1
|
Guo J, Jia Z, Yang Y, Wang N, Xue Y, Xiao L, Wang F, Wang L, Wang X, Liu Y, Wang J, Gong W, Zhao H, Liang Y, Wu X. Bioinformatics analysis, immunogenicity, and therapeutic efficacy evaluation of a novel multi-stage, multi-epitope DNA vaccine for tuberculosis. Int Immunopharmacol 2025; 152:114415. [PMID: 40086060 DOI: 10.1016/j.intimp.2025.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND The global tuberculosis (TB) epidemic remains severe. We aimed to develop a therapeutic DNA vaccine as an adjunct to TB treatment to improve efficacy. METHODS The W545 DNA vaccine was constructed using the M. tuberculosis (MTB) antigens Ag85A and Rv1419, integrated with epitopes from the Ag85B, Rv3407, and Rv2628. Bioinformatics tools were used to predict and analyze the physicochemical properties, structure modelling and molecular docking, epitopes (HTL, CTL, and B-cell), safety, population coverage, and simulated immunization of the W545 vaccine protein. Animal studies were then performed to evaluate the vaccine's immunogenicity by measuring Th1-type immune responses (IFN-γ, IL-2) and IgG antibody levels, as well as its therapeutic efficacy in reducing lung inflammation and pathological damage in a murine TB model. RESULTS The vaccine protein is a 70 kDa hydrophilic protein with a half-life of 30 h, an instability index of 43.33, and strong affinity to Toll-like receptor (TLR) 2 and TLR4. It contains 397 helper T cell (HTL) epitopes, 248 cytotoxic T cell (CTL) epitopes, and 27 B cell epitopes, with broad population coverage (global: 99.7 %, Chinese: 97.6 %). The W545 vaccine significantly induced a Th1-type immune response, producing high levels of IFN-γ (5.38 pg/ml ± 0.89 pg/ml) and IgG antibodies (OD450: 0.13 ± 0.06). It also reduced the lung weight index, tissue lesions, and severity in the murine TB model. CONCLUSION The W545 DNA vaccine effectively induces a Th1-type immune response, alleviates pathological damage, and demonstrates potential as an immunotherapeutic agent. Bioinformatics analysis provides valuable guidance for vaccine design and optimization.
Collapse
MESH Headings
- Vaccines, DNA/immunology
- Animals
- Tuberculosis Vaccines/immunology
- Mycobacterium tuberculosis/immunology
- Computational Biology
- Mice
- Tuberculosis/immunology
- Tuberculosis/prevention & control
- Female
- Antigens, Bacterial/immunology
- Humans
- Epitopes, T-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Th1 Cells/immunology
- Disease Models, Animal
- Molecular Docking Simulation
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Mice, Inbred BALB C
- Immunogenicity, Vaccine
Collapse
Affiliation(s)
- Jinzhong Guo
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China; Graduate School, Hebei North University, Zhangjiakou, Hebei 07502312200, China
| | - Zaixing Jia
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care Medicine, Hebei Institute of Respiratory Diseases, Shijiazhuang, Hebei 050000, China
| | - Yourong Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Nan Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Yong Xue
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Li Xiao
- Respiratory Research Institute, Senior Department of Pulmonary & Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing 100091,China
| | - Fenghua Wang
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing 100091,China
| | - Lan Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Xiaoou Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Yinping Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Jie Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Haimei Zhao
- Graduate School, Hebei North University, Zhangjiakou, Hebei 07502312200, China
| | - Yan Liang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China.
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China; Graduate School, Hebei North University, Zhangjiakou, Hebei 07502312200, China.
| |
Collapse
|
2
|
Phogat S, Yadav J, Chaudhary D, Jaiwal R, Jaiwal PK. Synthesis of an Adjuvant-Free Single Polypeptide-Based Tuberculosis Subunit Vaccine that Elicits In Vivo Immunogenicity in Rats. Mol Biotechnol 2025:10.1007/s12033-025-01431-7. [PMID: 40175786 DOI: 10.1007/s12033-025-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/07/2025] [Indexed: 04/04/2025]
Abstract
A novel tuberculosis subunit vaccine specific for Mycobacterium tuberculosis dual antigens, culture filtrate protein-10 (CFP-10) and antigen 85B (Ag85B) conjugated with cholera toxin non-toxic B subunit (CTB), was expressed as a single polypeptide in high amounts and cost-effectively in Escherichia coli. The recovery and purification conditions for the recombinant fusion protein were established. This simple peptide vaccine required no exogenous adjuvant as it contained CTB, a potent immune modulator. The vaccine's physiochemical, structural, and immunological properties were determined using the in-silico tools. It was highly antigenic, non-allergenic, and non-toxic. Its BlastP search with human proteomes excluded the chances of autoimmune reactions. The tertiary structure model (3D) was validated by Ramachandran plot assessment. The 3D structure docking with Toll-like receptors, TLR-1, 2, 4, and 6, showed that the binding affinity between the vaccine peptide and TLRs was high, and their complex was stable, indicating a strong immune response. The in-silico immune simulation revealed the vaccine-induced both innate and adaptive immune responses. In-vivo validation of the immunogenicity of CTB.CFP10.Ag85B in Wistar rats revealed higher activation of IgG immune response compared to either antigen protein. Similar results were also obtained using the C-ImmSim simulation online server. A comparison of immunogenicity of CTB.CFP10.Ag85B with the only available TB vaccine, Bacillus Calmette-Guérin (BCG) or as a booster after vaccination of Wistar rats with BCG, indicated that the IgG levels were the highest in rats vaccinated with BCG, followed by a booster dose of CTB.CFP10.Ag85B fusion protein. The fusion protein would be a safe potential vaccine booster candidate in BCG-primed individuals against TB.
Collapse
Affiliation(s)
- Supriya Phogat
- Department of Zoology, M. D. University, Rohtak, 124001, India
- Centre for Biotechnology, M. D. University, Rohtak, 124001, India
| | - Jyoti Yadav
- Department of Zoology, M. D. University, Rohtak, 124001, India
| | | | - Ranjana Jaiwal
- Department of Zoology, M. D. University, Rohtak, 124001, India
| | - Pawan K Jaiwal
- Centre for Biotechnology, M. D. University, Rohtak, 124001, India.
| |
Collapse
|
3
|
Kotlyarov S, Oskin D. The Role of Inflammation in the Pathogenesis of Comorbidity of Chronic Obstructive Pulmonary Disease and Pulmonary Tuberculosis. Int J Mol Sci 2025; 26:2378. [PMID: 40141021 PMCID: PMC11942565 DOI: 10.3390/ijms26062378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The comorbid course of chronic obstructive pulmonary disease (COPD) and pulmonary tuberculosis is an important medical and social problem. Both diseases, although having different etiologies, have many overlapping relationships that mutually influence their course and prognosis. The aim of the current review is to discuss the role of different immune mechanisms underlying inflammation in COPD and pulmonary tuberculosis. These mechanisms are known to involve both the innate and adaptive immune system, including various cellular and intercellular interactions. There is growing evidence that immune mechanisms involved in the pathogenesis of both COPD and tuberculosis may jointly contribute to the tuberculosis-associated obstructive pulmonary disease (TOPD) phenotype. Several studies have reported prior tuberculosis as a risk factor for COPD. Therefore, the study of the mechanisms that link COPD and tuberculosis is of considerable clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Dmitry Oskin
- Department of Infectious Diseases and Phthisiology, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
4
|
Picchianti-Diamanti A, Aiello A, De Lorenzo C, Migliori GB, Goletti D. Management of tuberculosis risk, screening and preventive therapy in patients with chronic autoimmune arthritis undergoing biotechnological and targeted immunosuppressive agents. Front Immunol 2025; 16:1494283. [PMID: 39963138 PMCID: PMC11830708 DOI: 10.3389/fimmu.2025.1494283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Tuberculosis (TB) is the leading cause of death in the world from an infectious disease. Its etiologic agent, the Mycobacterium tuberculosis (Mtb), is a slow-growing bacterium that has coexisted in humans for thousands of years. According to the World Health Organization, 10.6 million new cases of TB and over 1 million deaths were reported in 2022. It is widely recognized that patients affected by chronic autoimmune arthritis such as rheumatoid arthritis (RA), psoriatic arthritis (PsA), and ankylosing spondylitis (AS) have an increased incidence rate of TB disease compared to the general population. As conceivable, the risk is associated with age ≥65 years and is higher in endemic regions, but immunosuppressive therapy plays a pivotal role. Several systematic reviews have analysed the impact of anti-TNF-α agents on the risk of TB in patients with chronic autoimmune arthritis, as well as for other biologic disease-modifying immunosuppressive anti-rheumatic drugs (bDMARDs) such as rituximab, abatacept, tocilizumab, ustekinumab, and secukinumab. However, the data are less robust compared to those available with TNF-α inhibitors. Conversely, data on anti-IL23 agents and JAK inhibitors (JAK-i), which have been more recently introduced for the treatment of RA and PsA/AS, are limited. TB screening and preventive therapy are recommended in Mtb-infected patients undergoing bDMARDs and targeted synthetic (ts)DMARDs. In this review, we evaluate the current evidence from randomized clinical trials, long-term extension studies, and real-life studies regarding the risk of TB in patients with RA, PsA, and AS treated with bDMARDs and tsDMARDs. According to the current evidence, TNF-α inhibitors carry the greatest risk of TB progression among bDMARDs and tsDMARDs, such as JAK inhibitors and anti-IL-6R agents. The management of TB screening and the updated preventive therapy are reported.
Collapse
Affiliation(s)
- Andrea Picchianti-Diamanti
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Chiara De Lorenzo
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Giovanni Battista Migliori
- Istituti Clinici Scientifici Maugeri, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
5
|
Miranda-Hernandez S, Kumar M, Henderson A, Graham E, Tan X, Taylor J, Meehan M, Ceja Z, Del Pozo-Ramos L, Pan Y, Tsui E, Donovan ML, Rentería ME, Flores-Valdez MA, Blumenthal A, Nguyen Q, Subbian S, Field MA, Kupz A. CD8 + T cells mediate vaccination-induced lymphatic containment of latent Mycobacterium tuberculosis infection following immunosuppression, while B cells are dispensable. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634479. [PMID: 39896630 PMCID: PMC11785187 DOI: 10.1101/2025.01.23.634479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
It is estimated that two billion people are latently infected with Mycobacterium tuberculosis ( Mtb ), the causative agent of tuberculosis (TB). Latent Mtb infection (LTBI) can occur in multiple organs, including the lymphatics. The risk of LTBI reactivation increases in immunocompromised conditions, such as coinfection with human immunodeficiency virus (HIV), and during treatment of autoimmune diseases and organ transplantation. The immunological correlates of protection against TB, including against reactivation of LTBI, remain largely elusive. Here, we used a mouse model of latent lymphatic Mtb infection to dissect the immunological mechanisms underlying LTBI containment versus reactivation. We show that immunosuppression-mediated reactivation of lymphatic LTBI and the subsequent spread to non-lymphatic organs can be prevented by vaccination with multiple recombinant BCG (rBCG) strains despite the deficiency of CD4 + T cells. Using spatial transcriptomics, multi-parameter imaging, network analysis and bioinformatic integration of histopathological images, we reveal that immunosuppression is associated with a distinct repositioning of non-CD4 immune cells at the edge of TB lesions within the infection-draining cervical lymph nodes. While B cells increased in numbers, they are dispensable for the containment of LTBI. Lymphatic Mtb infection in different immune cell-deficient mouse strains, antibody-mediated cell depletion and adoptive transfer experiments into highly susceptible mice unequivocally show that vaccination-mediated prevention of LTBI reactivation is critically dependent on CD8 + T cells. These findings have profound implications for our understanding of immunity to TB and the management of LTBI.
Collapse
|
6
|
Miller MA, Calle PP, Gai J, Sanchez C, Young L. SEROCONVERSION CAN PRECEDE CULTURE CONFIRMED DIAGNOSIS OF MYCOBACTERIUM TUBERCULOSIS INFECTION IN ASIAN ELEPHANTS ( ELEPHAS MAXIMUS) BY DECADES. J Zoo Wildl Med 2024; 55:1082-1087. [PMID: 39699155 DOI: 10.1638/2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 12/20/2024] Open
Abstract
Mycobacterium tuberculosis (M. tb) infection was diagnosed in 16 human-managed Asian elephants (Elephas maximus) at four different US facilities. A retrospective review was performed to collate information on serological test results and describe the timelines from exposure to an elephant known to be positive for M. tb, detection of antimycobacterial antibodies in the exposed elephant, and M. tb isolation from the exposed elephant to confirm diagnosis. Seroconversion was defined by a positive test result using ElephantTB STAT-PAK, multiantigen print immunoassay, or DPP VetTB assay for elephants (Chembio Diagnostic Systems, Inc). Fifteen elephants were adults (age ≥24 yr) at first seroconversion and 26 yr or older when confirmed by a positive M. tb culture. Six animals were diagnosed postmortem, and 10 were diagnosed antemortem by positive trunk wash (TW) culture. The interval between last known exposure to an M. tb-positive elephant and serological conversion was 8.5 yr (median; range 0-18 yr) in the eight animals that had not already seroconverted. The median time from seroconversion to isolation of M. tb was 2.8 yr in elephants diagnosed by TW culture (antemortem) compared with those diagnosed postmortem (median 1.2 yr). Of the 10 elephants diagnosed antemortem, four were seropositive for 14 or more yr (range 0-33 yr) prior to the M. tb-positive culture. The median number of negative TW samples submitted between seroconversion and diagnosis by culture was 16 (range 0-151 samples). In contrast, a median of 48 negative TW cultures and 10 yr elapsed (range 0-41 yr) between exposure and culture diagnosis. Although this descriptive report has limitations, these findings are useful for veterinarians faced with an M. tb-seropositive elephant. This report supports the recommendation of increasing TW surveillance if an elephant has a history of exposure to an M. tb-positive elephant and has multiple seropositive results.
Collapse
Affiliation(s)
- Michele A Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa,
| | - Paul P Calle
- Wildlife Conservation Society, Bronx Zoo, Zoological Health Program, Bronx, NY 10460, USA
| | - Jackie Gai
- Performing Animal Welfare Society, Galt, CA 95632, USA
| | - Carlos Sanchez
- Veterinary Medical Center, Oregon Zoo, Portland, OR 97221, USA
| | - Lydia Young
- Elephant Sanctuary in Tennessee, Hohenwald, TN 38462, USA
| |
Collapse
|
7
|
Mi Z, Wang Z, Wang Y, Xue X, Liao X, Wang C, Sun L, Lin Y, Wang J, Guo D, Liu T, Liu J, Modlin RL, Liu H, Zhang F. Cellular and molecular determinants of bacterial burden in leprosy granulomas revealed by single-cell multimodal omics. EBioMedicine 2024; 108:105342. [PMID: 39321499 PMCID: PMC11462173 DOI: 10.1016/j.ebiom.2024.105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Which cell populations that determine the fate of bacteria in infectious granulomas remain unclear. Leprosy, a granulomatous disease with a strong genetic predisposition, caused by Mycobacterium leprae infection, exhibits distinct sub-types with varying bacterial load and is considered an outstanding disease model for studying host-pathogen interactions. METHODS We performed single-cell RNA and immune repertoire sequencing on 11 healthy controls and 20 patients with leprosy, and integrated single-cell data with genome-wide genetic data on leprosy. Multiplex immunohistochemistry, and in vitro and in vivo infection experiments were conducted to confirm the multimodal omics findings. FINDINGS Lepromatous leprosy (L-LEP) granulomas with high bacterial burden were characterised by exhausted CD8+ T cells, and high RGS1 expression in CD8+ T cells was associated with L-LEP. By contrast, tuberculoid leprosy (T-LEP) granulomas with low bacterial burden displayed enrichment in resident memory IFNG+ CD8+ T cells (CD8+ Trm) with high GNLY expression. This enrichment was potentially attributable to the communication between IL1B macrophages and CD8+ Trm via CXCL10-CXCR3 signalling. Additionally, IL1B macrophages in L-LEP exhibited anti-inflammatory phenotype, with high APOE expression contributing to high bacterial burden. Conversely, IL1B macrophages in T-LEP were distinguished by interferon-γ induced GBP family genes. INTERPRETATION The state of IL1B macrophages and functional CD8+ T cells, as well as the relationship between them, is crucial for controlling bacterial persistence within granulomas. These insights may indicate potential targets for host-directed immunotherapy in granulomatous diseases caused by mycobacteria and other intracellular bacteria. FUNDING The Key research and development program of Shandong Province (2021LCZX07), Natural Science Foundation of Shandong Province (ZR2023MH046), Youth Science Foundation Cultivation Funding Plan of Shandong First Medical University (Shandong Academy of Medical Sciences) (202201-123), National Natural Science Foundation of China (82471800, 82230107, 82273545, 82304039), the China Postdoctoral Science Foundation (2023M742162), Shandong Province Taishan Scholar Project (tspd20230608), Joint Innovation Team for Clinical & Basic Research (202410), Central guidance for local scientific and technological development projects of Shandong Province (YDZX2023058).
Collapse
Affiliation(s)
- Zihao Mi
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Zhenzhen Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Yi Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Xiaotong Xue
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Xiaojie Liao
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Chuan Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Lele Sun
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Yingjie Lin
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Jianwen Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Dianhao Guo
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Tingting Liu
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Jianjun Liu
- Laboratory of Human Genomics, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA.
| | - Hong Liu
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China.
| | - Furen Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China.
| |
Collapse
|
8
|
Ye Z, Li L, Yang L, Zhuang L, Aspatwar A, Wang L, Gong W. Impact of diabetes mellitus on tuberculosis prevention, diagnosis, and treatment from an immunologic perspective. EXPLORATION (BEIJING, CHINA) 2024; 4:20230138. [PMID: 39439490 PMCID: PMC11491313 DOI: 10.1002/exp.20230138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
The coexistence of diabetes mellitus (DM) and tuberculosis (TB) presents a significant global burden, with DM being recognized as a major risk factor for TB. This review comprehensively analyzes the immunological aspects of DM-TB comorbidity, shedding light on the impact of DM on TB pathogenesis and immune responses. It reveals that high blood glucose levels in TB patients contribute to reduced innate immune cell count, compromised phagocytic function, and delayed antigen presentation. These factors ultimately impair the clearance of Mycobacterium tuberculosis (MTB) and delay adaptive immune responses. With the interaction between TB and DM, there is an increase in inflammation and elevated secretion of pro-inflammatory cytokines by immune cells. This exacerbates the inflammatory response and contributes to poor treatment outcomes in TB. Moreover, the review explores the effects of DM on TB prevention, diagnosis, and treatment. It highlights how poor glycemic control, insulin resistance (IR), DM complications, and genetic factors increase the risk of MTB infection in individuals with DM. Additionally, DM-related immune suppression adversely affects the sensitivity of traditional diagnostic tests for TB, potentially resulting in underdiagnosis and delayed intervention. To mitigate the burden of TB in DM patients, the review emphasizes the need for further research on the mechanisms underlying DM reactivation in latent TB infection (LTBI). It shows how important it is to find and treat LTBI in DM patients as soon as possible and suggests looking into biomarkers that are specific to DM to make diagnosis more accurate.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
- Hebei North UniversityZhangjiakouHebeiChina
- Department of GeriatricsThe Eighth Medical Center of PLA General HospitalBeijingChina
| | | | - Ling Yang
- Hebei North UniversityZhangjiakouHebeiChina
| | - Li Zhuang
- Hebei North UniversityZhangjiakouHebeiChina
| | - Ashok Aspatwar
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Liang Wang
- Department of GeriatricsThe Eighth Medical Center of PLA General HospitalBeijingChina
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of TuberculosisThe Eighth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
9
|
Bell B, Flores-Lovon K, Cueva-Chicaña LA, Macedo R. Role of chemokine receptors in gastrointestinal mucosa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:20-52. [PMID: 39260937 DOI: 10.1016/bs.ircmb.2024.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokine receptors are essential for the immune response in the oral and gut mucosa. The gastrointestinal mucosa is characterized by the presence of immune populations because it is susceptible to inflammatory and infectious diseases, necessitating immune surveillance. Chemokine receptors are expressed on immune cells and play a role in gastrointestinal tissue-homing, although other non-immune cells also express them for various biological functions. CCR9, CXCR3 and CXCR6 play an important role in the T cell response in inflammatory and neoplastic conditions of the gastrointestinal mucosa. However, CXCR6 could also be found in gastric cancer cells, highlighting the different roles of chemokine receptors in different pathologies. On the other hand, CCR4 and CCR8 are critical for Treg migration in gastrointestinal tissues, correlating with poor prognosis in mucosal cancers. Other chemokine receptors are also important in promoting myeloid infiltration with context-dependent roles. Further, CXCR4 and CXCR7 are also present in gastrointestinal tumor cells and are known to stimulate proliferation, migration, and invasion into other tissues, among other pro-tumorigenic functions. Determining the processes underlying mucosal immunity and creating tailored therapeutic approaches for gastrointestinal diseases requires an understanding of the complex interactions that occur between chemokine receptors and their ligands in these mucosal tissues.
Collapse
Affiliation(s)
- Brett Bell
- Albert Einstein College of Medicine, New York, NY, United States
| | - Kevin Flores-Lovon
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología (GII), Arequipa, Peru
| | - Luis A Cueva-Chicaña
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología (GII), Arequipa, Peru
| | - Rodney Macedo
- Albert Einstein College of Medicine, New York, NY, United States; Grupo de Investigación en Inmunología (GII), Arequipa, Peru; Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, United States.
| |
Collapse
|
10
|
Wang J, Jiang F, Cheng P, Ye Z, Li L, Yang L, Zhuang L, Gong W. Construction of novel multi-epitope-based diagnostic biomarker HP16118P and its application in the differential diagnosis of Mycobacterium tuberculosis latent infection. MOLECULAR BIOMEDICINE 2024; 5:15. [PMID: 38679629 PMCID: PMC11056354 DOI: 10.1186/s43556-024-00177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024] Open
Abstract
Tuberculosis (TB) is an infectious disease that significantly threatens human health. However, the differential diagnosis of latent tuberculosis infection (LTBI) and active tuberculosis (ATB) remains a challenge for clinicians in early detection and preventive intervention. In this study, we developed a novel biomarker named HP16118P, utilizing 16 helper T lymphocyte (HTL) epitopes, 11 cytotoxic T lymphocyte (CTL) epitopes, and 8 B cell epitopes identified from 15 antigens associated with LTBI-RD using the IEDB database. We analyzed the physicochemical properties, spatial structure, and immunological characteristics of HP16118P using various tools, which indicated that it is a hydrophilic and relatively stable alkaline protein. Furthermore, HP16118P exhibited good antigenicity and immunogenicity, while being non-toxic and non-allergenic, with the potential to induce immune responses. We observed that HP16118P can stimulate the production of high levels of IFN-γ+ T lymphocytes in individuals with ATB, LTBI, and health controls. IL-5 induced by HP16118P demonstrated potential in distinguishing LTBI individuals and ATB patients (p=0.0372, AUC=0.8214, 95% CI [0.5843 to 1.000]) with a sensitivity of 100% and specificity of 71.43%. Furthermore, we incorporated the GM-CSF, IL-23, IL-5, and MCP-3 induced by HP16118P into 15 machine learning algorithms to construct a model. It was found that the Quadratic discriminant analysis model exhibited the best diagnostic performance for discriminating between LTBI and ATB, with a sensitivity of 1.00, specificity of 0.86, and accuracy of 0.93. In summary, HP16118P has demonstrated strong antigenicity and immunogenicity, with the induction of GM-CSF, IL-23, IL-5, and MCP-3, suggesting their potential for the differential diagnosis of LTBI and ATB.
Collapse
Affiliation(s)
- Jie Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Department of Clinical Laboratory, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Fan Jiang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Section of Health, No. 94804 Unit of the Chinese People's Liberation Army, Shanghai, 200434, China
- Resident standardization training cadet corps, Air Force Hospital of Eastern Theater, Nanjing, 210002, China
| | - Peng Cheng
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
| | - Zhaoyang Ye
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Hebei North University, ZhangjiakouHebei, 075000, China
| | - Linsheng Li
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Hebei North University, ZhangjiakouHebei, 075000, China
| | - Ling Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Hebei North University, ZhangjiakouHebei, 075000, China
| | - Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Hebei North University, ZhangjiakouHebei, 075000, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China.
| |
Collapse
|
11
|
Zeng L, Ma X, Qu M, Tang M, Li H, Lei C, Ji J, Li H. Immunogenicity and protective efficacy of Ag85A and truncation of PstS1 fusion protein vaccines against tuberculosis. Heliyon 2024; 10:e27034. [PMID: 38463854 PMCID: PMC10920368 DOI: 10.1016/j.heliyon.2024.e27034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Tuberculosis (TB) is an important public health problem, and the One Health approach is essential for controlling zoonotic tuberculosis. Therefore, a rationally designed and more effective TB vaccine is urgently needed. To enhance vaccine efficacy, it is important to design vaccine candidates that stimulate both cellular and humoral immunity against TB. In this study, we fused the secreted protein Ag85A as the T cell antigen with truncated forms of the mycobacterial cell wall protein PstS1 with B cell epitopes to generate vaccine candidates, Ag85A-tnPstS1 (AP1, AP2, and AP3), and tested their immunogenicity and protective efficacy in mice. The three vaccine candidates induced a significant increase in the levels of T cell-related cytokines such as IFN-γ and IL-17, and AP1 and AP2 can induce more balanced Th1/Th2 responses than AP3. Strong humoral immune responses were also observed in which the production of IgG antibodies including its subclasses IgG1, IgG2c, and IgG3 was tremendously stimulated. AP1 and AP2 induced early antibody responses and more IgG3 isotype antibodies than AP3. Importantly, the mice immunised with the subunit vaccine candidates, particularly AP1 and AP2, had lower bacterial burdens than the control mice. Moreover, the serum from immunised mice can enhance phagocytosis and phagosome-lysosome fusion in macrophages, which can help to eradicate intracellular bacteria. These results indicate that the subunit vaccines Ag85A-tnPstS1 can be promising vaccine candidates for tuberculosis prevention.
Collapse
Affiliation(s)
- Lingyuan Zeng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiuling Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Mengjin Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Minghui Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Huoming Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chengrui Lei
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiahong Ji
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Hao Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Murtaza A, Hoa NT, Dieu-Huong D, Afzal H, Tariq MH, Cheng LT, Chung YC. Advancing PEDV Vaccination: Comparison between Inactivated and Flagellin N-Terminus-Adjuvanted Subunit Vaccines. Vaccines (Basel) 2024; 12:139. [PMID: 38400123 PMCID: PMC10892538 DOI: 10.3390/vaccines12020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccinations can serve as an important preventive measure against the porcine epidemic diarrhea (PED) virus that currently threatens the swine industry. This study focuses on the development of a fusion protein vaccine, FliC99-mCOE, which combines the N-terminus of flagellin (FliC99) with a modified core neutralizing epitope (mCOE) of PEDV. In silico immunoinformatic analysis confirmed the construct's non-toxic, non-allergenic, and highly antigenic nature. Molecular docking and molecular dynamics (MD) simulations demonstrated FliC99-mCOE's strong binding to the TLR-5 immunological receptor. Repeated exposure simulations and immunological simulations suggested enhanced cell-mediated immunity. Both FliC99-mCOE and an inactivated PEDV vaccine were produced and tested in mice. The results from cell proliferation, ELISA, and neutralization assays indicated that FliC99-mCOE effectively stimulated cellular immunity and neutralized PEDV. We conclude that the FliC99-mCOE fusion protein may serve as a promising vaccine candidate against PEDV.
Collapse
Affiliation(s)
- Asad Murtaza
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan (N.-T.H.); (D.D.-H.); (H.A.)
| | - Nguyen-Thanh Hoa
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan (N.-T.H.); (D.D.-H.); (H.A.)
| | - Do Dieu-Huong
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan (N.-T.H.); (D.D.-H.); (H.A.)
| | - Haroon Afzal
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan (N.-T.H.); (D.D.-H.); (H.A.)
| | - Muhammad Hamza Tariq
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Yao-Chi Chung
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| |
Collapse
|
13
|
Weeratunga P, Moller DR, Ho LP. Immune mechanisms of granuloma formation in sarcoidosis and tuberculosis. J Clin Invest 2024; 134:e175264. [PMID: 38165044 PMCID: PMC10760966 DOI: 10.1172/jci175264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Sarcoidosis is a complex immune-mediated disease characterized by clusters of immune cells called granulomas. Despite major steps in understanding the cause of this disease, many questions remain. In this Review, we perform a mechanistic interrogation of the immune activities that contribute to granuloma formation in sarcoidosis and compare these processes with its closest mimic, tuberculosis, highlighting shared and divergent immune activities. We examine how Mycobacterium tuberculosis is sensed by the immune system; how the granuloma is initiated, formed, and perpetuated in tuberculosis compared with sarcoidosis; and the role of major innate and adaptive immune cells in shaping these processes. Finally, we draw these findings together around several recent high-resolution studies of the granuloma in situ that utilized the latest advances in single-cell technology combined with spatial methods to analyze plausible disease mechanisms. We conclude with an overall view of granuloma formation in sarcoidosis.
Collapse
Affiliation(s)
- Praveen Weeratunga
- MRC Translational Immunology Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Ling-Pei Ho
- MRC Translational Immunology Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Ishida E, Corrigan DT, Chen T, Liu Y, Kim RS, Song L, Rutledge TM, Magee DM, LaBaer J, Lowary TL, Lin PL, Achkar JM. Mucosal and systemic antigen-specific antibody responses correlate with protection against active tuberculosis in nonhuman primates. EBioMedicine 2024; 99:104897. [PMID: 38096687 PMCID: PMC10758715 DOI: 10.1016/j.ebiom.2023.104897] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Increasing evidence supports that antibodies can protect against active tuberculosis (TB) but knowledge of potentially protective antigens, especially in the airways, is limited. The main objective of this study was to identify antigen-specific airway and systemic immunoglobulin isotype responses associated with the outcome of controlled latent Mycobacterium tuberculosis (Mtb) infection (LTBI) versus uncontrolled infection (TB) in nonhuman primates. METHODS In a case-control design, using non-parametric group comparisons with false discovery rate adjustments, we assessed antibodies in 57 cynomolgus macaques which, following low-dose airway Mtb infection, developed either LTBI or TB. We investigated airway and systemic IgG, IgA, and IgM responses in paired bronchoalveolar lavage and plasma samples prior to, two-, and 5-6-months post Mtb infection using an antigen-unbiased approach with Mtb glycan and proteome-wide microarrays. FINDINGS Macaques that developed LTBI (n = 36) had significantly increased airway and plasma IgA reactivities to specific arabinomannan (AM) motifs prior to Mtb infection compared to those that developed TB (n = 21; p < 0.01, q < 0.05). Furthermore, LTBI macaques had higher plasma IgG reactivity to protein MTB32A (Rv0125) early post Mtb infection (p < 0.05) and increasing airway IgG responses to some proteins over time. INTERPRETATION Our results support a protective role of pre-existing mucosal (lung) and systemic IgA to specific Mtb glycan motifs, suggesting that prior exposure to nontuberculous mycobacteria could be protective against TB. They further suggest that IgG to Mtb proteins early post infection could provide an additional protective mechanism. These findings could inform TB vaccine development strategies. FUNDING NIH/NIAID AI117927, AI146329, and AI127173 to JMA.
Collapse
Affiliation(s)
- Elise Ishida
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Devin T Corrigan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yanyan Liu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ryung S Kim
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lusheng Song
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Tara M Rutledge
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D Mitchell Magee
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada; Institute of Biological Chemistry, Academia Sinica, Nangang Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Philana Ling Lin
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacqueline M Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
15
|
Liu H, Ji S, Fang Y, Yi X, Wu F, Xing F, Wang C, Zhou H, Xu J, Sun W. Microbiome Alteration in Lung Tissues of Tuberculosis Patients Revealed by Metagenomic Next-Generation Sequencing and Immune-Related Transcriptional Profile Identified by Transcriptome Sequencing. ACS Infect Dis 2023; 9:2572-2582. [PMID: 37975314 PMCID: PMC10715245 DOI: 10.1021/acsinfecdis.3c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
This study explored alterations in the respiratory microbiome and transcriptome after Mycobacterium tuberculosis infection in tuberculosis (TB) patients. Metagenomic next-generation sequencing (mNGS) was adopted to reveal the microbiome in lung tissues from 110 TB and 25 nontuberculous (NonTB) patients. Transcriptome sequencing was performed in TB tissues (n = 3), tissues adjacent to TB (ParaTB, n = 3), and NonTB tissues (n = 3) to analyze differentially expressed genes (DEGs) and functional pathways. The microbial β diversity (p = 0.01325) in TB patients differed from that in the NonTB group, with 17 microbial species distinctively distributed. Eighty-three co-up-regulated DEGs were identified in the TB versus NonTB and the TB versus ParaTB comparison groups, and six were associated with immune response to Mtb. These DEGs were significantly enriched in the signaling pathways such as immune response, NF-κB, and B cell receptor. Data in the lung tissue microbiome and transcriptome in TB patients offer a sufficient understanding of the pathogenesis of TB.
Collapse
Affiliation(s)
- Hong Liu
- Department
of Cardiothoracic Surgery, Nanjing Hospital
Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Saiguang Ji
- Department
of Cardiothoracic Surgery, Nanjing Hospital
Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Yuan Fang
- Genoxor
Medical Science and Technology Inc., Shanghai 201112, China
| | - Xiaoli Yi
- Genoxor
Medical Science and Technology Inc., Shanghai 201112, China
| | - Fengsheng Wu
- Genoxor
Medical Science and Technology Inc., Shanghai 201112, China
| | - Fuchen Xing
- Department
of Cardiothoracic Surgery, Nanjing Hospital
Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Chenyan Wang
- Department
of Cardiothoracic Surgery, Nanjing Hospital
Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Hai Zhou
- Department
of Cardiothoracic Surgery, Nanjing Hospital
Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Jian Xu
- Department
of Cardiothoracic Surgery, Nanjing Hospital
Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Wei Sun
- Department
of Cardiothoracic Surgery, Nanjing Hospital
Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| |
Collapse
|
16
|
Li LS, Yang L, Zhuang L, Ye ZY, Zhao WG, Gong WP. From immunology to artificial intelligence: revolutionizing latent tuberculosis infection diagnosis with machine learning. Mil Med Res 2023; 10:58. [PMID: 38017571 PMCID: PMC10685516 DOI: 10.1186/s40779-023-00490-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Latent tuberculosis infection (LTBI) has become a major source of active tuberculosis (ATB). Although the tuberculin skin test and interferon-gamma release assay can be used to diagnose LTBI, these methods can only differentiate infected individuals from healthy ones but cannot discriminate between LTBI and ATB. Thus, the diagnosis of LTBI faces many challenges, such as the lack of effective biomarkers from Mycobacterium tuberculosis (MTB) for distinguishing LTBI, the low diagnostic efficacy of biomarkers derived from the human host, and the absence of a gold standard to differentiate between LTBI and ATB. Sputum culture, as the gold standard for diagnosing tuberculosis, is time-consuming and cannot distinguish between ATB and LTBI. In this article, we review the pathogenesis of MTB and the immune mechanisms of the host in LTBI, including the innate and adaptive immune responses, multiple immune evasion mechanisms of MTB, and epigenetic regulation. Based on this knowledge, we summarize the current status and challenges in diagnosing LTBI and present the application of machine learning (ML) in LTBI diagnosis, as well as the advantages and limitations of ML in this context. Finally, we discuss the future development directions of ML applied to LTBI diagnosis.
Collapse
Affiliation(s)
- Lin-Sheng Li
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
- Hebei North University, Zhangjiakou, 075000, Hebei, China
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Ling Yang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhao-Yang Ye
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wei-Guo Zhao
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| | - Wen-Ping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
17
|
Kaufmann SHE. Vaccine development against tuberculosis before and after Covid-19. Front Immunol 2023; 14:1273938. [PMID: 38035095 PMCID: PMC10684952 DOI: 10.3389/fimmu.2023.1273938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease (Covid-19) has not only shaped awareness of the impact of infectious diseases on global health. It has also provided instructive lessons for better prevention strategies against new and current infectious diseases of major importance. Tuberculosis (TB) is a major current health threat caused by Mycobacterium tuberculosis (Mtb) which has claimed more lives than any other pathogen over the last few centuries. Hence, better intervention measures, notably novel vaccines, are urgently needed to accomplish the goal of the World Health Organization to end TB by 2030. This article describes how the research and development of TB vaccines can benefit from recent developments in the Covid-19 vaccine pipeline from research to clinical development and outlines how the field of TB research can pursue its own approaches. It begins with a brief discussion of major vaccine platforms in general terms followed by a short description of the most widely applied Covid-19 vaccines. Next, different vaccination regimes and particular hurdles for TB vaccine research and development are described. This specifically considers the complex immune mechanisms underlying protection and pathology in TB which involve innate as well as acquired immune mechanisms and strongly depend on fine tuning the response. A brief description of the TB vaccine candidates that have entered clinical trials follows. Finally, it discusses how experiences from Covid-19 vaccine research, development, and rollout can and have been applied to the TB vaccine pipeline, emphasizing similarities and dissimilarities.
Collapse
Affiliation(s)
- Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Systems Immunology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
| |
Collapse
|
18
|
Zhou P, Shen J, Ge X, Ding F, Zhang H, Huang X, Zhao C, Li M, Li Z. Classification and characterisation of extracellular vesicles-related tuberculosis subgroups and immune cell profiles. J Cell Mol Med 2023; 27:2482-2494. [PMID: 37409682 PMCID: PMC10468662 DOI: 10.1111/jcmm.17836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
Around the world, tuberculosis (TB) remains one of the most common causes of morbidity and mortality. The molecular mechanism of Mycobacterium tuberculosis (Mtb) infection is still unclear. Extracellular vesicles (EVs) play a key role in the onset and progression of many disease states and can serve as effective biomarkers or therapeutic targets for the identification and treatment of TB patients. We analysed the expression profile to better clarify the EVs characteristics of TB and explored potential diagnostic markers to distinguish TB from healthy control (HC). Twenty EVs-related differentially expressed genes (DEGs) were identified, and 17 EVs-related DEGs were up-regulated and three DEGs were down-regulated in TB samples, which were related to immune cells. Using machine learning, a nine EVs-related gene signature was identified and two EVs-related subclusters were defined. The single-cell RNA sequence (scRNA-seq) analysis further confirmed that these hub genes might play important roles in TB pathogenesis. The nine EVs-related hub genes had excellent diagnostic values and accurately estimated TB progression. TB's high-risk group had significantly enriched immune-related pathways, and there were substantial variations in immunity across different groups. Furthermore, five potential drugs were predicted for TB using CMap database. Based on the EVs-related gene signature, the TB risk model was established through a comprehensive analysis of different EV patterns, which can accurately predict TB. These genes could be used as novel biomarkers to distinguish TB from HC. These findings lay the foundation for further research and design of new therapeutic interventions aimed at treating this deadly infectious disease.
Collapse
Affiliation(s)
- Peipei Zhou
- School of Medical LaboratoryWeifang Medical UniversityWeifangChina
| | - Jie Shen
- School of Medical LaboratoryWeifang Medical UniversityWeifangChina
| | - Xiao Ge
- School of Medical LaboratoryWeifang Medical UniversityWeifangChina
| | - Fang Ding
- Respiratory MedicineAffiliated Hospital of Weifang Medical UniversityWeifangChina
| | - Hong Zhang
- School of Public HealthWeifang Medical UniversityWeifangChina
| | - Xinlin Huang
- School of Medical LaboratoryWeifang Medical UniversityWeifangChina
| | - Chao Zhao
- Office of Academic AffairsWeifang Medical UniversityWeifangChina
| | - Meng Li
- School of Medical LaboratoryWeifang Medical UniversityWeifangChina
| | - Zhenpeng Li
- School of Medical LaboratoryWeifang Medical UniversityWeifangChina
| |
Collapse
|
19
|
Diatlova A, Linkova N, Lavrova A, Zinchenko Y, Medvedev D, Krasichkov A, Polyakova V, Yablonskiy P. Molecular Markers of Early Immune Response in Tuberculosis: Prospects of Application in Predictive Medicine. Int J Mol Sci 2023; 24:13261. [PMID: 37686061 PMCID: PMC10487556 DOI: 10.3390/ijms241713261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Tuberculosis (TB) remains an important public health problem and one of the leading causes of death. Individuals with latent tuberculosis infection (LTBI) have an increased risk of developing active TB. The problem of the diagnosis of the various stages of TB and the identification of infected patients in the early stages has not yet been solved. The existing tests (the tuberculin skin test and the interferon-gamma release assay) are useful to distinguish between active and latent infections. But these tests cannot be used to predict the development of active TB in individuals with LTBI. The purpose of this review was to analyze the extant data of the interaction of M. tuberculosis with immune cells and identify molecular predictive markers and markers of the early stages of TB. An analysis of more than 90 sources from the literature allowed us to determine various subpopulations of immune cells involved in the pathogenesis of TB, namely, macrophages, dendritic cells, B lymphocytes, T helper cells, cytotoxic T lymphocytes, and NK cells. The key molecular markers of the immune response to M. tuberculosis are cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17, IL-22b, IFNɣ, TNFa, and TGFß), matrix metalloproteinases (MMP-1, MMP-3, and MMP-9), and their inhibitors (TIMP-1, TIMP-2, TIMP-3, and TIMP-4). It is supposed that these molecules could be used as biomarkers to characterize different stages of TB infection, to evaluate the effectiveness of its treatment, and as targets of pharmacotherapy.
Collapse
Affiliation(s)
- Anastasiia Diatlova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Anastasia Lavrova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| | - Yulia Zinchenko
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Dmitrii Medvedev
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Alexandr Krasichkov
- Department of Radio Engineering Systems, Electrotechnical University “LETI”, Prof. Popova Street 5F, 197022 St. Petersburg, Russia
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Piotr Yablonskiy
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| |
Collapse
|
20
|
Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol 2023; 14:1244556. [PMID: 37662901 PMCID: PMC10470049 DOI: 10.3389/fimmu.2023.1244556] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest infectious diseases in humans, which together have caused about more than 11 million deaths worldwide in the past 3 years. TB and COVID-19 share several aspects including the droplet- and aerosol-borne transmissibility, the lungs as primary target, some symptoms, and diagnostic tools. However, these two infectious diseases differ in other aspects as their incubation period, immune cells involved, persistence and the immunopathological response. In this review, we highlight the similarities and differences between TB and COVID-19 focusing on the innate and adaptive immune response induced after the exposure to Mtb and SARS-CoV-2 and the pathological pathways linking the two infections. Moreover, we provide a brief overview of the immune response in case of TB-COVID-19 co-infection highlighting the similarities and differences of each individual infection. A comprehensive understanding of the immune response involved in TB and COVID-19 is of utmost importance for the design of effective therapeutic strategies and vaccines for both diseases.
Collapse
Affiliation(s)
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
21
|
Brenner EP, Sreevatsan S. Attenuated but immunostimulatory Mycobacterium tuberculosis variant bovis strain Ravenel shows variation in T cell epitopes. Sci Rep 2023; 13:12402. [PMID: 37524777 PMCID: PMC10390569 DOI: 10.1038/s41598-023-39578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis complex (MTBC) organisms, affects a range of humans and animals globally. Mycobacterial pathogenesis involves manipulation of the host immune system, partially through antigen presentation. Epitope sequences across the MTBC are evolutionarily hyperconserved, suggesting their recognition is advantageous for the bacterium. Mycobacterium tuberculosis var. bovis (MBO) strain Ravenel is an isolate known to provoke a robust immune response in cattle, but typically fails to produce lesions and persist. Unlike attenuated MBO BCG strains that lack the critical RD1 genomic region, Ravenel is classic-type MBO structurally, suggesting genetic variation is responsible for defective pathogenesis. This work explores variation in epitope sequences in MBO Ravenel by whole genome sequencing, and contrasts such variation against a fully virulent clinical isolate, MBO strain 10-7428. Validated MTBC epitopes (n = 4818) from the Immune Epitope Database were compared to their sequences in MBO Ravenel and MBO 10-7428. Ravenel yielded 3 modified T cell epitopes, in genes rpfB, argC, and rpoA. These modifications were predicted to have little effect on protein stability. In contrast, T cells epitopes in 10-7428 were all WT. Considering T cell epitope hyperconservation across MTBC variants, these altered MBO Ravenel epitopes support their potential contribution to overall strain attenuation. The affected genes may provide clues on basic pathogenesis, and if so, be feasible targets for reverse vaccinology.
Collapse
Affiliation(s)
- Evan P Brenner
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI, 48824, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
22
|
Kayongo A, Nyiro B, Siddharthan T, Kirenga B, Checkley W, Lutaakome Joloba M, Ellner J, Salgame P. Mechanisms of lung damage in tuberculosis: implications for chronic obstructive pulmonary disease. Front Cell Infect Microbiol 2023; 13:1146571. [PMID: 37415827 PMCID: PMC10320222 DOI: 10.3389/fcimb.2023.1146571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Pulmonary tuberculosis is increasingly recognized as a risk factor for COPD. Severe lung function impairment has been reported in post-TB patients. Despite increasing evidence to support the association between TB and COPD, only a few studies describe the immunological basis of COPD among TB patients following successful treatment completion. In this review, we draw on well-elaborated Mycobacterium tuberculosis-induced immune mechanisms in the lungs to highlight shared mechanisms for COPD pathogenesis in the setting of tuberculosis disease. We further examine how such mechanisms could be exploited to guide COPD therapeutics.
Collapse
Affiliation(s)
- Alex Kayongo
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Brian Nyiro
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Trishul Siddharthan
- Division of Pulmonary and Critical Care Medicine, University of Miami, Miami, FL, United States
| | - Bruce Kirenga
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - William Checkley
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Moses Lutaakome Joloba
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Jerrold Ellner
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
23
|
Stewart P, Patel S, Comer A, Muneer S, Nawaz U, Quann V, Bansal M, Venketaraman V. Role of B Cells in Mycobacterium Tuberculosis Infection. Vaccines (Basel) 2023; 11:vaccines11050955. [PMID: 37243059 DOI: 10.3390/vaccines11050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Historically, research on the immunologic response to Mycobacterium tuberculosis (M. tb) infection has focused on T cells and macrophages, as their role in granuloma formation has been robustly characterized. In contrast, the role of B cells in the pathophysiology of M. tb infection has been relatively overlooked. While T cells are well-known as an essential for granuloma formation and maintenance, B cells play a less understood role in the host response. Over the past decade, scarce research on the topic has attempted to elucidate the varying roles of B cells during mycobacterial infection, which appears to be primarily time dependent. From acute to chronic infection, the role of B cells changes with time as evidenced by cytokine release, immunological regulation, and histological morphology of tuberculous granulomas. The goal of this review is to carefully analyze the role of humoral immunity in M. tb infection to find the discriminatory nature of humoral immunity in tuberculosis (TB). We argue that there is a need for more research on the B-cell response against TB, as a better understanding of the role of B cells in defense against TB could lead to effective vaccines and therapies. By focusing on the B-cell response, we can develop new strategies to enhance immunity against TB and reduce the burden of disease.
Collapse
Affiliation(s)
- Paul Stewart
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Shivani Patel
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Andrew Comer
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Shafi Muneer
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Uzma Nawaz
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Violet Quann
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Mira Bansal
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
24
|
D'Souza C, Kishore U, Tsolaki AG. The PE-PPE Family of Mycobacterium tuberculosis: Proteins in Disguise. Immunobiology 2023; 228:152321. [PMID: 36805109 DOI: 10.1016/j.imbio.2022.152321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis has thrived in parallel with humans for millennia, and despite our efforts, M. tuberculosis continues to plague us, currently infecting a third of the world's population. The success of M. tuberculosis has recently been attributed, in part, to the PE-PPE family; a unique collection of 168 proteins fundamentally involved in the pathogenesis of M. tuberculosis. The PE-PPE family proteins have been at the forefront of intense research efforts since their discovery in 1998 and whilst our knowledge and understanding has significantly advanced over the last two decades, many important questions remain to be elucidated. This review consolidates and examines the vast body of existing literature regarding the PE-PPE family proteins, with respect to the latest developments in elucidating their evolution, structure, subcellular localisation, function, and immunogenicity. This review also highlights significant inconsistencies and contradictions within the field. Additionally, possible explanations for these knowledge gaps are explored. Lastly, this review poses many important questions, which need to be addressed to complete our understanding of the PE-PPE family, as well as highlighting the challenges associated with studying this enigmatic family of proteins. Further research into the PE-PPE family, together with technological advancements in genomics and proteomics, will undoubtedly improve our understanding of the pathogenesis of M. tuberculosis, as well as identify key targets/candidates for the development of novel drugs, diagnostics, and vaccines.
Collapse
Affiliation(s)
- Christopher D'Souza
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anthony G Tsolaki
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| |
Collapse
|
25
|
B cells promote granulomatous inflammation during chronic Mycobacterium tuberculosis infection in mice. PLoS Pathog 2023; 19:e1011187. [PMID: 36888692 PMCID: PMC9994760 DOI: 10.1371/journal.ppat.1011187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/05/2023] [Indexed: 03/09/2023] Open
Abstract
The current study reveals that in chronic TB, the B cell-deficient μMT strain, relative to wild-type (WT) C57BL/6 mice, displays in the lungs lower levels of inflammation that are associated with decreased CD4+ T cell proliferation, diminished Th1 response, and enhanced levels of interleukin (IL)-10. The latter result raises the possibility that B cells may restrict lung expression of IL-10 in chronic TB. These observations are recapitulated in WT mice depleted for B cells using anti-CD20 antibodies. IL-10 receptor (IL-10R) blockade reverses the phenotypes of decreased inflammation and attenuated CD4+ T cell responses in B cell-depleted mice. Together, these results suggest that in chronic murine TB, B cells, by virtue of their capacity to restrict expression of the anti-inflammatory and immunosuppressive IL-10 in the lungs, promote the development of a robust protective Th1 response, thereby optimizing anti-TB immunity. This vigorous Th1 immunity and restricted IL-10 expression may, however, allow the development of inflammation to a level that can be detrimental to the host. Indeed, decreased lung inflammation observed in chronically infected B cell-deficient mice, which exhibit augmented lung IL-10 levels, is associated with a survival advantage relative to WT animals. Collectively, the results reveal that in chronic murine TB, B cells play a role in modulating the protective Th1 immunity and the anti-inflammatory IL-10 response, which results in augmentation of lung inflammation that can be host-detrimental. Intriguingly, in tuberculous human lungs, conspicuous B cell aggregates are present in close proximity to tissue-damaging lesions manifesting necrosis and cavitation, suggesting the possibility that in human TB, B cells may contribute to the development of exacerbated pathology that is known to promote transmission. Since transmission is a major hindrance to TB control, investigating into whether B cells can shape the development of severe pulmonic pathological responses in tuberculous individuals is warranted.
Collapse
|
26
|
A MAPS Vaccine Induces Multipronged Systemic and Tissue-Resident Cellular Responses and Protects Mice against Mycobacterium tuberculosis. mBio 2023; 14:e0361122. [PMID: 36749098 PMCID: PMC9973048 DOI: 10.1128/mbio.03611-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis (TB) remains a leading cause of morbidity and mortality worldwide. To date, the mainstay of vaccination involves the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG), a live-attenuated vaccine that confers protection against extrapulmonary disease in infants and children but not against lung disease. Thus, there is an urgent need for novel vaccines. Here, we show that a multicomponent acellular vaccine (TB-MAPS) induces robust antibody responses and long-lived systemic and tissue-resident memory Th1, Th17, and cytotoxic CD4+ and CD8+ T cells, and promotes trained innate immunity mediated by γδT and NKT cells in mice. When tested in a mouse aerosol infection model, TB-MAPS significantly reduced bacterial loads in the lungs and spleens to the same extent as BCG. When used in conjunction with BCG, TB-MAPS further enhanced BCG-mediated protection, especially in the lungs, further supporting this construct as a promising TB vaccine candidate. IMPORTANCE Tuberculosis (TB) remains a leading cause of morbidity and mortality worldwide. Here, we evaluate a novel vaccine which induces a broad immune response to Mycobacterium tuberculosis including robust antibody responses and long-lived systemic and tissue-resident memory Th1, Th17, and cytotoxic CD4+ and CD8+ T cells. When tested in a mouse aerosol infection model, this vaccine significantly reduced bacterial loads in the lungs and spleens to the same extent as BCG. When used in conjunction with BCG, TB-MAPS further enhanced BCG-mediated protection, especially in the lungs, further supporting this construct as a promising TB vaccine candidate.
Collapse
|
27
|
Immunoinformatic-Based Multi-Epitope Vaccine Design for Co-Infection of Mycobacterium tuberculosis and SARS-CoV-2. J Pers Med 2023; 13:jpm13010116. [PMID: 36675777 PMCID: PMC9863242 DOI: 10.3390/jpm13010116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
(1) Background: Many co-infections of Mycobacterium tuberculosis (MTB) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have emerged since the occurrence of the SARS-CoV-2 pandemic. This study aims to design an effective preventive multi-epitope vaccine against the co-infection of MTB and SARS-CoV-2. (2) Methods: The three selected proteins (spike protein, diacylglycerol acyltransferase, and low molecular weight T-cell antigen TB8.4) were predicted using bioinformatics, and 16 epitopes with the highest ranks (10 helper T lymphocyte epitopes, 2 CD8+ T lymphocytes epitopes, and 4 B-cell epitopes) were selected and assembled into the candidate vaccine referred to as S7D5L4. The toxicity, sensitization, stability, solubility, antigenicity, and immunogenicity of the S7D5L4 vaccine were evaluated using bioinformatics tools. Subsequently, toll-like receptor 4 docking simulation and discontinuous B-cell epitope prediction were performed. Immune simulation and codon optimization were carried out using immunoinformatics and molecular biology tools. (3) Results: The S7D5L4 vaccine showed good physical properties, such as solubility, stability, non-sensitization, and non-toxicity. This vaccine had excellent antigenicity and immunogenicity and could successfully simulate immune responses in silico. Furthermore, the normal mode analysis of the S7D5L4 vaccine and toll-like receptor 4 docking simulation demonstrated that the vaccine had docking potential and a stable reaction. (4) Conclusions: The S7D5L4 vaccine designed to fight against the co-infection of MTB and SARS-CoV-2 may be safe and effective. The protective efficacy of this promising vaccine should be further verified using in vitro and in vivo experiments.
Collapse
|
28
|
Dutt TS, Karger BR, Fox A, Youssef N, Dadhwal R, Ali MZ, Patterson J, Creissen E, Rampacci E, Cooper SK, Podell BK, Gonzalez-Juarrero M, Obregon-Henao A, Henao-Tamayo M. Mucosal exposure to non-tuberculous mycobacteria elicits B cell-mediated immunity against pulmonary tuberculosis. Cell Rep 2022; 41:111783. [PMID: 36516760 DOI: 10.1016/j.celrep.2022.111783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/09/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Bacille Calmette-Guerin (BCG) is the only licensed vaccine against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB) disease. However, BCG has limited efficacy, necessitating the development of better vaccines. Non-tuberculous mycobacteria (NTMs) are opportunistic pathogens present ubiquitously in the environment. TB endemic countries experience higher exposure to NTMs, but previous studies have not elucidated the relationship between NTM exposure and BCG efficacy against TB. Therefore, we develop a mouse model (BCG + NTM) to simulate human BCG immunization regime and continuous NTM exposure. BCG + NTM mice exhibit superior and prolonged protection against pulmonary TB, with increased B cell influx and anti-Mtb antibodies in serum and airways, compared with BCG alone. Notably, spatial transcriptomics and immunohistochemistry reveal that BCG + NTM mice formed B cell aggregates with features of germinal center development, which correlate with reduced Mtb burden. Our studies suggest a direct relationship between NTM exposure and TB protection, with B cells playing a crucial role.
Collapse
Affiliation(s)
- Taru S Dutt
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA.
| | | | - Amy Fox
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | | | - Rhythm Dadhwal
- College of Business, Colorado State University, Fort Collins, CO, USA
| | - Malik Zohaib Ali
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA; Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Johnathan Patterson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Elizabeth Creissen
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Sarah K Cooper
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Brendan K Podell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Andres Obregon-Henao
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
29
|
Immune cell interactions in tuberculosis. Cell 2022; 185:4682-4702. [PMID: 36493751 DOI: 10.1016/j.cell.2022.10.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Despite having been identified as the organism that causes tuberculosis in 1882, Mycobacterium tuberculosis has managed to still evade our understanding of the protective immune response against it, defying the development of an effective vaccine. Technology and novel experimental models have revealed much new knowledge, particularly with respect to the heterogeneity of the bacillus and the host response. This review focuses on certain immunological elements that have recently yielded exciting data and highlights the importance of taking a holistic approach to understanding the interaction of M. tuberculosis with the many host cells that contribute to the development of protective immunity.
Collapse
|
30
|
Acosta F, Fernández PL, Goodridge A. Do B-1 cells play a role in response to Mycobacterium tuberculosis Beijing lineages? Virulence 2022; 13:1-4. [PMID: 34753390 PMCID: PMC8741279 DOI: 10.1080/21505594.2021.2003116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We highlight the need to include an analysis of the B-1 B cell subset to complement the characterization of the cell-mediated immune response to the Mycobacterium tuberculosis Beijing lineage. The literature describes the B-1 cell repertoire's involvement in the cell-mediated response within granulomas, which is different from the classic antibody response B cells are generally associated with. Specifically, the B-1 B cell subset migrates from other compartments along with other cells to the infection site. We provide details to complement the reported results from Cerezo-Cortes et al.
Collapse
Affiliation(s)
- Fermín Acosta
- Centro de Biología Molecular y Celular de las Enfermedades (CBCME) del Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama City, Panamá
| | - Patricia L. Fernández
- Centro de Biología Molecular y Celular de las Enfermedades (CBCME) del Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama City, Panamá
| | - Amador Goodridge
- Centro de Biología Molecular y Celular de las Enfermedades (CBCME) del Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama City, Panamá,CONTACT Amador Goodridge
| |
Collapse
|
31
|
La Manna MP, Shekarkar-Azgomi M, Badami GD, Tamburini B, Dieli C, Di Carlo P, Fasciana T, Marcianò V, Lo Sasso B, Giglio RV, Giammanco A, Ciaccio M, Dieli F, Caccamo N. Impact of Mycobacterium tuberculosis Infection on Human B Cell Compartment and Antibody Responses. Cells 2022; 11:2906. [PMID: 36139482 PMCID: PMC9497247 DOI: 10.3390/cells11182906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
Tuberculosis (TB) remains one of the most important health challenges worldwide. Control of the TB epidemic has not yet been achieved because of the lack of an effective vaccine and rapid and sensitive diagnostic approaches, as well as the emergence of drug-resistant forms of M. tuberculosis. Cellular immunity has a pivotal role against M. tuberculosis infection, but the role of humoral immunity is still controversial. We analyzed the frequency, absolute counts, and phenotypic and functional subsets of B lymphocytes in the peripheral blood of patients with active TB and subjects with latent infection compared to healthy donors. Moreover, we analyzed serum levels of total Ig and their IgA, IgM, and IgG isotypes and the titers of preexisting antibodies against a pool of common viral pathogens. FlowCT and unsupervised clusterization analysis show that patients with active TB and LTBI subjects have modest non-significant reduction in the numbers of circulating B lymphocytes as compared to healthy donors. Moreover, LTBI subjects had high percentages of atypical B cell population and lower percentages of naive and switched memory B cells. These findings were supported by gene expression and GSEA analysis. Moreover, there were no differences between active TB patients, LTBI subjects and HD, either in serum levels of total Ig isotypes or in preexisting IgG antibody titers, to ten different antigens from eight common pathogenic viruses, clearly demonstrating that either active or latent M. tuberculosis infection preserves the antibody production capacity of long-lived plasma cells. Thus, our results agree with previous studies reporting unaltered B cell frequencies in the blood of active TB patients and LTBI individuals as compared to healthy controls.
Collapse
Affiliation(s)
- Marco P. La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Mojtaba Shekarkar-Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Sciences for Health Promotion, Mother & Child Care, University of Palermo, 90127 Palermo, Italy
| | - Giusto D. Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Sciences for Health Promotion, Mother & Child Care, University of Palermo, 90127 Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Sciences for Health Promotion, Mother & Child Care, University of Palermo, 90127 Palermo, Italy
| | - Costanza Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
| | - Paola Di Carlo
- Department of Sciences for Health Promotion, Mother & Child Care, University of Palermo, 90127 Palermo, Italy
- Division of Infectious Diseases, Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
| | - Teresa Fasciana
- Department of Sciences for Health Promotion, Mother & Child Care, University of Palermo, 90127 Palermo, Italy
| | - Vito Marcianò
- Department of Sciences for Health Promotion, Mother & Child Care, University of Palermo, 90127 Palermo, Italy
| | - Bruna Lo Sasso
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
- Department of Laboratory Medicine, Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, 90127 Palermo, Italy
| | - Rosaria V. Giglio
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
- Department of Laboratory Medicine, Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, 90127 Palermo, Italy
| | - Anna Giammanco
- Department of Sciences for Health Promotion, Mother & Child Care, University of Palermo, 90127 Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
- Department of Laboratory Medicine, Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, 90127 Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
32
|
Saini I, Joshi J, Kaur S. Unwelcome prevalence of leishmaniasis with several other infectious diseases. Int Immunopharmacol 2022; 110:109059. [DOI: 10.1016/j.intimp.2022.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
|
33
|
Verma N, Arora V, Awasthi R, Chan Y, Jha NK, Thapa K, Jawaid T, Kamal M, Gupta G, Liu G, Paudel KR, Hansbro PM, George Oliver BG, Singh SK, Chellappan DK, Dureja H, Dua K. Recent developments, challenges and future prospects in advanced drug delivery systems in the management of tuberculosis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
34
|
Nziza N, Cizmeci D, Davies L, Irvine EB, Jung W, Fenderson BA, de Kock M, Hanekom WA, Franken KLMC, Day CL, Ottenhoff THM, Alter G. Defining Discriminatory Antibody Fingerprints in Active and Latent Tuberculosis. Front Immunol 2022; 13:856906. [PMID: 35514994 PMCID: PMC9066635 DOI: 10.3389/fimmu.2022.856906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
Tuberculosis (TB) is among the leading causes of death worldwide from a single infectious agent, second only to COVID-19 in 2020. TB is caused by infection with Mycobacterium tuberculosis (Mtb), that results either in a latent or active form of disease, the latter associated with Mtb spread. In the absence of an effective vaccine, epidemiologic modeling suggests that aggressive treatment of individuals with active TB (ATB) may curb spread. Yet, clinical discrimination between latent (LTB) and ATB remains a challenge. While antibodies are widely used to diagnose many infections, the utility of antibody-based tests to diagnose ATB has only regained significant traction recently. Specifically, recent interest in the humoral immune response to TB has pointed to potential differences in both targeted antigens and antibody features that can discriminate latent and active TB. Here we aimed to integrate these observations and broadly profile the humoral immune response across individuals with LTB or ATB, with and without HIV co-infection, to define the most discriminatory humoral properties and diagnose TB disease more easily. Using 209 Mtb antigens, striking differences in antigen-recognition were observed across latently and actively infected individuals that was modulated by HIV serostatus. However, ATB and LTB could be discriminated, irrespective of HIV-status, based on a combination of both antibody levels and Fc receptor-binding characteristics targeting both well characterized (like lipoarabinomannan, 38 kDa or antigen 85) but also novel Mtb antigens (including Rv1792, Rv1528, Rv2435C or Rv1508). These data reveal new Mtb-specific immunologic markers that can improve the classification of ATB versus LTB.
Collapse
Affiliation(s)
- Nadege Nziza
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Deniz Cizmeci
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Leela Davies
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, United States
| | - Edward B. Irvine
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Wonyeong Jung
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Brooke A. Fenderson
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Marwou de Kock
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Willem A. Hanekom
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Cheryl L. Day
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| |
Collapse
|
35
|
Wang M, Li X, Wang Q, Zhang M, He J, Ming S, Wang Z, Cao C, Zhang S, Geng L, Gong S, Huang X, Chen K, Wu Y. TLT-1 Promotes Platelet-Monocyte Aggregate Formation to Induce IL-10-Producing B Cells in Tuberculosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1642-1651. [PMID: 35277419 DOI: 10.4049/jimmunol.2001218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The immunoregulation of platelets and platelet-monocyte aggregates (PMAs) is increasingly recognized, but it roles in tuberculosis (TB) remain to be elucidated. In this study, we found that CD14+CD41+ PMAs were increased in peripheral blood of patients with active TB. CD14+CD41+ PMAs highly expressed triggering receptors expressed on myeloid cells (TREMs)-like transcript-1 (TLT-1), P-selectin (CD62P), and CD40L. Our in vitro study found that platelets from patients with active TB aggregate with monocytes to induce IL-1β and IL-6 production by monocytes. Importantly, we identified that TLT-1 was required for formation of PMAs. The potential TLT-1 ligand was expressed and increased on CD14+ monocytes of patients with TB determined by using TLT-1 fusion protein (TLT-1 Fc). Blocking of ligand-TLT-1 interaction with TLT-1 Fc reduced PMA formation and IL-1β and IL-6 production by monocytes. Further results demonstrated that PMAs induced IL-10 production by B cells (B10) dependent on IL-1β, IL-6, and CD40L signals in a coculture system. Moreover, TLT-1 Fc treatment suppressed B10 polarization via blocking PMA formation. Taking all of these data together, we elucidated that TLT-1 promoted PMA-mediated B10 polarization through enhancing IL-1β, IL-6, and CD40L origin from PMAs, which may provide potential targeting strategies for TB disease treatment.
Collapse
Affiliation(s)
- Manni Wang
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Department of Interventional Medicine, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Xingyu Li
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Department of Interventional Medicine, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Qiaohua Wang
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Mei Zhang
- Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, China
| | - Jianzhong He
- Department of Pathology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Siqi Ming
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Ziqing Wang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong Province, China; and
| | - Can Cao
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Shunxian Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong Province, China; and
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong Province, China; and
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong Province, China; and
| | - Xi Huang
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Department of Interventional Medicine, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, China
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China
| | - Kang Chen
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong Province, China; and
| | - Yongjian Wu
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Department of Interventional Medicine, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
36
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
37
|
Linge I, Tsareva A, Kondratieva E, Dyatlov A, Hidalgo J, Zvartsev R, Apt A. Pleiotropic Effect of IL-6 Produced by B-Lymphocytes During Early Phases of Adaptive Immune Responses Against TB Infection. Front Immunol 2022; 13:750068. [PMID: 35154093 PMCID: PMC8828505 DOI: 10.3389/fimmu.2022.750068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
The role of B cells migrating to the lung and forming follicles during tuberculosis (TB) inflammation is still the subject of debate. In addition to their antibody production and antigen-presenting functions, B cells secrete different cytokines and chemokines, thus participating in complex networks of innate and adaptive immunity. Importantly, lung B-cells produce high amounts of the pleiotropic gp130 cytokine IL-6. Its role during TB infection remains controversial, partly due to the fact that IL-6 is produced by different cell types. To investigate the impact of IL-6 produced by B cells on TB susceptibility and immune responses, we established a mouse strain with specific IL-6 deficiency in B cells (CD19cre-IL-6fl/fl, B-IL-6KO) on the B6 genetic background. Selective abrogation of IL-6 in B cells resulted in shortening the lifespan of TB-infected B-IL-6KO mice compare to the wild-type controls. We provide evidence that at the initial TB stages B cells serve as a critical source of IL-6. In the lung, the effect of IL-6 deficiency in B cells is associated rather with B and T cell functioning, than with macrophage polarization. TB-infected B-IL-6KO mice displayed diminished sizes of B cells themselves, CD4+IFN-γ+, Th17+, and CD4+CXCR5+ follicular T cell populations. The pleiotropic effect of B-cell-derived IL-6 on T-cells demonstrated in our study bridges two major lymphocyte populations and sheds some light on B- and T-cells interactions during the stage of anti-TB response when the host switches on a plethora of acquired immune reactions.
Collapse
Affiliation(s)
- Irina Linge
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Anastasiya Tsareva
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Elena Kondratieva
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Alexander Dyatlov
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Juan Hidalgo
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Institute of Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ruslan Zvartsev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Apt
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| |
Collapse
|
38
|
Zheng N, Fleming J, Hu P, Jiao J, Zhang G, Yang R, Li C, Liu Y, Bi L, Zhang H. CD84 is a Suppressor of T and B Cell Activation during Mycobacterium tuberculosis Pathogenesis. Microbiol Spectr 2022; 10:e0155721. [PMID: 35196822 PMCID: PMC8865571 DOI: 10.1128/spectrum.01557-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/21/2022] [Indexed: 11/20/2022] Open
Abstract
Interest in host-directed therapies as alternatives/adjuncts to antibiotic treatment has resurged with the increasing prevalence of antibiotic-resistant tuberculosis (TB). Immunotherapies that reinvigorate immune responses by targeting immune checkpoints like PD-1/PD-L1 have proved successful in cancer therapy. Immune cell inhibitory receptors that trigger Mycobacterium tuberculosis-specific immunosuppression, however, are unknown. Here, we show that the levels of CD84, a SLAM family receptor, increase in T and B cells in lung tissues from M. tuberculosis-infected C57BL/6 mice and in peripheral blood mononuclear cells (PBMCs) from pulmonary TB patients. M. tuberculosis challenge experiments using CD84-deficient C57BL/6 mice suggest that CD84 expression likely leads to T and B cell immunosuppression during M. tuberculosis pathogenesis and also plays an inhibitory role in B cell activation. Importantly, CD84-deficient mice showed improved M. tuberculosis clearance and longer survival than M. tuberculosis-infected wild-type (WT) mice. That CD84 is a putative M. tuberculosis infection-specific inhibitory receptor suggests it may be a suitable target for the development of TB-specific checkpoint immunotherapies. IMPORTANCE Immune checkpoint therapies, such as targeting checkpoints like PD-1/PD-L1, have proved successful in cancer therapy and can reinvigorate immune responses. The potential of this approach for treating chronic infectious diseases like TB has been recognized, but a lack of suitable immunotherapeutic targets, i.e., immune cell inhibitory receptors that trigger immunosuppression specifically during Mycobacterium tuberculosis pathogenesis, has limited the application of this strategy in the development of new TB therapies. Our focus in this study was to address this gap and search for an M. tuberculosis-specific checkpoint target. Our results suggest that CD84 is a putative inhibitory receptor that may be a suitable target for the development of TB-specific checkpoint immunotherapies.
Collapse
Affiliation(s)
- Nan Zheng
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Joy Fleming
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Peilei Hu
- Hunan Chest Hospital, Changsha, Hunan Province, China
| | - Jianjian Jiao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guoqin Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ruifang Yang
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
| | - Chuanyou Li
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
| | - Yi Liu
- Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
| | - Lijun Bi
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- CAS Center of Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan, Guangdong Province, China
| | - Hongtai Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Machimbirike VI, Pornputtapong N, Senapin S, Wangkahart E, Srisapoome P, Khunrae P, Rattanarojpong T. A multi-epitope chimeric protein elicited a strong antibody response and partial protection against Edwardsiella ictaluri in Nile tilapia. JOURNAL OF FISH DISEASES 2022; 45:1-18. [PMID: 34472110 DOI: 10.1111/jfd.13525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Edwardsiella ictaluri infects several fish species and protection of the all the susceptible fish hosts from the pathogen using a monovalent vaccine is impossible because the species is composed of host-based genotypes that are genetic, serological and antigenic heterogenous. Here, immunoinformatic approach was employed to design a cross-immunogenic chimeric EiCh protein containing multi-epitopes. The chimeric EiCh protein is composed of 11 B-cell epitopes and 7 major histocompatibility complex class II epitopes identified from E. ictaluri immunogenic proteins previously reported. The 49.32 kDa recombinant EiCh protein was expressed in vitro in Escherichia coli BL-21 (DE3) after which inclusion bodies were successfully solubilized and refolded. Ab initio protein modelling revealed secondary and tertiary structures. Secondary structure was confirmed by circular dichroism spectroscopy. Antigenicity of the chimeric EiCh protein was exhibited by strong reactivity with serum from striped catfish and Nile tilapia experimentally infected with E. ictaluri. Furthermore, immunogenicity of the chimeric EiCh protein was investigated in vivo in Nile tilapia juveniles and it was found that the protein could strongly induce production of specific antibodies conferring agglutination activity and partially protected Nile tilapia juveniles with a relative survival percentage (RPS) of 42%. This study explored immunoinformatics as reverse vaccinology approach in vaccine design for aquaculture to manage E. ictaluri infections.
Collapse
Affiliation(s)
- Vimbai Irene Machimbirike
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Natapol Pornputtapong
- Department of Biochemistry and Microbiology, Faculty of Medicine, Faculty of Pharmaceutical Sciences and Center of Excellence in Systems Biology, Chulalongkorn University, Bangkok, Thailand
| | - Saengchan Senapin
- Fish Health Platform, Faculty of Science, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Eakapol Wangkahart
- Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| |
Collapse
|
40
|
Consonni F, Chiti N, Ricci S, Venturini E, Canessa C, Bianchi L, Lippi F, Montagnani C, Giovannini M, Chiappini E, Galli L, Azzari C, Lodi L. Unbalanced serum immunoglobulins in clinical subtypes of pediatric tuberculosis disease. Front Pediatr 2022; 10:908963. [PMID: 36016881 PMCID: PMC9395963 DOI: 10.3389/fped.2022.908963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Immune response to tuberculosis (TB) has been extensively studied in the past decades and classically involves cellular immunity. However, evidence suggests that humoral immunity may play a relevant role. Past studies regarding serum immunoglobulin (Ig) levels in TB are dated and only involve adult subjects. In this study, we retrospectively studied a cohort of 256 children with TB disease and analyzed 111 patients screened for total serum Ig at diagnosis. According to the severity and extent of organ involvement, subjects were divided into four groups, namely, uncomplicated pulmonary TB (UCPTB, 56.3% of patients), complicated pulmonary TB (CPTB, 22.5%), lymph node extrapulmonary TB (LN-EPTB, 7.2%), and extra-nodal extrapulmonary TB (EN-EPTB, 13.5%). Serum IgG and IgA levels were significantly higher in more severe and extended TB disease. Median IgG levels progressively increased from uncomplicated to complicated pulmonary and nodal forms, reaching their highest values in diffuse extra-pulmonary TB. In parallel, UCPTB showed significantly lower frequencies of patients presenting a substantial increase in IgG levels when compared with the other three groups. No relevant differences in IgM levels were detected. Ig screening at follow-up showed a significant reduction in IgG and IgA levels. Finally, we unveiled three cases of selective IgA and one case of selective IgM deficiencies (SIgMD), the latter with a severe clinical course. Serum IgG and IgA may be a useful clinical tool to assess the severity and monitor the treatment response in pediatric TB disease. Moreover, immunological workup in children with TB disease may unmask primary defects of humoral immunity.
Collapse
Affiliation(s)
- Filippo Consonni
- Meyer Children's Hospital, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Nicolò Chiti
- Meyer Children's Hospital, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Silvia Ricci
- Department of Health Sciences, University of Florence, Florence, Italy.,Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Elisabetta Venturini
- Infectious Diseases Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Clementina Canessa
- Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Leila Bianchi
- Infectious Diseases Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Francesca Lippi
- Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Carlotta Montagnani
- Infectious Diseases Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Mattia Giovannini
- Allergology Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Elena Chiappini
- Department of Health Sciences, University of Florence, Florence, Italy.,Infectious Diseases Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Luisa Galli
- Department of Health Sciences, University of Florence, Florence, Italy.,Infectious Diseases Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Chiara Azzari
- Department of Health Sciences, University of Florence, Florence, Italy.,Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, Florence, Italy.,Immunology Unit, Department of Pediatrics, Meyer Children's Hospital, Florence, Italy
| |
Collapse
|
41
|
Mohammadi A, Abtahi Froushani SM, DelireZh N, Ownagh A. Alum and metoclopramide synergistically enhance cellular and humoral immunity after immunization with heat-killed Salmonella typhimurium vaccine. Int Immunopharmacol 2021; 101:108185. [PMID: 34607234 DOI: 10.1016/j.intimp.2021.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/06/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022]
Abstract
Typically, the killed form of microorganisms in combination with alum does not produce strong cellular immune responses. A recent investigation has indicated the role of dopamine D2 receptor antagonists like metoclopramide in reducing the polarization of immune responses toward Th2 immunity. This study was performed to evaluate the effects of a combination of alum and metoclopramide on the induction of cellular and humoral immunity in response to a heat-killed preparation ofSalmonella typhimurium(HKST). Wistar rats were immunized with the HKST vaccine alone or in combination with alum, metoclopramide, or the alum-metoclopramide mixture twice with a two-week interval. Fourteen days after the last vaccination, immune responses against S. typhimurium and the protective potential of the vaccines were assessed. The combination of alum and metoclopramide as an adjuvant augmented the potential of the HKST vaccine to enhance lymphocyte proliferation, delayed-type hypersensitivity reaction, and antibody titer. These results were concurrent with the polarization of immune response towards the Th1 response and improving protective immunity against S. typhimurium. Overall, the combination of alum and metoclopramide as an adjuvant synergistically enhanced cellular and humoral immunity after immunization with the HKST vaccine.
Collapse
Affiliation(s)
- Ahmad Mohammadi
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Nouroz DelireZh
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Abdolghaffar Ownagh
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
42
|
Boom WH, Schaible UE, Achkar JM. The knowns and unknowns of latent Mycobacterium tuberculosis infection. J Clin Invest 2021; 131:136222. [PMID: 33529162 DOI: 10.1172/jci136222] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Humans have been infected with Mycobacterium tuberculosis (Mtb) for thousands of years. While tuberculosis (TB), one of the deadliest infectious diseases, is caused by uncontrolled Mtb infection, over 90% of presumed infected individuals remain asymptomatic and contain Mtb in a latent TB infection (LTBI) without ever developing disease, and some may clear the infection. A small number of heavily Mtb-exposed individuals appear to resist developing traditional LTBI. Because Mtb has mechanisms for intracellular survival and immune evasion, successful control involves all of the arms of the immune system. Here, we focus on immune responses to Mtb in humans and nonhuman primates and discuss new concepts and outline major knowledge gaps in our understanding of LTBI, ranging from the earliest events of exposure and infection to success or failure of Mtb control.
Collapse
Affiliation(s)
- W Henry Boom
- Department of Medicine.,Department of Pathology, and.,Department of Molecular Biology and Microbiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ulrich E Schaible
- Division of Cellular Microbiology, Research Center Borstel-Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Jacqueline M Achkar
- Department of Medicine and.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
43
|
Ex-vivo immunophenotyping and high dimensionality UMAP analysis of leucocyte subsets in tuberculous lymphadenitis. Tuberculosis (Edinb) 2021; 130:102117. [PMID: 34358992 DOI: 10.1016/j.tube.2021.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022]
Abstract
Tuberculous lymphadenitis (TBL) is defined by reduced proinflammatory cytokines and elevated CD4+, CD8+ T cells and decreased CD8+ cytotoxic markers. However, ex-vivo phenotyping of diverse leucocytes in TBL has not been done. We show activated and atypical B cells, myeloid dendritic cells (mDCs), classical, non-classical and intermediate monocytes, T regulatory (T regs) cells, CD4+ T cell effector memory RA (TEMRA), CD4+ effector and CD8+ central memory phenotypes were significantly increased in TBL compared to LTB individuals. In contrast, classical memory and plasma B cells, plasmacytoid DCs (pDCs), CD8+ TEMRA, CD4+ naïve and central memory cells were significantly decreased in TBL compared to LTB individuals. Some of the leucocyte frequencies (atypical memory B cells, pDCs, myeloid-derived suppressor cells, CD4+ effector and CD8+ central memory was increased; activated memory and plasma B cell, mDCs, classical, non-classical, intermediate monocytes, T regs, CD4+ TEMRA, CD4+, CD8+ naïve and effector memory cells and CD8+ central memory cells were decreased) were significantly modulated after anti-TB treatment among TBL individuals. UMAP analysis show that leucocyte subsets or islands expressing specific markers were significantly different in TBL baseline and post-treatment individuals. Overall, we suggest altered frequencies of diverse leucocytes influences the disease pathology and protective immunity in TBL individuals.
Collapse
|
44
|
Gong W, Liang Y, Mi J, Jia Z, Xue Y, Wang J, Wang L, Zhou Y, Sun S, Wu X. Peptides-Based Vaccine MP3RT Induced Protective Immunity Against Mycobacterium Tuberculosis Infection in a Humanized Mouse Model. Front Immunol 2021; 12:666290. [PMID: 33981313 PMCID: PMC8108698 DOI: 10.3389/fimmu.2021.666290] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
Background Tuberculosis (TB) is still a global infectious disease that seriously threatens human beings. The only licensed TB vaccine Bacille Calmette-Guérin (BCG)’s protective efficacy varies significantly among populations and regions. It is very urgent to develop more effective vaccines. Methods In this study, eleven candidate proteins of Mycobacterium tuberculosis were selected to predict peptides with high-affinity binding capacity for the HLA-DRB1*01:01 molecule. The immunodominant peptides were identified with the enzyme-linked immunospot assay (ELISPOT) and linked in silico to result in a novel polypeptide vaccine in Escherichia coli cells. The vaccine’s protective efficacy was evaluated in humanized and wild-type C57BL/6 mice. The potential immune protective mechanisms were explored with Enzyme-linked Immunosorbent Assay (ELISA), flow cytometry, and ELISPOT. Results Six immunodominant peptides screened from 50 predicted peptides were used to construct a new polypeptide vaccine named MP3RT. After challenge with M. tuberculosis, the colony-forming units (CFUs), lung lesion area, and the number of inflammatory cells in humanized mice rather than wild-type mice vaccinated with MP3RT were significantly lower than these in mice immunized with PBS. The humanized mice vaccinated with MP3RT revealed significant increases in IFN-γ cytokine production, IFN-γ+ T lymphocytes, CD3+IFN-γ+ T lymphocytes, and the MP3RT-specific IgG antibody. Conclusions Taken together, MP3RT is a promising peptides-based TB vaccine characterized by inducing high levels of IFN-γ and CD3+IFN-γ+ T lymphocytes in humanized mice. These new findings will lay a foundation for the development of peptides-based vaccines against TB.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zaixing Jia
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Graduate School, Hebei North University, Zhangjiakou, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8th Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
45
|
FasL regulatory B-cells during Mycobacterium tuberculosis infection and TB disease. J Mol Biol 2021; 433:166984. [PMID: 33845087 DOI: 10.1016/j.jmb.2021.166984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/20/2022]
Abstract
Tuberculosis (TB) disease remains a major health crisis. Infection with Mycobacterium tuberculosis (M.tb) cause a range of diseases ranging from latent infection to active TB disease. This active state of the disease is characterised by the formation of granulomas (a physical barrier in the lung), a structure thought to protect the host by controlling the infection through preventing the growth of the bacilli. Subsequently, the surviving bacteria become inactive and in most cases, TB reactivation is prevented by the immune response of the host. B-cells perform numerous immunological functions beyond antibody production to positively regulate the response to pathogenic assault. A subgroup of B-cells with regulatory functions express death-inducing ligands, such as Fas ligand (FasL). Expression and interaction of the Fas receptor-ligand promotes the induction of apoptosis and the induction of T-cell tolerance. Here, we focus on the significance of B-cells by addressing their FasL phenotype and regulatory functions during TB, with reference to disease in humans, non-human primates and mice.
Collapse
|
46
|
Baldwin SL, Reese VA, Larsen SE, Beebe E, Guderian J, Orr MT, Fox CB, Reed SG, Coler RN. Prophylactic efficacy against Mycobacterium tuberculosis using ID93 and lipid-based adjuvant formulations in the mouse model. PLoS One 2021; 16:e0247990. [PMID: 33705411 PMCID: PMC7951850 DOI: 10.1371/journal.pone.0247990] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
An estimated 10 million people developed tuberculosis (TB) disease in 2019 which underscores the need for a vaccine that prevents disease and reduces transmission. The aim of our current studies is to characterize and test a prophylactic tuberculosis vaccine comprised of ID93, a polyprotein fusion antigen, and a liposomal formulation [including a synthetic TLR4 agonist (glucopyranosyl lipid adjuvant, GLA) and QS-21] in a preclinical mouse model of TB disease. Comparisons of the ID93+GLA-LSQ vaccines are also made to the highly characterized ID93+GLA-SE oil-in-water emulsion adjuvant, which are also included these studies. The recent success of vaccine candidate M72 combined with adjuvant AS01E (GlaxoSmithKline Biologicals) in reducing progression to active disease is promising and has renewed excitement for experimental vaccines currently in the TB vaccine pipeline. The AS01E adjuvant contains monophosphoryl lipid A (MPL) and QS-21 (a saponin) in a liposomal formulation. While AS01E has demonstrated potent adjuvant activity as a component of both approved and experimental vaccines, developing alternatives to this adjuvant system will become important to fill the high demand envisioned for future vaccine needs. Furthermore, replacement sources of potent adjuvants will help to supply the demand of a TB vaccine [almost one-quarter of the world's population are estimated to have latent Mycobacterium tuberculosis (Mtb) according to the WHO 2019 global TB report], addressing (a) cost of goods, (b) supply of goods, and (c) improved efficacy of subunit vaccines against Mtb. We show that both ID93+GLA-SE (containing an emulsion adjuvant) and ID93+GLA-LSQ (containing a liposomal adjuvant) induce ID93-specific TH1 cellular immunity including CD4+CD44+ T cells expressing IFNγ, TNF, and IL-2 (using flow cytometry and intracellular cytokine staining) and vaccine-specific IgG2 antibody responses (using an ELISA). In addition, both ID93+GLA-SE and ID93+GLA-LSQ effectively decrease the bacterial load within the lungs of mice infected with Mtb. Formulations based on this liposomal adjuvant formulation may provide an alternative to AS01 adjuvant systems.
Collapse
Affiliation(s)
- Susan L. Baldwin
- Seattle Children’s Research Institute, Seattle, WA, United States of America
- * E-mail:
| | - Valerie A. Reese
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Sasha E. Larsen
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Elyse Beebe
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Jeff Guderian
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Mark T. Orr
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
47
|
Rijnink WF, Ottenhoff THM, Joosten SA. B-Cells and Antibodies as Contributors to Effector Immune Responses in Tuberculosis. Front Immunol 2021; 12:640168. [PMID: 33679802 PMCID: PMC7930078 DOI: 10.3389/fimmu.2021.640168] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is still a major threat to mankind, urgently requiring improved vaccination and therapeutic strategies to reduce TB-disease burden. Most present vaccination strategies mainly aim to induce cell-mediated immunity (CMI), yet a series of independent studies has shown that B-cells and antibodies (Abs) may contribute significantly to reduce the mycobacterial burden. Although early studies using B-cell knock out animals did not support a major role for B-cells, more recent studies have provided new evidence that B-cells and Abs can contribute significantly to host defense against Mtb. B-cells and Abs exist in many different functional subsets, each equipped with unique functional properties. In this review, we will summarize current evidence on the contribution of B-cells and Abs to immunity toward Mtb, their potential utility as biomarkers, and their functional contribution to Mtb control.
Collapse
Affiliation(s)
- Willemijn F Rijnink
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
48
|
New insights into regulatory B cells biology in viral, bacterial, and parasitic infections. INFECTION GENETICS AND EVOLUTION 2021; 89:104753. [PMID: 33545392 DOI: 10.1016/j.meegid.2021.104753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
B lymphocytes are primarily well known for their contribution to immunity by antibody production, antigen presentation and, the production of cytokines. In recent years several studies demonstrated the existence of B cells with regulatory functions, which have been termed regulatory B cells (Bregs), similar to regulatory T cells (Tregs). Bregs are a subpopulation of B cells that have immunosuppressive effects via the production of regulatory cytokines including interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and IL-35. Bregs limit host defense against various pathogens. In addition, Bregs contribute to increased levels of regulatory cytokines and leads to an induction of suppressive Tregs, which exert broader suppressive functions against various pathogens. The high percentage of Bregs is positively associated with viral and bacterial load and can contribute to poor vaccine responses. Bregs can also facilitate pathogen survival at an early stage of infection, and subsequently cause increased severity of disease by inhibiting pro-inflammatory cytokine production, macrophage activation, and inflammatory T cells activation such as Th1, Th17, and Th22. Also, Bregs afford protection against the hyper-inflammatory response in parasitic infections. Here we review the central role of Bregs in many major bacterial and viral human infections, and provide an overview of the immunoregulatory mechanisms used by Bregs.
Collapse
|
49
|
Kapoor J, Mirgh SP, Khushoo V, Mehta P, Ahmed R, Bansal N, Bhurani D, Agrawal N. Study of clinical characteristics, risk factors and outcomes for tuberculosis post allogeneic stem cell transplant: never count it out. Ther Adv Infect Dis 2021; 8:20499361211008674. [PMID: 33912346 PMCID: PMC8047838 DOI: 10.1177/20499361211008674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Allogeneic stem cell transplant (AlloSCT) recipients remain at a higher risk of developing tuberculosis (TB), especially in endemic populations. We conducted a retrospective study to identify the incidence, clinical presentation, and risk factors for active TB among our alloSCT recipients. METHODS Records of all patients transplanted between 1 January 2012 and 31 July 2020 were reviewed. Patients were followed up for outcome until 30 September 2020. None of the patients received prophylactic anti-tubercular drugs. Proven diagnosis of active TB was considered if Mycobacterium tuberculosis (MTB) was cultured from clinical samples or acid-fast bacilli (AFB) or MTB demonstrated on Ziehl-Neelsen (ZN) staining or histopathology or XPERT MTB, while probable diagnosis of TB was considered if histopathology findings were suggestive of caseation necrosis/epithelioid cell granulomas without any evidence of malignancy or lymphocyte rich exudative effusions (pleural/pericardial) without an alternative cause. RESULTS Among 381 alloSCT recipients, 15 patients (3.9%) developed TB at median of 246 (74-279) days post AlloSCT, after being symptomatic for a median of 22 (7-60) days, amounting to a cumulative incidence of 4.9%. All patients were started on four-drug anti tubercular therapy, ATT [Rifampicin, Isoniazid, Ethambutol, Pyrazinamide (RHEZ)], of which five patients developed hepatotoxicity at a median of 12 days after start of ATT, leading to drug modification. At last follow up, TB was cured in 13 (86.67%) patients, one succumbed to disease relapse, while others are still on treatment. Age ⩾ 30 years, immunosuppression for graft versus host disease (GvHD) > 6 months, prior use of tyrosine kinase inhibitors (TKI) and chronic GvHD on univariate analysis and immunosuppression for GvHD > 6 months on multivariate analysis were found to be associated with development of TB. CONCLUSION A high index of suspicion with timely workup and treatment of TB is the key in AlloSCT recipients, especially in endemic TB populations.
Collapse
Affiliation(s)
- Jyotsna Kapoor
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, Delhi, India
| | - Sumeet Prakash Mirgh
- Adult Hematolymphoid and BMT Unit, Tata Memorial Hospital ACTREC, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Vishvdeep Khushoo
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, Delhi, India
| | - Pallavi Mehta
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, Delhi, India
| | - Rayaz Ahmed
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, Delhi, India
| | - Nitin Bansal
- Department of Infectious Diseases, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, Delhi, India
| | - Dinesh Bhurani
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, Delhi, India
| | - Narendra Agrawal
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, Delhi 110085, India
| |
Collapse
|
50
|
Dolasia K, Nazar F, Mukhopadhyay S. Mycobacterium tuberculosis PPE18 protein inhibits MHC class II antigen presentation and B cell response in mice. Eur J Immunol 2020; 51:603-619. [PMID: 33084017 DOI: 10.1002/eji.201848071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 01/18/2023]
Abstract
PPE18 protein belongs to PE/PPE family of Mycobacterium tuberculosis. We reported earlier that PPE18 protein provides survival advantage to M. tuberculosis during infection. In the current study, we found that PPE18 inhibits MHC class II-mediated antigen presentation by macrophages in a dose-dependent manner without affecting the surface level of MHC class II or co-stimulatory molecules. PPE18 does not affect antigen uptake or presentation of preprocessed peptide by macrophages. Antigen degradation was found to be inhibited by PPE18 protein due to perturbation in phagolysosomal acidification. PPE18-mediated inhibition of MHC class II antigen presentation caused poorer activation of CD4 T cells. Mice infected with M. smegmatis expressing PPE18 exhibited reduced maturation and activation of B cells and had decreased Mycobacteria-specific antibody titers. Thus M. tuberculosis probably utilizes PPE18 to inhibit MHC class II antigen presentation causing poorer activation of adaptive immune responses. This study may be useful in understanding host-pathogen interaction and open up directions of designing novel therapeutics targeting PPE18 to tackle this nefarious pathogen.
Collapse
Affiliation(s)
- Komal Dolasia
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Faiza Nazar
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|