1
|
Okoń E, Kukula-Koch W, Jarząb A, Gaweł-Bęben K, Bator E, Michalak-Tomczyk M, Jachuła J, Antosiewicz-Klimczak B, Odrzywolski A, Koch W, Wawruszak A. The Activity of 1,8-Dihydroanthraquinone Derivatives in Nervous System Cancers. Molecules 2024; 29:5989. [PMID: 39770078 PMCID: PMC11677425 DOI: 10.3390/molecules29245989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Primary and metastatic tumors of the nervous system represent a diverse group of neoplasms, each characterized by distinct biological features, prognostic outcomes, and therapeutic approaches. Due to their molecular complexity and heterogeneity, nervous system cancers (NSCs) pose significant clinical challenges. For decades, plants and their natural products with established anticancer properties have played a pivotal role in the treatment of various medical conditions, including cancers. Anthraquinone derivatives, a class of tricyclic secondary metabolites, are found in several botanical families, such as Fabaceae, Polygonaceae, Rhamnaceae, and Rubiaceae. In a comprehensive review, recent advancements in the anticancer properties of 1,8-dihydroanthraquinone derivatives-such as emodin, aloe-emodin, hypericin, chrysophanol, rhein, and physcion-were analyzed. These compounds have been studied extensively, both used individually and in combination with other chemotherapeutic agents, using in vitro and in vivo models of nervous system tumors. It was demonstrated that 1,8-dihydroanthraquinone derivatives induce apoptosis and necrosis in cancerous cells, intercalate into DNA, disrupting transcription and replication in rapidly dividing cells, and alter ROS levels, leading to oxidative stress that damages tumor cells. Additionally, they can influence signaling pathways involved in oncogenesis, such as MAPK, PI3K/Akt, or others crucial for the survival and the proliferation of NSC cells. The exploration of 1,8-dihydroanthraquinone derivatives aims to develop novel therapies that could overcome resistance and improve cancer patients' outcomes.
Collapse
Affiliation(s)
- Estera Okoń
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland;
| | - Agata Jarząb
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego, 35-225 Rzeszów, Poland; (K.G.-B.); (B.A.-K.)
| | - Ewelina Bator
- Interdisciplinary Center for Preclinical and Clinical Research, Rzeszow University, 2a Werynia, 36-100 Kolbuszowa, Poland;
| | - Magdalena Michalak-Tomczyk
- Department of Physiology and Toxicology, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708 Lublin, Poland;
| | - Jacek Jachuła
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Str., 20-033 Lublin, Poland;
| | - Beata Antosiewicz-Klimczak
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego, 35-225 Rzeszów, Poland; (K.G.-B.); (B.A.-K.)
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| |
Collapse
|
2
|
Umar AK, Roy D, Abdalla M, Modafer Y, Al-Hoshani N, Yu H, Zothantluanga JH. In-silico screening of Acacia pennata and Bridelia retusa reveals pinocembrin-7-O-β-D-glucopyranoside as a promising β-lactamase inhibitor to combat antibiotic resistance. J Biomol Struct Dyn 2024; 42:8800-8812. [PMID: 37587843 DOI: 10.1080/07391102.2023.2248272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
The β-lactamase of Pseudomonas aeruginosa is known to degrade β-lactam antibiotics such as penicillins, cephalosporins, monobactams, and carbapenems. With the discovery of an extended-spectrum β-lactamase in a clinical isolate of P. aeruginosa, the bacterium has become multi-drug resistant. In this study, we aim to identify new β-lactamase inhibitors by virtually screening a total of 43 phytocompounds from two Indian medicinal plants. In the molecular docking studies, pinocembrin-7-O-β-D-glucopyranoside (P7G) (-9.6 kcal/mol) from Acacia pennata and ellagic acid (EA) (-9.2 kcal/mol) from Bridelia retusa had lower binding energy than moxalactam (-8.4 kcal/mol). P7G and EA formed 5 (Ser62, Asn125, Asn163, Thr209, and Ser230) and 4 (Lys65, Ser123, Asn125, and Glu159) conventional hydrogens bonds with the active site residues. 100 ns MD simulations revealed that moxalactam and P7G (but not EA) were able to form a stable complex. The binding free energy calculations further revealed that P7G (-59.6526 kcal/mol) formed the most stable complex with β-lactamase when compared to moxalactam (-46.5669 kcal/mol) and EA (-28.4505 kcal/mol). The HOMO-LUMO and other DFT parameters support the stability and chemical reactivity of P7G at the active site of β-lactamase. P7G passed all the toxicity tests and bioavailability tests indicating that it possesses drug-likeness. Among the studied compounds, we identified P7G of A. pennata as the most promising phytocompound to combat antibiotic resistance by potentially inhibiting the β-lactamase of P. aeruginosa.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abd Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Dhritiman Roy
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Yosra Modafer
- Department of Biology, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Han Yu
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China
- Department of Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
3
|
Tatsing Foka FE, Tumelo Mufhandu H. Predictive Assessment of the Antiviral Properties of Imperata cylindrica against SARS-CoV-2. Adv Virol 2024; 2024:8598708. [PMID: 39135917 PMCID: PMC11317227 DOI: 10.1155/2024/8598708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
The omicron variant and its sublineages are highly contagious, and they still constitute a global source of concern despite vaccinations. Hospitalizations and mortality rates resulting from infections by these variants of concern are still common. The existing therapeutic alternatives have presented various setbacks such as low potency, poor pharmacokinetic profiles, and drug resistance. The need for alternative therapeutic options cannot be overemphasized. Plants and their phytochemicals present interesting characteristics that make them suitable candidates for the development of antiviral therapeutic agents. This study aimed to investigate the antiviral potential of Imperata cylindrica (I. cylindrica). Specifically, the objective of this study was to identify I. cylindrica phytochemicals that display inhibitory effects against SARS-CoV-2 main protease (Mpro), a highly conserved protein among coronaviruses. Molecular docking and in silico pharmacokinetic assays were used to assess 72 phytocompounds that are found in I. cylindrica as ligands and Mpro (6LU7) as the target. Only eight phytochemicals (bifendate, cylindrene, tabanone, siderin, 5-hydroxy-2-[2-(2-hydroxyphenyl)ethyl]-4H-1-benzopyran-4-one, maritimin, 5-methoxyflavone, and flavone) displayed high binding affinities with Mpro with docking scores ranging from -5.6 kcal/mol to -9.1 kcal/mol. The in silico pharmacokinetic and toxicological assays revealed that tabanone was the best and safest phytochemical for the development of an inhibitory agent against coronavirus main protease. Thus, the study served as a baseline for further in vitro and in vivo assessment of this phytochemical against Mpro of SARS-CoV-2 variants of concern to validate these in silico findings.
Collapse
Affiliation(s)
- Frank Eric Tatsing Foka
- Department of MicrobiologyVirology LaboratorySchool of Biological SciencesFaculty of Natural and Agricultural SciencesNorth West University, Mafikeng, Private Bag X2046, Mmabatho, South Africa
| | - Hazel Tumelo Mufhandu
- Department of MicrobiologyVirology LaboratorySchool of Biological SciencesFaculty of Natural and Agricultural SciencesNorth West University, Mafikeng, Private Bag X2046, Mmabatho, South Africa
| |
Collapse
|
4
|
Li X, Yao M, Li L, Ma H, Sun Y, Lu X, Jing W, Nie S. Aloe-emodin alleviates cerebral ischemia-reperfusion injury by regulating microglial polarization and pyroptosis through inhibition of NLRP3 inflammasome activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155578. [PMID: 38621328 DOI: 10.1016/j.phymed.2024.155578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Microglial activation plays a crucial role in injury and repair after cerebral ischemia, and microglial pyroptosis exacerbates ischemic injury. NOD-like receptor protein 3 (NLRP3) inflammasome activation has an important role in microglial polarization and pyroptosis. Aloe-emodin (AE) is a natural anthraquinone compound originated from rhubarb and aloe. It exerts antioxidative and anti-apoptotic effects during cerebral ischemia/reperfusion (I/R) injury. However, whether AE affects microglial polarization, pyroptosis, and NLRP3 inflammasome activation remains unknown. PURPOSE This study aimed to explore the effects of AE on microglial polarization, pyroptosis, and NLRP3 inflammasome activation in the cerebral infarction area after I/R. METHODS The transient middle cerebral artery occlusion (tMCAO) and oxygen-glucose deprivation/re-oxygenation (OGD/R) methods were used to create cerebral I/R models in vivo and in vitro, respectively. Neurological scores and triphenyl tetrazolium chloride and Nissl staining were used to assess the neuroprotective effects of AE. Immunofluorescence staining, quantitative polymerase chain reaction and western blot were applied to detect NLRP3 inflammasome activation and microglial polarization and pyroptosis levels after tMCAO or OGD/R. Cell viability and levels of interleukin (IL)-18 and IL-1β were measured. Finally, MCC950 (an NLRP3-specific inhibitor) was used to evaluate whether AE affected microglial polarization and pyroptosis by regulating the activation of the NLRP3 inflammasome. RESULTS AE improved neurological function scores and reduced the infarct area, brain edema rate, and Nissl-positive cell rate following I/R injury. It also showed a protective effect on BV-2 cells after OGD/R. AE inhibited microglial pyroptosis and induced M1 to M2 phenotype transformation and suppressed microglial NLRP3 inflammasome activation after tMCAO or OGD/R. The combined administration of AE and MCC950 had a synergistic effect on the inhibition of tMCAO- or OGD/R-induced NLRP3 inflammasome activation, which subsequently suppressed microglial pyroptosis and induced microglial phenotype transformation. CONCLUSION AE exerts neuroprotective effects by regulating microglial polarization and pyroptosis through the inhibition of NLRP3 inflammasome activation after tMCAO or OGD/R. These findings provide new evidence of the molecular mechanisms underlying the neuroprotective effects of AE and may support the exploration of novel therapeutic strategies for cerebral ischemia.
Collapse
Affiliation(s)
- Xun Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Minghe Yao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Lingling Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Huifen Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yiran Sun
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Xiangpeng Lu
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, PR China
| | - Weipeng Jing
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Shanshan Nie
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, PR China
| |
Collapse
|
5
|
Pasala PK, Raghupathi NK, Yaraguppi DA, Challa RR, Vallamkonda B, Ahmad SF, Chennamsetty Y, Kumari PK, DSNBK P. Potential preventative impact of aloe-emodin nanoparticles on cerebral stroke-associated myocardial injury by targeting myeloperoxidase: In supporting with In silico and In vivo studies. Heliyon 2024; 10:e33154. [PMID: 39022073 PMCID: PMC11253067 DOI: 10.1016/j.heliyon.2024.e33154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
The present study examined the potential neuroprotective effects of aloe-emodin (AE) nanoparticles on the cerebral stroke-associated target protein myeloperoxidase (MPO). We investigated the binding interactions between AE and MPO through molecular docking and molecular dynamics simulations. Molecular docking results indicated that AE exhibited a binding energy of -6.9 kcal/mol, whereas it was -7.7 kcal/mol for 2-{[3,5-bis(trifluoromethyl)benzyl]amino}-n-hydroxy-6-oxo-1,6-dihydropyrimidine-5-carboxamide (CCl). Furthermore, molecular dynamics studies demonstrated that AE possesses a stronger binding affinity (-57.137 ± 13.198 kJ/mol) than does CCl (-22.793 ± 30.727 kJ/mol), suggesting that AE has a more substantial inhibitory effect on MPO than does CCl. Despite the therapeutic potential of AE for neurodegenerative disorders, its bioavailability is limited within the body. A proposed hypothesis to enhance the bioavailability of AE is its conversion into aloe-emodin nanoparticles (AENP). The AENPs synthesized through a fabrication method were spherical with a consistent diameter of 104.4 ± 7.9 nm and a polydispersity index ranging from 0.525 to 0.586. In rats experiencing cerebral stroke, there was a notable increase in cerebral infarction size; abnormalities in electrocardiogram (ECG) and electroencephalogram (EEG) patterns; a decrease in brain and cardiac antioxidant activities; and an increase in myeloperoxidase levels compared to those in normal rats. Compared with AE treatment, AENP treatment significantly ameliorated cerebral infarction, normalized ECG and EEG patterns, enhanced brain and cardiac antioxidant activities, and reduced MPO levels in stroke rats. Histopathological evaluations revealed pronounced alterations in the rat hippocampus, with pyknotic nuclei, disarray and loosely packed cells, deterioration of cardiac muscle fibers, and extensive damage to cardiac myocytes, in contrast to those in normal rats. AENP treatment mitigated these pathological changes more effectively than AE treatment in both brain and cardiac cells. These findings support that AENP provides considerable protection against stroke-associated myocardial infarction.
Collapse
Affiliation(s)
- Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapuramu, Andhra Pradesh, 515721, India
| | - Niranjan Kumar Raghupathi
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal, 518112, Andhra Pradesh, India
| | - Deepak A. Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubli, Karnataka, 580031, India
| | - Ranadheer Reddy Challa
- Department of Formulation and Development, Quotient Sciences, 3080 McCann Farm Dr, Garnet Valley, PA, 19060, USA
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Analysis, Odin Pharmaceutical LLC, Somerset, NJ, 08873, USA
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yeswanth Chennamsetty
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal, 518112, Andhra Pradesh, India
| | - P.V. Kamala Kumari
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Duvvada, Visakhapatnam, India
| | - Prasanth DSNBK
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Hyderabad, 509301, India
| |
Collapse
|
6
|
Pasala PK, Dsnbk P, Rudrapal M, Challa RR, Ahmad SF, Vallamkonda B, R RB. Anti-Parkinson potential of hesperetin nanoparticles: in vivo and in silico investigations. Nat Prod Res 2024:1-10. [PMID: 38646872 DOI: 10.1080/14786419.2024.2344740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Parkinson's disease (PD) is characterised by the gradual demise of dopaminergic neurons. In recent years, there has been significant interest in herbal treatments. In this study, hesperetin nanoparticles (HTN) were developed and compared their anti-PD potential with hesperetin (HT) on rotenone induced PD rats. Molecular docking was also performed to evaluate the binding affinity of hesperetin on pathological protein, i.e. D2 dopamine receptors (DR2), using Auto Dock Vina tools. The results showed a higher binding relationship of HTN on dopamine receptors (-7.2 kcal/mol) compared to L-dopa (-6.4 kcal/mol), supporting their potential as drug candidates for PD therapy. HTN was effectively synthesised using the fabrication technique and characterised by zeta potential and SEM analysis. HTN had favourable characteristics, including a size of 249.8 ± 14.9 nm and a Z-potential of -32.9 mV. After being administered orally, HTN demonstrated a notable anti-Parkinsonian effects, indicated by the significant improvement in motor function as assessed by the rota rod test (p < .001***), pole test (p < .001***), stair test (p < .01**), wood walk test (p < .01**) and an increase in substantia nigra (SN) antioxidant levels, CAT (p < .001***), SOD (p < .001***), GSH (p < .01**). Additionally, HTN led to increased dopamine levels (p < .01**) and a decrease in the oxidant system, MDA levels (p < .01**). Furthermore, histopathological examination revealed decreased SN neuronal necrosis in diseased animals treated with HTN compared to those treated with HT in a rat model of Parkinson's disease. Therefore, HTN can be regarded as a viable platform for efficient therapy of PD.
Collapse
Affiliation(s)
- Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapur, Andhra Pradesh, India
| | - Prasanth Dsnbk
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Jadcherla, Hyderabad, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Andhra Pradesh, India
| | | | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Ram Babu R
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal, Andhra Pradesh, India
| |
Collapse
|
7
|
Park DJ, Kang JB, Koh PO. Epigallocatechin gallate improves neuronal damage in animal model of ischemic stroke and glutamate-exposed neurons via modulation of hippocalcin expression. PLoS One 2024; 19:e0299042. [PMID: 38427657 PMCID: PMC10906901 DOI: 10.1371/journal.pone.0299042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024] Open
Abstract
Epigallocatechin gallate (EGCG) is a polyphenolic component of green tea that has anti-oxidative and anti-inflammatory effects in neurons. Ischemic stroke is a major neurological disease that causes irreversible brain disorders. It increases the intracellular calcium concentration and induces apoptosis. The regulation of intracellular calcium concentration is important to maintain the function of the nervous system. Hippocalcin is a neuronal calcium sensor protein that controls intracellular calcium concentration. We investigated whether EGCG treatment regulates the expression of hippocalcin in stroke animal model and glutamate-induced neuronal damage. We performed middle cerebral artery occlusion (MCAO) to induce cerebral ischemia. EGCG (50 mg/kg) or phosphate buffered saline was injected into the abdominal cavity just before MCAO surgery. The neurobehavioral tests were performed 24 h after MCAO surgery and cerebral cortex tissue was collected. MCAO damage induced severe neurobehavioral disorders, increased infarct volume, and decreased the expression of hippocalcin in the cerebral cortex. However, EGCG treatment improved these deficits and alleviated the decrease in hippocalcin expression in cerebral cortex. In addition, EGCG dose-dependently alleviated neuronal cell death and intracellular calcium overload in glutamate-exposed neurons. Glutamate exposure reduced hippocalcin expression, decreased Bcl-2 expression, and increased Bax expression. However, EGCG treatment mitigated these changes caused by glutamate toxicity. EGCG also attenuated the increase in caspase-3 and cleaved caspase-3 expressions caused by glutamate exposure. The effect of EGCG was more pronounced in non-transfected cells than in hippocalcin siRNA-transfected cells. These findings demonstrate that EGCG protects neurons against glutamate toxicity through the regulation of Bcl-2 family proteins and caspase-3. It is known that hippocalcin exerts anti-apoptotic effect through the modulation of apoptotic pathway. Thus, we can suggest evidence that EGCG has a neuroprotective effect by regulating hippocalcin expression in ischemic brain damage and glutamate-exposed cells.
Collapse
Affiliation(s)
- Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
8
|
Zothantluanga JH, Umar AK, Aswin K, Rajkhowa S, Chetia D. Revelation of potential drug targets of luteolin in Plasmodium falciparum through multi-target molecular dynamics simulation studies. J Biomol Struct Dyn 2023; 42:11612-11628. [PMID: 37776013 DOI: 10.1080/07391102.2023.2263875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
In-silico techniques offer a fast, accurate, reliable, and economical approach to studying the molecular interactions between compounds and proteins. In this study, our main aim is to use in-silico techniques as a rational approach for the prediction of the molecular drug targets for luteolin against Plasmodium falciparum. Multi-target molecular docking, 100 nanoseconds (ns) molecular dynamics (MD) simulations, and Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) binding free energy calculations were carried out for luteolin against dihydrofolate reductase thymidylate synthase (PfDHFR-TS), dihydroorotate dehydrogenase (PfDHODH), and falcipain-2. The native ligands of each protein were used as a reference to evaluate the performance of luteolin. Luteolin outperformed the native ligands of all proteins at molecular docking and MD simulations studies. However, in the MM-GBSA calculations, luteolin outperformed the native ligand of only PfDHFR-TS but not PfDHODH and falcipain-2. Among the studied proteins, the in-silico approach predicted PfDHFR-TS as the most favorable drug target for luteolin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- James H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Abd Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Keerthic Aswin
- Council of Scientific and Industrial Research, Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Faculty of Biological Sciences, Dibrugarh University, Dibrugarh, India
| | - Dipak Chetia
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
9
|
Baru Venkata R, Prasanth DSNBK, Pasala PK, Panda SP, Tatipamula VB, Mulukuri S, Kota RK, Rudrapal M, Khan J, Aldosari S, Alshehri B, Banawas S, Challa MC, Kammili JK. Utilizing Andrographis paniculata leaves and roots by effective usage of the bioactive andrographolide and its nanodelivery: investigation of antikindling and antioxidant activities through in silico and in vivo studies. Front Nutr 2023; 10:1185236. [PMID: 37324729 PMCID: PMC10266967 DOI: 10.3389/fnut.2023.1185236] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 06/17/2023] Open
Abstract
To valorise the bioactive constituents abundant in leaves and other parts of medicinal plants with the objective to minimize the plant-based wastes, this study was undertaken. The main bioactive constituent of Andrographis paniculata, an Asian medicinal plant, is andrographolide (AG, a diterpenoid), which has shown promising results in the treatment of neurodegenerative illnesses. Continuous electrical activity in the brain is a hallmark of the abnormal neurological conditions such as epilepsy (EY). This can lead to neurological sequelae. In this study, we used GSE28674 as a microarray expression profiling dataset to identify DEGs associated with andrographolide and those with fold changes >1 and p-value <0.05 GEO2R. We obtained eight DEG datasets (two up and six down). There was marked enrichment under various Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Ontology (GO) terms for these DEGs (DUSP10, FN1, AR, PRKCE, CA12, RBP4, GABRG2, and GABRA2). Synaptic vesicles and plasma membranes were the predominant sites of DEG expression. AG acts as an antiepileptic agent by upregulating GABA levels. The low bioavailability of AG is a significant limitation of its application. To control these limitations, andrographolide nanoparticles (AGNPs) were prepared and their neuroprotective effect against pentylenetetrazol (PTZ)-induced kindling epilepsy was investigated using network pharmacology (NP) and docking studies to evaluate the antiepileptic multi-target mechanisms of AG. Andrographolide is associated with eight targets in the treatment of epilepsy. Nicotine addiction, GABAergic synapse, and morphine addiction were mainly related to epilepsy, according to KEGG pathway enrichment analysis (p < 0.05). A docking study showed that andrographolide interacted with the key targets. AG regulates epilepsy and exerts its therapeutic effects by stimulating GABA production. Rats received 80 mg/kg body weight of AG and AGNP, phenytoin and PTZ (30 mg/kg i.p. injection on alternate days), brain MDA, SOD, GSH, GABAand histological changes of hippocampus and cortex were observed. PTZ injected rats showed significantly (***p < 0.001) increased kindling behavior, increased MDA, decreased GSH, SOD, GABA activities, compared with normal rats, while treatment AGNPs significantly reduced kindling score and reversed oxidative damage. Finally, we conclude that the leaves and roots of A. Paniculata can be effectively utilized for its major bioactive constituent, andrographolide as a potent anti-epileptic agent. Furthermore, the findings of novel nanotherapeutic approach claim that nano-andrographolide can be successfully in the management of kindling seizures and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Siva Prasad Panda
- Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | | | - Sirisha Mulukuri
- Department of Natural Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Bengaluru, India
| | - Ravi Kumar Kota
- Santhiram College of Pharmacy, JNTUA, Nandyal, Andhra Pradesh, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research, Guntur, India
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Sahar Aldosari
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | | | | |
Collapse
|
10
|
Warude BJ, Wagh SN, Chatpalliwar VA, Yildirim M, Celik I, Rudrapal M, Khan J, Chinnam S, Garud AA, Neharkar VS. Design, docking, MD simulation and in-silco ADMET prediction studies of novel indole-based benzamides targeting estrogen receptor alfa positive for effective breast cancer therapy. PHARMACIA 2023; 70:307-316. [DOI: 10.3897/pharmacia.70.e100356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025] Open
Abstract
Breast cancer is one of the most common malignancies in women, afflicting millions of lives each year. Our current study suggests that the development of the most promising 7-substituted -1-(4-(piperidine-1-yl methoxy)benzyl)-1H-indole-3-carboxamide derivatives results in potent anticancer agents through in-silico investigations. The molecular docking was performed against estrogen receptor alpha (ER-α) positive (PDB ID: 3UUD) of breast cancer cells to anticipate the binding modes of the designed compounds and the likely mode of action. The interactions between the ligands and amino acid residues were thoroughly elucidated. The stability of the docked protein-ligand complexes was further confirmed by 100 ns molecular simulations methods. From in-silico studies, indole-based benzamides exhibited satisfactory physicochemical, drug-likeness and toxicity properties. To conclude, the most promising substituted benzamide analogs on the indole ring could serve as a possible modulator against ER-α positive breast cancer.
Collapse
|
11
|
Rudrapal M, Vallinayagam S, Aldosari S, Khan J, Albadrani H, Al-Shareeda A, Kamal M. Valorization of Adhatoda vasica leaves: Extraction, in vitro analyses and in silico approaches. Front Nutr 2023; 10:1161471. [PMID: 37063312 PMCID: PMC10099809 DOI: 10.3389/fnut.2023.1161471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Adhatoda vasica (also called Vasaka) is a traditional medicinal herb used traditionally for the relief of cough, asthma, nasal congestion, bronchial inflammation, upper respiratory infections, bleeding disorders, skin diseases, leprosy, tuberculosis, diabetes, allergic conditions, rheumatism, tumor, and many more diseases. The present study aims to investigate the biological activities of vasicine, a potent alkaloid from A. vasica with different biological/ pharmacological assays and in silico techniques. Vasicine showed antimicrobial activity as evidenced fromthe colony-forming unit assay. It showed antioxidant activity in ABTS scavenging assay (IC50 = 11.5 μg/ml), ferric reducing power assay (IC50 = 15 μg/ml), DPPH radical scavenging assay (IC50 = 18.2 μg/ml), hydroxyl radical scavenging assay (IC50 = 22 μg/ml), and hydrogen peroxide assay (IC50 = 27.8 μg/ml). It also showed anti-inflammatory activity in proteinase inhibitory assay (IC50 = 76 μg/ml), BSA method (IC50 = 51.7 μg/ml), egg albumin method (IC50 = 53.2 μg/ml), and lipooxygenase inhibition assay (IC50 = 76 μg/ml). Vasicine showed antidiabetic activity in α-amylase inhibition assay (IC50 = 47.6 μg/ml), α-glucosidase inhibition assay (IC50 = 49.68 μg/ml), and non-enzymatic glycosylation of hemoglobin assay. It showed antiviral activity against HIV-protease (IC50 = 38.5 μg/ml). Vasicine also showed anticancer activity against lung cancer cells (IC50 = 46.5 μg/ml) and human fibroblast cells (IC50 = 82.5 μg/ml). In silico studies revealed that similar to the native ligands, vasicine also showed a low binding energy, i.e., good binding affinity for the active binding sites and interacted with α-amylase (-6.7 kcal/mol), α-glucosidase (-7.6 kcal/mol), cyclooxygenase (-7.4 kcal/mol), epidermal growth factor receptor (-6.4 kcal/mol), lipooxygenase (-6.9 kcal/mol), and HIV-protease (-6.4 kcal/mol). The present study ascertains the potential of vasicine as a bioactive compound isolated from A. vasica having therapeutic usefulness in many human diseases.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, India
- *Correspondence: Mithun Rudrapal
| | - Sugumari Vallinayagam
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R and D Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Sahar Aldosari
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
- Sahar Aldosari s.aldosarimu.edu.sa
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Hind Albadrani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Alaa Al-Shareeda
- Department of Cellular Therapy and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of the Saudi Biobank, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
12
|
Dataset on In-silico Evaluation of Anti-oxidant Molecules of Talinum triangulare (Jacq.) Willd. in Cerebral Ischemic Disease Using Molecular Docking Studies. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
13
|
Kakhar Umar A, Zothantluanga JH, Luckanagul JA, Limpikirati P, Sriwidodo S. Structure-based computational screening of 470 natural quercetin derivatives for identification of SARS-CoV-2 M pro inhibitor. PeerJ 2023; 11:e14915. [PMID: 36935912 PMCID: PMC10022500 DOI: 10.7717/peerj.14915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/26/2023] [Indexed: 03/16/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic infecting the respiratory system through a notorious virus known as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to viral mutations and the risk of drug resistance, it is crucial to identify new molecules having potential prophylactic or therapeutic effect against SARS-CoV-2 infection. In the present study, we aimed to identify a potential inhibitor of SARS-CoV-2 through virtual screening of a compound library of 470 quercetin derivatives by targeting the main protease-Mpro (PDB ID: 6LU7). The study was carried out with computational techniques such as molecular docking simulation studies (MDSS), molecular dynamics (MD) simulations, and molecular mechanics generalized Born surface area (MMGBSA) techniques. Among the natural derivatives, compound 382 (PubChem CID 65604) showed the best binding affinity to Mpro (-11.1 kcal/mol). Compound 382 interacted with LYS5, TYR126, GLN127, LYS137, ASP289, PHE291, ARG131, SER139, GLU288, and GLU290 of the Mpro protein. The SARS-CoV-2 Mpro-382 complex showed acceptable stability during the 100 ns MD simulations. The SARS-CoV-2 Mpro-382 complex also showed an MM-GBSA binding free energy value of -54.0 kcal/mol. The binding affinity, stability, and free energy results for 382 and Mpro were better than those of the native ligand and the standard inhibitors ledipasvir and cobicistat. The conclusion of our study was that compound 382 has the potential to inhibit SARS-Cov-2 Mpro. However, further investigations such as in-vitro assays are recommended to confirm its in-silico potency.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Sumedang, Jawa barat, Indonesia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Chulalongkorn University, Bangkok, Thailand
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Dibrugarh University, Assam, India
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Chulalongkorn University, Bangkok, Thailand
| | - Patanachai Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmacy, Chulalongkorn University, Bangkok, Thailand
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Sumedang, Jawa barat, Indonesia
| |
Collapse
|
14
|
Zeng J, Yang K, Nie H, Yuan L, Wang S, Zeng L, Ge A, Ge J. The mechanism of intestinal microbiota regulating immunity and inflammation in ischemic stroke and the role of natural botanical active ingredients in regulating intestinal microbiota: A review. Biomed Pharmacother 2023; 157:114026. [PMID: 36436491 DOI: 10.1016/j.biopha.2022.114026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Intestinal microbiota is a unique ecosystem, known as the "second genome" of human beings. With the widespread application of next generation sequencing (NGS), especially 16 S rRNA and shotgun sequencing, numerous studies have shown that dysregulation of intestinal microbiota is associated with many central nervous system diseases. Ischemic stroke (IS) is a cerebrovascular disease with high morbidity and mortality. Brain damage in IS affects intestinal function, and intestinal dysfunction further aggravates brain damage, forming a vicious circle of mutual interference in pathology. The microbiota-gut-brain axis study based on the intestinal microbiota has opened up broader ideas for exploring its pathogenesis and risk factors, and also provided more possibilities for the selection of therapeutic targets for this type of drug. This review discussed the application of NGS technology in the study of intestinal microbiota and the research progress of microbiota-gut-brain axis in recent years, and systematically sorts out the literature on the relationship between ischemic stroke and intestinal microbiota. It starts with the characteristics of microbiota-gut-brain axis' bidirectional regulation, respectively discusses the high risk factors of IS under intestinal microbiota imbalance and the physiological and pathological changes of intestinal microbiota after IS, and summarizes the related targets, in order to provide reliable reference for the treatment of IS from intestinal microbiota. In addition, natural botanical active ingredients have achieved good results in the treatment of IS based on regulating the homeostasis of gut microbiota, providing new evidence for studying the potential targets and therapies of IS based on the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha City, China..
| | - Huifang Nie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha City, China
| | - Le Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha City, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha City, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha City, China..
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha City, China.; Hunan Academy of Chinese Medicine, Changsha, China..
| |
Collapse
|
15
|
Zothantluanga JH, Umar AK, Lalhlenmawia H, Vinayagam S, Borthakur MS, Patowary L, Tayeng D. Computational screening of phytochemicals for anti-parasitic drug discovery. PHYTOCHEMISTRY, COMPUTATIONAL TOOLS AND DATABASES IN DRUG DISCOVERY 2023:257-283. [DOI: 10.1016/b978-0-323-90593-0.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Rudrapal M, Celik I, Chinnam S, Çevik UA, Tallei TE, Nizam A, Joy F, Abdellattif MH, Walode SG. Analgesic and Anti-Inflammatory Potential of Indole Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2139733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayaseri, Turkey
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology, Visvesvaraya Technological University, Bengaluru, India
| | - Ulviye Acar Çevik
- Department of Pharaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Trina Ekawati Tallei
- Deparment of Biology, Faculty of Matematic and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to Be University), Bengaluru, India
| | - Francis Joy
- Department of Chemistry, CHRIST (Deemed to Be University), Bengaluru, India
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Sanjay G. Walode
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
| |
Collapse
|
17
|
Wang Y, Li C, Xiong Z, Chen N, Wang X, Xu J, Wang Y, Liu L, Wu H, Huang C, Huang A, Tan J, Li Y, Li Q. Up-and-coming anti-epileptic effect of aloesone in Aloe vera: Evidenced by integrating network pharmacological analysis, in vitro, and in vivo models. Front Pharmacol 2022; 13:962223. [PMID: 36034878 PMCID: PMC9411719 DOI: 10.3389/fphar.2022.962223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background:Aloe vera is a medically valuable plant with anti-epileptic activity; however, its mechanism of action remains unknown. In this study, network pharmacological, in vitro, and in vivo experiments were carried out to explore the potential anti-epileptic components and targets of Aloe vera.Methods: The main active components of Aloe vera were identified by searching the Traditional Chinese Medicine System Pharmacology database. Targets of Aloe vera were predicted using SwissTargetPrediction, whereas information about the epilepsy disease targets was obtained from Gene Cards. The protein–protein interaction network and core targets were screened according to the topological structure and CytoNCA plugin. The glutamate-induced HT22 cell line and pentylenetetrazol-induced seizure rats were used to confirm the effect of aloesone by detecting reactive oxygen species (ROS) and apoptosis, and predicting the targets.Results: A total of 14 core active components were selected based on the screening criteria of oral bioavailability ≥30% and drug-likeness ≥ 0.10. Four compounds, namely linoleic acid, aloesone, isoeleutherol glucosiden qt, and anthranol, demonstrated the potential ability of crossing the blood-brain barrier. A total of 153 targets associated with epilepsy were predicted for the four compounds. Moreover, after network analysis with CytoNCA, 10 targets, namely, MAPK1, SRC, MARK3, EGFR, ESR1, PTGS2, PTPN11, JAK2, PPKCA, and FYN, were selected as the core genes, and SRC, which has been predicted to be the target of aloesone and anthranol, exhibited the highest subgraph centrality value. In vitro experiments confirmed that aloesone treatment significantly inhibited the glutamate-induced neuronal injury by reducing the intracellular ROS content and the early phase of apoptosis. Additionally, treatment with 50 mg/kg aloesone resulted in anti-seizure effects by reducing the seizure score and prolonging the latent period in acute and chronic rats. Furthermore, aloesone treatment increased the phosphorylation of c-SRC at Y418 and reduced the phosphorylation at Y529, simultaneously activating c-SRC.Conclusion: Integrating network pharmacology with in vitro and in vivo experiments demonstrated that aloesone, which inhibited seizure by activating c-SRC, is a potential anti-seizure compound present in Aloe vera.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Department of Neurology, School of Pharmacy, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Chang Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Department of Neurology, School of Pharmacy, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Zhongyv Xiong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Department of Neurology, School of Pharmacy, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Niangen Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Department of Neurology, School of Pharmacy, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xuesong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Department of Neurology, School of Pharmacy, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Junyv Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Department of Neurology, School of Pharmacy, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yuemei Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Department of Neurology, School of Pharmacy, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Longfeng Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Department of Neurology, School of Pharmacy, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Hang Wu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Department of Neurology, School of Pharmacy, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Caihui Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Department of Neurology, School of Pharmacy, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Aiqin Huang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Department of Neurology, School of Pharmacy, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Jiajia Tan
- College of Veterinary Medicine, Southwestern University, Chongqing, China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Department of Neurology, School of Pharmacy, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- *Correspondence: Youbin Li, ; Qifu Li,
| | - Qifu Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Department of Neurology, School of Pharmacy, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- *Correspondence: Youbin Li, ; Qifu Li,
| |
Collapse
|
18
|
Insights into the Explicit Protective Activity of Herbals in Management of Neurodegenerative and Cerebrovascular Disorders. Molecules 2022; 27:molecules27154970. [PMID: 35956919 PMCID: PMC9370592 DOI: 10.3390/molecules27154970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The longstanding progressive neurodegenerative conditions of the central nervous system arise mainly due to deterioration, degradation and eventual neuronal cell loss. As an individual ages, the irreversible neurodegenerative disorders associated with aging also begin to develop, and these have become exceedingly prominent and pose a significant burden mentally, socially and economically on both the individual and their family. These disorders express several symptoms, such as tremors, dystonia, loss of cognitive functions, impairment of motor activity leading to immobility, loss of memory and many more which worsen with time. The treatment employed in management of these debilitating neurodegenerative disorders, such as Parkinson’s disease (which mainly involves the loss of dopaminergic neurons in the nigrostriatal region), Alzheimer’s disease (which arises due to accumulation of Tau proteins causing diffusive atrophy in the brain), Huntington’s disease (which involves damage of striatal and spinal neurons, etc.), have several adverse effects, leading to exploration of several lead targets and molecules existing in herbal drugs. The current review highlights the mechanistic role of natural products in the treatment of several neurodegenerative and cerebrovascular diseases such as Parkinson’s disease, Alzheimer’s disease, ischemic stroke and depression.
Collapse
|
19
|
Celik I, Rudrapal M, Yadalam PK, Chinnam S, Balaji TM, Varadarajan S, Khan J, Patil S, Walode SG, Panke DV. Resveratrol and Its Natural Analogues Inhibit RNA Dependant RNA Polymerase (RdRp) of Rhizopus oryzae in Mucormycosis through Computational Investigations. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2091618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
| | - Pradeep Kumar Yadalam
- Department of Periodontics, Adhiparasakthi Dental College & Hospital, Melmaruvathur, India
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | | | - Saranya Varadarajan
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College & Hospital, Chennai, India
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Sanjay G. Walode
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
| | - Dhiraj V. Panke
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
| |
Collapse
|
20
|
Rudrapal M, Celik I, Chinnam S, Azam Ansari M, Khan J, Alghamdi S, Almehmadi M, Zothantluanga JH, Khairnar SJ. Phytocompounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro through computational studies. Saudi J Biol Sci 2022; 29:3456-3465. [PMID: 35233172 PMCID: PMC8873046 DOI: 10.1016/j.sjbs.2022.02.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022] Open
Abstract
The inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) and papain-like protease (PLpro) prevents viral multiplications; these viral enzymes have been recognized as one of the most favorable targets for drug discovery against SARS-CoV-2. In the present study, we screened 225 phytocompounds present in 28 different Indian spices to identify compounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro. Molecular docking, molecular dynamics simulation, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations, and absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were done. Based on binding affinity, dynamics behavior, and binding free energies, the present study identifies pentaoxahexacyclo-dotriacontanonaen-trihydroxybenzoate derivative (PDT), rutin, and dihyroxy-oxan-phenyl-chromen-4-one derivative (DOC), luteolin-7-glucoside-4'-neohesperidoside as promising inhibitors of SARS-CoV-2 Mpro and PLpro, respectively.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Pune 411019, Maharashtra, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru 560054, Karnataka, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Um Al-Qura University, Makkah 24382, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Shubham J. Khairnar
- MET Institute of Pharmacy, Bhujbal Knowledge City, Nasik 422003, Maharashtra, India
| |
Collapse
|
21
|
Pasala PK, Uppara RK, Rudrapal M, Zothantluanga JH, Umar AK. Silybin phytosome attenuates cerebral ischemia-reperfusion injury in rats by suppressing oxidative stress and reducing inflammatory response: In vivo and in silico approaches. J Biochem Mol Toxicol 2022; 36:e23073. [PMID: 35437840 DOI: 10.1002/jbt.23073] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/07/2022] [Accepted: 04/01/2022] [Indexed: 11/11/2022]
Abstract
The present study was aimed to develop silybin phytosome (SIBP) and evaluate its effectiveness against cerebral ischemia-reperfusion (CIR) injury in rats. Initially, SIBP was prepared and characterized with Fourier transform-infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. Drug loading and entrapment efficiency of SIBP were also calculated. High-performance liquid chromatography was used to carry out bioavailability studies of SIBP. Adult Wistar rats were divided randomly into five groups. The CIR injury was induced after 14 days of pretreatment by occlusion of bilateral common carotid arteries for 30 min followed by 4 h of reperfusion. Biochemical estimation, histopathological studies, and in silico studies were carried out. Bioavailability studies revealed that SIB concentration was increased to twofolds in SIBP-treated rats. SIBP treatment significantly increases superoxide dismutase and glutathione levels while it decreases monoaldehyde, tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) levels in both the hippocampus and cortex of the SIBP-treated CIR-injured rats. Histopathological studies reveal SIBP treatment alleviates cortex cell death and arrangement of CA1 neurons in CIR-injured rats. In silico studies against proteins (TNF-α and IL-6) involved in cerebral ischemia revealed that silybin (SIB) exhibits strong binding interaction with the target proteins when compared to thalidomide which was used as the positive control. Phytosome increase SIB bioavailability and SIBP treatment showed promising results when compared to treatment with SIB only. Based on our study, we conclude that phytosome is a suitable drug delivery agent to the brain for SIB as SIBP treatment was able to provide neuroprotective action against CIR injury.
Collapse
Affiliation(s)
- Praveen K Pasala
- Department of Pharmacology, Santhiram College of Pharmacy, Nandyal, Andhra Pradesh, India
| | - Ramya K Uppara
- Department of Pharmacology, Creative Educational Society's College of Pharmacy, Kurnool, Andhra Pradesh, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, Maharashtra, India
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Abd Kakhar Umar
- Department of Pharmacy, Faculty of Math and Natural Science, Universitas Tadulako, Palu City, Indonesia
| |
Collapse
|
22
|
Rudrapal M, Gogoi N, Chetia D, Khan J, Banwas S, Alshehri B, Alaidarous MA, Laddha UD, Khairnar SJ, Walode SG. Repurposing of phytomedicine-derived bioactive compounds with promising anti-SARS-CoV-2 potential: Molecular docking, MD simulation and drug-likeness/ADMET studies. Saudi J Biol Sci 2022; 29:2432-2446. [PMID: 34924801 PMCID: PMC8667520 DOI: 10.1016/j.sjbs.2021.12.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
In view of the potential of traditional plant-based remedies (or phytomedicines) in the management of COVID-19, the present investigation was aimed at finding novel anti-SARS-CoV-2 molecules by in silico screening of bioactive phytochemicals (database) using computational methods and drug repurposing approach. A total of 160 compounds belonging to various phytochemical classes (flavonoids, limonoids, saponins, triterpenoids, steroids etc.) were selected (as initial hits) and screened against three specific therapeutic targets (Mpro/3CLpro, PLpro and RdRp) of SARS-CoV-2 by docking, molecular dynamics simulation and drug-likeness/ADMET studies. From our studies, six phytochemicals were identified as notable ant-SARS-CoV-2 agents (best hit molecules) with promising inhibitory effects effective against protease (Mpro and PLpro) and polymerase (RdRp) enzymes. These compounds are namely, ginsenoside Rg2, saikosaponin A, somniferine, betulinic acid, soyasapogenol C and azadirachtin A. On the basis of binding modes and dynamics studies of protein-ligand intercations, ginsenoside Rg2, saikosaponin A, somniferine were found to be the most potent (in silico) inhibitors potentially active against Mpro, PLpro and RdRp, respectively. The present investigation can be directed towards further experimental studies in order to confirm the anti-SARS-CoV-2 efficacy along with toxicities of identified phytomolecules.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Chinchwad, Pune 411019, Maharashtra, India
| | - Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Dipak Chetia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Saeed Banwas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mohammed A. Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Umesh D. Laddha
- MET Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nasik 422003, Maharashtra, India
| | - Shubham J. Khairnar
- MET Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nasik 422003, Maharashtra, India
| | - Sanjay G. Walode
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Chinchwad, Pune 411019, Maharashtra, India
| |
Collapse
|