu
- Key Laboratory of Saline–alkali Soil Improvement and Utilization (Saline–alkali Land in Arid and Semiarid Regions), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Xinjiang Academy of Agricultural Sciences, Urumchi, China
| | - Caixia Li
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, China
| | - Xiaoan Sun
- Jia Sixie College of Agriculture, Weifang University of Science and Technology, Weifang, Shandong, China
| | - Wanli Xu
- Key Laboratory of Saline–alkali Soil Improvement and Utilization (Saline–alkali Land in Arid and Semiarid Regions), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Xinjiang Academy of Agricultural Sciences, Urumchi, China
| |
Collapse
|
2
|
Leconte JML, Moroldo M, Blanchet N, Bindea G, Carrère S, Catrice O, Comar A, Labadie M, Marandel R, Pouilly N, Tapy C, Paris C, Mirleau-Thébaud V, Langlade NB. Multi-scale characterisation of cold response reveals immediate and long-term impacts on cell physiology up to seed composition in sunflower. PLANT, CELL & ENVIRONMENT 2025; 48:2596-2614. [PMID: 38828995 DOI: 10.1111/pce.14941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 06/05/2024]
Abstract
Early sowing can help summer crops escape drought and can mitigate the impacts of climate change on them. However, it exposes them to cold stress during initial developmental stages, which has both immediate and long-term effects on development and physiology. To understand how early night-chilling stress impacts plant development and yield, we studied the reference sunflower line XRQ under controlled, semi-controlled and field conditions. We performed high-throughput imaging of the whole plant parts and obtained physiological and transcriptomic data from leaves, hypocotyls and roots. We observed morphological reductions in early stages under field and controlled conditions, with a decrease in root development, an increase in reactive oxygen species content in leaves and changes in lipid composition in hypocotyls. A long-term increase in leaf chlorophyll suggests a stress memory mechanism that was supported by transcriptomic induction of histone coding genes. We highlighted DEGs related to cold acclimation such as chaperone, heat shock and late embryogenesis abundant proteins. We identified genes in hypocotyls involved in lipid, cutin, suberin and phenylalanine ammonia lyase biosynthesis and ROS scavenging. This comprehensive study describes new phenotyping methods and candidate genes to understand phenotypic plasticity better in response to chilling and study stress memory in sunflower.
Collapse
Affiliation(s)
- Jean Michel Louis Leconte
- Université de Toulouse, INRAE, UMR LIPME, Castanet-Tolosan, France
- SYNGENTA SEEDS, Saint Sauveur, France
| | - Marco Moroldo
- Université de Toulouse, INRAE, UMR LIPME, Castanet-Tolosan, France
| | - Nicolas Blanchet
- Université de Toulouse, INRAE, UMR LIPME, Castanet-Tolosan, France
- Université de Toulouse, INRAE, UE APC, Castanet-Tolosan, France
| | - Gabriela Bindea
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | | | - Olivier Catrice
- Université de Toulouse, INRAE, UMR LIPME, Castanet-Tolosan, France
| | | | | | - Rémy Marandel
- Université de Toulouse, INRAE, UE APC, Castanet-Tolosan, France
| | - Nicolas Pouilly
- Université de Toulouse, INRAE, UMR LIPME, Castanet-Tolosan, France
| | - Camille Tapy
- Université de Toulouse, INRAE, UMR LIPME, Castanet-Tolosan, France
| | | | | | | |
Collapse
|
3
|
Kalemba EM, Dufour S, Gevaert K, Impens F, Meimoun P. Proteomics- and metabolomics-based analysis of the regulation of germination in Norway maple and sycamore embryonic axes. TREE PHYSIOLOGY 2025; 45:tpaf003. [PMID: 39761348 PMCID: PMC11791354 DOI: 10.1093/treephys/tpaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025]
Abstract
Norway maple and sycamore belong to the Acer genus and produce desiccation-tolerant and desiccation-sensitive seeds, respectively. We investigated the seed germination process at the imbibed and germinated stages using metabolomic and proteomic approaches to determine why sycamore seeds germinate earlier and are more successful at establishing seedlings than Norway maple seeds under controlled conditions. Embryonic axes and embryonic axes with protruded radicles were analyzed at the imbibed and germinated stages, respectively. Among the 212 identified metabolites, 44 and 67 differentially abundant metabolites were found at the imbibed and germinated stages, respectively, in both Acer species. Higher levels of amines, growth and defense stimulants, including B vitamins, were found in sycamore. We identified 611 and 447 proteins specific to the imbibed and germinated stages, respectively, in addition to groups of proteins expressed at different levels. Functional analysis of significantly regulated proteins revealed that proteins with catalytic and binding activity were enriched during germination, and proteins possibly implicated in nitrogen metabolism and metabolite interconversion enzymes were the predominant classes. Proteins associated with the control of plant growth regulation and seed defense were observed in both species at both germination stages. Sycamore proteins possibly involved in abscisic acid signal transduction pathway, stress tolerance and alleviation, ion binding and oxygenase activities appeared to accompany germination in sycamore. We identified peptides containing methionine (Met) oxidized to methionine sulfoxide (MetO), and functional analyses of proteins with significantly regulated MetO sites revealed that translation, plant growth and development and metabolism of nitrogen compounds were the main processes under Met/MetO redox control. We propose that higher levels of storage proteins and amines, together with higher levels of B vitamins, supported more efficient nitrogen utilization in sycamore, resulting in faster seedling growth. In conclusion, omic signatures identified in sycamore seem to predispose germinated sycamore seeds to better postgerminative growth.
Collapse
Affiliation(s)
- Ewa Marzena Kalemba
- Institute of Dendrology Polish Academy of Sciences, Parkowa 5, Kórnik 62-035, Poland
| | - Sara Dufour
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
- VIB Proteomics Core, VIB, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
- VIB Proteomics Core, VIB, Technologiepark-Zwijnaarde 75, Ghent B-9052, Belgium
| | - Patrice Meimoun
- Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED UMR 8236), Université Paris-Cité, Paris, France
| |
Collapse
|
4
|
Sun S, Zhao X, Shi Z, He F, Qi G, Li X, Niu Y, Zhou W. Exogenous 24-Epibrassinolide Improves Low-Temperature Tolerance of Maize Seedlings by Influencing Sugar Signaling and Metabolism. Int J Mol Sci 2025; 26:585. [PMID: 39859301 PMCID: PMC11765667 DOI: 10.3390/ijms26020585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Low-temperature (LT) stress seriously affects the distribution, seedling survival, and grain yield of maize. At the seedling emergence stage, maize's coleoptile is one of the most sensitive organs in sensing LT signaling and, in general, it can envelop young leaves to protect them from LT damage. In addition, brassinolides (BRs) have been shown to enhance LT tolerance from various species, but the effects of BRs on coleoptiles in maize seedlings under LT stress are unclear. Therefore, in this study, the pre-cultured coleoptiles of Zheng58 seedlings were treated with or without 2.0 μM 24-epibrassinolide (EBR) at 25 °C and 10 °C environments for five days to analyze their physiological and transcriptomic changes. Physiological analysis showed that a 10°C LT stress increased the content of glucose (0.43 mg g-1 FW), sucrose (0.45 mg g-1 FW), and starch (0.76 mg g-1 FW) of Zheng58 coleoptiles compared to a 25°C environment. After the coleoptiles were exposed to a 2.0 μM EBR application under 10°C temperature for five days, the contents of these three sugars continued to increase, and reached 2.68 mg g-1 FW, 4.64 mg g-1 FW, and 9.27 mg g-1 FW, respectively, indicating that sugar signaling and metabolism played key roles in regulating LT tolerance in the coleoptiles of maize seedlings. Meanwhile, a transcriptome analysis showed that 84 and 15 differentially expressed genes (DEGs) were enriched in the sucrose and starch metabolism and photosynthesis pathways, respectively, and multiple DEGs involved in these pathways were significantly up-regulated under LT stress and EBR stimulation. Further analysis speculated that the four DEGs responsible for sucrose-phosphate synthetase (SPS, i.e., Zm00001d048979, probable sucrose-phosphate synthase 5 and Zm00001d012036, sucrose-phosphate synthase 1), sucrose synthase (SUS, Zm00001d029091, sucrose synthase 2 and Zm00001d029087, sucrose synthase 4) were crucial nodes that could potentially link photosynthesis and other unknown pathways to form the complex interaction networks of maize LT tolerance. In conclusion, our findings provide new insights into the molecular mechanisms of exogenous EBR in enhancing LT tolerance of maize seedlings and identified potential candidate genes to be used for LT tolerance breeding in maize.
Collapse
Affiliation(s)
- Siqi Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Xiaoqiang Zhao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Zhenzhen Shi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Fuqiang He
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Guoxiang Qi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Xin Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Yining Niu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (S.S.); (Z.S.); (F.H.); (G.Q.); (X.L.); (Y.N.)
| | - Wenqi Zhou
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China;
| |
Collapse
|
5
|
Hu Y, Tian C, Song S, Li R. Insights on the enhancement of chilling tolerance in Rice through over-expression and knock-out studies of OsRBCS3. PLANT SIGNALING & BEHAVIOR 2024; 19:2318514. [PMID: 38375792 PMCID: PMC10880504 DOI: 10.1080/15592324.2024.2318514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
Chilling stress is an important environmental factor that affects rice (Oryza sativa L.) growth and yield, and the booting stage is the most sensitive stage of rice to chilling stress. In this study, we focused on OsRBCS3, a rice gene related to chilling tolerance at the booting stage, which encodes the key enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit in photosynthesis. The aim of this study was to elucidate the role and mechanism of OsRBCS3 in rice chilling tolerance at the booting stage. The expression levels of OsRBCS3 under chilling stress were compared in two japonica rice cultivars with different chilling tolerances: Kongyu131 (KY131) and Longjing11 (LJ11). A positive correlation was found between OsRBCS3 expression and chilling tolerance. Over-expression (OE) and knock-out (KO) lines of OsRBCS3 were constructed using over-expression and CRISPR/Cas9 technology, respectively, and their chilling tolerance was evaluated at the seedling and booting stages. The results showed that OE lines exhibited higher chilling tolerance than wild-type (WT) lines at both seedling and booting stages, while KO lines showed lower chilling tolerance than WT lines. Furthermore, the antioxidant enzyme activities, malondialdehyde (MDA) content and Rubisco activity of four rice lines under chilling stress were measured, and it was found that OE lines had stronger antioxidant and photosynthetic capacities, while KO lines had the opposite effects. This study validated that OsRBCS3 plays an important role in rice chilling tolerance at the booting stage, providing new molecular tools and a theoretical basis for rice chilling tolerance breeding.
Collapse
Affiliation(s)
- Yueting Hu
- Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Chongbing Tian
- Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Shiyu Song
- Key Laboratory of Molecular Biology, Heilongjiang University, Harbin, China
| | - Rongtian Li
- Key Laboratory of Molecular Biology, Heilongjiang University, Harbin, China
| |
Collapse
|
6
|
Xie J, Zheng Y, Li G, Zhang W, Meng F, Fan X, Sun X, Zhang Y, Wang M, Chen Q, Wang S, Jiang H. Combined Physiological and Transcriptomic Analysis Reveals Key Regulatory Networks and Potential Hub Genes Controlling Chilling Tolerance During Soybean Germination. PLANT DIRECT 2024; 8:e70027. [PMID: 39691551 PMCID: PMC11651713 DOI: 10.1002/pld3.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/30/2024] [Accepted: 11/03/2024] [Indexed: 12/19/2024]
Abstract
Chilling is an important limiting factor for seed germination of soybean (Glycine max [L.] Merr.). To reveal the regulatory mechanism of chilling tolerance during the soybean germination stage, based on previous studies, the chilling tolerance line R48 and chilling sensitive line R89 in chromosome segment substitution lines were selected for physiological index determination and transcriptome sequencing. It was found that reactive oxygen species (ROS) scavenging system related enzymes, ROS, and osmotic regulators were significantly different between the two lines. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment were performed on the differentially expressed genes obtained by transcriptome sequencing. It was found that terms or pathways related to flavonoids, unsaturated fatty acids, and abscisic acid were highly enriched. In addition, weighted gene coexpression network analysis (WGCNA) method was used to analyze the physiological index data and transcriptome sequencing data. Four main coexpression modules significantly related to physiological indicators were obtained, and the hub genes in each module were screened according to eigengene-based connectivity value. Haplotype analysis of important candidate genes using soybean germplasm resources showed that there were significant differences in germination indexes between different major haplotypes of Glyma.17G163200. Based on the results of enrichment analysis and WGCNA, the regulation model of low temperature tolerance during soybean germination was preliminarily drawn. This study will provide theoretical guidance for analyzing the molecular regulation mechanism of cold tolerance in soybean germination stage.
Collapse
Affiliation(s)
- Jianguo Xie
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Yuhong Zheng
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
- Northeast Agricultural UniversityHarbinHeilongjiangChina
| | - Guang Li
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Wei Zhang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Fanfan Meng
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Xuhong Fan
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Xingmiao Sun
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Yunfeng Zhang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Mingliang Wang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Qingshan Chen
- Northeast Agricultural UniversityHarbinHeilongjiangChina
| | - Shuming Wang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| | - Hongwei Jiang
- Jilin Academy of Agricultural Sciences (China Agricultural Science and Technology Northeast Innovation Center)Soybean Research InstituteChangchunChina
| |
Collapse
|
7
|
An T, Fan Y, Tian X, Wang Q, Wang Z, Fan S, Huang W. Green analytical assay for the viability assessment of single maize seeds using double-threshold strategy for catalase activity and malondialdehyde content. Food Chem 2024; 455:139889. [PMID: 38833865 DOI: 10.1016/j.foodchem.2024.139889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
The development of nondestructive technology for the detection of seed viability is challenging. In this study, to establish a green and effective method for the viability assessment of single maize seeds, a two-stage seed viability detection method was proposed. The catalase (CAT) activity and malondialdehyde (MDA) content were selected as the most key biochemical components affecting maize seed viability, and regression prediction models were developed based on their hyperspectral information and a data fusion strategy. Qualitative discrimination models for seed viability evaluation were constructed based on the predicted response values of the selected key biochemical components. The results showed that the double components thresholds strategy achieved the highest discrimination accuracy (92.9%), providing a crucial approach for the rapid and environmentally friendly detection of seed viability.
Collapse
Affiliation(s)
- Ting An
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Yaoyao Fan
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xi Tian
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Qingyan Wang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zheli Wang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shuxiang Fan
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wenqian Huang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
8
|
Wang X, Ran C, Fu Y, Han L, Yang X, Zhu W, Zhang H, Zhang Y. Application of Exogenous Ascorbic Acid Enhances Cold Tolerance in Tomato Seedlings through Molecular and Physiological Responses. Int J Mol Sci 2024; 25:10093. [PMID: 39337579 PMCID: PMC11432314 DOI: 10.3390/ijms251810093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Ascorbic acid (AsA), an essential non-enzymatic antioxidant in plants, regulates development growth and responses to abiotic and biotic stresses. However, research on AsA's role in cold tolerance remains largely unknown. Here, our study uncovered the positive role of AsA in improving cold stress tolerance in tomato seedlings. Physiological analysis showed that AsA significantly enhanced the enzyme activity of the antioxidant defense system in tomato seedling leaves and increased the contents of proline, sugar, abscisic acid (ABA), and endogenous AsA. In addition, we found that AsA is able to protect the photosynthetic system of tomato seedlings, thereby relieving the declining rate of chlorophyll fluorescence parameters. qRT-PCR analysis indicated that AsA significantly increased the expression of genes encoding antioxidant enzymes and involved in AsA synthesis, ABA biosynthesis/signal transduction, and low-temperature responses in tomato. In conclusion, the application of exogenous AsA enhances cold stress tolerance in tomato seedlings through various molecular and physiological responses. This provides a theoretical foundation for exploring the regulatory mechanisms underlying cold tolerance in tomato and offers practical guidance for enhancing cold tolerance in tomato cultivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.W.); (C.R.); (Y.F.); (L.H.); (X.Y.); (W.Z.)
| | - Yingying Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.W.); (C.R.); (Y.F.); (L.H.); (X.Y.); (W.Z.)
| |
Collapse
|
9
|
Zhao X, He F, Qi G, Sun S, Shi Z, Niu Y, Wu Z. Transcriptomic and Physiological Studies Unveil that Brassinolide Maintains the Balance of Maize's Multiple Metabolisms under Low-Temperature Stress. Int J Mol Sci 2024; 25:9396. [PMID: 39273343 PMCID: PMC11395154 DOI: 10.3390/ijms25179396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Low-temperature (LT) is one of the major abiotic stresses that restrict the growth and development of maize seedlings. Brassinolides (BRs) have been shown to enhance LT tolerance in several plant species; the physiological and molecular mechanisms by which BRs enhance maize tolerance are still unclear. Here, we characterized changes in the physiology and transcriptome of N192 and Ji853 seedlings at the three-leaf stage with or without 2 μM 2,4-epibrassinolide (EBR) application at 25 and 15 °C environments via high-performance liquid chromatography and RNA-Sequencing. Physiological analyses revealed that EBR increased the antioxidant enzyme activities, enhanced the cell membrane stability, decreased the malondialdehyde formation, and inhibited the reactive oxygen species (ROS) accumulation in maize seedlings under 15 °C stress; meanwhile, EBR also maintained hormone balance by increasing indole-3-acetic acid and gibberellin 3 contents and decreasing the abscisic acid level under stress. Transcriptome analysis revealed 332 differentially expressed genes (DEGs) enriched in ROS homeostasis, plant hormone signal transduction, and the mitogen-activated protein kinase (MAPK) cascade. These DEGs exhibited synergistic and antagonistic interactions, forming a complex LT tolerance network in maize. Additionally, weighted gene co-expression network analysis (WGCNA) revealed that 109 hub genes involved in LT stress regulation pathways were discovered from the four modules with the highest correlation with target traits. In conclusion, our findings provide new insights into the molecular mechanisms of exogenous BRs in enhancing LT tolerance of maize at the seedling stage, thus opening up possibilities for a breeding program of maize tolerance to LT stress.
Collapse
Affiliation(s)
- Xiaoqiang Zhao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Fuqiang He
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoxiang Qi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Siqi Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Shi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yining Niu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zefeng Wu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
10
|
Wang Q, Wang Z, Guan J, Song J. Transcriptome Analysis Reveals the Important Role of Vitamin B 12 in the Response of Natronorubrum daqingense to Salt Stress. Int J Mol Sci 2024; 25:4168. [PMID: 38673755 PMCID: PMC11050368 DOI: 10.3390/ijms25084168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Natronorubrum daqingense JX313T is an extremely halophilic archaea that can grow in a NaCl-saturated environment. The excellent salt tolerance of N. daqingense makes it a high-potential candidate for researching the salt stress mechanisms of halophilic microorganisms from Natronorubrum. In this study, transcriptome analysis revealed that three genes related to the biosynthesis of vitamin B12 were upregulated in response to salt stress. For the wild-type (WT) strain JX313T, the low-salt adaptive mutant LND5, and the vitamin B12 synthesis-deficient strain ΔcobC, the exogenous addition of 10 mg/L of vitamin B12 could maximize their cell survival and biomass in both optimal and salt stress environments. Knockout of cobC resulted in changes in the growth boundary of the strain, as well as a significant decrease in cell survival and biomass, and the inability to synthesize vitamin B12. According to the HPLC analysis, when the external NaCl concentration (w/v) increased from 17.5% (optimal) to 22.5% (5% salt stress), the intracellular accumulation of vitamin B12 in WT increased significantly from (11.54 ± 0.44) mg/L to (15.23 ± 0.20) mg/L. In summary, N. daqingense is capable of absorbing or synthesizing vitamin B12 in response to salt stress, suggesting that vitamin B12 serves as a specific compatible solute effector for N. daqingense during salt stress.
Collapse
Affiliation(s)
| | | | | | - Jinzhu Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China; (Q.W.); (Z.W.); (J.G.)
| |
Collapse
|
11
|
Melatonin Application Alleviates Stress-Induced Photosynthetic Inhibition and Oxidative Damage by Regulating Antioxidant Defense System of Maize: A Meta-Analysis. Antioxidants (Basel) 2022; 11:antiox11030512. [PMID: 35326162 PMCID: PMC8944576 DOI: 10.3390/antiox11030512] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
Melatonin is effective in modulating metabolism and regulating growth and development in many plants under biotic and abiotic stress. However, there is no systematic quantification of melatonin effects on maize growth, gas exchange, chlorophyll content, and the antioxidant defense system. A meta-analysis was conducted on thirty-two currently available published articles to evaluate the effect of stress types, study types, and maize varieties on response ratio (lnRR++) of “melatonin” to “control (no melatonin)” on plant growth, enzyme activities, gas exchange parameters, and photosynthetic pigments. Our findings revealed that melatonin application overall increased plant height, leaf area, root length, fresh and dry root weight and shoot weight, superoxide dismutase (SOD), peroxide (POD), catalase (CAT), ascorbate peroxidase (APX), soluble sugar and protein, photosynthetic rate, stomatal conductance, transpiration rate, chlorophyll, and carotenoid in maize leaf under stress conditions. In contrast, melatonin application decreased the levels of hydrogen peroxide (H2O2), superoxide anion (O2−), malondialdehyde (MDA), and electrolyte leakage. The categorical meta-analysis demonstrated that melatonin application to chilling stress resulted in higher SOD activity followed by salt stress. Melatonin application to all stress types resulted in higher POD, CAT and APX activities, except Cd stress, which had no effect on POD and decreased CAT by 38% compared to control. Compared to control, melatonin resulted in lower reactive oxygen species (ROS) and electrolyte leakage under no stress, Cd, drought, salt, lead, heat, and chilling stress in all study types (pot, growth chamber, hydroponic, and field), except O2 content which was not affected in pot and growth chamber studies. It was concluded that melatonin alleviates oxidative damage by improving stress tolerance, regulating the antioxidant defense system, and increasing leaf chlorophyll content compared to control.
Collapse
|
12
|
Rizvi A, Ahmed B, Khan MS, Umar S, Lee J. Psychrophilic Bacterial Phosphate-Biofertilizers: A Novel Extremophile for Sustainable Crop Production under Cold Environment. Microorganisms 2021; 9:2451. [PMID: 34946053 PMCID: PMC8704983 DOI: 10.3390/microorganisms9122451] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Abiotic stresses, including low-temperature environments, adversely affect the structure, composition, and physiological activities of soil microbiomes. Also, low temperatures disturb physiological and metabolic processes, leading to major crop losses worldwide. Extreme cold temperature habitats are, however, an interesting source of psychrophilic and psychrotolerant phosphate solubilizing bacteria (PSB) that can ameliorate the low-temperature conditions while maintaining their physiological activities. The production of antifreeze proteins and expression of stress-induced genes at low temperatures favors the survival of such organisms during cold stress. The ability to facilitate plant growth by supplying a major plant nutrient, phosphorus, in P-deficient soil is one of the novel functional properties of cold-tolerant PSB. By contrast, plants growing under stress conditions require cold-tolerant rhizosphere bacteria to enhance their performance. To this end, the use of psychrophilic PSB formulations has been found effective in yield optimization under temperature-stressed conditions. Most of the research has been done on microbial P biofertilizers impacting plant growth under normal cultivation practices but little attention has been paid to the plant growth-promoting activities of cold-tolerant PSB on crops growing in low-temperature environments. This scientific gap formed the basis of the present manuscript and explains the rationale for the introduction of cold-tolerant PSB in competitive agronomic practices, including the mechanism of solubilization/mineralization, release of biosensor active biomolecules, molecular engineering of PSB for increasing both P solubilizing/mineralizing efficiency, and host range. The impact of extreme cold on the physiological activities of plants and how plants overcome such stresses is discussed briefly. It is time to enlarge the prospects of psychrophilic/psychrotolerant phosphate biofertilizers and take advantage of their precious, fundamental, and economical but enormous plant growth augmenting potential to ameliorate stress and facilitate crop production to satisfy the food demands of frighteningly growing human populations. The production and application of cold-tolerant P-biofertilizers will recuperate sustainable agriculture in cold adaptive agrosystems.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|