1
|
Su Q, Wang J, Huangfu Y, Gao R, Kong P, Gao Y, Song H, Zhang J, Huang P, Zhang C, Feng Z, Kong D, Wang W. An Off-the-Shelf Artificial Proregenerative Macrophage for Pressure Ulcer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415886. [PMID: 40271715 DOI: 10.1002/advs.202415886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/27/2025] [Indexed: 04/25/2025]
Abstract
Cell therapy is a promising approach in regenerative medicine. However, maintaining the survival and function of injected or implanted therapeutic cells remains a substantial challenge to success. In vivo modulatory strategy for cell therapeutics has been recently developed, but suffers from limited regenerative efficacy in injured tissue microenvironment with chronic inflammation. Here, an off-the-shelf artificial macrophage (artM) assembled by M2 macrophages-derived lysate proteins-loaded poly (lactic-co-glycolic acid) (PLGA) microspheres coated by macrophage cell membrane is developed. The synthetic artM fabricated in batches maintains its bioactivity with long-term cryostorage. Significantly, artM recapitulates the essential inflammation-regulatory and proregenerative characteristics of endogenous macrophages, including initiating M2 macrophage polarization, resolving excessive inflammation by releasing anti-inflammatory cytokines and growth factors, neutralizing endotoxins and proinflammatory cytokines, augmenting T-helper 2 (TH2) immune response, and coordinating cell migration and proliferation. In mouse model of deep tissue pressure injury (DTPI), the artM induces tissue regeneration by modulating the inflammatory microenvironment, promoting angiogenesis, reducing scar deposition, and accelerating the renewal of skin appendages. Depletion of macrophages in mice with skin ulcers highlights the immunomodulatory and proangiogenic functions of artM as effective as autogenous macrophages. Collectively, the engineered artM represents a cell-free, proreparative alternative to immune cell therapy in chronic wound management.
Collapse
Affiliation(s)
- Qi Su
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Jingrong Wang
- Beijing Life Science Academy, Beijing, 102200, China
| | - Yini Huangfu
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Rui Gao
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Pengxu Kong
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Yu Gao
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ju Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Pingsheng Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Chuangnian Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Zujian Feng
- State Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Weiwei Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Araya-Sapag MJ, Lara-Barba E, García-Guerrero C, Herrera-Luna Y, Flores-Elías Y, Bustamante-Barrientos FA, Albornoz GG, Contreras-Fuentes C, Yantén-Fuentes L, Luque-Campos N, Vega-Letter AM, Toledo J, Luz-Crawford P. New mesenchymal stem/stromal cell-based strategies for osteoarthritis treatment: targeting macrophage-mediated inflammation to restore joint homeostasis. J Mol Med (Berl) 2025:10.1007/s00109-025-02547-8. [PMID: 40272537 DOI: 10.1007/s00109-025-02547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Macrophages are pivotal in osteoarthritis (OA) pathogenesis, as their dysregulated polarization can contribute to chronic inflammatory processes. This review explores the molecular and metabolic mechanisms that influence macrophage polarization and identifies potential strategies for OA treatment. Currently, non-surgical treatments for OA focus only on symptom management, and their efficacy is limited; thus, mesenchymal stem/stromal cells (MSCs) have gained attention for their anti-inflammatory and immunomodulatory capabilities. Emerging evidence suggests that small extracellular vesicles (sEVs) derived from MSCs can modulate macrophage function, thus offering potential therapeutic benefits in OA. Additionally, the transfer of mitochondria from MSCs to macrophages has shown promise in enhancing mitochondrial functionality and steering macrophages toward an anti-inflammatory M2-like phenotype. While further research is needed to confirm these findings, MSC-based strategies, including the use of sEVs and mitochondrial transfer, hold great promise for the treatment of OA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- María Jesús Araya-Sapag
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana Lara-Barba
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García-Guerrero
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yesenia Flores-Elías
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Guillermo G Albornoz
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Consuelo Contreras-Fuentes
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Liliana Yantén-Fuentes
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jorge Toledo
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile.
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
3
|
Gonzalez CE, Vaidya RS, Clayton SW, Tang SY. Secreted chemokines and transcriptomic analyses reveal diverse inflammatory and degenerative processes in the intervertebral disc of the STZ-HFD mouse model of Type 2 diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.31.605332. [PMID: 39131361 PMCID: PMC11312574 DOI: 10.1101/2024.07.31.605332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The chronic inflammation resultant from type 2 diabetes (T2D) is also associated with spinal pathologies, including intervertebral disc (IVD) degeneration and chronic neck and back pain. Although confounding factors, such as increased weight gain in obesity, studies have shown that even after adjusting age, body mass index, and genetics (e.g. twins), patients with T2D suffer from disproportionately more IVD degeneration and back pain. We hypothesize that chronic T2D fosters a proinflammatory microenvironment within the IVD that promotes degeneration and disrupts disc homeostasis. To test this hypothesis, we evaluated two commonly used mouse models of T2D - the leptin-receptor deficient mouse (db/db) and the chronic high-fat diet in mice with impaired beta-cell function (STZ-HFD). STZ-HFD IVDs were more degenerated and showed differential expression of chemokines from the db/db models. Moreover, the RNAseq analysis revealed vast transcriptional dysregulation of many pathways in the STZ-HFD but not in the db/db tissues. Leptin signaling may be essential to mediating the inflammation in T2D. Taken together, the STZ-HFD may better recapitulates the complexities of the chronic inflammatory processes in the IVD during T2D.
Collapse
Affiliation(s)
- Christian E. Gonzalez
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Rachana S. Vaidya
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Sade W. Clayton
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Simon Y. Tang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
- Institute of Material Science and Engineering, Washington University in St. Louis, St. Louis, MO
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
4
|
Xi W, Wu W, Zhou L, Zhang Q, Yang S, Huang L, Lu Y, Wang J, Chi X, Kang Y. Multifunctional nanoparticles confers both multiple inflammatory mediators scavenging and macrophage polarization for sepsis therapy. Mater Today Bio 2025; 30:101421. [PMID: 39811612 PMCID: PMC11732566 DOI: 10.1016/j.mtbio.2024.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Sepsis is a serious and life-threatening condition, which can lead to organ failure and death clinically. Abnormally increased cell-free DNA (cfDNA) and inflammatory cytokines are involved in the development and progression of sepsis. Thus, cfDNA clearance and down-regulation of inflammatory factors are essential for the effective treatment of sepsis. Here we designed and constructed a polydopamine-based multifunctional nanoparticle for the treatment of sepsis. These nanoparticles (NPs) are composed of polydopamine (PDA) grafted with cationic polyethyleneimine (PEI). On the one hand, the NPs can utilize the electrostatic interaction to effectively adsorb cfDNA in blood, then effectively inhibiting the activation of toll like receptors (TLRs) and nuclear factor kappa B (NF-κB) pathways induced by cfDNA. On the other hand, the NPs have an immunomodulatory function, which can effectively convert pro-inflammatory macrophage (M1) into anti-inflammatory macrophage (M2), thus reduce the release of inflammatory cytokines and slow down the inflammatory storm of sepsis. In addition, the NPs possess good reactive oxygen species (ROS) scavenging ability. Briefly, the effective treatment of sepsis can be achieved by multiple strategies of effectively capturing the inflammatory triggering factor cfDNA, modulating the polarization of M1 macrophage to M2 macrophage and scavenging ROS, which has a promising clinical application.
Collapse
Affiliation(s)
- Wenjie Xi
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Weijie Wu
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lili Zhou
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qi Zhang
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shushu Yang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lihong Huang
- Department of Orthopaedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China
| | - Yijun Lu
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jing Wang
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinjin Chi
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
5
|
He C, Chen P, Ning L, Huang X, Sun H, Wang Y, Zhao Y, Zeng C, Huang D, Gao H, Cao M. Inhibition of Mitochondrial Succinate Dehydrogenase with Dimethyl Malonate Promotes M2 Macrophage Polarization by Enhancing STAT6 Activation. Inflammation 2025:10.1007/s10753-024-02207-y. [PMID: 39806091 DOI: 10.1007/s10753-024-02207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
Macrophages exhibit diverse phenotypes depending on environment status, which contribute to physiological and pathological processes of immunological diseases, including sepsis, asthma, multiple sclerosis and colitis. The alternative activation of macrophages is tightly regulated to avoid excessive activation and damage of tissues and organs. Certain works characterized that succinate dehydrogenase (SDH) altered function of macrophages and promoted inflammatory response in M1 macrophages via mitochondrial reactive oxygen species (ROS). However, the effect of succinate dehydrogenase on M2 macrophage polarization remains incompletely understood. We employed dimethyl malonate (DMM) to inhibit succinate dehydrogenase activity and took use of RNA-seq to analyze the changes of inflammatory response of LPS-activated M1 macrophages or IL 4-activated M2 macrophages. Our data revealed that inhibition of SDH with DMM increased expression of M2 macrophages-associated signature genes, including Arg1, Ym1 and Mrc1. Consistent with previous work, we also observed that inhibition of SDH decreased the expression of IL-1β and enhanced the levels of IL-10 in M1 macrophages. Additionally, inhibition of SDH with DMM inhibited the production of chemokines, such as Cxcl3, Cxcl12, Ccl20 and Ccl9. DMM also amplified the M2 macrophages-related signature genes in IL-13-activated M2 macrophages. Mechanistic studies revealed that DMM promoted M2 macrophages polarization through mitochondrial ROS dependent STAT6 activation. Blocking ROS with mitoTEMPO or inhibiting STAT6 activation with ruxolitinib abrogated the promotion effect of DMM on M2 macrophages. Finally, dimethyl malonate treatment promoted peritoneal M2 macrophages differentiation and exacerbated OVA-induced allergy asthma in vivo. Collectively, we identified SDH as a braker to suppress M2 macrophage polarization via mitochondrial ROS, suggesting a novel strategy to treatment of M2 macrophages-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Chaowen He
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Pengfei Chen
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Luwen Ning
- Health Science Center, Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Xiuping Huang
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Huimin Sun
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Yuanyuan Wang
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Yanli Zhao
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Changchun Zeng
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Dongsheng Huang
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
| | - Hanchao Gao
- Department of Nephrology, Shenzhen Longhua District Key Laboratory for Diagnosis and Treatment of Chronic Kidney Disease, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
| | - Mengtao Cao
- Department of Respiratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
| |
Collapse
|
6
|
Mella C, Tsarouhas P, Brockwell M, Ball HC. The Role of Chronic Inflammation in Pediatric Cancer. Cancers (Basel) 2025; 17:154. [PMID: 39796780 PMCID: PMC11719864 DOI: 10.3390/cancers17010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Inflammation plays a crucial role in wound healing and the host immune response following pathogenic invasion. However, unresolved chronic inflammation can result in tissue fibrosis and genetic alterations that contribute to the pathogenesis of human diseases such as cancer. Recent scientific advancements exploring the underlying mechanisms of malignant cellular transformations and cancer progression have exposed significant disparities between pediatric and adult-onset cancers. For instance, pediatric cancers tend to have lower mutational burdens and arise in actively developing tissues, where cell-cycle dysregulation leads to gene, chromosomal, and fusion gene development not seen in adult-onset counterparts. As such, scientific findings in adult cancers cannot be directly applied to pediatric cancers, where unique mutations and inherent etiologies remain poorly understood. Here, we review the role of chronic inflammation in processes of genetic and chromosomal instability, the tumor microenvironment, and immune response that result in pediatric tumorigenesis transformation and explore current and developing therapeutic interventions to maintain and/or restore inflammatory homeostasis.
Collapse
Affiliation(s)
- Christine Mella
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
| | - Panogiotis Tsarouhas
- Department of Biology, The University of Akron, 302 Buchtel Common, Akron, OH 44325, USA;
| | - Maximillian Brockwell
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
| | - Hope C. Ball
- Division of Hematology Oncology, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA;
- College of Medicine, Northeast Ohio Medical University, 4029 State Route 44, Rootstown, OH 44272, USA;
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, One Perkins Square, Akron, OH 44308, USA
| |
Collapse
|
7
|
Colavite PM, Azevedo MDCS, Francisconi CF, Fonseca AC, Tabanez AP, Melchiades JL, Passadori DC, Borrego A, De Franco M, Trombone APF, Garlet GP. Intermediate and Transitory Inflammation Mediate Proper Alveolar Bone Healing Outcome in Contrast to Extreme Low/High Responses: Evidence from Mice Strains Selected for Distinct Inflammatory Phenotypes. BIOLOGY 2024; 13:972. [PMID: 39765639 PMCID: PMC11673754 DOI: 10.3390/biology13120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Alveolar bone healing is influenced by various local and systemic factors, including the local inflammatory response. This study aimed to evaluate the role of inflammatory responsiveness in alveolar bone healing using 8-week-old male and female mice (N = 5/time/group) strains selected for maximum (AIRmax) or minimum (AIRmin) acute inflammatory response carrying distinct homozygous RR/SS Slc11a1 genotypes, namely AIRminRR, AIRminSS, AIRmaxRR, and AIRmaxSS mice. After upper right incisor extraction, bone healing was analyzed at 0, 3, 7, and 14 days using micro-computed tomography, histomorphometry, birefringence, immunohistochemistry, and PCRArray analysis. AIRmaxSS and AIRminRR presented the highest and lowest inflammatory readouts, respectively, associated with lowest repair levels in both strains, while intermediate inflammatory phenotypes observed in AIRminSS and AIRmaxRR were associated with higher repair levels in such strains. The better healing outcomes are associated with intermediate inflammatory cell counts, a balanced expression of pro- and anti-inflammatory cytokines and chemokines, increased expression of growth and osteogenic factors and MSCs markers. Our results demonstrate that extreme high and low inflammatory responses are not ideal for a proper bone repair outcome, while an intermediate and transitory inflammation is associated with a proper alveolar bone healing outcome.
Collapse
Affiliation(s)
- Priscila Maria Colavite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Michelle de Campos Soriani Azevedo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Carolina Fávaro Francisconi
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Angélica Cristina Fonseca
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - André Petenucci Tabanez
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Jéssica Lima Melchiades
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Daniela Carignatto Passadori
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| | - Andrea Borrego
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, Sao Paulo CEP 05503-900, SP, Brazil; (A.B.); (M.D.F.)
| | - Marcelo De Franco
- Laboratory of Immunogenetics, Butantan Institute, Secretary of Health, Government of the State of São Paulo, Sao Paulo CEP 05503-900, SP, Brazil; (A.B.); (M.D.F.)
- Pasteur Institute, Diagnostic Section, Sao Paulo CEP 01311-000, SP, Brazil
| | | | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisola, 9-75, Bauru CEP 17012-901, SP, Brazil; (P.M.C.); (M.d.C.S.A.); (A.C.F.); (D.C.P.)
| |
Collapse
|
8
|
Yuen CM, Tsai HP, Tseng TT, Tseng YL, Lieu AS, Kwan AL, Chang AYW. Hyperbaric Oxygen Therapy as a Novel Approach to Modulating Macrophage Polarization for the Treatment of Glioblastoma. Biomedicines 2024; 12:1383. [PMID: 39061957 PMCID: PMC11274314 DOI: 10.3390/biomedicines12071383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with a poor prognosis despite current treatments. This is partially attributed to the immunosuppressive environment facilitated by tumor-associated macrophages, which predominantly underlie the tumor-promoting M2 phenotype. This study investigated the potential of hyperbaric oxygen (HBO) therapy, traditionally used to treat conditions such as decompression sickness, in modulating the macrophage phenotype toward the tumoricidal M1 state and disrupting the supportive tumor microenvironment. HBO has direct antiproliferative effects on tumor cells and reduces hypoxia, which may impair angiogenesis and tumor growth. This offers a novel approach to GBM treatment by targeting the role of the immune system within the tumor microenvironment. The effects of HBO on macrophage polarization and GBM cell viability and apoptosis were evaluated in this study. We detected that HBO promoted M1 macrophage cytokine expression while decreasing GBM cell viability and increasing apoptosis using GBM cell lines and THP-1-derived macrophage-conditioned media. These findings suggest that HBO therapy can shift macrophage polarization toward a tumoricidal M1 state. This can improve GBM cell survival and offers a potential therapeutic strategy. In conclusion, HBO can shift macrophages from a tumor-promoting M2 phenotype to a tumoricidal M1 phenotype in GBM. This can facilitate apoptosis and, in turn, improve treatment outcomes.
Collapse
Affiliation(s)
- Chun-Man Yuen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan;
- Division of Neurosurgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-P.T.); (T.-T.T.); (A.-S.L.)
| | - Tzu-Ting Tseng
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-P.T.); (T.-T.T.); (A.-S.L.)
| | - Yu-Lung Tseng
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 333, Taiwan;
| | - Ann-Shung Lieu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-P.T.); (T.-T.T.); (A.-S.L.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Aij-Lie Kwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-P.T.); (T.-T.T.); (A.-S.L.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22904, USA
| | - Alice Y. W. Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Cheng-Hsing Campus, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
9
|
Wang B, Yang Y, Ye J, Han X, Yang L, Huang Y, Chao L. GRIM-19 deficiency promotes macrophage polarization to the M1 phenotype partly through glycolysis in unexplained recurrent spontaneous abortion†. Biol Reprod 2024; 110:739-749. [PMID: 38206868 DOI: 10.1093/biolre/ioae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
The occurrence of unexplained recurrent spontaneous abortion (URSA) is closely related to immune system disorders, however, the underlying mechanisms remain unclear. The purpose of this study was to investigate the expression of GRIM-19 in URSA and the possible pathogenesis of URSA according to macrophage polarization. Here, we showed that GRIM-19 was downregulated in the uterine decidual macrophages of patients with URSA and that GRIM-19 downregulation was accompanied by increased M1 macrophage polarization. Furthermore, the expression levels of glycolytic enzymes were substantially enhanced in the uterine decidual macrophages of URSA patients, and glycolysis in THP-1-derived macrophages was further enhanced by the downregulation of GRIM-19. Additionally, the increase of M1 macrophages resulting from the loss of GRIM-19 was significantly reversed in cells treated with 2-deoxy-D-glucose (2-DG, an inhibitor of glycolysis). To provide more direct evidence, GRIM-19 deficiency was shown to promote macrophage polarization to the M1 phenotype in GRIM-19+/- mouse uteri. Overall, our study provides evidence that GRIM-19 deficiency may play a role in regulating macrophage polarization in URSA, and that glycolysis may participate in this process.
Collapse
Affiliation(s)
- Bingyu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yang Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Jinwen Ye
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiaojuan Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Lin Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yufei Huang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Lan Chao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
10
|
Yang B, Li W, Saeki H, Shimizu Y, Joe GH. Maillard-type glycated collagen with alginate oligosaccharide suppresses inflammation and oxidative stress by attenuating the expression of LPS receptors Tlr4 and Cd14 in macrophages. Food Funct 2024; 15:3629-3639. [PMID: 38482590 DOI: 10.1039/d3fo02731g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Inflammation and oxidative stress contribute to noncommunicable diseases (NCDs), with macrophages playing pivotal roles. Glycated collagen through Maillard-type glycation holds promise for enhancing anti-inflammatory properties, but its mechanism remains unclear. This study investigates the cellular mechanism and aims to contribute to expanding collagen utilization. Collagen was glycated with alginate oligosaccharide (AO) and glucose (Glc: as a comparative case) at 60 °C and 35% relative humidity for up to 24 h (C-AO and C-Glc, respectively). The anti-inflammatory activities of both C-AO and C-Glc were evaluated using an LPS-stimulated macrophage model. 18 h AO-glycated collagen (C-AO18 h) was found to significantly reduce the production of nitric oxide and proinflammatory cytokines (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). In contrast, C-Glc did not exhibit enhanced anti-inflammatory activity during any of the glycation periods. The enhanced anti-inflammatory activity of C-AO18 h was attributed to its downregulating effect on LPS receptors (toll-like receptor 4, Tlr4; cluster of differentiation 14, Cd14) and myeloid differentiation primary response 88 (Myd88) mRNA expression, with suppression in receptor expression resulting in decreased phagocytic ability of macrophages against E. coli. In addition, compared with intact collagen, C-AO18 h exhibited improved antioxidant activity in the LPS-stimulated macrophage model, as it significantly upregulated superoxide dismutase (SOD) and catalase (CAT) activities while reducing malondialdehyde (MDA) levels. Overall, this study contributes to the development of collagen-based functional foods for mitigating inflammation and oxidative stress in NCDs.
Collapse
Affiliation(s)
- Boxue Yang
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Wenzhao Li
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| | - Hiroki Saeki
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| | - Yutaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| | - Ga-Hyun Joe
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
11
|
Shin JJ, Park J, Shin HS, Arab I, Suk K, Lee WH. Roles of lncRNAs in NF-κB-Mediated Macrophage Inflammation and Their Implications in the Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:2670. [PMID: 38473915 DOI: 10.3390/ijms25052670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Over the past century, molecular biology's focus has transitioned from proteins to DNA, and now to RNA. Once considered merely a genetic information carrier, RNA is now recognized as both a vital element in early cellular life and a regulator in complex organisms. Long noncoding RNAs (lncRNAs), which are over 200 bases long but do not code for proteins, play roles in gene expression regulation and signal transduction by inducing epigenetic changes or interacting with various proteins and RNAs. These interactions exhibit a range of functions in various cell types, including macrophages. Notably, some macrophage lncRNAs influence the activation of NF-κB, a crucial transcription factor governing immune and inflammatory responses. Macrophage NF-κB is instrumental in the progression of various pathological conditions including sepsis, atherosclerosis, cancer, autoimmune disorders, and hypersensitivity. It orchestrates gene expression related to immune responses, inflammation, cell survival, and proliferation. Consequently, its malfunction is a key contributor to the onset and development of these diseases. This review aims to summarize the function of lncRNAs in regulating NF-κB activity in macrophage activation and inflammation, with a particular emphasis on their relevance to human diseases and their potential as therapeutic targets. The insights gained from studies on macrophage lncRNAs, as discussed in this review, could provide valuable knowledge for the development of treatments for various pathological conditions involving macrophages.
Collapse
Affiliation(s)
- Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeung-Seob Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Imene Arab
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
12
|
Jordan PM, Günther K, Nischang V, Ning Y, Deinhardt-Emmer S, Ehrhardt C, Werz O. Influenza A virus selectively elevates prostaglandin E 2 formation in pro-resolving macrophages. iScience 2024; 27:108775. [PMID: 38261967 PMCID: PMC10797193 DOI: 10.1016/j.isci.2023.108775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Respiratory influenza A virus (IAV) infections are major health concerns worldwide, where bacterial superinfections substantially increase morbidity and mortality. The underlying mechanisms of how IAV impairs host defense remain elusive. Macrophages are pivotal for the innate immune response and crucially regulate the entire inflammatory process, occurring as inflammatory M1- or pro-resolving M2-like phenotypes. Lipid mediators (LM), produced from polyunsaturated fatty acids by macrophages, are potent immune regulators and impact all stages of inflammation. Using LM metabololipidomics, we show that human pro-resolving M2-macrophages respond to IAV infections with specific and robust production of prostaglandin (PG)E2 along with upregulation of cyclooxygenase-2 (COX-2), which persists after co-infection with Staphylococcus aureus. In contrast, cytokine/interferon production in macrophages was essentially unaffected by IAV infection, and the functionality of M1-macrophages was not influenced. Conclusively, IAV infection of M2-macrophages selectively elevates PGE2 formation, suggesting inhibition of the COX-2/PGE2 axis as strategy to limit IAV exacerbation.
Collapse
Affiliation(s)
- Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Kerstin Günther
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Vivien Nischang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Yuping Ning
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | | | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, 07745 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
13
|
Peltner LK, Gluthmann L, Börner F, Pace S, Hoffstetter RK, Kretzer C, Bilancia R, Pollastro F, Koeberle A, Appendino G, Rossi A, Newcomer ME, Gilbert NC, Werz O, Jordan PM. Cannabidiol acts as molecular switch in innate immune cells to promote the biosynthesis of inflammation-resolving lipid mediators. Cell Chem Biol 2023; 30:1508-1524.e7. [PMID: 37647900 DOI: 10.1016/j.chembiol.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/26/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Cannabinoids are phytochemicals from cannabis with anti-inflammatory actions in immune cells. Lipid mediators (LM), produced from polyunsaturated fatty acids (PUFA), are potent regulators of the immune response and impact all stages of inflammation. How cannabinoids influence LM biosynthetic networks is unknown. Here, we reveal cannabidiol (CBD) as a potent LM class-switching agent that stimulates the production of specialized pro-resolving mediators (SPMs) but suppresses pro-inflammatory eicosanoid biosynthesis. Detailed metabololipidomics analysis in human monocyte-derived macrophages showed that CBD (i) upregulates exotoxin-stimulated generation of SPMs, (ii) suppresses 5-lipoxygenase (LOX)-mediated leukotriene production, and (iii) strongly induces SPM and 12/15-LOX product formation in resting cells by stimulation of phospholipase A2-dependent PUFA release and through Ca2+-independent, allosteric 15-LOX-1 activation. Finally, in zymosan-induced murine peritonitis, CBD increased SPM and 12/15-LOX products and suppressed pro-inflammatory eicosanoid levels in vivo. Switching eicosanoid to SPM production is a plausible mode of action of CBD and a promising inflammation-resolving strategy.
Collapse
Affiliation(s)
- Lukas K Peltner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Lars Gluthmann
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Friedemann Börner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Robert K Hoffstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Rosella Bilancia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany; Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Mitterweg 24, 6020 Innsbruck, Austria
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Nathaniel C Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
14
|
Zhao M, Chen N, Guo Y, Wu N, Cao B, Zhan B, Li Y, Zhou T, Zhu F, Guo C, Shi Y, Wang Q, Li Y, Zhang L. D-mannose acts as a V-ATPase inhibitor to suppress inflammatory cytokines generation and bacterial killing in macrophage. Mol Immunol 2023; 162:84-94. [PMID: 37660434 DOI: 10.1016/j.molimm.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Vacuolar-type H+-ATPase (V-ATPase) critically controls phagosome acidification to promote pathogen digestion and clearance in macrophage. However, the specific subunits of V-ATPase have been evidenced to play contradictory functions in inflammatory cytokines generation and secretion exposure to external bacterial or LPS stimulation. Therefore, identifying the unique function of the separate subunit of V-ATPase is extremely important to regulate macrophage function. Here, we found that D-mannose, a C-2 epimer of glucose, suppressed ATP6V1B2 lysosomal translocation to inhibit V-ATPase activity in macrophages, thereby causing the scaffold protein axis inhibitor protein (AXIN) recruitment to lysosomal membrane and AMPK activation. Correspondingly, LPS-stimulated macrophage M1 polarization was significantly suppressed by D-mannose via down-regulating NF-κB signaling pathway in response to AMPK activation, while IL-4 induced macrophage M2 polarization were not affected. Furthermore, the failure of lysosomal localization of ATP6V1B2 caused by D-mannose also led to the acidification defects of lysosome. Therefore, D-mannose displayed a remarkable function in inhibiting macrophage phagocytosis and bacterial killing. Taken together, D-mannose acts a novel V-ATPase suppressor to attenuate macrophage inflammatory production but simultaneously prevent macrophage phagocytosis and bacterial killing.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Nuo Chen
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yaxin Guo
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Nan Wu
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Baihui Cao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Bing Zhan
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yubin Li
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Tian Zhou
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Faliang Zhu
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Chun Guo
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yongyu Shi
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Qun Wang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medical Science, Shandong University, Jinan, China.
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China.
| |
Collapse
|
15
|
Ding N, Luo G, Li H, Xing C, Gao Y, Xi W, Wu W, Wang D, Zheng L, Kang Y, Chi X. A Cyclodextrin-Based pH-Responsive MicroRNA Delivery Platform Targeting Polarization of M1 to M2 Macrophages for Sepsis Therapy. Adv Healthc Mater 2023; 12:e2301243. [PMID: 37463303 DOI: 10.1002/adhm.202301243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
The mortality rate of sepsis remains high despite improvements in the diagnosis and treatment of sepsis using symptomatic and supportive therapies, such as anti-infection therapy and fluid resuscitation. Nucleic acid-based drugs have therapeutic potential, although their poor stability and low delivery efficiency have hindered their widespread use. Herein, it is confirmed that miR-223 can polarize proinflammation M1 macrophages to anti-inflammation M2 macrophages. A pH-sensitive nano-drug delivery system comprising β-cyclodextrin-poly(2-(diisopropylamino)ethyl methacrylate)/distearoyl phosphoethanolamine-polyethylene glycol (β-CD-PDPA/DSPE-PEG) is synthesized and developed to target M1 macrophages and miR-223 is encapsulated into nanoparticles (NPs) for sepsis treatment. NPs/miR-223 demonstrated in vitro pH responsiveness with favorable biosafety, stability, and high delivery efficiency. In vivo studies demonstrate that NPs/miR-223 are preferentially accumulated and retained in the inflammation site, thereby reducing inflammation and improving the survival rate of mice with sepsis while exhibiting ideal biosafety. Mechanically, NPs/miR-223 regulates macrophage polarization by targeting Pknox1 and inhibiting the activation of the NF-κB signaling pathway, thereby achieving an anti-inflammatory effect. Collectively, it is demonstrated that the miRNA delivery vector described here provides a new approach for sepsis treatment and accelerates the advancement of nucleic acid drug therapy.
Collapse
Affiliation(s)
- Ni Ding
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Gangjian Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Huiting Li
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Chengyuan Xing
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuanji Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Wenjie Xi
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Weijie Wu
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dan Wang
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Lei Zheng
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinjin Chi
- Department of Anaesthesiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
16
|
Yang X, Wang Q, Zhang X, Li L, Cao X, Zhou L, Huang Y, Sun G, Chen Y. Purple Yam Polyphenol Extracts Exert Anticolitis and Anticolitis-Associated Colorectal Cancer Effects through Inactivation of NF-κB/p65 and STAT3 Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12177-12189. [PMID: 37545095 DOI: 10.1021/acs.jafc.3c00346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Colorectal cancer is a malignancy with high incidence and mortality worldwide, and ulcerative colitis (UC) is strongly associated with colorectal cancer. Purple yam, also known as Dioscorea alata, has been reported to be rich in plant polyphenols that have possessed anti-inflammatory, antioxidant, and antitumor properties. However, it is not clear whether purple yam polyphenol extracts (PYPE) can improve colitis and inhibit colitis-related colorectal tumorigenesis. Therefore, we used dextran sulfate sodium (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced colitis-associated colorectal cancer (CAC) models in mice to evaluate the preventive value and possible mechanisms of PYPE. It was found that PYPE effectively alleviated DSS-induced colitis, inhibited macrophage infiltration, and reduced the production of the pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, IL-17A, CXCL1, and MCP-1, and the higher the concentration of PYPE, the better the inhibitory effect. In addition, PYPE dramatically prevented the development of CAC and tumor proliferation in mice. Furthermore, PYPE inactivated NF-κB and STAT3 signaling to exert anti-inflammatory and anticancer effects. Taken together, these findings indicate that PYPE may be used as a promising preventive strategy against UC and CAC.
Collapse
Affiliation(s)
- Xinyue Yang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Qing Wang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Xinghai Zhang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Lingling Li
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Xingyue Cao
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Li Zhou
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Yefei Huang
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Guixiang Sun
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Yansu Chen
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| |
Collapse
|
17
|
Ono M, Watari S, Nishizawa-Higashi M, Konishi T, Takahashi Y, Saeki H, Joe GH. Water-soluble protein from walleye pollock ( Gadus chalcogrammus) suppresses lipopolysaccharide-induced inflammation by attenuating TLR4-MyD88 expression in macrophages. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100165. [PMID: 36891454 PMCID: PMC9988394 DOI: 10.1016/j.fochms.2023.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Water-soluble protein (WSP) from fish meat is abundant in the waste effluent generated via the surimi manufacturing process. This study investigated the anti-inflammatory effects and mechanisms of fish WSP using primary macrophages (MΦ) and animal ingestion. MΦ were treated with digested-WSP (d-WSP, 500 µg/mL) with or without lipopolysaccharide (LPS) stimulation. For the ingestion study, male ICR mice (5 weeks old) were fed 4% WSP for 14 days following LPS administration (4 mg/kg body weight). d-WSP decreased the expression of Tlr4, an LPS receptor. Additionally, d-WSP significantly suppressed the secretion of inflammatory cytokines, phagocytic ability, and Myd88 and Il1b expressions of LPS-stimulated macrophages. Furthermore, the ingestion of 4% WSP attenuated not only LPS-induced IL-1β secretion in the blood but also Myd88 and Il1b expressions in the liver. Thus, fish WSP decreases the expressions of the genes involved in the TLR4-MyD88 pathway in MΦ and the liver, thereby suppressing inflammation.
Collapse
Key Words
- 2Me, 2-mercaptoethanol
- Anti-inflammation
- Aq, aqua
- E. coli, Escherichia coli
- ELISA, Enzyme-linked immunosorbent assay
- FBS, Fetal bovine serum
- Fish water-soluble protein
- IL-1β, Interleukin 1 beta
- IL-6, Interleukin 6
- LBP, Lipopolysaccharide-binding protein
- LPS
- LPS, Lipopolysaccharide
- Macrophage
- MyD88
- MyD88, Myeloid differentiation primary response 88
- NCDs, Noncommunicable diseases
- NF-κB, Nuclear factor-kappa B
- NLRP3, NACHT, LRR, and PYD domain-containing protein 3
- PBS, Phosphate-buffered saline
- PCR, Polymerase chain reaction
- SDS, Sodium dodecyl sulfate
- TICAM-1, Toll-like receptor adaptor molecule 1
- TLR, Toll-like receptor
- TLR4
- TLR4, Toll-like receptor 4
- TNF-α, Tumor necrosis factor-alpha
- TNFR, Tumor necrosis factor receptor
- TRIF, TIR-domain–containing adapter-inducing interferon-beta
- WSP, Water-soluble protein
- d-WSP, digested water-soluble protein
Collapse
Affiliation(s)
- Masataka Ono
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
- Central Research Institute, Maruha Nichiro Corporation, 16-2, Wadai, Tsukuba, Ibaraki 300-4295, Japan
| | - Satomi Watari
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Mizuho Nishizawa-Higashi
- Central Research Institute, Maruha Nichiro Corporation, 16-2, Wadai, Tsukuba, Ibaraki 300-4295, Japan
| | - Tatsuya Konishi
- Central Research Institute, Maruha Nichiro Corporation, 16-2, Wadai, Tsukuba, Ibaraki 300-4295, Japan
| | - Yoshinori Takahashi
- Central Research Institute, Maruha Nichiro Corporation, 16-2, Wadai, Tsukuba, Ibaraki 300-4295, Japan
| | - Hiroki Saeki
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Ga-Hyun Joe
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
18
|
Cai SL, Fan XG, Wu J, Wang Y, Hu XW, Pei SY, Zheng YX, Chen J, Huang Y, Li N, Huang ZB. CB2R agonist GW405833 alleviates acute liver failure in mice via inhibiting HIF-1α-mediated reprogramming of glycometabolism and macrophage proliferation. Acta Pharmacol Sin 2023; 44:1391-1403. [PMID: 36697976 PMCID: PMC10310807 DOI: 10.1038/s41401-022-01037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/29/2022] [Indexed: 01/26/2023]
Abstract
The inflammatory responses involving infiltration and activation of liver macrophages play a vital role in acute liver failure (ALF). In the liver of ALF mice, cannabinoid receptor 2 (CB2R) is significantly upregulated on macrophages, while CB2R agonist GW405833 (GW) could protect against cell death in acute liver damage. In this study, we investigated the molecular mechanisms underlying the protective effects of GW against ALF in vivo and in vitro from a perspective of macrophage glycometabolism. Mice were pretreated with GW (10 mg/kg, i.p.), then were injected with D-GalN (750 mg/kg, i.p.) and LPS (10 mg/kg, i.p.) to induce ALF. We verified the protective effects of GW pretreatment in ALF mice. Furthermore, GW pretreatment significantly reduced liver macrophage infiltration and M1 polarization, and inhibited the release of inflammatory factors TNF-α and IL-1β in ALF mice. These protective effects were eliminated by CB2R antagonist SR144528 or in CB2R-/- ALF mice. We used LPS-stimulated RAW264.7 cells as an in vitro M1 macrophage-centered model of inflammatory response, and demonstrated that pretreatment with GW (10 μM) significantly reduced glucose metabolism by inhibiting glycolysis, which inhibited LPS-induced macrophage proliferation and inflammatory cytokines release. We verified these results in a stable CB2R-/- RAW264.7 cell line. Moreover, we found that GW significantly inhibited the expression of hypoxia inducible factor 1α (HIF-1α). Using a stable HIF-1α-/- RAW264.7 cell line, we confirmed that GW reduced the release of inflammatory cytokines from macrophages and inhibited glycolysis by downregulating HIF-1α expression. In conclusion, activation of CB2Rs inhibits the proliferation of hepatic macrophages and release of inflammatory factors in ALF mice through downregulating HIF-1α to inhibit glycolysis.
Collapse
Affiliation(s)
- Sheng-Lan Cai
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jie Wu
- Shantou University Medical College, Shantou, 515041, China
| | - Yang Wang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Integrative Medicine Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xing-Wang Hu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Si-Ya Pei
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yi-Xiang Zheng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ning Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, 410007, China
| | - Ze-Bing Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
19
|
Molinaro C, Scalise M, Leo I, Salerno L, Sabatino J, Salerno N, De Rosa S, Torella D, Cianflone E, Marino F. Polarizing Macrophage Functional Phenotype to Foster Cardiac Regeneration. Int J Mol Sci 2023; 24:10747. [PMID: 37445929 DOI: 10.3390/ijms241310747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
There is an increasing interest in understanding the connection between the immune and cardiovascular systems, which are highly integrated and communicate through finely regulated cross-talking mechanisms. Recent evidence has demonstrated that the immune system does indeed have a key role in the response to cardiac injury and in cardiac regeneration. Among the immune cells, macrophages appear to have a prominent role in this context, with different subtypes described so far that each have a specific influence on cardiac remodeling and repair. Similarly, there are significant differences in how the innate and adaptive immune systems affect the response to cardiac damage. Understanding all these mechanisms may have relevant clinical implications. Several studies have already demonstrated that stem cell-based therapies support myocardial repair. However, the exact role that cardiac macrophages and their modulation may have in this setting is still unclear. The current need to decipher the dual role of immunity in boosting both heart injury and repair is due, at least for a significant part, to unresolved questions related to the complexity of cardiac macrophage phenotypes. The aim of this review is to provide an overview on the role of the immune system, and of macrophages in particular, in the response to cardiac injury and to outline, through the modulation of the immune response, potential novel therapeutic strategies for cardiac regeneration.
Collapse
Affiliation(s)
- Claudia Molinaro
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Nadia Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
20
|
Sun Q, Lu Z, Ma L, Xue D, Liu C, Ye C, Huang W, Dang Y, Li F. Integrin β6 deficiency protects mice from experimental colitis and colitis-associated carcinoma by altering macrophage polarization. Front Oncol 2023; 13:1190229. [PMID: 37223685 PMCID: PMC10200923 DOI: 10.3389/fonc.2023.1190229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Background Given the key role of integrins in maintaining intestinal homeostasis, anti-integrin biologics in inflammatory bowel disease (IBD) are being investigated in full swing. However, the unsatisfactory efficacy and safety of current anti-integrin biologics in clinical trials limit their widespread use in clinic. Therefore, it is particularly important to find a target that is highly and specifically expressed in the intestinal epithelium of patients with IBD. Methods The function of integrin αvβ6 in IBD and colitis-associated carcinoma (CAC) with the underlying mechanisms has been less studied. In the present study, we detected the level of integrin β6 within inflammation including colitis tissues in human and mouse. To investigate the role of integrin β6 in IBD and CAC, integrin β6 deficient mice were hence generated based on the construction of colitis and CAC model. Results We noted that integrin β6 was significantly upregulated in inflammatory epithelium of patients with IBD. Integrin β6 deletion not only reduced infiltration of pro-inflammatory cytokines, but also attenuated disruption of tight junctions between colonic epithelial cells. Meanwhile, lack of integrin β6 affected macrophage infiltration in mice with colitis. This study further revealed that lack of integrin β6 could inhibit tumorigenesis and tumor progression in CAC model by influencing macrophage polarization, which was also involved in attenuating the degree of intestinal symptoms and inflammatory responses in mice suffering from colitis. Conclusions The present research provides a potentially new perspective and option for the treatment of IBD and CAC.
Collapse
Affiliation(s)
- Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhihua Lu
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Lei Ma
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dong Xue
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chang Liu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenbo Huang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yueyan Dang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
21
|
The physical exercise-induced oxidative/inflammatory response in peripheral blood mononuclear cells: Signaling cellular energetic stress situations. Life Sci 2023; 321:121440. [PMID: 36921686 DOI: 10.1016/j.lfs.2023.121440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 03/14/2023]
Abstract
Peripheral blood mononuclear cells (PBMCs) are a variety of specialized immune cells produced in the bone marrow from hematopoietic stem cells (HSCs) that work together to protect our bodies from harmful pathogens. From a metabolic point of view, these cells can serve as sentinel tissue source for distinguishing multiple types of whole-body physiological perturbations. The significant interaction of PBMCs with systemic physiology makes these cells an attractive target for several interventions such as physical exercise. Analyses of oxidative/inflammatory and metabolic markers of PBMCs obtained from unhealthy and healthy humans have been used in monitoring immune response in different exercise conditions. It is already a common consensus that regular practice of physical exercise, that is planned, structured, and repetitive, influences personal health by altering the metabolic state and the immune system. However, the role of distinct metabolic processes responsible for maintaining metabolic balance during physical exercise in PBMCs is not fully understood. Furthermore, a complete dose-response analysis between different exercise protocols and biomarkers capable of predicting physical performance needs to be better elucidated. The absence of published reviews on this topic compromises the understanding of the crosstalk between the metabolic adaptations of PBMCs and exercise-induced changes in the immune system. Given the above, this review highlights the main findings in the literature involving the responses of PBMCs in the inflammatory/oxidative stress induced by physical exercise. The present review also highlights how distinct phenotypes and functional diversity of PBMCs make these cells an accessible alternative for assessing exercise-induced metabolic adaptations.
Collapse
|
22
|
Wei Z, Wang W, Fu W, Zhang P, Feng H, Xu W, Tao L, Li Z, Zhang Y, Shao X. The potential immunotoxicity of emamectin benzoate on the human THP-1 macrophages. ENVIRONMENTAL TOXICOLOGY 2023; 38:500-510. [PMID: 36269090 DOI: 10.1002/tox.23681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Emamectin benzoate (EMB) as one of the typical biological pesticides has a wide range of applications in agriculture. However, the immune toxic effects of EMB in human received limited attention. In our study, THP-1 macrophage as an in vitro model was used to evaluate immune functions exposed to EMB. We observed that EMB inhibited phagocytic activity and respiratory burst capacity of macrophages without inducing cellular toxicity, implying the potential immunosuppression. Besides, EMB disturbed the cytokines balance embodied in the increase of TNF-α, IL-1β, IL-6, CCL27, CXCL8 mRNA expression and the decrease of IL-4, IL-13, IL-10 mRNA expression. EMB could exhibit pro-inflammatory responses in macrophages and promote the conversion of macrophages to M1 phenotype. Moreover, NF-κB pathway involved in regulating immune function from KEGG pathway analysis. EMB exposure could activate the NF-κB pathway in THP-1 macrophages by exploring the critical proteins. This research provided insights on immunotoxicity evaluation and clarified EMB-induced immunotoxicity was related to NF-κB pathway activation.
Collapse
Affiliation(s)
- Ziyi Wei
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ping Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hao Feng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
23
|
Wang Y, Xiong X, Wang K, Bao Y, Zhang T, Ainiwaer D, Wang G, Li H, Sun Z. Peripheral Klotho protects the kidney and brain by regulating M2a/M2c macrophage polarization in d-gal-treated aged mice. Tissue Cell 2023. [PMID: 36863110 DOI: 10.1016/j.tice.2023.102049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
In elderly individuals, aging can cause changes in the structure and function of one or more organs, increasing their susceptibility to various damage factors, especially the heart, kidney, brain and other important organs. Therefore, the incidence of cardiovascular disease, neurodegenerative diseases and chronic kidney disease in the elderly population is significantly higher than that in the general population. In our previous study, the hearts of aged mice did not express the antiaging protein Klotho (KL), but peripheral elevation of KL may significantly delay cardiac aging. The kidney and brain are the main organs that produce KL, but the effects and mechanism of peripheral KL supplementation on the kidney and hippocampus are still unclear. To study the effect and possible mechanism of KL against kidney and hippocampus aging, 60 male BALB/c mice were randomly divided into the Adult group, the KL group, the D-gal-induced Aged group, and the KL + Aged group. The results showed that KL increased anti-inflammatory M2a/M2c macrophages in the kidney and hippocampus of aging mice, significantly reduced tissue inflammation and oxidative stress, and improved organ function and aging status. More importantly, we demonstrate that despite the impermeable bloodbrain barrier in mice, peripherally administered KL surprisingly enhances M2-type microglia polarization, induces cognitive enhancement and reduces neuroinflammation. Cellular experimental results suggest that KL may play a role in delaying senescence by regulating the TLR4/Myd88/NF-κB signaling pathway to regulate macrophage polarization and reduce aging-related inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Xicheng Xiong
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Kun Wang
- Laboratory Animal Centre, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Yali Bao
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China; Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi 830000, China
| | - Tian Zhang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China; Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi 830000, China
| | - Dina Ainiwaer
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China; Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi 830000, China
| | - Gang Wang
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Huihui Li
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Zhan Sun
- Department of Pathophysiology, College of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830000, China; Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi 830000, China.
| |
Collapse
|
24
|
Partoazar A, Kianvash N, Goudarzi R. New concepts in wound targeting through liposome-based nanocarriers (LBNs). J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Zhang H, Sheng D, Han Z, Zhang L, Sun G, Yang X, Wang X, Wei L, Lu Y, Hou X, Zhang L. Doxorubicin-liposome combined with clodronate-liposome inhibits hepatocellular carcinoma through the depletion of macrophages and tumor cells. Int J Pharm 2022; 629:122346. [DOI: 10.1016/j.ijpharm.2022.122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
26
|
Zhou HC, Yu WW, Yan XY, Liang XQ, Ma XF, Long JP, Du XY, Mao HY, Liu HB. Lactate-driven macrophage polarization in the inflammatory microenvironment alleviates intestinal inflammation. Front Immunol 2022; 13:1013686. [PMID: 36330516 PMCID: PMC9623299 DOI: 10.3389/fimmu.2022.1013686] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Background Lactate has long been considered an intermediate by-product of glucose metabolism. However, in recent years, accumulating evidence reveals that lactate has unique biological activities. In previous studies, lactate signaling was shown to inhibit inflammation. Furthermore, in vitro experiments have shown that lactate can promote the transformation of pro-inflammatory macrophages into anti-inflammatory macrophages. However, no in vivo studies have shown whether lactate can alleviate inflammation. Methods RAW 264.7 macrophages were stimulated by LPS to induce an M1 phenotype, and cultured with low and high concentrations of lactate. The cells were then observed for phenotypic transformations and expression of inflammatory mediators and surface markers. The expression of inflammatory factors was also analyzed in the cell-free supernatant fraction. Further, a mouse model of DSS-induced colitis was established and treated with lactate. Colonic tissue injury was monitored by histopathological examinations. Results The in vitro experiments showed that lactate promoted the transformation of activated macrophages to M2 phenotype and decreased the expression of TLR4-mediated NF-κB signaling proteins and inflammatory factors. In the DSS-induced colitis mouse model, lactate promoted the phenotypic transformation of macrophages in colonic tissue, reduced inflammation and organ damage, inhibited the activation of TLR4/NF-κB signaling pathway, decreased the serum levels of pro-inflammatory factors, increased the expression of anti-inflammatory factors, promoted the repair of the intestinal mucosal barrier and reduced the severity of colitis. Conclusions Lactate inhibits the TLR/NF-κB signaling pathway and the production of pro-inflammatory factors by promoting polarization of macrophages. In addition, lactate promotesthe repair of the intestinal mucosal barrier and protects intestinal tissue in inflammation. Furthermore, lactate is relatively safe. Therefore, lactate is a promising and effective drug for treating inflammation through immunometabolism regulation.
Collapse
Affiliation(s)
- Hai-Cun Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, China
| | - Wen-Wen Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Xin-Yan Yan
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, China
| | - Xiao-Qin Liang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiu-Feng Ma
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, China
| | - Jian-Ping Long
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, China
| | - Xiao-Yan Du
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, China
| | - Hong-Yan Mao
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, China
| | - Hong-Bin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
- *Correspondence: Hong-Bin Liu,
| |
Collapse
|
27
|
Wang Y, Wang K, Bao Y, Zhang T, Ainiwaer D, Xiong X, Wang G, Sun Z. The serum soluble Klotho alleviates cardiac aging and regulates M2a/M2c macrophage polarization via inhibiting TLR4/Myd88/NF-κB pathway. Tissue Cell 2022; 76:101812. [DOI: 10.1016/j.tice.2022.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
|
28
|
Hang R, Zhao Y, Zhang Y, Yao R, Yao X, Sun Y, Huang D, Hang R. The role of nanopores constructed on micropitted titanium surface on immune responses of macrophages and the potential mechanisms. J Mater Chem B 2022; 10:7732-7743. [DOI: 10.1039/d2tb01263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Delayed transition of pro-inflammatory M1 to pro-healing M2 of macrophages (MΦs) on implant surface is one of the most important reasons accounting for poor osseointegration. The present work proposes to...
Collapse
|
29
|
Crifo B, MacNaughton WK. Cells and mediators of inflammation as effectors of epithelial repair in the inflamed intestine. Am J Physiol Gastrointest Liver Physiol 2022; 322:G169-G182. [PMID: 34878937 DOI: 10.1152/ajpgi.00194.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mucosal and histological healing have become the gold standards for assessing the efficacy of therapy in patients living with inflammatory bowel diseases (IBD). Despite these being the accepted goals in therapy, the mechanisms that underlie the healing of the mucosa after an inflammatory insult are not well understood, and many patients fail to meet this therapeutic endpoint. Here we review the emerging evidence that mediators (e.g., prostaglandins, cytokines, proteases, reactive oxygen, and nitrogen species) and innate immune cells (e.g., neutrophils and monocytes/macrophages), that are involved in the initiation of the inflammatory response, are also key players in the mechanisms underlying mucosal healing to resolve chronic inflammation in the colon. The dual function mediators comprise an inflammation/repair program that returns damaged tissue to homeostasis. Understanding details of the dual mechanisms of these mediators and cells may provide the basis for the development of drugs that can help to stimulate epithelial repair in patients affected by IBD.
Collapse
Affiliation(s)
- Bianca Crifo
- Department of Physiology and Pharmacology, Inflammation Research Network and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Department of Physiology and Pharmacology, Inflammation Research Network and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Ding Y, Zhang D, Wang S, Zhang X, Yang J. Hematogenous Macrophages: A New Therapeutic Target for Spinal Cord Injury. Front Cell Dev Biol 2021; 9:767888. [PMID: 34901013 PMCID: PMC8653770 DOI: 10.3389/fcell.2021.767888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating disease leading to loss of sensory and motor functions, whose pathological process includes mechanical primary injury and secondary injury. Macrophages play an important role in SCI pathology. According to its origin, it can be divided into resident microglia and peripheral monocyte-derived macrophages (hematogenous Mφ). And it can also be divided into M1-type macrophages and M2-type macrophages on the basis of its functional characteristics. Hematogenous macrophages may contribute to the SCI process through infiltrating, scar forming, phagocytizing debris, and inducing inflammatory response. Although some of the activities of hematogenous macrophages are shown to be beneficial, the role of hematogenous macrophages in SCI remains controversial. In this review, following a brief introduction of hematogenous macrophages, we mainly focus on the function and the controversial role of hematogenous macrophages in SCI, and we propose that hematogenous macrophages may be a new therapeutic target for SCI.
Collapse
Affiliation(s)
- Yuanzhe Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Di Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, China
| | - Sheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, China.,Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, China
| | - Jingquan Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, China
| |
Collapse
|
31
|
Peng L, Wang X, Bing D. Identification and Validation of Prognostic Factors of Lipid Metabolism in Obstructive Sleep Apnea. Front Genet 2021; 12:747576. [PMID: 34880901 PMCID: PMC8645574 DOI: 10.3389/fgene.2021.747576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Obstructive sleep apnea (OSA) is considered to be an independent factor affecting lipid metabolism. This study explored the relationship between immune genes and lipid metabolism in OSA. Methods: Immune-related Differentially Expressed Genes (DEGs) were identified by analyzing microarray data sets from the Gene Expression Omnibus (GEO) database. Subsequently, we conducted protein-protein interaction (PPI) network analysis and calculated their Gene Ontology (GO) semantic similarity. The GO, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Disease Ontology (DO), gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were employed for functional enrichment analyses and to determine the most significant functional terms. Combined with the results of boruta and random forest, we selected predictors to build a prognostic model, along with seeking out the potential TFs and target drugs for the predictive genes. Results: Immune-related DEGs included 64 genes upregulated and 98 genes downregulated. The enrichment analysis might closely associate with cell adhesion and T cell-mediated immunity pathways and there were many DEGs involved in lipid and atherosclerosis signaling pathways. The highest-ranking hub gene in PPI network have been reported lowly expressed in OSA. In line with the enrichment analysis, DO analysis reveal that respiratory diseases may be associated with OSA besides immune system disorders. Consistent with the result of the KEGG pathway, the analysis of GSVA revealed that the pro-inflammation pathways are associated with OSA. Monocytes and CD8 T cells were the predominant immune cells in adipose tissue. We built a prognostic model with the top six genes, and the prognostic genes were involved in the polarization of macrophage and differentiation of T lymphocyte subsets. In vivo experimental verification revealed that EPGN, LGR5, NCK1 and VIP were significantly down-regulated while PGRMC2 was significantly up-regulated in mouse model of OSA. Conclusions: Our study demonstrated strong associations between immune genes and the development of dyslipidemia in OSA. This work promoted the molecular mechanisms and potential targets for the regulation of lipid metabolism in OSA.
Collapse
Affiliation(s)
- Lu Peng
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,Department of Otorhinolaryngology Head and Neck Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodi Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Dan Bing
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Gao Y, Qian N, Xu J, Wang Y. The Roles of Macrophages in Heart Regeneration and Repair After Injury. Front Cardiovasc Med 2021; 8:744615. [PMID: 34760943 PMCID: PMC8575035 DOI: 10.3389/fcvm.2021.744615] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Although great advances have been made, the problem of irreversible myocardium loss due to the limited regeneration capacity of cardiomyocytes has not been fully solved. The morbidity and mortality of heart disease still remain high. There are many therapeutic strategies for treating heart disease, while low efficacy and high cost remain challenging. Abundant evidence has shown that both acute and chronic inflammations play a crucial role in heart regeneration and repair following injury. Macrophages, a primary component of inflammation, have attracted much attention in cardiac research in recent decades. The detailed mechanisms of the roles of macrophages in heart regeneration and repair are not completely understood, in part because of their complex subsets, various functions, and intercellular communications. The purpose of this review is to summarize the progress made in the understanding of macrophages, including recent reports on macrophage differentiation, polarization and function, and involvement in heart regeneration and repair. Also, we discuss progress in treatments, which may suggest directions for future research.
Collapse
Affiliation(s)
- Ying Gao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Ningjing Qian
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Jingmiao Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| | - Yaping Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Lab of Zhejiang Province, Hangzhou, China
| |
Collapse
|
33
|
Zhang Y, Duan X, Wassie T, Wang HH, Li T, Xie C, Wu X. Enteromorpha prolifera polysaccharide-zinc complex modulates the immune response and alleviates LPS-induced intestinal inflammation via inhibiting the TLR4/NF-κB signaling pathway. Food Funct 2021; 13:52-63. [PMID: 34704575 DOI: 10.1039/d1fo02171k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enteromorpha prolifera polysaccharide-zinc (EP-Zn), a kind of polysaccharide-zinc complex, has been shown to improve the immune response and reduce the inflammatory factors in weaned piglets. Yet, the molecular mechanism remains unclear. The present study was conducted to investigate the immunomodulating activity and anti-inflammatory mechanism of EP-Zn in mice. Different doses (350 mg kg-1, 700 mg kg-1, 1050 mg kg-1 and 1400 mg kg-1) of EP-Zn were administered to C57BL/6J mice for 28 days. The results showed that under physiological conditions, 350 mg kg-1 EP-Zn stimulated cytokine (TNF-α, IL-1β, IL-6 and IL-10) secrection, regulated the intestinal microbiota, and reduced the levels of short-chain fatty acids (SCFAs) (acetic acid and propionic acid). In addition, in the LPS-induced inflammation model, EP-Zn pretreatment effectively alleviated LPS-induced shortening of colonic length and increased MPO and DAO contents, improved intestinal physical barrier function by modulating mucosal structure, and attenuated intestinal inflammation via inhibiting the TLR4/NF-κB signaling pathway. These findings suggested that EP-Zn exerted immunomodulatory and anti-inflammatory activities under physiological and inflammatory conditions, respectively.
Collapse
Affiliation(s)
- Yumei Zhang
- College of Resources and Environment, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China. .,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Xinyi Duan
- College of Resources and Environment, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China. .,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Teketay Wassie
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Hai-Hua Wang
- Qingdao Seawin Biotech Group Co., Ltd., Qingdao, 266071, China
| | - Tiejun Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Chunyan Xie
- College of Resources and Environment, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Xin Wu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P R China
| |
Collapse
|
34
|
Li X, Li N, Han Y, Rao K, Ji X, Ma M. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-induced suppression of immunity in THP-1-derived macrophages and the possible mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117302. [PMID: 34020259 DOI: 10.1016/j.envpol.2021.117302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a well-known immunotoxic environmental pollutant. However, most immunotoxicology studies of TCDD were based on the animal models and the inner mechanisms have just focused on a few genes/proteins. In this study, the immune functions of THP-1-derived macrophages was measured with in-vitro bioassays after 24-h exposure of TCDD including environmentally relevant concentrations. RNA-seq and Weighted Gene Co-expression Network Analysis were used to characterize the immunotoxicity molecular mechanisms. Our study is the first report on the TCDD-induced effects of cell adhesion, morphology, and multiple cytokines/chemokines production on THP-1 macrophages. After TCDD treatment, we observed an inhibited cell adherence, probably attributed to the suppressed mRNA levels of adhesion molecules ICAM-1, VCAM-1 and CD11b, and a decrease in cell pseudopodia and expression of F-actin. The inflammatory cytokines TNF-α, IL-10 and other 8 cytokines/chemokines regulating granulocytes/T cells and angiogenesis were disrupted by TCDD. Alternative splicing event was found to be a sensitive target for TCDD. Using WGCNA, we identified 10 hub genes (TNF, SRC, FGF2, PTGS2, CDH2, GNG11, BDNF, WNT5A, CXCR5 and RUNX2) highly relevant to these observed phenotypes, suggesting AhR less important in the effects TCDD have on THP-1 macrophages than in other cells. Our findings broaden the understanding of TCDD immunotoxicity on macrophages and provide new potential targets for clarifying the molecular mechanisms.
Collapse
Affiliation(s)
- Xinyan Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Tang B, Zhu J, Fang S, Wang Y, Vinothkumar R, Li M, Weng Q, Zheng L, Yang Y, Qiu R, Xu M, Zhao Z, Ji J. Pharmacological inhibition of MELK restricts ferroptosis and the inflammatory response in colitis and colitis-propelled carcinogenesis. Free Radic Biol Med 2021; 172:312-329. [PMID: 34144192 DOI: 10.1016/j.freeradbiomed.2021.06.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is a group of chronic recurrent and incurable gastrointestinal diseases with an unknown etiology that leads to a high risk of developing colitis-associated colorectal cancer (CRC). OBJECTIVES In this study, we measured the expression characteristics of MELK in IBD and CRC tissues and explored the regulatory effect of OTSSP167 (a MELK-selective inhibitor) on the mice models of colitis and colitis-associated carcinogenesis and analyzed the specific molecular mechanisms. METHODS DSS-induced colitis and colitis-associated carcinogenesis (CAC) model were treated with MELK inhibitor OTSSP167 then the fight against effect of OTSSP167 in the clinical symptoms of colitis and CAC was measured. In addition, underlying mechanism of OTSSP167 treatment in vitro and vivo including anti-ferroptosis and anti-inflammatory response effect was further explored. RESULTS We found that pharmacological inhibition of MELK was indicated to significantly alleviate the inflammatory response in mice with colitis, reduce intestinal damage, and effectively inhibit the occurrence and progression of colitis-propelled carcinogenesis, which was closely related to the regulation of gut microbial composition, and OTSSP167-mediated fecal microbiota transplantation effectively alleviated DSS-induced colitis. In addition, OTSSP167 treatment obviously inhibited ferroptosis in the intestinal tissue and suppressed macrophage infiltration and M1 polarization, which reduced the secretion of pro-inflammatory factors. Further exploration of the molecular mechanism revealed that OTSSP167 inhibited AKT/IKK/P65 and ERK/IKK/P65 signaling cascades both in vivo and in vitro, which may help alleviate intestinal inflammation and control the occurrence of cancer. CONCLUSION Our findings lay a theoretical foundation for the use of OTSSP167 as a treatment for IBD and its inhibition of the occurrence of colitis-associated carcinogenesis; additionally, MELK may be a potentially effective target molecule, thus providing more options for clinical treatment.
Collapse
Affiliation(s)
- Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiji Fang
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Yajie Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Rajamanickam Vinothkumar
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China
| | - Mengyao Li
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310016, China
| | - Qiaoyou Weng
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Liyun Zheng
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Rongfang Qiu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|
36
|
Zhou HC, Xin-Yan Yan, Yu WW, Liang XQ, Du XY, Liu ZC, Long JP, Zhao GH, Liu HB. Lactic acid in macrophage polarization: The significant role in inflammation and cancer. Int Rev Immunol 2021; 41:4-18. [PMID: 34304685 DOI: 10.1080/08830185.2021.1955876] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabolite lactic acid has always been regarded as a metabolic by-product rather than a bioactive molecule. Recently, this view has changed since it was discovered that lactic acid can be used as a signal molecule and has novel signal transduction functions both intracellular and extracellular, which can regulate key functions in the immune system. In recent years, more and more evidence has shown that lactic acid is closely related to the metabolism and polarization of macrophages. During inflammation, lactic acid is a regulator of macrophage metabolism, and it can prevent excessive inflammatory responses; In malignant tumors, lactic acid produced by tumor tissues promotes the polarization of tumor-associated macrophages, which in turn promotes tumor progression. In this review, we examined the relationship between lactic acid and macrophage metabolism. We further discussed how lactic acid plays a role in maintaining the homeostasis of macrophages, as well as the biology of macrophage polarization and the M1/M2 imbalance in human diseases. Potential methods to target lactic acid in the treatment of inflammation and cancer will also be discussed so as to provide new strategies for the treatment of diseases.
Collapse
Affiliation(s)
- Hai-Cun Zhou
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, P. R. China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R.China
| | - Xin-Yan Yan
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, P. R. China
| | - Wen-Wen Yu
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R.China
| | - Xiao-Qin Liang
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R.China
| | - Xiao-Yan Du
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, P. R. China
| | - Zhi-Chang Liu
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R.China
| | - Jian-Ping Long
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, P. R. China
| | - Guang-Hui Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Hong-Bin Liu
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R.China
| |
Collapse
|
37
|
Koenis DS, Beegun I, Jouvene CC, Aguirre GA, Souza PR, Gonzalez-Nunez M, Ly L, Pistorius K, Kocher HM, Ricketts W, Thomas G, Perretti M, Alusi G, Pfeffer P, Dalli J. Disrupted Resolution Mechanisms Favor Altered Phagocyte Responses in COVID-19. Circ Res 2021; 129:e54-e71. [PMID: 34238021 PMCID: PMC8336787 DOI: 10.1161/circresaha.121.319142] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Resolution mechanisms are central in both the maintenance of homeostasis and the return to catabasis following tissue injury and infections. Among the proresolving mediators, the essential fatty acid-derived specialized proresolving lipid mediators (SPM) govern immune responses to limit disease severity. Notably, little is known about the relationship between the expression and activity of SPM pathways, circulating phagocyte function and disease severity in patients infected with the novel severe acute respiratory syndrome coronavirus 2 leading to coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Duco Steven Koenis
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Issa Beegun
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Charlotte Camille Jouvene
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gabriel Amador Aguirre
- Barts Cancer Institute (G.A.A., H.M.K.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Patricia Regina Souza
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Maria Gonzalez-Nunez
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Lucy Ly
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Kimberly Pistorius
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Hemant M Kocher
- Barts Cancer Institute (G.A.A., H.M.K.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - William Ricketts
- Department of Respiratory Medicine, Barts Health NHS Trust, London, United Kingdom (W.R., G.T., P.P.)
| | - Gavin Thomas
- Department of Respiratory Medicine, Barts Health NHS Trust, London, United Kingdom (W.R., G.T., P.P.)
| | - Mauro Perretti
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, United Kingdom (M.P., J.D.)
| | - Ghassan Alusi
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Paul Pfeffer
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.,Department of Respiratory Medicine, Barts Health NHS Trust, London, United Kingdom (W.R., G.T., P.P.)
| | - Jesmond Dalli
- William Harvey Research Institute (D.S.K., I.B., C.C.J., P.R.S., M.G.N., L.L., K.P., M.P., G.A., P.P., J.D.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, United Kingdom (M.P., J.D.)
| |
Collapse
|
38
|
Anti-inflammatory celastrol promotes a switch from leukotriene biosynthesis to formation of specialized pro-resolving lipid mediators. Pharmacol Res 2021; 167:105556. [PMID: 33812006 DOI: 10.1016/j.phrs.2021.105556] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
The pentacyclic triterpenoid quinone methide celastrol (CS) from Tripterygium wilfordii Hook. F. effectively ameliorates inflammation with potential as therapeutics for inflammatory diseases. However, the molecular mechanisms underlying the anti-inflammatory and inflammation-resolving features of CS are incompletely understood. Here we demonstrate that CS potently inhibits the activity of human 5-lipoxygenase (5-LOX), the key enzyme in pro-inflammatory leukotriene (LT) formation, in cell-free assays with IC50 = 0.19-0.49 µM. Employing metabololipidomics using ultra-performance liquid chromatography coupled to tandem mass spectrometry in activated human polymorphonuclear leukocytes or M1 macrophages we found that CS (1 µM) potently suppresses 5-LOX-derived products without impairing the formation of lipid mediators (LM) formed by 12-/15-LOXs as well as fatty acid substrate release. Intriguingly, CS induced the generation of 12-/15-LOX-derived LM including the specialized pro-resolving mediator (SPM) resolvin D5 in human M2 macrophages. Finally, intraperitoneal pre-treatment of mice with 10 mg/kg CS strongly impaired zymosan-induced LT formation and simultaneously elevated the levels of SPM and related 12-/15-LOX-derived LM in peritoneal exudates, spleen and plasma in vivo. Conclusively, CS promotes a switch from LT biosynthesis to formation of SPM which may underlie the anti-inflammatory and inflammation-resolving effects of CS, representing an interesting pharmacological strategy for intervention with inflammatory disorders.
Collapse
|
39
|
Wu Y, Hao C, Han G, Liu X, Xu C, Zou Z, Zhou J, Yin J. SS-31 ameliorates hepatic injury in rats subjected to severe burns plus delayed resuscitation via inhibiting the mtDNA/STING pathway in Kupffer cells. Biochem Biophys Res Commun 2021; 546:138-144. [PMID: 33582556 DOI: 10.1016/j.bbrc.2021.01.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Hepatic injury is common in patients who suffer from severe burns plus delayed resuscitation (B + DR). Stimulator of interferon genes (STING) is primarily expressed in Kupffer cells (KCs). We demonstrated that B + DR caused hepatic injury and oxidative stress. Reactive oxygen species (ROS) damage mitochondrial membranes in hepatocytes, leading to the release of mitochondrial DNA (mtDNA) into the hepatocyte cytosol and the circulation. The damaged hepatocytes then activate the mtDNA/STING pathway in KCs and trigger KCs polarization towards pro-inflammatory phenotype. SS-31 is a strong antioxidant that specifically concentrates in the inner mitochondrial membrane. SS-31 prevented hepatic injury by neutralizing ROS, inhibiting the release of mtDNA, protecting hepatocyte mitochondria, suppressing the activation of the mtDNA/STING pathway and inhibiting KCs polarization into pro-inflammatory phenotype.
Collapse
Affiliation(s)
- Yin Wu
- Department of Burn and Plastic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China.
| | - Chao Hao
- Department of Burn and Plastic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Guangye Han
- Department of Burn and Plastic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Xiongfei Liu
- Department of Burn and Plastic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Changzheng Xu
- Department of Burn and Plastic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Zhongtao Zou
- Department of Burn and Plastic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Jinfeng Zhou
- Department of Burn and Plastic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Jun Yin
- Department of Burn and Plastic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
40
|
de Lima-Souza RA, Vallarelli AFA, Viviane Mariano F, Cintra ML. Multiple cutaneous fistula after titanium dental implant: A case report. Clin Implant Dent Relat Res 2021; 23:270-274. [PMID: 33393197 DOI: 10.1111/cid.12972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Dental implants allow functional and aesthetic reestablishment. Titanium (Ti) implants emerge as the preferred choice because Ti is considered an inert material, highly resistant to corrosion. However, virtually no material can be considered universally biocompatible and this includes titanium. PURPOSE To report an unusual presentation of inflammatory reaction after a Ti dental implant. MATERIALS AND METHODS The patient presented to a dermatology clinic to evaluate lesions on her face. She reported the placement of dental implants 2 years earlier, one of which evolved with inflammatory signs and instability a few days after the procedure. As anti-inflammatory and antibiotic therapy were fruitless, after 3 months the implant was removed, but the inflammation persisted. On physical examination, painful erythematous-papule-nodular lesions were found on the left mandibular and submandibular region. RESULTS Culture tests for microorganisms were negative and histopathological examination revealed a chronic fistula with a foreign body reaction. Using X-ray fluorescence, Ti particles were found along the fistula wall. CONCLUSIONS Professionals should be aware of complications arising from dental implants, including Ti implants. Detailed anamnesis and laboratory investigation can assure diagnosis for specific therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Maria Letícia Cintra
- Department of Pathology, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
41
|
Feng Y, Li T, Xing C, Wang C, Duan Y, Yuan L, Zhang Y. Effective inhibition of miR-330/SHIP1/NF-κB signaling pathway via miR-330 sponge repolarizes microglia differentiation. Cell Biol Int 2020; 45:785-794. [PMID: 33325083 DOI: 10.1002/cbin.11523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 12/29/2022]
Abstract
Neuroinflammation mediated by microglia has been identified as vital pathogenesis in Parkinson's disease (PD). This study aimed to investigate the role and potential regulatory mechanism of microRNA-330 in the lipopolysaccharide (LPS)-induced chronic neuroinflammatory model. Primary microglia chronic inflammation model and PD animal model were established by LPS treatment. Bulged microRNA-330 sponges containing six microRNA binding sites were constructed and delivered by plasmid or recombinant adeno-associated virus (rAAV2)/5-green fluorescent protein (GFP) vector. The expression levels of microRNA-330 were assessed by a quantitative real-time polymerase chain reaction. Primary microglia polarization was determined by flow cytometry; meanwhile, dopamine and pro-(anti-)inflammatory cytokines were measured by enzyme-linked immunosorbent assay. Expression levels of GFAP, lba1, inducible nitric oxide synthase (iNOS), Arg1, SHIP1, cytoplasmic, and nuclear factor-κB (NF-κB) were analyzed by Western blot. The behavioral deficit was determined by the rotarod test. The expression of microRNA-330 increased in the first 4 days and reached a plateau subsequently after LPS treatment. The sponges-mediated repression effect on M1 polarization was gradually enhanced with time. Treatment of miR-330 sponges increased the SHIP1 and Arg1 expression, and decreased the translocation of NF-κB and iNOS expression, suggesting the repression of inflammation. In the LPS-induced PD mice, administration of rAAV-sponge-GFP suppressed activation of microglia, downregulated proinflammatory cytokines, resumed the secretion of dopamine, rescued the dopaminergic neurons, and alleviated motor dysfunction. Our results demonstrated that microRNA-330 sponges could sustainably suppress LPS-induced polarization of microglia both in vivo and in vitro probably by negatively regulating NF-κB activity via target SHIP1 in microglia, which might be a promising neuroprotective strategy in neurological diseases, such as PD.
Collapse
Affiliation(s)
- Yang Feng
- Department of Oncology, The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Department of Traditional Chinese Medicine and Acupuncture, The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Tao Li
- Department of Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Changyang Xing
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yunyou Duan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yajun Zhang
- Department of Ultrasound Diagnostics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
Lim YJ, Lee J, Choi JA, Cho SN, Son SH, Kwon SJ, Son JW, Song CH. M1 macrophage dependent-p53 regulates the intracellular survival of mycobacteria. Apoptosis 2020; 25:42-55. [PMID: 31691131 PMCID: PMC6965052 DOI: 10.1007/s10495-019-01578-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tumor suppressor p53 is not only affects immune responses but also contributes to antibacterial activity. However, its bactericidal function during mycobacterial infection remains unclear. In this study, we found that the p53-deficient macrophages failed to control Mycobacterium tuberculosis (Mtb), manifested as a lower apoptotic cell death rate and enhanced intracellular survival. The expression levels of p53 during Mtb infection were stronger in M1 macrophages than in M2 macrophages. The TLR2/JNK signaling pathway plays an essential role in the modulation of M1 macrophage polarization upon Mtb infection. It facilitates p53-mediated apoptosis through the production of reactive oxygen species, nitric oxide and inflammatory cytokines in Mtb-infected M1 macrophages. In addition, nutlin-3 effectively abrogated the intracellular survival of mycobacteria in both TB patients and healthy controls after H37Ra infection for 24 h, indicating that the enhancement of p53 production effectively suppressed the intracellular survival of Mtb in hosts. These results suggest that p53 can be a new therapeutic target for TB therapy.
Collapse
Affiliation(s)
- Yun-Ji Lim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.,Department of Medical Science, Chungnam National University, Daejeon, South Korea.,Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Junghwan Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.,Department of Medical Science, Chungnam National University, Daejeon, South Korea
| | - Ji-Ae Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.,Department of Medical Science, Chungnam National University, Daejeon, South Korea.,Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Soo-Na Cho
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.,Department of Medical Science, Chungnam National University, Daejeon, South Korea
| | - Sang-Hun Son
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.,Department of Medical Science, Chungnam National University, Daejeon, South Korea
| | - Sun-Jung Kwon
- Department of Internal Medicine, Konyang University Hospital, Daejeon, South Korea
| | - Ji-Woong Son
- Department of Internal Medicine, Konyang University Hospital, Daejeon, South Korea
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea. .,Department of Medical Science, Chungnam National University, Daejeon, South Korea. .,Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
43
|
McArthur S, Juban G, Gobbetti T, Desgeorges T, Theret M, Gondin J, Toller-Kawahisa JE, Reutelingsperger CP, Chazaud B, Perretti M, Mounier R. Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation. J Clin Invest 2020; 130:1156-1167. [PMID: 32015229 PMCID: PMC7269594 DOI: 10.1172/jci124635] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding the circuits that promote an efficient resolution of inflammation is crucial to deciphering the molecular and cellular processes required to promote tissue repair. Macrophages play a central role in the regulation of inflammation, resolution, and repair/regeneration. Using a model of skeletal muscle injury and repair, herein we identified annexin A1 (AnxA1) as the extracellular trigger of macrophage skewing toward a pro-reparative phenotype. Brought into the injured tissue initially by migrated neutrophils, and then overexpressed in infiltrating macrophages, AnxA1 activated FPR2/ALX receptors and the downstream AMPK signaling cascade, leading to macrophage skewing, dampening of inflammation, and regeneration of muscle fibers. Mice lacking AnxA1 in all cells or only in myeloid cells displayed a defect in this reparative process. In vitro experiments recapitulated these properties, with AMPK-null macrophages lacking AnxA1-mediated polarization. Collectively, these data identified the AnxA1/FPR2/AMPK axis as an important pathway in skeletal muscle injury regeneration.
Collapse
Affiliation(s)
- Simon McArthur
- Institute of Dentistry and.,William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gaëtan Juban
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| | - Thomas Gobbetti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Thibaut Desgeorges
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| | - Marine Theret
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| | - Julien Gondin
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| | - Juliana E Toller-Kawahisa
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Chris P Reutelingsperger
- Department of Biochemistry and.,Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Bénédicte Chazaud
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Rémi Mounier
- Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Lyon, France
| |
Collapse
|
44
|
Song A, Wang J, Tong Y, Fang J, Zhang Y, Zhang H, Ruan H, Wang K, Liu Y. BKCa channels regulate the immunomodulatory properties of WJ-MSCs by affecting the exosome protein profiles during the inflammatory response. Stem Cell Res Ther 2020; 11:440. [PMID: 33059770 PMCID: PMC7560248 DOI: 10.1186/s13287-020-01952-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) from the human umbilical cord have been studied extensively due to their immunomodulatory functions. Large-conductance Ca2+-activated K+ (BKCa channels) channels are involved in many inflammatory responses, but their involvement in the anti-inflammatory activity of WJ-MSCs is unknown. The underlying molecular mechanism, through which BKCa channels mediate the immunomodulation of WJ-MSC, which may include changes in exosomes proteomics, has not yet been clarified. Methods Alizarin staining, Oil Red O staining, and flow cytometry were used to identify WJ-MSCs, which were isolated from human umbilical cord Wharton’s jelly. BKCa channels were detected in WJ-MSCs using western blotting, real-time polymerase chain reaction (real-time PCR), and electrophysiology, and cytokine expression was examined using real-time PCR and enzyme-linked immunosorbent assays (ELISAs). Exosomes were characterized using transmission electron microscopy and nanoparticle tracking analysis. Proteomics analysis was performed to explore exosomal proteomic profiles. Results The cells derived from human umbilical cord Wharton’s jelly were identified as MSCs. BKCa channels were detected in the isolated WJ-MSCs, and the expression of these channels increased after lipopolysaccharide (LPS) stimulation. BKCa channels blockade in LPS-treated WJ-MSCs induced apoptosis and decreased interleukin-6 (IL-6) expression. Furthermore, THP-1 cells (human monocytic cell line) stimulated with LPS/interferon gamma (IFN-γ) produced more anti-inflammatory cytokines after treatment with exosomes derived from BKCa channel-knockdown WJ-MSCs (si-exo). We also observed altered expression of mitochondrial ATP synthase alpha subunit (ATP5A1), filamin B, and other proteins in si-exo, which might increase the anti-inflammatory activity of macrophages. Conclusions Our study described the functional expression of BKCa channels in WJ-MSCs, and BKCa channels regulated the immunomodulatory properties of WJ-MSCs by affecting the exosomal protein profiles during the inflammatory response.
Collapse
Affiliation(s)
- Ahui Song
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, People's Republic of China
| | - Jingjing Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, People's Republic of China
| | - Yan Tong
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, People's Republic of China
| | - Junyan Fang
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, People's Republic of China
| | - Yi Zhang
- Shanghai Applied Protein Technology Co., Ltd.,Research & Development Center, 58 Yuanmei Road, Shanghai, People's Republic of China
| | - Huiping Zhang
- Shanghai Applied Protein Technology Co., Ltd.,Research & Development Center, 58 Yuanmei Road, Shanghai, People's Republic of China
| | - Hongqiang Ruan
- Shanghai Applied Protein Technology Co., Ltd.,Research & Development Center, 58 Yuanmei Road, Shanghai, People's Republic of China
| | - Kai Wang
- The Clinical and Translational Research Center Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yingli Liu
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, People's Republic of China.
| |
Collapse
|
45
|
Chen S, Xia Y, He F, Fu J, Xin Z, Deng B, He L, Zhou X, Ren W. Serine Supports IL-1β Production in Macrophages Through mTOR Signaling. Front Immunol 2020; 11:1866. [PMID: 32973770 PMCID: PMC7481448 DOI: 10.3389/fimmu.2020.01866] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Intracellular metabolic programs tightly regulate the functions of macrophages, and previous studies have shown that serine mainly shapes the macrophage function via one-carbon metabolism. However, it is unknown whether serine modulates the macrophage function independent of one-carbon metabolism. Here, we find that serine deprivation lowers interleukin (IL)-1β production and inflammasome activation, as well as reprograms the transcriptomic and metabolic profile in M1 macrophages. Intriguingly, supplementation of formate, glycine, dNTPs, and glucose cannot rescue the production of IL-1β from serine-deprived macrophages. Mechanistically, serine deprivation inhibits macrophage IL-1β production through inhibition of mechanistic target of rapamycin (mTOR) signaling. Of note, the macrophages from mice feeding serine-free diet have lower IL-1β production, and these mice also show less inflammation after LPS challenge. Collectively, our data highlight a new regulatory mechanism for serine to modulate the macrophage function.
Collapse
Affiliation(s)
- Siyuan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaoyao Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang He
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jian Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongquan Xin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baichuan Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Liuqin He
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
46
|
Salvianolic acid B ameliorates atherosclerosis via inhibiting YAP/TAZ/JNK signaling pathway in endothelial cells and pericytes. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158779. [PMID: 32739616 DOI: 10.1016/j.bbalip.2020.158779] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/22/2023]
Abstract
Atherosclerosis (AS) is a chronic disease of the arterial wall where both innate and adaptive immunoinflammatory mechanisms are involved. Inflammation plays an important role in the pathological process of atherosclerosis at various stages. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ, also known as WWTR1) behave as a novel drug target against atherosclerosis. Therefore, the mechanism relationship of YAP/TAZ, inflammation and AS was explored in this study. Experiments demonstrated that serine dephosphorylation and nuclear translocation of YAP was increased in ECs and pericytes induced by oxidative low-density lipoprotein (ox-LDL), while the inhibition of YAP degraded the expression of downstream inflammatory factors. The expression of YAP/TAZ and inflammation proteins (JNK, NF-κB and TNF-α) in ECs and pericytes was suppressed through the application of Sal-B. Besides, Sal-B protects ECs and pericytes from oxidative stress and apoptosis. In vivo, Sal-B reduced en face and aortic root sinus lesions size, and decreased the expression of inflammation related factors (IL-6, IL-1β, TNF-α) and ox-LDL in serum sample of ApoE-/- mice fed a high fat diet. Therefore, our work provides a potential therapeutic strategy of using Sal-B to attenuate the development of atherosclerosis, the anti-atherosclerosis effects of Sal-B is related to regulate YAP/TAZ/JNK signaling pathway.
Collapse
|
47
|
Cives M, Mannavola F, Lospalluti L, Sergi MC, Cazzato G, Filoni E, Cavallo F, Giudice G, Stucci LS, Porta C, Tucci M. Non-Melanoma Skin Cancers: Biological and Clinical Features. Int J Mol Sci 2020; 21:5394. [PMID: 32751327 PMCID: PMC7432795 DOI: 10.3390/ijms21155394] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Non-melanoma skin cancers (NMSCs) include basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and Merkel cell carcinoma (MCC). These neoplasms are highly diverse in their clinical presentation, as well as in their biological evolution. While the deregulation of the Hedgehog pathway is commonly observed in BCC, SCC and MCC are characterized by a strikingly elevated mutational and neoantigen burden. As result of our improved understanding of the biology of non-melanoma skin cancers, innovative treatment options including inhibitors of the Hedgehog pathway and immunotherapeutic agents have been recently investigated against these malignancies, leading to their approval by regulatory authorities. Herein, we review the most relevant biological and clinical features of NMSC, focusing on innovative treatment approaches.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Carcinoma, Basal Cell/drug therapy
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/pathology
- Carcinoma, Basal Cell/surgery
- Carcinoma, Merkel Cell/drug therapy
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/pathology
- Carcinoma, Merkel Cell/surgery
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/surgery
- Clinical Trials as Topic
- Gene Expression Regulation, Neoplastic
- Hedgehog Proteins/antagonists & inhibitors
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Humans
- Immunotherapy/methods
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/metabolism
- Signal Transduction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Skin Neoplasms/surgery
Collapse
Affiliation(s)
- Mauro Cives
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
- National Cancer Center, Tumori Institute Giovanni Paolo II, 70121 Bari, Italy
| | - Francesco Mannavola
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Lucia Lospalluti
- Section of Dermatology, Azienda Ospedaliero-Universitaria Policlinico di Bari, 70121 Bari, Italy;
| | - Maria Chiara Sergi
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Gerardo Cazzato
- Section of Pathology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy;
| | - Elisabetta Filoni
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Federica Cavallo
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Giuseppe Giudice
- Section of Plastic and Reconstructive Surgery, Department of Emergency and Organ Transplantation (DETO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy;
| | - Luigia Stefania Stucci
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Camillo Porta
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
| | - Marco Tucci
- Section of Medical Oncology, Department of Biomedical Sciences and Clinical Oncology (DIMO), University of Bari ‘Aldo Moro’, 70121 Bari, Italy; (M.C.); (F.M.); (M.C.S.); (E.F.); (F.C.); (L.S.S.); (C.P.)
- National Cancer Center, Tumori Institute Giovanni Paolo II, 70121 Bari, Italy
| |
Collapse
|
48
|
Li X, Li N, Rao K, Huang Q, Ma M. In Vitro Immunotoxicity of Organophosphate Flame Retardants in Human THP-1-Derived Macrophages. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8900-8908. [PMID: 32643373 DOI: 10.1021/acs.est.0c01152] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Scarce attention has been paid to the immunotoxicity of organophosphate flame retardants (PFRs), which poses a challenge to the systematic assessment of their health risks. In this study, a battery of in vitro immunotoxicity screening assays, including adhesion, phagocytosis, and 48 cytokine/chemokine production, was measured after exposing THP-1-derived macrophages to six selected common PFRs (TPHP, TDCPP, TNBP, TOCP, TCEP, and TBOEP) at a noncytotoxic concentration (≤50 μM). Our results showed that TPHP and TBOEP partially attenuated the adhesion and phagocytosis of the THP-1 mφs and that TDCPP caused a functional loss of phagocytosis, implying the potential immunosuppression. In contrast, TNBP and TOCP may cause an immunostimulation by significantly promoting cell adhesion and enhancing phagocytic efficiency. Additionally, the results from a cytokine/chemokine secretion analysis revealed the proinflammatory properties of TDCPP, TPHP, and TBOEP. TOCP was thought to disrupt the inflammatory balance by inhibiting both proinflammatory and antiinflammatory cytokines. TCEP showed no effect on adhesion or phagocytosis and little modulation of cytokine release at this experimental concentration. Overall, this study supports that PFRs can be immunotoxic to macrophages in different ways and provides evidence for developing more sensitive in vitro immunotoxicity bioassay methods.
Collapse
Affiliation(s)
- Xinyan Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Wang Y, Lin Y, Cheng C, Chen P, Zhang P, Wu H, Li K, Deng Y, Qian J, Zhang X, Yu B. NF-κB/TWIST1 Mediates Migration and Phagocytosis of Macrophages in the Mice Model of Implant-Associated Staphylococcus aureus Osteomyelitis. Front Microbiol 2020; 11:1301. [PMID: 32595631 PMCID: PMC7304240 DOI: 10.3389/fmicb.2020.01301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infection-induced osteomyelitis is a great challenge in clinic treatment. Identification of the essential genes and biological processes that are specifically changed in mononuclear cells at an early stage of S. aureus osteomyelitis is of great clinical significance. Based on transcriptional dataset GSE16129 available publicly, a bioinformatic analysis was performed to identify the differentially expressed genes of osteomyelitis caused by S. aureus infection. ERBB2, TWIST1, and NANOG were screened out as the most valuable osteomyelitis-related genes (OMRGs). A mice model of implant-associated S. aureus osteomyelitis was used to verify the above genes. We found significantly up-regulated expression of TWIST1 in macrophages and accumulation of macrophages around the infected implant. Meanwhile, S. aureus infection increased the expression of TWIST1, MMP9, and MMP13, and stimulated the migration and phagocytosis function of Raw 264.7 cells. Additionally, knock-down of the expression of TWIST1 by siRNA could significantly down-regulate MMP9 and MMP13 and suppress the migration and phagocytosis ability of macrophages in response to S. aureus infection. Furthermore, we found that NF-κB signaling was activated in Raw 264.7 cells by S. aureus and that inhibition of NF-κB signaling by Bay11-7082 blocked the expression of TWIST1, MMP9, and MMP13 as well as cell migration and phagocytosis evoked by S. aureus. Our findings demonstrate that NF-κB/TWIST1 is necessary for migration and phagocytosis of macrophages in response to S. aureus infection. Our study highlights the essential role of NF-κB/TWIST1 in early innate immune response to S. aureus infection in bone.
Collapse
Affiliation(s)
- Yutian Wang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihuang Lin
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Caiyu Cheng
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Chen
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangtian Wu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaiqun Li
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Deng
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jikun Qian
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianrong Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
50
|
Lim CS, Porter DW, Orandle MS, Green BJ, Barnes MA, Croston TL, Wolfarth MG, Battelli LA, Andrew ME, Beezhold DH, Siegel PD, Ma Q. Resolution of Pulmonary Inflammation Induced by Carbon Nanotubes and Fullerenes in Mice: Role of Macrophage Polarization. Front Immunol 2020; 11:1186. [PMID: 32595644 PMCID: PMC7303302 DOI: 10.3389/fimmu.2020.01186] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary exposure to certain engineered nanomaterials (ENMs) causes chronic lesions like fibrosis and cancer in animal models as a result of unresolved inflammation. Resolution of inflammation involves the time-dependent biosynthesis of lipid mediators (LMs)-in particular, specialized pro-resolving mediators (SPMs). To understand how ENM-induced pulmonary inflammation is resolved, we analyzed the inflammatory and pro-resolving responses to fibrogenic multi-walled carbon nanotubes (MWCNTs, Mitsui-7) and low-toxicity fullerenes (fullerene C60, C60F). Pharyngeal aspiration of MWCNTs at 40 μg/mouse or C60F at a dose above 640 μg/mouse elicited pulmonary effects in B6C3F1 mice. Both ENMs stimulated acute inflammation, predominated by neutrophils, in the lung at day 1, which transitioned to histiocytic inflammation by day 7. By day 28, the lesion in MWCNT-exposed mice progressed to fibrotic granulomas, whereas it remained as alveolar histiocytosis in C60F-exposed mice. Flow cytometric profiling of whole lung lavage (WLL) cells revealed that neutrophil recruitment was the greatest at day 1 and declined to 36.6% of that level in MWCNT- and 16.8% in C60F-treated mice by day 7, and to basal levels by day 28, suggesting a rapid initiation phase and an extended resolution phase. Both ENMs induced high levels of proinflammatory leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) with peaks at day 1, and high levels of SPMs resolvin D1 (RvD1) and E1 (RvE1) with peaks at day 7. MWCNTs and C60F induced time-dependent polarization of M1 macrophages with a peak at day 1 and subsequently of M2 macrophages with a peak at day 7 in the lung, accompanied by elevated levels of type 1 or type 2 cytokines, respectively. M1 macrophages exhibited preferential induction of arachidonate 5-lipoxygenase activating protein (ALOX5AP), whereas M2 macrophages had a high level expression of arachidonate 15-lipoxygenase (ALOX15). Polarization of macrophages in vitro differentially induced ALOX5AP in M1 macrophages or ALOX15 in M2 macrophages resulting in increased preferential biosynthesis of proinflammatory LMs or SPMs. MWCNTs increased the M1- or M2-specific production of LMs accordingly. These findings support a mechanism by which persistent ENM-induced neutrophilic inflammation is actively resolved through time-dependent polarization of macrophages and enhanced biosynthesis of specialized LMs via distinct ALOX pathways.
Collapse
Affiliation(s)
- Chol Seung Lim
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Dale W. Porter
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Marlene S. Orandle
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Brett J. Green
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Mark A. Barnes
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Tara L. Croston
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Michael G. Wolfarth
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Lori A. Battelli
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Michael E. Andrew
- Bioanalytics Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Donald H. Beezhold
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Paul D. Siegel
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|