1
|
Avagliano C, De Caro C, Cuozzo M, Roberti R, Russo E, La Rana G, Russo R. Sodium Butyrate ameliorates pain and mood disorders in a mouse model of Parkinson disease. Biomed Pharmacother 2025; 184:117903. [PMID: 39938349 DOI: 10.1016/j.biopha.2025.117903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Pain is one of non-motor features of Parkinson's disease (PD) that significantly impacts on patients' quality of life and increases the risk of developing psychiatric disorders. The mechanisms underlying pain in PD are poorly understood and the classic pharmacological treatments supplying to dopamine depletion have limited therapeutic effects on this symptom. It has been demonstrated that short chain fatty acids (SCFAs) play a key role in several central nervous system diseases including PD; low serum and faecal levels of SCFAs have been described in PD patients. Among SCFAs, the gut microbial metabolite butyrate has a neuroprotective and anti-inflammatory effect, influencing neurological and behavioural processes. Using a 6-hydroxydopamine (6-OHDA) induced-PD mouse model, we evaluated the effects of sodium butyrate (BuNa) treatment on pain and mood-related behaviour, exporing the role of PPARs, opioid and endocannabinoid systems. Our results demonstrated that repeated BuNa treatment (100 mg/kg po) in PD-mice reduced pain hypersensitivity as well as depressive- and anxiety-lke behaviour both on day 7 and day 14 after 6-OHDA injection. Moreover, AM281(CB1R antagonist), GW6471 (PPAR-alpha antagonist), and naloxone (opioid receptor antagonist), reduced BuNa efficacy. Finally, BuNa treatment was associated with a significant reduction of pro-inflammatory cytokines at spinal and supraspinal levels. In conclusion, our results demonstrate that increasing endogenous butyrate concentration reduces PD comorbidities such as pain and psychiatric symptoms, restoring opioidergic and endocannabinergic pathways.
Collapse
Affiliation(s)
- Carmen Avagliano
- CEINGE-Biotechnlogies Advances, via Gaetano Salvatore 486, Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| | - Carmen De Caro
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| | - Mariarosaria Cuozzo
- CEINGE-Biotechnlogies Advances, via Gaetano Salvatore 486, Naples, Italy; Department of Anatomy and Neuroscience, APC Microbiome, University Collage of Cork, Ireland.
| | - Roberta Roberti
- Department of Health Sciences, School of Medicine, University of Catanzaro "Magna Graecia", Viale Europa, Catanzaro 88100, Italy.
| | - Emilio Russo
- Department of Health Sciences, School of Medicine, University of Catanzaro "Magna Graecia", Viale Europa, Catanzaro 88100, Italy.
| | - Giovanna La Rana
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| | - Roberto Russo
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| |
Collapse
|
2
|
Weidenauer A, Garani R, Campos Oller P, Belén Blasco M, Rusjan PM, Mizrahi R. Impact of Stress on the Endocannabinoid System: A [ 11C]-CURB Positron Emission Tomography Study in Early Psychosis: Les effets du stress sur le système endocannabinoïde : étude par tomographie par émission de positons avec l'indicateur radioactif [11C-CURB] dans la psychose précoce. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2025; 70:251-259. [PMID: 39632555 PMCID: PMC11622212 DOI: 10.1177/07067437241300958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Stress and traumatic experiences are well-established risk factors for psychiatric disorders. Stressful events can induce symptoms of anxiety and depression and may lead to overt psychosis, especially when there is an innate biological vulnerability. This study explores the role of the stress-regulating endocannabinoid system, specifically the activity of the enzyme fatty acid amid hydrolase (FAAH), a key regulatory enzyme for endocannabinoids, in association with stress by analysing data from healthy individuals and patients with psychosis. METHODS We performed a post-hoc exploratory analysis on 65 positron emission tomography scans using the selective FAAH radioligand [11C]CURB, encompassing 30 patients with psychosis (6 female) and 35 healthy controls (19 female). The study aimed to examine the association between FAAH activity and stressful life events, assessed through the Recent Life Events, Survey of Life Experiences, and Hassles and Uplifts Scale. RESULTS There was a significant difference regarding the number of recent stressors with higher levels in patients compared to healthy subjects (Survey of Life Experiences: t = 4.88, p < 0.001, hassles: t = 3.14, p = 0.003), however there was no significant relationship of brain FAAH activity and stressful life events in any of the applied scales across groups (Recent Life Events: F1,57 = 0.07, p = 0.80; Survey of Life Experiences: F1,57 = 1.75, p = 0.19; hassles: F1,56 = 1.06, p = 0.31). Linear mixed models performed separately for each group revealed that there was a positive association between FAAH activity and Recent Life Events in patients with psychosis only (F1,25 = 8.07, p = 0.009). CONCLUSIONS Our data reveal a significant disparity in recent stressors between the two groups, and a correlation between brain FAAH activity and stressful life events in patients with psychosis only. This suggests a complex interplay between stress and the endocannabinoid system. PLAIN LANGUAGE SUMMARY TITLE How Stress Affects the Brain’s Endocannabinoid System in Early Psychosis: A PET Study.
Collapse
Affiliation(s)
- Ana Weidenauer
- Division of General Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Ranjini Garani
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Paula Campos Oller
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Maira Belén Blasco
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Pablo M. Rusjan
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Romina Mizrahi
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Gao Q, Asim M. CB 1 receptor signaling: Linking neuroplasticity, neuronal types, and mental health outcomes. Neurochem Int 2025; 184:105938. [PMID: 39904420 DOI: 10.1016/j.neuint.2025.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/18/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
The endocannabinoid system (ECS) is crucial in the pathophysiology of mental disorders. Historically, cannabis has been utilized for centuries to mitigate symptoms of anxiety and depression; however, the precise role of cannabinoids in these conditions has only recently garnered extensive research attention. Despite the growing body of literature on the ECS and its association with mental health, several critical questions remain unresolved. This review primarily focuses on cannabinoid CB1 receptors (CB1R), providing an examination of their regulatory roles in states related to mental disorders. Evidence suggests that CB1R distribution occurs among various neuronal types, astrocytes, and subcellular membranes across multiple brain regions, potentially exhibiting both analogous and antagonistic effects. Additionally, various forms of stress have been shown to produce divergent impacts on CB1R signaling pathways. Furthermore, numerous CB1R agonists demonstrate biphasic, dose-dependent effects on anxiety and depression; specifically, low doses may exert anxiolytic effects, while higher doses can induce anxiogenic responses, a phenomenon observed in both rodent models and human studies. We also discuss the diverse underlying mechanisms that mediate these effects. We anticipate that this review will yield valuable insights into the role of CB1R in mental disorders and provide a framework for future research endeavors on CB1R and the ECS. This knowledge may ultimately inform therapeutic strategies aimed at alleviating symptoms associated with mental health conditions.
Collapse
Affiliation(s)
- Qianqian Gao
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong, 0000, China; Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon Tong, Hong Kong, 0000, China
| | - Muhammad Asim
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong, 0000, China; Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon Tong, Hong Kong, 0000, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, 0000, China; Current: Department of Psychiatry and Behavioral Science, Stanford University, California, USA.
| |
Collapse
|
4
|
Lu H, Roeder N, Richardson B, Hamilton J, Sharma A, Owada Y, Kagawa Y, Thanos P. Fatty acid-binding protein 7 gene deletion promotes decreases in brain cannabinoid type 1 receptor binding. Neurosci Lett 2025; 844:138040. [PMID: 39542341 DOI: 10.1016/j.neulet.2024.138040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Fatty acid-binding protein 7 (FABP7) aids in the intracellular transport of endogenous cannabinoids and is involved in regulating the stress response system. This study examined the role of FABP7 in chronic stress exposure through the binding of CB1 receptors. Adult male FABP7+/+ and FABP7-/- mice were treated with the unpredictable chronic mild stress (UCMS) procedure. After 28 days of treatment, mice were euthanized, and CB1 was measured with in vitro autoradiography using [3H] SR141716A. FABP7-/- mice, irrespective of stress treatment, showed reduced [3H] SR141716A binding in the amygdala, secondary somatosensory cortex, and ventral caudate putamen compared with the FABP7+/+ mice. Additionally, FABP7-/- mice treated with UCMS exhibited a reduction in CB1 binding in the globus pallidus and ventral caudate putamen compared with UCMS-treated FABP7+/+ mice. Genetic deletion of FABP7 can decrease CB1 expression in various brain regions; however, the underlying mechanism remains unclear.
Collapse
Affiliation(s)
- Huy Lu
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA
| | - Nicole Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, State University at Buffalo, Buffalo, NY, USA
| | - Brittany Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, State University at Buffalo, Buffalo, NY, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, State University at Buffalo, Buffalo, NY, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL 32610, USA
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Seiryo-cho 2-1, Aobaku, Sendai 980-8575, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Seiryo-cho 2-1, Aobaku, Sendai 980-8575, Japan; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Panayotis Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, State University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
5
|
Demaili A, Portugalov A, Maroun M, Akirav I, Braun K, Bock J. Early life stress induces decreased expression of CB1R and FAAH and epigenetic changes in the medial prefrontal cortex of male rats. Front Cell Neurosci 2024; 18:1474992. [PMID: 39503008 PMCID: PMC11534599 DOI: 10.3389/fncel.2024.1474992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Several studies in both animal models and in humans have provided substantial evidence that early life stress (ELS) induces long-term changes in behavior and brain function, making it a significant risk factor in the aetiology of various mental disorders, including anxiety and depression. In this study, we tested the hypothesis that ELS in male rats (i) leads to increased anxiety and depressive-like symptoms; and (ii) that these behavioral changes are associated with functional alterations in the endocannabinoid system of the medial prefrontal cortex (mPFC). We further assessed whether the predicted changes in the gene expression of two key components of the endocannabinoid system, cannabinoid receptor 1 (CB1R) and the fatty acid amide hydrolase (FAAH), are regulated by epigenetic mechanisms. Behavioral profiling revealed that the proportion of behaviorally affected animals was increased in ELS exposed male rats compared to control animals, specifically showing symptoms of anhedonia and impaired social behavior. On the molecular level we observed a decrease in CB1R and FAAH mRNA expression in the mPFC of adult ELS exposed animals. These gene expression changes were accompanied by reduced global histone 3 acetylation in the mPFC, while no significant changes in DNA methylation and no significant changes of histone-acetylation at the promoter regions of the analyzed genes were detected. Taken together, our data provide evidence that ELS induces a long-term reduction of CB1R and FAAH expression in the mPFC of adult male rats, which may partially contribute to the ELS-induced changes in adult socio-emotional behavior.
Collapse
Affiliation(s)
- Arijana Demaili
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Anna Portugalov
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Mouna Maroun
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Jörg Bock
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- PG Epigenetics and Structural Plasticity, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
6
|
Gastmeier K, Ihlenfeld A, Gastmeier A, Hirt G, Landschaft A, Wirz S. [Patient-reported outcomes in chronic diseases under treatment with cannabis medicines : Analysis of the results of the Copeia survey]. Schmerz 2024; 38:250-258. [PMID: 38451340 DOI: 10.1007/s00482-024-00802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 03/08/2024]
Abstract
BACKGROUND The survey of Copeia captured early 2022 patient-reported outcomes (PRO) in Germany under cannabis medicinal product (CAM) therapy, with particular attention to symptoms, symptom changes, indications, side effects, dosages, and cost bearers. GOAL This study investigated the question of whether associations emerge from the results that could play a role in the indication and treatment monitoring of CAM in chronically ill patients. MATERIALS AND METHODS A standardized questionnaire was administered online nationwide in dialogue form over a 15-week period to collect itemized symptoms and PRO. Recruitment was supported by pharmacies, prescribing physicians, and patient associations. Inclusion criteria included physician-prescribed CAM therapy. RESULTS AND DISCUSSION Of 1582 participants, 1030 data sets (65%) could be completely analyzed. There was a heterogeneous patient population, whose common feature was disease chronicity. The frequency distribution of symptoms showed a homogeneous pattern for the respective indications, in which the most frequent six (pain 71%, sleep disturbance 64%, stress/tension 52%, inner restlessness 52%, depressive mood 44% and muscle tension 43%) seem to have a special significance. According to subjective assessment, quality of life improved significantly in 84% of all participating patients. CONCLUSION A symptom matrix (SMX) composed of different symptoms seems to play a special role in CAM therapy to improve the quality of life of chronically ill patients, regardless of the underlying disease. The SMX could contribute to the identification of an indication and to targeted treatment monitoring.
Collapse
Affiliation(s)
- Knud Gastmeier
- Praxis für Spezialisierte Ambulante Palliativmedizin, Potsdam, Deutschland
| | | | - Anne Gastmeier
- Praxis für Lungenheilkunde und Allgemeinmedizin, Kleinmachnow, Deutschland
| | | | | | - Stefan Wirz
- Abteilung für Anästhesie, Intensivmedizin, Schmerzmedizin/Palliativmedizin - Zentrum für Schmerzmedizin, Weaningzentrum, Cura Krankenhaus - eine Betriebsstätte der GFO Kliniken Bonn, Schülgenstr. 15, 53604, Bad Honnef, Deutschland.
| |
Collapse
|
7
|
Richardson B, Clarke C, Blundell J, Bambico FR. Therapeutic-like activity of cannabidiolic acid methyl ester in the MK-801 mouse model of schizophrenia: Role for cannabinoid CB1 and serotonin-1A receptors. Eur J Neurosci 2024; 59:2403-2415. [PMID: 38385841 DOI: 10.1111/ejn.16278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Schizophrenia is a psychotic disorder with an increasing prevalence and incidence over the last two decades. The condition presents with a diverse array of positive, negative, and cognitive impairments. Conventional treatments often yield unsatisfactory outcomes, especially with negative symptoms. We investigated the role of prefrontocortical (PFC) N-methyl-D-aspartate receptors (NMDARs) in the pathophysiology and development of schizophrenia. We explored the potential therapeutic effects of cannabidiolic acid (CBDA) methyl ester (HU-580), an analogue of CBDA known to act as an agonist of the serotonin-1A receptor (5-HT1AR) and an antagonist of cannabinoid type 1 receptor (CB1R). C57BL/6 mice were intraperitoneally administered the NMDAR antagonist, dizocilpine (MK-801, .3 mg/kg) once daily for 17 days. After 7 days, they were concurrently given HU-580 (.01 or .05 μg/kg) for 10 days. Behavioural deficits were assessed at two time points. We conducted enzyme-linked immunosorbent assays to measure the concentration of PFC 5-HT1AR and CB1R. We found that MK-801 effectively induced schizophrenia-related behaviours including hyperactivity, social withdrawal, increased forced swim immobility, and cognitive deficits. We discovered that low-dose HU-580 (.01 μg/kg), but not the high dose (.05 μg/kg), attenuated hyperactivity, forced swim immobility and cognitive deficits, particularly in female mice. Our results revealed that MK-801 downregulated both CB1R and 5-HT1AR, an effect that was blocked by both low- and high-dose HU-580. This study sheds light on the potential antipsychotic properties of HU-580, particularly in the context of NMDAR-induced dysfunction. Our findings could contribute significantly to our understanding of schizophrenia pathophysiology and offer a promising avenue for exploring the therapeutic potential of HU-580 and related compounds in alleviating symptoms.
Collapse
MESH Headings
- Animals
- Schizophrenia/drug therapy
- Schizophrenia/chemically induced
- Schizophrenia/metabolism
- Dizocilpine Maleate/pharmacology
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/drug effects
- Male
- Mice
- Female
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Mice, Inbred C57BL
- Disease Models, Animal
- Cannabinoids/pharmacology
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Antipsychotic Agents/pharmacology
Collapse
Affiliation(s)
- Brandon Richardson
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Courtney Clarke
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Jacqueline Blundell
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Francis R Bambico
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| |
Collapse
|
8
|
Dandi E, Kesidou E, Simeonidou C, Spandou E, Grigoriadis N, Tata DA. Sex-Specific Differences and the Role of Environmental Enrichment in the Expression of Hippocampal CB 1 Receptors following Chronic Unpredictable Stress. Brain Sci 2024; 14:357. [PMID: 38672009 PMCID: PMC11047861 DOI: 10.3390/brainsci14040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Stress-related mental disorders have become increasingly prevalent, thus endangering mental health worldwide. Exploring stress-associated brain alterations is vital for understanding the possible neurobiological mechanisms underlying these changes. Based on existing evidence, the brain endogenous cannabinoid system (ECS) plays a significant role in the stress response, and disruptions in its function are associated with the neurobiology of various stress-related disorders. This study primarily focuses on investigating the impact of chronic unpredictable stress (CUS) on the expression of hippocampal cannabinoid type 1 (CB1) receptors, part of the ECS, in adult male and female Wistar rats. Additionally, it explores whether environmental enrichment (EE) initiated during adolescence could mitigate the CUS-associated alterations in CB1 expression. Wistar rats, shortly after weaning, were placed in either standard housing (SH) or EE conditions for a duration of 10 weeks. On postnatal day 66, specific subgroups of SH or EE animals underwent a 4-week CUS protocol. Western blot (WB) analysis was conducted in the whole hippocampus of the left brain hemisphere to assess total CB1 protein expression, while immunohistochemistry (IHC) was performed on the right hemisphere to estimate the expression of CB1 receptors in certain hippocampal areas (i.e., CA1, CA3 and dentate gyrus-DG). The WB analysis revealed no statistically significant differences in total CB1 protein levels among the groups; however, reduced CB1 expression was found in specific hippocampal sub-regions using IHC. Specifically, CUS significantly decreased CB1 receptor expression in the CA1 and DG of both sexes, whereas in CA3 the CUS-associated decrease was limited to SH males. Interestingly, EE housing proved protective against these reductions. These findings suggest a region and sex-specific endocannabinoid response to chronic stress, emphasizing the role of positive early experiences in the protection of the adolescent brain against adverse conditions later in life.
Collapse
Affiliation(s)
- Evgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (N.G.)
- Laboratory of Physiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.S.); (E.S.)
| | - Constantina Simeonidou
- Laboratory of Physiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.S.); (E.S.)
| | - Evangelia Spandou
- Laboratory of Physiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.S.); (E.S.)
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (N.G.)
| | - Despina A. Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
9
|
Lin J, Peng Y, Zhang J, Cheng J, Chen Q, Wang B, Liu Y, Niu S, Yan J. Interfering with reconsolidation by rimonabant results in blockade of heroin-associated memory. Front Pharmacol 2024; 15:1361838. [PMID: 38576487 PMCID: PMC10991728 DOI: 10.3389/fphar.2024.1361838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Drug-associated pathological memory remains a critical factor contributing to the persistence of substance use disorder. Pharmacological amnestic manipulation to interfere with drug memory reconsolidation has shown promise for the prevention of relapse. In a rat heroin self-administration model, we examined the impact of rimonabant, a selective cannabinoid receptor indirect agonist, on the reconsolidation process of heroin-associated memory. The study showed that immediately administering rimonabant after conditioned stimuli (CS) exposure reduced the cue- and herion + cue-induced heroin-seeking behavior. The inhibitory effects lasted for a minimum of 28 days. The effect of Rimonabant on reduced drug-seeking was not shown when treated without CS exposure or 6 hours after CS exposure. These results demonstrate a disruptive role of rimonabant on the reconsolidation of heroin-associated memory and the therapeutic potential in relapse control concerning substance use disorder.
Collapse
Affiliation(s)
- Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Junzhe Cheng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Binbin Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Department of Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Rêgo DSB, Calió ML, Filev R, Mello LE, Leslie ATFS. Long-term Effects of Cannabidiol and/or Fentanyl Exposure in Rats Submitted to Neonatal Pain. THE JOURNAL OF PAIN 2024; 25:715-729. [PMID: 37820846 DOI: 10.1016/j.jpain.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The current study aimed to evaluate anxiety behavior, hippocampal ionized calcium-binding adaptor molecule 1 (Iba1) and cannabinoid receptor 1 (CB1) gene expression, and nociceptive response in adulthood after a combination of fentanyl and cannabidiol (CBD) for nociceptive stimuli induced during the first week of life in rats. Complete Freund's adjuvant-induced inflammatory nociceptive insult on postnatal day (PN) 1 and PN3. Both fentanyl and CBD were used alone or in combination from PN1 to PN7. Behavioral and nociceptive tests were performed at PN60 and PN62. The expression of the microglial calcium-binding proteins Iba1 and CB1 was detected in the hippocampus using reverse Quantitative polymerase chain reaction (qPCR) and immunohistochemistry. Our results suggest that the anxiety behavior response and immune activation in adult life depend on the CBD dose combined with fentanyl for the nociceptive stimuli induced during the first week of life. Treatment of neonatal nociceptive insult with CBD and opioids showed significant dose-dependent and male-female differences. The increased gene expression in the hippocampus of the analyzed cannabinoid gene supports this data. In addition, treatment with fentanyl led to an increase in CB1 protein expression. Moreover, the expression of Iba1 varied according to the administered dose of CBD and may or may not be associated with the opioid. A lower dose of CBD during the inflammatory period was associated with enhanced anxiety in adult life. PERSPECTIVE: The treatment of nociceptive stimuli with CBD and opioids during the first week of life demonstrated significant sex differences in adult life on anxiety behavior and supraspinal pain sensitivity.
Collapse
Affiliation(s)
- Débora S B Rêgo
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Michele Longoni Calió
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Renato Filev
- Programa de Orientação e Atendimento a Dependentes (PROAD), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luiz E Mello
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Ana T F S Leslie
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
11
|
Gupta S, Bharatha A, Cohall D, Rahman S, Haque M, Azim Majumder MA. Aerobic Exercise and Endocannabinoids: A Narrative Review of Stress Regulation and Brain Reward Systems. Cureus 2024; 16:e55468. [PMID: 38440201 PMCID: PMC10910469 DOI: 10.7759/cureus.55468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/06/2024] Open
Abstract
Aerobic exercise is a widely adopted practice, not solely for enhancing fitness and reducing the risk of various diseases but also for its ability to uplift mood and aid in addressing depression and anxiety disorders. Within the scope of this narrative review, we seek to consolidate current insights into the endocannabinoid-mediated regulation of stress and the brain's reward mechanism resulting from engaging in aerobic exercise. A comprehensive search was conducted across Medline, SPORTDiscus, Pubmed, and Scopus, encompassing data available until November 30, 2023. This review indicates that a bout of aerobic exercise, particularly of moderate intensity, markedly augments circulating levels of endocannabinoids - N-arachidonoyl-ethanolamine (AEA) and 2-acylglycerol (2-AG), that significantly contributes to mood elevation and reducing stress in healthy individuals. The current understanding of how aerobic exercise impacts mental health and mood improvement is still unclear. Moderate and high-intensity aerobic exercise modulates stress through a negative feedback mechanism targeting both the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system, thereby facilitating stress regulation crucial role in endocannabinoid synthesis, ultimately culminating in the orchestration of negative feedback across multiple tiers of the HPA axis, coupled with its influence over cortical and subcortical brain structures. The endocannabinoid has been observed to govern the release of neurotransmitters from diverse neuronal populations, implying a universal mechanism that fine-tunes neuronal activity and consequently modulates both emotional and stress-related responses. Endocannabinoids further assume a pivotal function within brain reward mechanisms, primarily mediated by CB1 receptors distributed across diverse cerebral centers. Notably, these endocannabinoids partake in natural reward processes, as exemplified in aerobic exercise, by synergizing with the dopaminergic reward system. The genesis of this reward pathway can be traced to the ventral tegmental area, with dopamine neurons predominantly projecting to the nucleus accumbens, thereby inciting dopamine release in response to rewarding stimuli.
Collapse
Affiliation(s)
- Subir Gupta
- Physiology, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| | - Ambadasu Bharatha
- Pharmacology, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| | - Damian Cohall
- Pharmacology, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| | - Sayeeda Rahman
- Pharmacology, School of Medicine, American University of Integrative Sciences, Bridgetown, BRB
| | - Mainul Haque
- Pharmacology and Therapeutics, Karnavati Scientific Research Center (KSRC) School of Dentistry, Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Md Anwarul Azim Majumder
- Medical Education, Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, BRB
| |
Collapse
|
12
|
Norred MA, Zuschlag ZD, Hamner MB. A Neuroanatomic and Pathophysiologic Framework for Novel Pharmacological Approaches to the Treatment of Post-traumatic Stress Disorder. Drugs 2024; 84:149-164. [PMID: 38413493 DOI: 10.1007/s40265-023-01983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 02/29/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating disorder inflicting high degrees of symptomatic and socioeconomic burdens. The development of PTSD results from a cascade of events with contributions from multiple processes and the underlying pathophysiology is complex, involving neurotransmitters, neurocircuitry, and neuroanatomical pathways. Presently, only two medications are US FDA-approved for the treatment of PTSD, both selective serotonin reuptake inhibitors (SSRIs). However, the complex underlying pathophysiology suggests a number of alternative pathways and mechanisms that may be targets for potential drug development. Indeed, investigations and drug development are proceeding in a number of these alternative, non-serotonergic pathways in an effort to improve the management of PTSD. In this manuscript, the authors introduce novel and emerging treatments for PTSD, including drugs in various stages of development and clinical testing (BI 1358894, BNC-210, PRAX-114, JZP-150, LU AG06466, NYV-783, PH-94B, SRX246, TNX-102), established agents and known compounds being investigated for their utility in PTSD (brexpiprazole, cannabidiol, doxasoin, ganaxolone, intranasal neuropeptide Y, intranasal oxytocin, tianeptine oxalate, verucerfont), and emerging psychedelic interventions (ketamine, MDMA-assisted psychotherapy, psilocybin-assisted psychotherapy), with an aim to examine and integrate these agents into the underlying pathophysiological frameworks of trauma-related disorders.
Collapse
Affiliation(s)
- Michael A Norred
- Mental Health and Behavioral Sciences Service, James A. Haley Veterans Hospital, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - Zachary D Zuschlag
- Mental Health and Behavioral Sciences Service, James A. Haley Veterans Hospital, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - Mark B Hamner
- Behavioral Health Service, Ralph H. Johnson VA Medical Center, 109 Bee Street, Charleston, SC, 29401, USA.
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
13
|
Rullo L, Losapio LM, Morosini C, Mottarlini F, Schiavi S, Buzzelli V, Ascone F, Ciccocioppo R, Fattore L, Caffino L, Fumagalli F, Romualdi P, Trezza V, Candeletti S. Outcomes of early social experiences on glucocorticoid and endocannabinoid systems in the prefrontal cortex of male and female adolescent rats. Front Cell Neurosci 2023; 17:1270195. [PMID: 38174157 PMCID: PMC10762649 DOI: 10.3389/fncel.2023.1270195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Social and emotional experiences differently shape individual's neurodevelopment inducing substantial changes in neurobiological substrates and behavior, particularly when they occur early in life. In this scenario, the present study was aimed at (i) investigating the impact of early social environments on emotional reactivity of adolescent male and female rats and (ii) uncovering the underlying molecular features, focusing on the cortical endocannabinoid (eCB) and glucocorticoid systems. To this aim, we applied a protocol of environmental manipulation based on early postnatal socially enriched or impoverished conditions. Social enrichment was realized through communal nesting (CN). Conversely, an early social isolation (ESI) protocol was applied (post-natal days 14-21) to mimic an adverse early social environment. The two forms of social manipulation resulted in specific behavioral and molecular outcomes in both male and female rat offspring. Despite the combination of CN and ESI did not affect emotional reactivity in both sexes, the molecular results reveal that the preventive exposure to CN differently altered mRNA and protein expression of the main components of the glucocorticoid and eCB systems in male and female rats. In particular, adolescent females exposed to the combination of CN and ESI showed increased corticosterone levels, unaltered genomic glucocorticoid receptor, reduced cannabinoid receptor type-1 and fatty acid amide hydrolase protein levels, suggesting that the CN condition evokes different reorganization of these systems in males and females.
Collapse
Affiliation(s)
- Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Loredana Maria Losapio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti,” Università degli Studi di Milano, Milan, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Valeria Buzzelli
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Fabrizio Ascone
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Cagliari, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti,” Università degli Studi di Milano, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti,” Università degli Studi di Milano, Milan, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Wang Z, van Bruggen R, Sandini T, Hagen EV, Li XM, Zhang Y. Wistar-Kyoto rats and chronically stressed Wistar rats present similar depression- and anxiety-like behaviors but different corticosterone and endocannabinoid system modulation. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110825. [PMID: 37437836 DOI: 10.1016/j.pnpbp.2023.110825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
The interplay of social, psychological, and biological stresses can trigger mental health conditions such as major depressive disorder (MDD), adjustment disorder, and posttraumatic stress disorder (PTSD). The endocannabinoid system (ECS), comprising endocannabinoids and cannabinoid receptors, is the critical pathway that mediates responses to stress stimuli. This study aimed to investigate the ECS's impact on responding to chronic social instability stress (SIS). Wistar (WIS) rats and an endogenously depressed rat model, Wistar-Kyoto (WKY), were used to evaluate depression- and anxiety-like behavioral responses, cognitive function, hormone levels, and ECS function. The animals in the stress group (WIS-STS and WKY-STS) were exposed to TMT (predator odor) for 10 mins (two exposures in total: one in light cycle and one in dark cycle) and daily roommate changes (30 days in total), while the control group (CTL) rats were exposed to a sham odor stimulus (distilled water) and did not undergo roommate changes. The results in the open field test suggest that WKY rats had significantly lower locomotor activity than WIS rats. In contrast, WKY rats and chronically stressed WIS rats presented similar depression- and anxiety-like behaviors and impaired cognitive function in the elevated plus maze, forced swimming test, and novel objective recognition test. However, chronic SIS did not exacerbate these behavioral changes in WKY rats. ELISA and Western blot analysis indicated that chronic SIS did not induce further upregulation of endocannabinoids and CB1R downregulation in WKY rats compared to WIS rats. In addition, the Luminex assay revealed that WKY rats showed a higher resilience on the HPA-axis modulation towards chronic SIS, distinguished by the hyperactivity of the HPA-axis modulation in WIS rats. Overall, the study revealed that the chronic SIS animal model (stressed WIS rats) and an animal model of endogenous depression (WKY rats) can generate similar behavioral changes in anxious behavior, behavioral despair, and cognitive impairment. Both animal models present hyperactivity of the ACTH modulation and ECS activity, while WKY rats are more resilient on CORT modulation towards chronic SIS.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rebekah van Bruggen
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thaisa Sandini
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ethan V Hagen
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
15
|
Ellermann M. Emerging mechanisms by which endocannabinoids and their derivatives modulate bacterial populations within the gut microbiome. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11359. [PMID: 38389811 PMCID: PMC10880783 DOI: 10.3389/adar.2023.11359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024]
Abstract
Bioactive lipids such as endocannabinoids serve as important modulators of host health and disease through their effects on various host functions including central metabolism, gut physiology, and immunity. Furthermore, changes to the gut microbiome caused by external factors such as diet or by disease development have been associated with altered endocannabinoid tone and disease outcomes. These observations suggest the existence of reciprocal relationships between host lipid signaling networks and bacterial populations that reside within the gut. Indeed, endocannabinoids and their congeners such as N-acylethanolamides have been recently shown to alter bacterial growth, functions, physiology, and behaviors, therefore introducing putative mechanisms by which these bioactive lipids directly modulate the gut microbiome. Moreover, these potential interactions add another layer of complexity to the regulation of host health and disease pathogenesis that may be mediated by endocannabinoids and their derivatives. This mini review will summarize recent literature that exemplifies how N-acylethanolamides and monoacylglycerols including endocannabinoids can impact bacterial populations in vitro and within the gut microbiome. We also highlight exciting preclinical studies that have engineered gut bacteria to synthesize host N-acylethanolamides or their precursors as potential strategies to treat diseases that are in part driven by aberrant lipid signaling, including obesity and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
16
|
Hou L, Zhang H, Li Y, Zhu H, Liao K, Guo B, Dong C, Li G, Ye W, Wang L, Xu H. Correlation analysis of positron emission tomography/computed tomography-magnetic resonance imaging of cannabinoid type 1 receptor in the lumbar spine and brain of aged osteoporosis female cynomolgus monkeys. Quant Imaging Med Surg 2023; 13:7924-7935. [PMID: 38106237 PMCID: PMC10722013 DOI: 10.21037/qims-23-118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/14/2023] [Indexed: 12/19/2023]
Abstract
Background Although cannabinoid receptor 1 (CB1R) antagonists can inhibit bone loss in osteoporosis mouse models, different strains of mice show different bone mass phenotypes after knock out the CB1R gene. The relationship between CB1R and bone metabolism is complex, and its regulatory role in bone metabolism and as a therapeutic target for osteoporosis requires further investigation. Methods Based on lumbar spine volumetric bone mineral density (vBMD) data of healthy female cynomolgus monkeys aged 1-25 years, naturally aged postmenopausal female osteoporotic monkeys and normal young monkeys were screened by detecting lumbar vertebrae vBMD and estradiol levels in this study. Positron emission tomography-computed tomography (PET/CT) and magnetic resonance imaging (MRI) scans were performed on the lumbar spine and brain of the two groups of monkeys using the probe [11C]OMAR, which specifically targets CB1R, and the difference in the CB1R expression of osteoporotic monkeys was evaluated. Results The vBMD values of two standard deviations (SDs) below the peak bone value (428.1±53.8 g/cm3) were set as the reference standard for osteoporosis vBMD. Of the 49 healthy female cynomolgus monkeys, 4 postmenopausal older osteoporotic monkeys (18-26 years) and 5 young control monkeys (6-7 years) were selected, and the mean vBMD of the lumbar spine of the two groups was 295.07±19.11 and 419.72±16.14 g/cm3, respectively (P<0.0001). Radioactive uptake in the lumbar spine was linearly and negatively correlated with vBMD (r=-0.7977; P=0.01). Dynamic PET/MR imaging of the brains showed that CB1R was upregulated in the osteoporosis group, and there was a negative linear correlation between the vBMD and area under the time-radioactivity curve (AUC) of the thalamus (r=-0.8506; P=0.0153) and prefrontal cortex (r=-0.8306; P=0.0207). Conclusions In this study, PET/CT-MRI molecular imaging technology revealed that CB1R was upregulated in the lumbar spine and brain of the osteoporosis monkeys and that CB1R may be regulated by the brain-bone axis. CB1R antagonist may be a potential drug for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Lu Hou
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haitong Zhang
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Honghao Zhu
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kai Liao
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bin Guo
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chenchen Dong
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guocong Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weijian Ye
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hao Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Song C, Kang T, Gao K, Shi X, Zhang M, Zhao L, Zhou L, Guo J. Preparation for mice spaceflight: Indications for training C57BL/6J mice to adapt to microgravity effect with three-dimensional clinostat on the ground. Heliyon 2023; 9:e19355. [PMID: 37662714 PMCID: PMC10472007 DOI: 10.1016/j.heliyon.2023.e19355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Like astronauts, animals need to undergo training and screening before entering space. At present, pre-launch training for mice mainly focuses on adaptation to habitat system. Training for the weightless environment of space in mice has not received much attention. Three-dimensional (3D) clinostat is a method to simulate the effects of microgravity on Earth. However, few studies have used a 3D clinostat apparatus to simulate the effects of microgravity on animal models. Therefore, we conducted a study to evaluate the feasibility and effects of long-term treatment with three-dimensional clinostat in C57BL/6 J mice. Thirty 8-week-old male C57BL/6 J mice were randomly assigned to three groups: mice in individually ventilated cages (MC group, n = 6), mice in survival boxes (SB group, n = 12), and mice in survival boxes receiving 3D clinostat treatment (CS group, n = 12). The mice showed good tolerance after 12 weeks of alternate day training. To evaluate the biological effects of simulated microgravity, the changes in serum metabolites were monitored using untargeted metabolomics, whereas bone loss was assessed using microcomputed tomography of the left femur. Compared with the metabolome of the SB group, the metabolome of the CS group showed significant differences during the first three weeks and the last three weeks. The KEGG pathways in the late stages were mainly related to the nervous system, indicating the influence of long-term microgravity on the central nervous system. Besides, a marked reduction in the trabecular number (P < 0.05) and an increasing trend of trabecular spacing (P < 0.1) were observed to occur in a time-dependent manner in the CS group compared with the SB group. These results showed that mice tolerated well in a 3D clinostat and may provide a new strategy in pre-launch training for mice and conducting relevant ground-based modeling experiments.
Collapse
Affiliation(s)
- Chenchen Song
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Taisheng Kang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Kai Gao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xudong Shi
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Meng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Lianlian Zhao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Li Zhou
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jianguo Guo
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Freeman-Striegel L, Hamilton J, Kannappan R, Bell T, Robison L, Thanos PK. Chronic Δ9-tetrahydrocannabinol treatment has dose-dependent effects on open field exploratory behavior and [ 3H] SR141716A receptor binding in the rat brain. Life Sci 2023; 327:121825. [PMID: 37270168 PMCID: PMC12006982 DOI: 10.1016/j.lfs.2023.121825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
AIMS Acute and chronic Δ9-THC exposure paradigms affect the body differently. More must be known about the impact of chronic Δ9-THC on cannabinoid-1 (CB1R) and mu-opioid (MOR) receptor levels in the brain. The present study examined chronic Δ9-THC's effects on CB1R and MOR levels and locomotor activity. MAIN METHODS Adolescent Sprague-Dawley rats were given daily intraperitoneal injections of Δ9-THC [0.75mg/kg (low dose or LD) or 2.0 mg/kg (high dose or HD)] or vehicle for 24 days, and locomotion in the open field was tested after the first and fourth weeks of chronic Δ9-THC exposure. Brains were harvested at the end of treatment. [3H] SR141716A and [3H] DAMGO autoradiography assessed CB1R and MOR levels, respectively. KEY FINDINGS Relative to each other, chronic HD rats showed reduced vertical plane (VP) entries and time, while LD rats had increased VP entries and time for locomotion, as assessed by open-field testing; no effects were found relative to the control. Autoradiography analyses showed that HD Δ9-THC significantly decreased CB1R binding relative to LD Δ9-THC in the cingulate (33%), primary motor (42%), secondary motor (33%) somatosensory (38%), rhinal (38%), and auditory (50%) cortices; LD Δ9-THC rats displayed elevated binding in the primary motor (33% increase) and hypothalamic (33% increase) regions compared with controls. No significant differences were observed in MOR binding for the LD or HD compared to the control. SIGNIFICANCE These results demonstrate that chronic Δ9-THC dose-dependently altered CB1R levels throughout the brain and locomotor activity in the open field.
Collapse
Affiliation(s)
- Lily Freeman-Striegel
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America; Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Renuka Kannappan
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Tyler Bell
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Lisa Robison
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America; Department of Psychology, University at Buffalo, Buffalo, New York, United States of America.
| |
Collapse
|
19
|
Richtig G, Kienzl M, Rittchen S, Roula D, Eberle J, Sarif Z, Pichler M, Hoefler G, Heinemann A. Cannabinoids Reduce Melanoma Cell Viability and Do Not Interfere with Commonly Used Targeted Therapy in Metastatic Melanoma In Vivo and In Vitro. BIOLOGY 2023; 12:biology12050706. [PMID: 37237519 DOI: 10.3390/biology12050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023]
Abstract
Background: Cannabinoids are mainly used for recreational purposes, but also made their way into oncology, since these substances can be taken to increase appetite in tumour cachexia. Since there are some hints in the literature that cannabinoids might have some anti-cancerous effects, the aim of this study was to study if and how cannabinoids mediate pro-apoptotic effects in metastatic melanoma in vivo and in vitro and its value besides conventional targeted therapy in vivo. Methods: Several melanoma cell lines were treated with different concentrations of cannabinoids, and anti-cancerous efficacy was assessed by proliferation and apoptosis assays. Subsequent pathway analysis was performed using apoptosis, proliferation, flow cytometry and confocal microscopy data. The efficacy of cannabinoids in combination with trametinib was studied in NSG mice in vivo. Results: Cannabinoids reduced cell viability in multiple melanoma cell lines in a dose-dependent way. The effect was mediated by CB1, TRPV1 and PPARα receptors, whereby pharmacological blockade of all three receptors protected from cannabinoid-induced apoptosis. Cannabinoids initiated apoptosis by mitochondrial cytochrome c release with consecutive activation of different caspases. Essentially, cannabinoids significantly decreased tumour growth in vivo and were as potent as the MEK inhibitor trametinib. Conclusions: We could demonstrate that cannabinoids reduce cell viability in several melanoma cell lines, initiate apoptosis via the intrinsic apoptotic pathway by cytochrome c release and caspase activation and do not interfere with commonly used targeted therapy.
Collapse
Affiliation(s)
- Georg Richtig
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Melanie Kienzl
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Sonja Rittchen
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - David Roula
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Jürgen Eberle
- Department of Dermatology, Venereology and Allergology, Skin Cancer Center Charité, Charité-Universitätsmedizin Berlin (University Medical Center Charité), 10117 Berlin, Germany
| | - Zina Sarif
- Department of Dermatology, Venereology and Allergology, Skin Cancer Center Charité, Charité-Universitätsmedizin Berlin (University Medical Center Charité), 10117 Berlin, Germany
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Akos Heinemann
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
20
|
Turco F, Brugnatelli V, Abalo R. Neuro-Gastro-Cannabinology: A Novel Paradigm for Regulating Mood and Digestive Health. Med Cannabis Cannabinoids 2023; 6:130-137. [PMID: 37920559 PMCID: PMC10618907 DOI: 10.1159/000534007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/30/2023] [Indexed: 11/04/2023] Open
Abstract
The maintenance of homeostasis in the gastrointestinal (GI) tract is ensured by the presence of the endocannabinoid system (ECS), which regulates important physiological activities, such as motility, permeability, fluid secretion, immunity, and visceral pain sensation. Beside its direct effects on the GI system, the ECS in the central nervous system indirectly regulates GI functions, such as food intake and energy balance. Mounting evidence suggests that the ECS may play an important role in modulating central neurotransmission which affects GI functioning. It has also been found that the interaction between the ECS and microbiota affects brain and gut activity in a bidirectional manner, and a number of studies demonstrate that there is a strong relationship between GI dysfunctions and mood disorders. Thus, microbiota can regulate the tone of the ECS. Conversely, changes in intestinal ECS tone may influence microbiota composition. In this mini-review, we propose the concept of neuro-gastro-cannabinology as a novel and alternative paradigm for studying and treating GI disorders that affect mood, as well as mood disorders that imbalance GI physiology. This concept suggests the use of prebiotics or probiotics for improving the tone of the ECS, as well as the use of phytocannabinoids or endocannabinoid-like molecules, such as palmitoylethanolamide, to restore the normal intestinal microbiota. This approach may be effective in ameliorating the negative effects of GI dysfunctions on mood and/or the effects of mood disorders on digestive health.
Collapse
Affiliation(s)
| | | | - Raquel Abalo
- Depar High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Madrid, Spain
- R & D & I Unit Associated with the Institute of Medicinal Chemistry (IQM), Spanish National Research-Council (CSIC), Madrid, Spain
- Spanish Pain Society Working Groups on Basic Sciences in Pain and Analgesia and on Cannabinoids, Madrid, Spain
| |
Collapse
|
21
|
Demaili A, Portugalov A, Dudai M, Maroun M, Akirav I, Braun K, Bock J. Epigenetic (re)programming of gene expression changes of CB1R and FAAH in the medial prefrontal cortex in response to early life and adolescence stress exposure. Front Cell Neurosci 2023; 17:1129946. [PMID: 36909279 PMCID: PMC9992175 DOI: 10.3389/fncel.2023.1129946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Environmental factors, including stress, that are experienced during early life (ELS) or adolescence are potential risk factors for the development of behavioral and mental disorders later in life. The endocannabinoid system plays a major role in the regulation of stress responses and emotional behavior, thereby acting as a mediator of stress vulnerability and resilience. Among the critical factors, which determine the magnitude and direction of long-term consequences of stress exposure is age, i.e., the maturity of brain circuits during stress exposure. Thus, the present study addressed the hypotheses that ELS and adolescent stress differentially affect the expression of regulatory elements of the endocannabinoid system, cannabinoid receptor 1 (CB1R) and fatty acid amide hydrolase (FAAH) in the medial prefrontal cortex (mPFC) of adult female rats. We also tested the hypothesis that the proposed gene expression changes are epigenetically modulated via altered DNA-methylation. The specific aims were to investigate if (i) ELS and adolescent stress as single stressors induce changes in CB1R and FAAH expression (ii) ELS exposure influences the effect of adolescent stress on CB1R and FAAH expression, and (iii) if the proposed gene expression changes are paralleled by changes of DNA methylation. The following experimental groups were investigated: (1) non-stressed controls (CON), (2) ELS exposure (ELS), (3) adolescent stress exposure (forced swimming; FS), (4) ELS + FS exposure. We found an up-regulation of CB1R expression in both single-stressor groups and a reduction back to control levels in the ELS + FS group. An up-regulation of FAAH expression was found only in the FS group. The data indicate that ELS, i.e., stress during a very immature stage of brain development, exerts a buffering programming effect on gene expression changes induced by adolescent stress. The detected gene expression changes were accompanied by altered DNA methylation patterns in the promoter region of these genes, specifically, a negative correlation of mean CB1R DNA methylation with gene expression was found. Our results also indicate that ELS induces a long-term "(re)programming" effect, characterized by CpG-site specific changes within the promoter regions of the two genes that influence gene expression changes in response to FS at adolescence.
Collapse
Affiliation(s)
- Arijana Demaili
- Department of Zoology and Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Anna Portugalov
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Michal Dudai
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Mouna Maroun
- The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel.,Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Katharina Braun
- Department of Zoology and Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Brain and Behavioral Science, Magdeburg, Germany
| | - Jörg Bock
- Department of Zoology and Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Brain and Behavioral Science, Magdeburg, Germany.,Project Group (PG) Epigenetics and Structural Plasticity, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
22
|
Gao W, Anna Valdimarsdóttir U, Hauksdóttir A, Eyrún Torfadóttir J, Kirschbaum C. The assessment of endocannabinoids and N-acylethanolamines in human hair: Associations with sociodemographic and psychological variables. Clin Chim Acta 2022; 537:1-8. [DOI: 10.1016/j.cca.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
|
23
|
Salivary Endocannabinoid Profiles in Chronic Orofacial Pain and Headache Disorders: An Observational Study Using a Novel Tool for Diagnosis and Management. Int J Mol Sci 2022; 23:ijms232113017. [PMID: 36361803 PMCID: PMC9659113 DOI: 10.3390/ijms232113017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
The endocannabinoid system is involved in physiological and pathological processes, including pain generation, modulation, and sensation. Its role in certain types of chronic orofacial pain (OFP) has not been thoroughly examined. By exploring the profiles of specific salivary endocannabinoids (eCBs) in individuals with different types of OFP, we evaluated their use as biomarkers and the influence of clinical parameters and pain characteristics on eCB levels. The salivary levels of anandamide (AEA), 2-arachidonoyl glycerol (2-AG), and their endogenous breakdown product arachidonic acid (AA), as well as the eCB-like molecules N-palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), were assessed in 83 OFP patients and 43 pain-free controls using liquid chromatography/tandem mass spectrometry. Patients were grouped by diagnosis: post-traumatic neuropathy (PTN), trigeminal neuralgia (TN), temporomandibular disorder (TMD), migraine, tension-type headache (TTH), and burning mouth syndrome (BMS). Correlation analyses between a specific diagnosis, pain characteristics, and eCB levels were conducted. Significantly lower levels of 2-AG were found in the TN and TTH groups, while significantly lower PEA levels were found in the migraine group. BMS was the only group with elevated eCBs (AEA) versus the control. Significant correlations were found between levels of specific eCBs and gender, health-related quality of life (HRQoL), BMI, pain duration, and sleep awakenings. In conclusion, salivary samples exhibited signature eCBs profiles for major OFP disorders, especially migraine, TTH, TN, and BMS. This finding may pave the way for using salivary eCBs biomarkers for more accurate diagnoses and management of chronic OFP patients.
Collapse
|
24
|
Cristiano C, Avagliano C, Cuozzo M, Liguori FM, Calignano A, Russo R. The Beneficial Effects of Ultramicronized Palmitoylethanolamide in the Management of Neuropathic Pain and Associated Mood Disorders Induced by Paclitaxel in Mice. Biomolecules 2022; 12:biom12081155. [PMID: 36009049 PMCID: PMC9406031 DOI: 10.3390/biom12081155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common complication of antineoplastic drugs, particularly paclitaxel (PTX). It can affect the quality of patients’ lives and increase the risk of developing mood disorders. Although several drugs are recommended, they yielded inconclusive results in clinical trials. The aim of the present work is to investigate whether the palmitoylethanolamide (PEA) would reduce PTX-induced CIPN and associated mood disorders. Moreover, the role PPAR-α and the endocannabinoid system will also be investigated. CIPN was induced by intraperitoneally injection of PTX (8 mg/kg) every other day for a week. PEA, 30 mg/kg, was orally administrated in a bioavailable form (i.e., ultramicronized PEA, um-PEA) one hour after the last PTX injection, for 7 days. In the antagonism experiments, AM281 (1 mg/kg) and GW6471 (2 mg/kg) were administrated 30 min before um-PEA. Our results demonstrated that um-PEA reduced the development of hypersensitivity with the effect being associated with the reduction in spinal and hippocampal pro-inflammatory cytokines, as well as antidepressive and anxiolytic effects. Moreover, the PPAR-α and CB1 receptor antagonists blocked the behavioral and antinociceptive effects of um-PEA. Our findings suggest that um-PEA is a promising adjunct in CIPN and associated mood disorders through the activation of PPAR-α, which influences the endocannabinoid system.
Collapse
|
25
|
Murkar A, Kendzerska T, Shlik J, Quilty L, Saad M, Robillard R. Increased cannabis intake during the COVID-19 pandemic is associated with worsening of depression symptoms in people with PTSD. BMC Psychiatry 2022; 22:554. [PMID: 35978287 PMCID: PMC9382626 DOI: 10.1186/s12888-022-04185-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Some evidence suggests substance use affects clinical outcomes in people with posttraumatic stress disorder (PTSD). However, more work is required to examine links between mental health and cannabis use in PTSD during exposure to external stressors such as the COVID-19 pandemic. This study assessed mental health factors in individuals with self-reported PTSD to: (a) determine whether stress, anxiety, and depression symptoms were associated with changes in cannabis consumption across the pandemic, and (b) to contrast the degree to which clinically significant perceived symptom worsening was associated with changes in cannabis intake. METHOD Data were obtained as part of a larger web-based population survey from April 3rd to June 24th 2020 (i.e., first wave of the pandemic in Canada). Participants (N = 462) with self-reported PTSD completed questionnaires to assess mental health symptoms and answered questions pertaining to their cannabis intake. Participants were categorized according to whether they were using cannabis or not, and if using, whether their use frequency increased, decreased, or remained unchanged during the pandemic. RESULTS Findings indicated an overall perceived worsening of stress, anxiety, and depression symptoms across all groups. A higher-than-expected proportion of individuals who increased their cannabis consumption reached threshold for minimal clinically important worsening of depression, X2(3) = 10.795, p = 0.013 (Cramer's V = 0.166). CONCLUSION Overall, those who increased cannabis use during the pandemic were more prone to undergo meaningful perceived worsening of depression symptoms. Prospective investigations will be critical next steps to determine the directionality of the relationship between cannabis and depressive symptoms.
Collapse
Affiliation(s)
- A Murkar
- University of Ottawa Institute of Mental Health Research at The Royal, Sleep Research Unit, 1145 Carling Ave, ON, K1Z 7K4, Ottawa, Canada
| | - T Kendzerska
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - J Shlik
- The Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - L Quilty
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - M Saad
- University of Ottawa Institute of Mental Health Research at The Royal, Sleep Research Unit, 1145 Carling Ave, ON, K1Z 7K4, Ottawa, Canada
| | - R Robillard
- University of Ottawa Institute of Mental Health Research at The Royal, Sleep Research Unit, 1145 Carling Ave, ON, K1Z 7K4, Ottawa, Canada.
- University of Ottawa School of Psychology, ON, Ottawa, Canada.
| |
Collapse
|
26
|
Desai S, Borg B, Cuttler C, Crombie KM, Rabinak CA, Hill MN, Marusak HA. A Systematic Review and Meta-Analysis on the Effects of Exercise on the Endocannabinoid System. Cannabis Cannabinoid Res 2022; 7:388-408. [PMID: 34870469 PMCID: PMC9418357 DOI: 10.1089/can.2021.0113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction: The endocannabinoid (eCB) system plays a key role in maintaining homeostasis, including the regulation of metabolism and stress responses. Chronic stress may blunt eCB signaling, and disruptions in eCB signaling have been linked to stress-related psychiatric disorders and physical health conditions, including anxiety, depression, post-traumatic stress disorder (PTSD), diabetes, and obesity. Pharmacological and nonpharmacological behavioral interventions (e.g., exercise) that target the eCB system may be promising therapeutic approaches for the prevention and treatment of stress-related diseases. In this study, we perform a systematic review and the first meta-analysis to examine the impact of exercise on circulating eCB concentrations. Materials and Methods: We performed a review of the MEDLINE (PubMed) database for original articles examining the impact of exercise on eCBs in humans and animal models. A total of 262 articles were screened for initial inclusion. Results: Thirty-three articles (reporting on 57 samples) were included in the systematic review and 10 were included in the meta-analysis. The majority of samples that measured anandamide (AEA) showed a significant increase in AEA concentrations following acute exercise (74.4%), whereas effects on 2-arachidonoylglycerol (2-AG) were inconsistent. The meta-analysis, however, revealed a consistent increase in both AEA and 2-AG following acute exercise across modalities (e.g., running, cycling), species (e.g., humans, mice), and in those with and without pre-existing health conditions (e.g., PTSD, depression). There was substantial heterogeneity in the magnitude of the effect across studies, which may relate to exercise intensity, physical fitness, timing of measurement, and/or fasted state. Effects of chronic exercise were inconsistent. Conclusions: Potential interpretations and implications of exercise-induced mobilization of eCBs are discussed, including refilling of energy stores and mediating analgesic and mood elevating effects of exercise. We also offer recommendations for future work and discuss therapeutic implications for exercise in the prevention and treatment of stress-related psychopathology.
Collapse
Affiliation(s)
- Shreya Desai
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Breanna Borg
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Carrie Cuttler
- Department of Psychology, Washington State University, Pullman, Washington, USA
| | - Kevin M. Crombie
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Christine A. Rabinak
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Practice and Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| | - Matthew N. Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hilary A. Marusak
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
27
|
Han X, Song X, Song D, Xie G, Guo H, Wu N, Li J. Comparison between cannabidiol and sertraline for the modulation of post-traumatic stress disorder-like behaviors and fear memory in mice. Psychopharmacology (Berl) 2022; 239:1605-1620. [PMID: 35396940 DOI: 10.1007/s00213-022-06132-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/28/2022] [Indexed: 12/30/2022]
Abstract
RATIONALE AND OBJECTIVES Post-traumatic stress disorder (PTSD) is characterized by poor adaptation to a traumatic experience and disturbances in fear memory regulation, and currently lacks effective medication. Cannabidiol is a main constituent of Cannabis sativa; it has no psychotomimetic effects and has been implicated in modulating fear learning in mammals. Using a mouse PTSD model, we investigated the effects of CBD on PTSD-like behaviors and the modulation of trauma-related fear memory, a crucial process leading to core symptoms of PTSD. METHODS We applied the modified pre-shock model to evaluated PTSD-like behaviors from days 3 to 26. The measures included the freezing time to the conditioned context, open field test, elevated plus maze test, and social interaction test. CBD and sertraline were administered at different stages of fear memory. RESULTS CBD (10 mg/kg, i.p.) administration alleviated main PTSD-like symptoms in the mouse pre-shock model by attenuating trauma-related fear memory and anxiety-like behavior, and increasing social interaction behavior. The effects of CBD were apparent irrespective of whether it was administered before, during, or after re-exposure to the aversive context. However, sertraline (15 mg/kg, p.o.) was only effective when administered before the behavioral test. CBD also reduced the consolidation, retrieval, and reconsolidation of trauma-related fear memory, whereas sertraline only reduced fear-memory retrieval. CONCLUSION CBD produced anti-PTSD-like actions in mice and disrupted trauma-related fear memory by interfering with multiple aspects of fear memory processing. These findings indicate that CBD may be a promising candidate for treating PTSD.
Collapse
Affiliation(s)
- Xiao Han
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Xiankui Song
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Dake Song
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Guanbo Xie
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Hongyan Guo
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| |
Collapse
|
28
|
Brianis RC, Lima RC, Moreira FA, Aguiar DC. Anti-aversive effect of 2-arachidonoylglycerol in the dorsolateral periaqueductal gray of male rats in contextual fear conditioning and Vogel tests. Behav Pharmacol 2022; 33:213-221. [PMID: 34074811 DOI: 10.1097/fbp.0000000000000639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The endocannabinoid system modulates the stress coping strategies in the dorsolateral periaqueductal grey (dlPAG). The most relevant endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG) exert inhibitory control over defensive reactions mediated by the dlPAG. However, the protective role of anandamide is limited by its lack of effect in higher concentrations. Thus, the 2-AG emerges as a complementary target for developing new anxiolytic compounds. Nevertheless, the role of 2-AG on stress responsivity may vary according to the nature of the stimulus. In this study, we verified whether the dlPAG injection of 2-AG or inhibitors of its hydrolysis induce anxiolytic-like effects in male Wistar rats exposed to behavioral models in which physical stress (mild electric shock) is a critical component, namely the contextual fear conditioning test (CFC) and the Vogel conflict test (VCT). We also investigated the contribution of cannabinoid receptor type 1 (CB1) and type 2 (CB2) in such effects. The facilitation of 2-AG signaling in the dlPAG reduced contextual fear expression and exhibited an anxiolytic-like effect in the VCT in a mechanism dependent on activation of CB1 and CB2. However, the VCT required a higher dose than CFC. Further, the monoacylglycerol inhibitors, which inhibit the hydrolysis of 2-AG, were effective only in the CFC. In conclusion, we confirmed the anti-aversive properties of 2-AG in the dlPAG through CB1 and CB2 mechanisms. However, these effects could vary according to the type of stressor and the anxiety model employed.
Collapse
Affiliation(s)
- Rayssa C Brianis
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
29
|
Wang J, Li D, Zhao B, Kim J, Sui G, Shi J. Small Molecule Compounds of Natural Origin Target Cellular Receptors to Inhibit Cancer Development and Progression. Int J Mol Sci 2022; 23:ijms23052672. [PMID: 35269825 PMCID: PMC8911024 DOI: 10.3390/ijms23052672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
Receptors are macromolecules that transmit information regulating cell proliferation, differentiation, migration and apoptosis, play key roles in oncogenic processes and correlate with the prognoses of cancer patients. Thus, targeting receptors to constrain cancer development and progression has gained widespread interest. Small molecule compounds of natural origin have been widely used as drugs or adjuvant chemotherapeutic agents in cancer therapies due to their activities of selectively killing cancer cells, alleviating drug resistance and mitigating side effects. Meanwhile, many natural compounds, including those targeting receptors, are still under laboratory investigation for their anti-cancer activities and mechanisms. In this review, we classify the receptors by their structures and functions, illustrate the natural compounds targeting these receptors and discuss the mechanisms of their anti-cancer activities. We aim to provide primary knowledge of mechanistic regulation and clinical applications of cancer therapies through targeting deregulated receptors.
Collapse
Affiliation(s)
| | | | | | | | - Guangchao Sui
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| | - Jinming Shi
- Correspondence: (G.S.); (J.S.); Tel.: +86-451-82191081 (G.S. & J.S.)
| |
Collapse
|
30
|
O’Brien K. Cannabidiol (CBD) in Cancer Management. Cancers (Basel) 2022; 14:cancers14040885. [PMID: 35205633 PMCID: PMC8869992 DOI: 10.3390/cancers14040885] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Cannabidiol (CBD) is one of the main constituents of the plant Cannabis sativa. Surveys suggest that medicinal cannabis is popular amongst people diagnosed with cancer. CBD is one of the key constituents of cannabis, and does not have the potentially intoxicating effects that tetrahydrocannabinol (THC), the other key phytocannabinoid has. Research indicates the CBD may have potential for the treatment of cancer, including the symptoms and signs associated with cancer and its treatment. Preclinical research suggests CBD may address many of the pathways involved in the pathogenesis of cancers. Preclinical and clinical research also suggests some evidence of efficacy, alone or in some cases in conjunction with tetrahydrocannabinol (THC, the other key phytocannabinoid in cannabis), in treating cancer-associated pain, anxiety and depression, sleep problems, nausea and vomiting, and oral mucositis that are associated with cancer and/or its treatment. Studies also suggest that CBD may enhance orthodox treatments with chemotherapeutic agents and radiation therapy and protect against neural and organ damage. CBD shows promise as part of an integrative approach to the management of cancer. Abstract The plant Cannabis sativa has been in use medicinally for several thousand years. It has over 540 metabolites thought to be responsible for its therapeutic effects. Two of the key phytocannabinoids are cannabidiol (CBD) and tetrahydrocannabinol (THC). Unlike THC, CBD does not have potentially intoxicating effects. Preclinical and clinical research indicates that CBD has a wide range of therapeutic effects, and many of them are relevant to the management of cancer. In this article, we explore some of the potential mechanisms of action of CBD in cancer, and evidence of its efficacy in the integrative management of cancer including the side effects associated with its treatment, demonstrating its potential for integration with orthodox cancer care.
Collapse
Affiliation(s)
- Kylie O’Brien
- Adelaide Campus, Torrens University, Adelaide, SA 5000, Australia;
- NICM Health Research Centre, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
- Releaf Group Ltd., St Kilda, VIC 3182, Australia
- International College of Cannabinoid Medicine, iccm.co, London N1 7GU, UK
| |
Collapse
|
31
|
Coelho AA, Vila-Verde C, Sartim AG, Uliana DL, Braga LA, Guimarães FS, Lisboa SF. Inducible Nitric Oxide Synthase Inhibition in the Medial Prefrontal Cortex Attenuates the Anxiogenic-Like Effect of Acute Restraint Stress via CB 1 Receptors. Front Psychiatry 2022; 13:923177. [PMID: 35911236 PMCID: PMC9330908 DOI: 10.3389/fpsyt.2022.923177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Stress exposure can result in several proinflammatory alterations in the brain, including overexpression of the inducible isoform of nitric oxide synthase (iNOS) in the medial prefrontal cortex (mPFC). These changes may be involved in the development of many psychiatric conditions. However, it is unknown if iNOS in mPFC plays a significant role in stress-induced behavioral changes. The endocannabinoid (ECB) system is also influenced by stress. Its activation seems to be a counter regulatory mechanism to prevent or decrease the stress-mediated neuroinflammatory consequences. However, it is unclear if the ECB system and iNOS interact to influence stress consequences. This study aimed to test the hypothesis that the anti-stress effect of iNOS inhibition in mPFC involves the local ECB system, particularly the CB1 cannabinoid receptors. Male Wistar rats with guide cannula aimed at the mPFC were submitted to acute restraint stress (RS) for 2 h. In the following morning, rats received bilateral microinjections of vehicle, AM251 (CB1 antagonist; 100 pmol), and/or 1400W (iNOS selective inhibitor; 10-4, 10-3, or 10-2 nmol) into the prelimbic area of mPFC (PL-mPFC) before being tested in the elevated plus-maze (EPM). iNOS inhibition by 1400W prevented the anxiogenic-like effect observed in animals submitted to RS. The drug did not promote behavior changes in naive animals, demonstrating a stress-dependent effect. The 1400W-anti-stress effect was prevented by local pretreatment with AM251. Our data suggest that iNOS inhibition may facilitate the local endocannabinoid signaling, attenuating stress effects.
Collapse
Affiliation(s)
- Arthur A Coelho
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil.,Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| | - Carla Vila-Verde
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil
| | - Ariandra G Sartim
- Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| | - Daniela L Uliana
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil.,Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Laura A Braga
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil
| | - Francisco S Guimarães
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil
| | - Sabrina F Lisboa
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil.,Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Enhancing Endocannabinoid Control of Stress with Cannabidiol. J Clin Med 2021; 10:jcm10245852. [PMID: 34945148 PMCID: PMC8704602 DOI: 10.3390/jcm10245852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
The stress response is a well-defined physiological function activated frequently by life events. However, sometimes the stress response can be inappropriate, excessive, or prolonged; in which case, it can hinder rather than help in coping with the stressor, impair normal functioning, and increase the risk of somatic and mental health disorders. There is a need for a more effective and safe pharmacological treatment that can dampen maladaptive stress responses. The endocannabinoid system is one of the main regulators of the stress response. A basal endocannabinoid tone inhibits the stress response, modulation of this tone permits/curtails an active stress response, and chronic deficiency in the endocannabinoid tone is associated with the pathological complications of chronic stress. Cannabidiol is a safe exogenous cannabinoid enhancer of the endocannabinoid system that could be a useful treatment for stress. There have been seven double-blind placebo controlled clinical trials of CBD for stress on a combined total of 232 participants and one partially controlled study on 120 participants. All showed that CBD was effective in significantly reducing the stress response and was non-inferior to pharmaceutical comparators, when included. The clinical trial results are supported by the established mechanisms of action of CBD (including increased N-arachidonylethanolamine levels) and extensive real-world and preclinical evidence of the effectiveness of CBD for treating stress.
Collapse
|
33
|
Any behavioral change may have physiological significance: Benign neglect in tier I neurotoxicity testing. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Loneliness: An Immunometabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212162. [PMID: 34831917 PMCID: PMC8618012 DOI: 10.3390/ijerph182212162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Loneliness has been defined as an agonizing encounter, experienced when the need for human intimacy is not met adequately, or when a person’s social network does not match their preference, either in number or attributes. This definition helps us realize that the cause of loneliness is not merely being alone, but rather not being in the company we desire. With loneliness being introduced as a measurable, distinct psychological experience, it has been found to be associated with poor health behaviors, heightened stress response, and inadequate physiological repairing activity. With these three major pathways of pathogenesis, loneliness can do much harm; as it impacts both immune and metabolic regulation, altering the levels of inflammatory cytokines, growth factors, acute-phase reactants, chemokines, immunoglobulins, antibody response against viruses and vaccines, and immune cell activity; and affecting stress circuitry, glycemic control, lipid metabolism, body composition, metabolic syndrome, cardiovascular function, cognitive function and mental health, respectively. Taken together, there are too many immunologic and metabolic manifestations associated with the construct of loneliness, and with previous literature showcasing loneliness as a distinct psychological experience and a health determinant, we propose that loneliness, in and of itself, is not just a psychosocial phenomenon. It is also an all-encompassing complex of systemic alterations that occur with it, expanding it into a syndrome of events, linked through a shared network of immunometabolic pathology. This review aims to portray a detailed picture of loneliness as an “immunometabolic syndrome”, with its multifaceted pathology.
Collapse
|
35
|
Rodríguez-Manzo G, González-Morales E, Garduño-Gutiérrez R. Endocannabinoids Released in the Ventral Tegmental Area During Copulation to Satiety Modulate Changes in Glutamate Receptors Associated With Synaptic Plasticity Processes. Front Synaptic Neurosci 2021; 13:701290. [PMID: 34483875 PMCID: PMC8416467 DOI: 10.3389/fnsyn.2021.701290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Endocannabinoids modulate mesolimbic (MSL) dopamine (DA) neurons firing at the ventral tegmental area (VTA). These neurons are activated by copulation, increasing DA release in nucleus accumbens (NAcc). Copulation to satiety in male rats implies repeated ejaculation within a short period (around 2.5 h), during which NAcc dopamine concentrations remain elevated, suggesting continuous neuronal activation. During the 72 h that follow copulation to satiety, males exhibit long-lasting changes suggestive of brain plasticity processes. Enhanced DA neuron activity triggers the synthesis and release of endocannabinoids (eCBs) in the VTA, which participate in several long-term synaptic plasticity processes. Blockade of cannabinoid type 1 receptors (CB1Rs) during copulation to satiety interferes with the appearance of the plastic changes. Glutamatergic inputs to the VTA express CB1Rs and contribute to DA neuron burst firing and synaptic plasticity. We hypothesized that eCBs, released during copulation to satiety, would activate VTA CB1Rs and modulate synaptic plasticity processes involving glutamatergic transmission. To test this hypothesis, we determined changes in VTA CB1R density, phosphorylation, and internalization in rats that copulated to satiety 24 h earlier as compared both to animals that ejaculated only once and to sexually experienced unmated males. Changes in glutamate AMPAR and NMDAR densities and subunit composition and in ERK1/2 activation were determined in the VTA of males that copulated to satiety in the presence or absence of AM251, a CB1R antagonist. The CB1R density decreased and the proportion of phosphorylated CB1Rs increased in the animals that copulated compared to control rats. The CB1R internalization was detected only in sexually satiated males. A decrease in α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR) density, blocked by AM251 pretreatment, and an increase in the proportion of GluA2-AMPARs occurred in sexually satiated rats. GluN2A- N-methyl-D-aspartate receptor (NMDAR) expression decreased, and GluN2B-NMDARs increased in these animals, both of which were prevented by AM251 pre-treatment. An increase in phosphorylated ERK1/2 emerged in males copulating to satiety in the presence of AM251. Results demonstrate that during copulation to satiety, eCBs activate CB1Rs in the VTA, producing changes in glutamate receptors compatible with a reduced neuronal activation. These changes could play a role in the induction of the long-lasting physiological changes that characterize sexually satiated rats.
Collapse
Affiliation(s)
- Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav-Sede Sur), Ciudad de México, Mexico
| | - Estefanía González-Morales
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav-Sede Sur), Ciudad de México, Mexico
| | - René Garduño-Gutiérrez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav-Sede Sur), Ciudad de México, Mexico
| |
Collapse
|
36
|
Alexander C, Vasefi M. Cannabidiol and the corticoraphe circuit in post-traumatic stress disorder. IBRO Neurosci Rep 2021; 11:88-102. [PMID: 34485973 PMCID: PMC8408530 DOI: 10.1016/j.ibneur.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 01/06/2023] Open
Abstract
Post-Traumatic Stress Disorder (PTSD), characterized by re-experiencing, avoidance, negative affect, and impaired memory processing, may develop after traumatic events. PTSD is complicated by impaired plasticity and medial prefrontal cortex (mPFC) activity, hyperactivity of the amygdala, and impaired fear extinction. Cannabidiol (CBD) is a promising candidate for treatment due to its multimodal action that enhances plasticity and calms hyperexcitability. CBD’s mechanism in the mPFC of PTSD patients has been explored extensively, but literature on the mechanism in the dorsal raphe nucleus (DRN) is lacking. Following the PRISMA guidelines, we examined current literature regarding CBD in PTSD and overlapping symptomologies to propose a mechanism by which CBD treats PTSD via corticoraphe circuit. Acute CBD inhibits excess 5-HT release from DRN to amygdala and releases anandamide (AEA) onto amygdala inputs. By first reducing amygdala and DRN hyperactivity, CBD begins to ameliorate activity disparity between mPFC and amygdala. Chronic CBD recruits the mPFC, creating harmonious corticoraphe signaling. DRN releases enough 5-HT to ameliorate mPFC hypoactivity, while the mPFC continuously excites DRN 5-HT neurons via glutamate. Meanwhile, AEA regulates corticoraphe activity to stabilize signaling. AEA prevents DRN GABAergic interneurons from inhibiting 5-HT release so the DRN can assist the mPFC in overcoming its hypoactivity. DRN-mediated restoration of mPFC activity underlies CBD’s mechanism on fear extinction and learning of stress coping. CBD reduces PTSD symptoms via the DRN and corticoraphe circuit. Acute effects of CBD reduce DRN-amygdala excitatory signaling to lessen the activity disparity between amygdala and mPFC. Chronic CBD officially resolves mPFC hypoactivity by facilitating 5-HT release from DRN to mPFC. CBD-facilitated endocannabinoid signaling stabilizes DRN activity and restores mPFC inhibitory control. Chronically administered CBD acts via the corticoraphe circuit to favor fear extinction over fear memory reconsolidation.
Collapse
Key Words
- 2-AG, 2-arachidonoylglycerol
- 5-HT, Serotonin
- 5-HT1AR, 5-HT Receptor Type 1A
- 5-HT2AR, 5-HT Receptor Type 2 A
- AEA, Anandamide
- CB1R, Cannabinoid Receptor Type 1
- CB2R, Cannabinoid Receptor Type 2
- CBD, Cannabidiol
- COVID-19, SARS-CoV-2
- Cannabidiol
- DRN, Dorsal Raphe Nucleus
- ERK1/2, Extracellular Signal-Related Kinases Type 1 or Type 2
- FAAH, Fatty Acid Amide Hydrolase
- GABA, Gamma-Aminobutyric Acid
- GPCRs, G-Protein Coupled Receptors
- NMDAR, N-Methyl-D-aspartate Receptors
- PET, Positron Emission Tomography
- PFC, DRN and Raphe
- PFC, Prefrontal Cortex
- PTSD
- PTSD, Post-Traumatic Stress Disorder
- SSNRI, Selective Norepinephrine Reuptake Inhibitor
- SSRI, Selective Serotonin Reuptake Inhibitor
- Serotonin
- TRPV1, Transient Receptor Potential Vanilloid 1 Channels
- Traumatic Stress
- fMRI, Functional Magnetic Resonance Imaging
- mPFC, Medial Prefrontal Cortex
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77710, USA
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77710, USA
| |
Collapse
|
37
|
Keever-Keigher MR, Zhang P, Bolt CR, Rymut HE, Antonson AM, Caputo MP, Houser AK, Hernandez AG, Southey BR, Rund LA, Johnson RW, Rodriguez-Zas SL. Interacting impact of maternal inflammatory response and stress on the amygdala transcriptome of pigs. G3 (BETHESDA, MD.) 2021; 11:jkab113. [PMID: 33856433 PMCID: PMC8496236 DOI: 10.1093/g3journal/jkab113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Changes at the molecular level capacitate the plasticity displayed by the brain in response to stress stimuli. Weaning stress can trigger molecular changes that influence the physiology of the offspring. Likewise, maternal immune activation (MIA) during gestation has been associated with behavior disorders and molecular changes in the amygdala of the offspring. This study advances the understanding of the effects of pre- and postnatal stressors in amygdala gene networks. The amygdala transcriptome was profiled on female and male pigs that were either exposed to viral-elicited MIA or not and were weaned or nursed. Overall, 111 genes presented interacting or independent effects of weaning, MIA, or sex (FDR-adjusted P-value <0.05). PIGY upstream reading frame and orthodenticle homeobox 2 are genes associated with MIA-related neurological disorders, and presented significant under-expression in weaned relative to nursed pigs exposed to MIA, with a moderate pattern observed in non-MIA pigs. Enriched among the genes presenting highly over- or under-expression profiles were 24 Kyoto Encyclopedia of Genes and Genomes pathways including inflammation, and neurological disorders. Our results indicate that MIA and sex can modulate the effect of weaning stress on the molecular mechanisms in the developing brain. Our findings can help identify molecular targets to ameliorate the effects of pre- and postnatal stressors on behaviors regulated by the amygdala such as aggression and feeding.
Collapse
Affiliation(s)
- Marissa R Keever-Keigher
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Courtni R Bolt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Haley E Rymut
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Adrienne M Antonson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Megan P Caputo
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Alexandra K Houser
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Alvaro G Hernandez
- High-Throughput Sequencing and Genotyping Unit, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Laurie A Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Rodney W Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| |
Collapse
|
38
|
Guzman AS, Avalos MP, De Giovanni LN, Euliarte PV, Sanchez MA, Mongi-Bragato B, Rigoni D, Bollati FA, Virgolini MB, Cancela LM. CB1R activation in nucleus accumbens core promotes stress-induced reinstatement of cocaine seeking by elevating extracellular glutamate in a drug-paired context. Sci Rep 2021; 11:12964. [PMID: 34155271 PMCID: PMC8217548 DOI: 10.1038/s41598-021-92389-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023] Open
Abstract
Preclinical models of stress-induced relapse to drug use have shown that the dysregulation of glutamatergic transmission within the nucleus accumbens (NA) contributes notably to the reinstatement of cocaine-seeking behavior in rodents. In this sense, there has been increasing interest in the cannabinoid type-1 receptor (CB1R), due to its crucial role in modulating glutamatergic neurotransmission within brain areas involved in drug-related behaviors. This study explored the involvement of CB1R within the NA subregions in the restraint stress-induced reinstatement of cocaine-conditioned place preference (CPP), as well as in the regulation of glutamatergic transmission, by using a pharmacological approach and the in vivo microdialysis sampling technique in freely moving rats. CB1R blockade by the antagonist/inverse agonist AM251 (5 nmol/0.5 μl/side) or CB1R activation by the agonist ACEA (0.01 fmol/0.5 μl/side), prevented or potentiated restraint stress-induced reinstatement of cocaine-CPP, respectively, after local administration into NAcore, but not NAshell. In addition, microdialysis experiments demonstrated that restraint stress elicited a significant increase in extracellular glutamate in NAcore under reinstatement conditions, with the local administration of AM251 or ACEA inhibiting or potentiating this, respectively. Interestingly, this rise specifically corresponded to the cocaine-associated CPP compartment. We also showed that this context-dependent change in glutamate paralleled the expression of cocaine-CPP, and disappeared after the extinction of this response. Taken together, these findings demonstrated the key role played by CB1R in mediating reinstatement of cocaine-CPP after restraint stress, through modulation of the context-specific glutamate release within NAcore. Additionally, CB1R regulation of basal extracellular glutamate was demonstrated and proposed as the underlying mechanism.
Collapse
Affiliation(s)
- Andrea S Guzman
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Maria P Avalos
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Laura N De Giovanni
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Pia V Euliarte
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Marianela A Sanchez
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Bethania Mongi-Bragato
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Daiana Rigoni
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Flavia A Bollati
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Miriam B Virgolini
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina
| | - Liliana M Cancela
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina. .,Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), X5000HUA, Córdoba, Argentina.
| |
Collapse
|
39
|
Isaac AR, de Velasco PC, Fraga KYD, Tavares-do-Carmo MDG, Campos RMP, Iannotti FA, Verde R, Martins DBG, Santos TA, Ferreira BK, de Mello FG, Di Marzo V, Andrade-da-Costa BLDS, de Melo Reis RA. Maternal omega-3 intake differentially affects the endocannabinoid system in the progeny`s neocortex and hippocampus: Impact on synaptic markers. J Nutr Biochem 2021; 96:108782. [PMID: 34038760 DOI: 10.1016/j.jnutbio.2021.108782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/16/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Omega-3 (n-3) polyunsaturated fatty acids (PUFA) and the endocannabinoid system (ECS) modulate several functions through neurodevelopment including synaptic plasticity mechanisms. The interplay between n-3PUFA and the ECS during the early stages of development, however, is not fully understood. This study investigated the effects of maternal n-3PUFA supplementation (n-3Sup) or deficiency (n-3Def) on ECS and synaptic markers in postnatal offspring. Female rats were fed with a control, n-3Def, or n-3Sup diet from 15 days before mating and during pregnancy. The cerebral cortex and hippocampus of mothers and postnatal 1-2 days offspring were analyzed. In the mothers, a n-3 deficiency reduced CB1 receptor (CB1R) protein levels in the cortex and increased CB2 receptor (CB2R) in both cortex and hippocampus. In neonates, a maternal n-3 deficiency reduced the hippocampal CB1R amount while it increased CB2R. Additionally, total GFAP isoform expression was increased in both cortex and hippocampus in neonates of the n-3Def group. Otherwise, maternal n-3 supplementation increased the levels of n-3-derived endocannabinoids, DHEA and EPEA, in the cortex and hippocampus and reduced 2-arachidonoyl-glycerol (2-AG) concentrations in the cortex of the offspring. Furthermore, maternal n-3 supplementation also increased PKA phosphorylation in the cortex and ERK phosphorylation in the hippocampus. Synaptophysin immunocontent in both regions was also increased. In vitro assays showed that the increase of synaptophysin in the n-3Sup group was independent of CB1R activation. The findings show that variations in maternal dietary omega-3 PUFA levels may impact differently on the ECS and molecular markers in the cerebral cortex and hippocampus of the progeny.
Collapse
Affiliation(s)
- Alinny Rosendo Isaac
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Karla Yasmin Dias Fraga
- Instituto de Nutrição Josué de Castro (INJC), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria das Graças Tavares-do-Carmo
- Instituto de Nutrição Josué de Castro (INJC), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Maria Pereira Campos
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy
| | - Danyelly Bruneska Gondim Martins
- Grupo de Bioinformática e prospecção molecular, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thaysa Aragão Santos
- Grupo de Bioinformática e prospecção molecular, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Bruna Klippel Ferreira
- Departamento de Bioquímica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Garcia de Mello
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy; Canada Exellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and NUTRISS-INAF Universitè Laval, Quebec City, Canada
| | | | - Ricardo Augusto de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Fuerte-Hortigón A, Gonçalves J, Zeballos L, Masa R, Gómez-Nieto R, López DE. Distribution of the Cannabinoid Receptor Type 1 in the Brain of the Genetically Audiogenic Seizure-Prone Hamster GASH/Sal. Front Behav Neurosci 2021; 15:613798. [PMID: 33841106 PMCID: PMC8024637 DOI: 10.3389/fnbeh.2021.613798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
The endocannabinoid system modulates epileptic seizures by regulating neuronal excitability. It has become clear that agonist activation of central type I cannabinoid receptors (CB1R) reduces epileptogenesis in pre-clinical animal models of epilepsy. The audiogenic seizure-prone hamster GASH/Sal is a reliable experimental model of generalized tonic-clonic seizures in response to intense sound stimulation. However, no studies hitherto had investigated CB1R in the GASH/Sal. Although the distribution of CB1R has been extensively studied in mammalian brains, their distribution in the Syrian golden hamster brain also remains unknown. The objective of this research is to determine by immunohistochemistry the differential distribution of CB1R in the brains of GASH/Sal animals under seizure-free conditions, by comparing the results with wild-type Syrian hamsters as controls. CB1R in the GASH/Sal showed a wide distribution in many nuclei of the central nervous system. These patterns of CB1R-immunolabeling are practically identical between the GASH/Sal model and control animals, varying in the intensity of immunostaining in certain regions, being slightly weaker in the GASH/Sal than in the control, mainly in brain regions associated with epileptic networks. The RT-qPCR analysis confirms these results. In summary, our study provides an anatomical basis for further investigating CB1R in acute and kindling audiogenic seizure protocols in the GASH/Sal model as well as exploring CB1R activation via exogenously administered cannabinoid compounds.
Collapse
Affiliation(s)
- Alejando Fuerte-Hortigón
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Department of Neurology, Virgen Macarena Hospital, Sevilla, Spain
| | - Jaime Gonçalves
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Laura Zeballos
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Rubén Masa
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Dolores E López
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| |
Collapse
|
41
|
Portugalov A, Akirav I. Do Adolescent Exposure to Cannabinoids and Early Adverse Experience Interact to Increase the Risk of Psychiatric Disorders: Evidence from Rodent Models. Int J Mol Sci 2021; 22:ijms22020730. [PMID: 33450928 PMCID: PMC7828431 DOI: 10.3390/ijms22020730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
There have been growing concerns about the protracted effects of cannabis use in adolescents on emotion and cognition outcomes, motivated by evidence of growing cannabis use in adolescents, evidence linking cannabis use to various psychiatric disorders, and the increasingly perceived notion that cannabis is harmless. At the same time, studies suggest that cannabinoids may have therapeutic potential against the impacts of stress on the brain and behavior, and that young people sometimes use cannabinoids to alleviate feelings of depression and anxiety (i.e., “self-medication”). Exposure to early adverse life events may predispose individuals to developing psychopathology in adulthood, leading researchers to study the causality between early life factors and cognitive and emotional outcomes in rodent models and to probe the underlying mechanisms. In this review, we aim to better understand the long-term effects of cannabinoids administered in sensitive developmental periods (mainly adolescence) in rodent models of early life stress. We suggest that the effects of cannabinoids on emotional and cognitive function may vary between different sensitive developmental periods. This could potentially affect decisions regarding the use of cannabinoids in clinical settings during the early stages of development and could raise questions regarding educating the public as to potential risks associated with cannabis use.
Collapse
Affiliation(s)
- Anna Portugalov
- Department of Psychology, School of Psychological Sciences, University of Haifa, 3498838 Haifa, Israel;
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 3498838 Haifa, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, 3498838 Haifa, Israel;
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 3498838 Haifa, Israel
- Correspondence:
| |
Collapse
|
42
|
Kang M, Bohorquez-Montoya L, McAuliffe T, Claesges SA, Blair NO, Sauber G, Reynolds CF, Hillard CJ, Goveas JS. Loneliness, Circulating Endocannabinoid Concentrations, and Grief Trajectories in Bereaved Older Adults: A Longitudinal Study. Front Psychiatry 2021; 12:783187. [PMID: 34955928 PMCID: PMC8692767 DOI: 10.3389/fpsyt.2021.783187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Loneliness is one of the most distressing grief symptoms and is associated with adverse mental health in bereaved older adults. The endocannabinoid signaling (ECS) system is stress-responsive and circulating endocannabinoid (eCB) concentrations are elevated following bereavement. This study examined the association between loneliness and circulating eCB concentrations in grieving older adults and explored the role of eCBs on the association between baseline loneliness and grief symptom trajectories. Methods: A total of 64 adults [grief with high loneliness: n = 18; grief with low loneliness: n = 26; and healthy comparison (HC): n = 20] completed baseline clinical assessments for the UCLA loneliness scale. In grief participants, longitudinal clinical assessments, including the Inventory of Complicated Grief and 17-item Hamilton Depression Rating scales, were collected over 6 months. Baseline circulating eCB [N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG)] concentrations were quantified in the serum using isotope dilution, liquid chromatography-mass spectrometry; cortisol concentrations were measured in the same samples using radioimmunoassay. Results: Circulating AEA concentrations were higher in severely lonely grieving elders than in HC group; cortisol concentrations were not different among the groups. Cross-sectionally, loneliness scores were positively associated with AEA concentrations in grievers; this finding was not significant after accounting for depressive symptom severity. Grieving individuals who endorsed high loneliness and had higher 2-AG concentrations at baseline showed faster grief symptom resolution. Conclusions: These novel findings suggest that in lonely, bereaved elders, increased circulating eCBs, a reflection of an efficient ECS system, are associated with better adaptation to bereavement. Circulating eCBs as potential moderators and mediators of the loneliness-grief trajectory associations should be investigated.
Collapse
Affiliation(s)
- Minhi Kang
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Luisa Bohorquez-Montoya
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Timothy McAuliffe
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Stacy A Claesges
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Nutta-On Blair
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Garrett Sauber
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Charles F Reynolds
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joseph S Goveas
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
43
|
On the Role of Central Type-1 Cannabinoid Receptor Gene Regulation in Food Intake and Eating Behaviors. Int J Mol Sci 2021; 22:ijms22010398. [PMID: 33401515 PMCID: PMC7796374 DOI: 10.3390/ijms22010398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Different neuromodulatory systems are involved in long-term energy balance and body weight and, among these, evidence shows that the endocannabinoid system, in particular the activation of type-1 cannabinoid receptor, plays a key role. We here review current literature focusing on the role of the gene encoding type-1 cannabinoid receptors in the CNS and on the modulation of its expression by food intake and specific eating behaviors. We point out the importance to further investigate how environmental cues might have a role in the development of obesity as well as eating disorders through the transcriptional regulation of this gene in order to prevent or to treat these pathologies.
Collapse
|
44
|
Graczyk M, Łukowicz M, Dzierzanowski T. Prospects for the Use of Cannabinoids in Psychiatric Disorders. Front Psychiatry 2021; 12:620073. [PMID: 33776815 PMCID: PMC7994770 DOI: 10.3389/fpsyt.2021.620073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/17/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence suggests an essential role of the endocannabinoid system in modulating cognitive abilities, mood, stress, and sleep. The psychoactive effects of cannabis are described as euphoric, calming, anxiolytic, and sleep-inducing and positively affect the mood, but can also adversely affect therapy. The responses to cannabinoid medications depend on the patient's endocannabinoid system activity, the proportion of phytocannabinoids, the terpenoid composition, and the dose used. There is some evidence for a therapeutic use of phytocannabinoids in psychiatric conditions. THC and CBD may have opposing effects on anxiety. Current guidelines recommend caution in using THC in patients with anxiety or mood disorders. In a small number of clinical trials, cannabinoids used to treat cancer, HIV, multiple sclerosis, hepatitis C, Crohn's disease, and chronic neuropathic pain report decreases in anxiety or depression symptoms and presented sedative and anxiolytic effects. Several studies have investigated the influence of potential genetic factors on psychosis and schizophrenia development after cannabis use. THC may increase the risk of psychosis, especially in young patients with an immature central nervous system. There is limited evidence from clinical trials that cannabinoids are effective therapy for sleep disorders associated with concomitant conditions. There is evidence for a possible role of cannabis as a substitute for alcohol and drugs, also in the context of the risks of opioid use (e.g., opioid-related mortality). In this narrative review of the recent evidence, we discuss the prospects of using the psychoactive effects of cannabinoids in treating mental and psychiatric disorders. However, this evidence is weak for some clinical conditions and well-designed randomized controlled trials are currently lacking. Furthermore, some disorders may be worsened by cannabis use.
Collapse
Affiliation(s)
- Michał Graczyk
- Department of Palliative Care, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Małgorzata Łukowicz
- Department of Rehabilitation, Center of Postgraduate Medical Education, Gruca Orthopedic and Trauma Teaching Hospital in Otwock, Otwock, Poland
| | - Tomasz Dzierzanowski
- Laboratory of Palliative Medicine, Department of Social Medicine and Public Health, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
45
|
Blood endocannabinoid levels in patients with panic disorder. Psychoneuroendocrinology 2020; 122:104905. [PMID: 33091759 DOI: 10.1016/j.psyneuen.2020.104905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND The development and maintenance of anxiety disorders is not fully understood. There is consensus in the literature that in addition to genetic factors, social, psychological and neurobiological factors are of crucial importance. The present exploratory study investigates the influence of the endocannabinoids (EC) and related N-acylethanolamines (NA) on the maintenance of panic disorder (PD). METHODS A total of n = 36 PD and n = 26 healthy controls (HC) were included in the study. Baseline characteristics showed no differences between the two groups. The participants were exposed to the Trier Social Stress Test (TSST) for reliable laboratory stress induction. Blood samples were taken during the TSST by an intravenous catheter to examine the endocannabinoid (EC) stress response. Repeated measures ANOVA was conducted to test for main effects of time and group as well as the respective interaction. RESULTS Participants with PD consistently had significantly higher EC and NA blood levels than HC. The consistently high EC and NA levels barely showed any reactivity as indicated by a lack of statistical variance. In line with these findings no reaction to the psychosocial stressor TSST could be detected. CONCLUSION Our main results show significant differences in EC concentrations between participants with PD and HC. These findings suggest that an imbalance in the ECS contributes to the maintenance of PD. Increased endocannabinoid levels may have important implications for organic diseases such as cardiovascular disorders. The limitations of the study as well as implications for further investigations are discussed.
Collapse
|
46
|
Cucinello-Ragland JA, Edwards S. Neurobiological aspects of pain in the context of alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:1-29. [PMID: 33648668 DOI: 10.1016/bs.irn.2020.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alcohol is an effective and widely utilized analgesic. However, the chronic use of alcohol can actually facilitate nociceptive sensitivity over time, a condition known as hyperalgesia. Excessive and uncontrollable alcohol drinking is also a hallmark feature of alcohol use disorder (AUD). Both AUD and chronic pain are typically accompanied by negative affective states that may underlie reinforcement mechanisms contributing to AUD maintenance or progression. Frequent utilization of alcohol to relieve pain in individuals suffering from AUD or other chronic pain conditions may thus represent a powerful negative reinforcement construct. This chapter will describe ties between alcohol-mediated pain relief and potential exacerbation of AUD. We describe neurobiological systems engaged in alcohol analgesia as well as systems recruited in the development and maintenance of AUD and hyperalgesia. Although few effective therapies exist for either chronic pain or AUD, the common interaction of these conditions will likely lead the way for promising new discoveries of more effective and even simultaneous treatment of AUD and co-morbid hyperalgesia. An abundance of neurobiological findings from multiple laboratories has implicated a potentiation of central amygdala (CeA) signaling in both pain and AUD, and these data also suggest that attenuation of stress-related systems (including corticotropin-releasing factor, vasopressin, and glucocorticoid receptor activity) would be particularly effective and comprehensive therapeutic strategies targeting the critical intersection of somatic and motivational mechanisms driving AUD, including alcohol-induced hyperalgesia.
Collapse
Affiliation(s)
- Jessica A Cucinello-Ragland
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States.
| |
Collapse
|
47
|
Harfmann EJ, McAuliffe TL, Larson ER, Claesges SA, Sauber G, Hillard CJ, Goveas JS. Circulating endocannabinoid concentrations in grieving adults. Psychoneuroendocrinology 2020; 120:104801. [PMID: 32682172 PMCID: PMC7348598 DOI: 10.1016/j.psyneuen.2020.104801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/04/2023]
Abstract
Bereavement is one of the most intense, distressing, and traumatic events an elderly person will experience. The symptom responses to bereavement vary, particularly during the first year. However, the neurobiology underlying the symptom variance in grief is poorly understood. The endocannabinoid signaling (ECS) system is stress-responsive; mounting evidence implicates the central ECS in psychopathology. The current study aimed to investigate the hypothesis that the ECS is abnormal in grief, using circulating eCB concentrations as a biomarker of central ECS. A predominantly older sample of grief participants, within 13 months following the death of a loved one, and healthy comparison (HC) participants were studied. Associations of circulating eCBs with symptom variance in grievers were also examined. A total of 61 (grief: n = 44; HC: n = 17) adults completed cross-sectional clinical assessments and a fasting blood draw. Assessments included the Inventory of Complicated Grief scale; the 17-item Hamilton Depression Rating Scale; and the Hamilton Anxiety scale. Serum eCB concentrations (i.e., N-arachidonoylethanolamine [AEA] and 2-arachidonoylglycerol [2-AG]) were quantified using isotope dilution, liquid chromatography-mass spectrometry. Relative to HC participants, grievers had significantly elevated serum AEA but similar 2-AG concentrations. In grievers, serum AEA concentrations were positively associated with depressive and anxiety symptoms, but only in those with low grief symptoms. These novel findings indicate that elevated circulating eCB concentrations are found following bereavement. The eCB signaling response varies based on the degree of grief severity. Circulating eCB measures may have the potential to serve as biomarkers of prolonged grief disorder.
Collapse
Affiliation(s)
- Elisabeth J Harfmann
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, Wisconsin, 53226, USA; Clement J. Zablocki Veterans Affairs Medical Center, 5000 W. National Ave, Milwaukee, Wisconsin, 53295, USA
| | - Timothy L McAuliffe
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, Wisconsin, 53226, USA
| | - Eric R Larson
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, Wisconsin, 53226, USA; Clement J. Zablocki Veterans Affairs Medical Center, 5000 W. National Ave, Milwaukee, Wisconsin, 53295, USA
| | - Stacy A Claesges
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, Wisconsin, 53226, USA
| | - Garrett Sauber
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, Wisconsin, 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, Wisconsin, 53226, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, Wisconsin, 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, Wisconsin, 53226, USA
| | - Joseph S Goveas
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, Wisconsin, 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, Wisconsin, 53226, USA; Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, Wisconsin, 53226, USA.
| |
Collapse
|
48
|
Tyler RE, Weinberg BZS, Lovelock DF, Ornelas LC, Besheer J. Exposure to the predator odor TMT induces early and late differential gene expression related to stress and excitatory synaptic function throughout the brain in male rats. GENES BRAIN AND BEHAVIOR 2020; 19:e12684. [PMID: 32666635 DOI: 10.1111/gbb.12684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
Persistent changes in brain stress and glutamatergic function are associated with post-traumatic stress disorder (PTSD). Rodent exposure to the predator odor trimethylthiazoline (TMT) is an innate stressor that produces lasting behavioral consequences relevant to PTSD. As such, the goal of the present study was to assess early (6 hours and 2 days-Experiment 1) and late (4 weeks-Experiment 2) changes to gene expression (RT-PCR) related to stress and excitatory function following TMT exposure in male, Long-Evans rats. During TMT exposure, rats engaged in stress reactive behaviors, including digging and immobility. Further, the TMT group displayed enhanced exploration and mobility in the TMT-paired context 1 week after exposure, suggesting a lasting contextual reactivity. Gene expression analyses revealed upregulated FKBP5 6 hours post-TMT in the hypothalamus and dorsal hippocampus. Two days after TMT, GRM3 was downregulated in the prelimbic cortex and dorsal hippocampus, but upregulated in the nucleus accumbens. This may reflect an early stress response (FKBP5) that resulted in later glutamatergic adaptation (GRM3). Finally, another experiment 4 weeks after TMT exposure showed several differentially expressed genes known to mediate excitatory tripartite synaptic function in the prelimbic cortex (GRM5, DLG4 and SLC1A3 upregulated), infralimbic cortex (GRM2 downregulated, Homer1 upregulated), nucleus accumbens (GRM7 and SLC1A3 downregulated), dorsal hippocampus (FKBP5 and NR3C2 upregulated, SHANK3 downregulated) and ventral hippocampus (CNR1, GRM7, GRM5, SHANK3 and Homer1 downregulated). These data show that TMT exposure induces stress and excitatory molecular adaptations, which could help us understand the persistent glutamatergic dysfunction observed in PTSD.
Collapse
Affiliation(s)
- Ryan E Tyler
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA.,Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Benjamin Z S Weinberg
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dennis F Lovelock
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laura C Ornelas
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joyce Besheer
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA.,Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
49
|
Ross JA, Van Bockstaele EJ. The role of catecholamines in modulating responses to stress: Sex-specific patterns, implications, and therapeutic potential for post-traumatic stress disorder and opiate withdrawal. Eur J Neurosci 2020; 52:2429-2465. [PMID: 32125035 DOI: 10.1111/ejn.14714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/15/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022]
Abstract
Emotional arousal is one of several factors that determine the strength of a memory and how efficiently it may be retrieved. The systems at play are multifaceted; on one hand, the dopaminergic mesocorticolimbic system evaluates the rewarding or reinforcing potential of a stimulus, while on the other, the noradrenergic stress response system evaluates the risk of threat, commanding attention, and engaging emotional and physical behavioral responses. Sex-specific patterns in the anatomy and function of the arousal system suggest that sexually divergent therapeutic approaches may be advantageous for neurological disorders involving arousal, learning, and memory. From the lens of the triple network model of psychopathology, we argue that post-traumatic stress disorder and opiate substance use disorder arise from maladaptive learning responses that are perpetuated by hyperarousal of the salience network. We present evidence that catecholamine-modulated learning and stress-responsive circuitry exerts substantial influence over the salience network and its dysfunction in stress-related psychiatric disorders, and between the sexes. We discuss the therapeutic potential of targeting the endogenous cannabinoid system; a ubiquitous neuromodulator that influences learning, memory, and responsivity to stress by influencing catecholamine, excitatory, and inhibitory synaptic transmission. Relevant preclinical data in male and female rodents are integrated with clinical data in men and women in an effort to understand how ideal treatment modalities between the sexes may be different.
Collapse
Affiliation(s)
- Jennifer A Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
50
|
Sbarski B, Akirav I. Cannabinoids as therapeutics for PTSD. Pharmacol Ther 2020; 211:107551. [PMID: 32311373 DOI: 10.1016/j.pharmthera.2020.107551] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/08/2020] [Indexed: 02/09/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex disorder that involves dysregulation of multiple neurobiological systems. The traumatic stressor plays a causal role in producing psychological dysfunction and the pattern of findings suggests that the hypothalamic-pituitary-adrenal (HPA) axis, which is instrumental for stress adaptation, is critically dysfunctional in PTSD. Given the lack of understanding of the basic mechanisms and underlying pathways that cause the disorder and its heterogeneity, PTSD poses challenges for treatment. Targeting the endocannabinoid (ECB) system to treat mental disorders, and PTSD in particular, has been the focus of research and interest in recent years. The ECB system modulates multiple functions, and drugs enhancing ECB signaling have shown promise as potential therapeutic agents in stress effects and other psychiatric and medical conditions. In this review, we focus on the interaction between the ECB-HPA systems in animal models for PTSD and in patients with PTSD. We summarize evidence supporting the use of cannabinoids in preventing and treating PTSD in preclinical and clinical studies. As the HPA system plays a key role in the mediation of the stress response and the pathophysiology of PTSD, we describe preclinical studies suggesting that enhancing ECB signaling is consistent with decreasing PTSD symptoms and dysfunction of the HPA axis. Overall, we suggest that a pharmacological treatment targeted at one system (e.g., HPA) may not be very effective because of the heterogeneity of the disorder. There are abnormalities across different neurotransmitter systems in the pathophysiology of PTSD and none of these systems function uniformly among all patients with PTSD. Hence, conceptually, enhancing ECB signaling may be a more effective avenue for pharmacological treatment.
Collapse
Affiliation(s)
- Brenda Sbarski
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|