1
|
Liu H, Ge W, Yu X, Luo J, Zhang J, Yang M, Cao L, Zhang Y, Wang R, Yang C, Li P, Tian M, Peng X, Peng L, Wu D, Liu M, Liang Q, Zhang S, Li W, Rong P, Li H, Ma X, Wang W. CRISPR/Cas9-mediated SHP-1-knockout T cells combined with simvastatin enhances anti-tumor activity in humanized-PDX HCC model. iScience 2025; 28:112266. [PMID: 40241752 PMCID: PMC12003012 DOI: 10.1016/j.isci.2025.112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/04/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) resists immunotherapy due to its immunosuppressive microenvironment. Sarcoma homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) inhibits T cell receptor signaling, and its pharmacological inhibition is limited by poor selectivity and membrane permeability. Here, we generated CRISPR-edited SHP-1-knockout (KO) CD8+ T cells to enhance adoptive therapy against HCC. Single-cell RNA sequencing of HCC patient T cells revealed elevated SHP-1 in exhausted subsets. SHP-1-KO T cells exhibited increased effector memory T cells (TEM) proportions and enhanced IFN-γ/Granzyme B/perforin secretion, improving cytotoxicity against HCC lines. In humanized PDX models, SHP-1-KO T cells demonstrated superior tumor-killing activity. Transcriptomics identified upregulated lipid metabolism pathways, with HMGCR as a hub gene. Combining SHP-1-KO T cells with simvastatin (HMGCR inhibitor) synergistically amplified anti-HCC efficacy. This study proposes a dual strategy combining SHP-1-targeted cell therapy and metabolic modulation to overcome immunotherapy resistance, offering a translatable approach for HCC treatment.
Collapse
Affiliation(s)
- Huaping Liu
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Wu Ge
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Xiaoping Yu
- Department of Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jianwei Luo
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Juan Zhang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Min Yang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Lu Cao
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Yangnan Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ruike Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cejun Yang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Pei Li
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Mengyu Tian
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - XiaoPei Peng
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Lei Peng
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Di Wu
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Muqi Liu
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Qi Liang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shengwang Zhang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, China
| | - Hailan Li
- Department of Radiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University
| | - Xiaoqian Ma
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Ravi G, Richard S, Kumar S, Atrash S, Liedtke M, Kaur G, Derman B, Bergsagel PL, Mailankody S, McCarthy P, Shrestha A, Kelly LM, Ly T, Das S, Thorpe J, Maier A, Varun D, Navarro G, Burgess MR, Hege K, Koegel AK, Costa LJ. Phase 1 clinical trial of B-Cell Maturation Antigen (BCMA) NEX-T® Chimeric Antigen Receptor (CAR) T cell therapy CC-98633/BMS-986354 in participants with triple-class exposed multiple myeloma. Leukemia 2025; 39:816-826. [PMID: 39910285 PMCID: PMC11976278 DOI: 10.1038/s41375-025-02518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Accepted: 01/21/2025] [Indexed: 02/07/2025]
Abstract
BCMA-targeted CAR T-cells transformed the treatment of relapsed and refractory multiple myeloma (RRMM), yet improvements are needed in manufacturing, toxicity and efficacy. We conducted a phase 1 clinical trial of BMS-986354, an autologous BCMA CAR T manufactured using an optimized NEX-T® process, in participants with triple-class exposed, RRMM. The 65 participants had a median of 5 (range 3-13) prior regimens, 39% had cytogenetic high-risk, 91% triple-class refractory, and 43% extra-medullar disease. Part A (dose-escalation) of the study enrolled participants in cohorts receiving 20 (N = 7), 40 (N = 24), or 80 (N = 11)x 106 CAR + T-cells. In part B (expansion), an additional 23 participants were treated at the recommended phase 2 dose, 40 ×106 CAR + T cells. Across dose levels, cytokine release syndrome (CRS) occurred in 82% (2% grade ≥3), neurotoxicity in 8% (2% grade ≥3), and infections in 32% of participants (5% grade ≥ 3). The response rate was 95%, with 46% achieving complete responses. Median progression-free survival was 12.3 months (95% CI 11.3-16). Compared to orvacabtagene autoleucel (same CAR construct, conventional manufacturing), BMS-986354 had higher proportion of T central memory cells, were less differentiated and had enhanced potency and proliferative capacity, supporting the use of NEX-T® in future CAR T development.
Collapse
Affiliation(s)
- Gayathri Ravi
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Shebli Atrash
- Atrium Health Levine Cancer Institute, Charlotte, NC, USA
| | | | | | | | | | | | | | - Alok Shrestha
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Princeton, NJ, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Brisbane, CA, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Seattle, WA, USA
| | - Lisa M Kelly
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Princeton, NJ, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Brisbane, CA, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Seattle, WA, USA
| | - Thomas Ly
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Princeton, NJ, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Brisbane, CA, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Seattle, WA, USA
| | - Sharmila Das
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Princeton, NJ, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Brisbane, CA, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Seattle, WA, USA
| | - Jerill Thorpe
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Princeton, NJ, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Brisbane, CA, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Seattle, WA, USA
| | - Alison Maier
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Princeton, NJ, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Brisbane, CA, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Seattle, WA, USA
| | - Divya Varun
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Princeton, NJ, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Brisbane, CA, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Seattle, WA, USA
| | - Garnet Navarro
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Princeton, NJ, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Brisbane, CA, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Seattle, WA, USA
| | - Michael R Burgess
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Princeton, NJ, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Brisbane, CA, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Seattle, WA, USA
| | - Kristen Hege
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Princeton, NJ, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Brisbane, CA, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Seattle, WA, USA
| | - Ashley K Koegel
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Princeton, NJ, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Brisbane, CA, USA
- wholly-owned subsidiaries of Bristol Myers Squibb Company, Seattle, WA, USA
| | | |
Collapse
|
3
|
Fazeli P, Abolhasani S, Karamali N, Hajivalili M, Daryabor G, Panji M, Karimian M, Hosseini M. The role of memory T cells in type 1 diabetes: Phenotypes, mechanisms, and therapeutic implications. Autoimmun Rev 2025; 24:103759. [PMID: 39880347 DOI: 10.1016/j.autrev.2025.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the loss of insulin-producing cells in the pancreatic islets. Patients with T1D have autoreactive CD4+ and CD8+ T cells that show specific features, indicating previous exposure to self-antigens. Despite that memory T cells are vital components of the adaptive immune system, providing enduring protection against pathogens; individuals with T1D have a higher proportion of memory T cells compared to healthy individuals with naїve phenotypes. Targeting memory T cells in newly diagnosed T1D patients has shown promising results, providing evidence for the significant role of memory T cells in this disease. There are various types of memory T cells, each with unique characteristics and functions. Recent advancements in understanding the complexity and heterogeneity of T cell subpopulations have shown that T1D cannot be fully understood through simple categorization. This review aims to discuss various types of memory T cells in the immunopathogenesis of T1D, focusing on their phenotypes and frequencies, as well as epigenetic and metabolic alterations. Additionally, it will address novel immunotherapeutic approaches targeting memory T cell subsets in T1D.
Collapse
Affiliation(s)
- Pooria Fazeli
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Karamali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Hajivalili
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Daryabor
- Autoimmune Disease Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Panji
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Karimian
- Brigham and Women's Hospital, Harvard Medical School Brigham and Women's Hospital, Boston, USA
| | - Maryam Hosseini
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Jin Z, Li Y, Yi H, Wang M, Wang C, Du S, Zeng W, Zong Z. Pathogenetic development, diagnosis and clinical therapeutic approaches for liver metastasis from colorectal cancer (Review). Int J Oncol 2025; 66:22. [PMID: 39950314 PMCID: PMC11844340 DOI: 10.3892/ijo.2025.5728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/10/2025] [Indexed: 02/23/2025] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignancy and a significant proportion of patients with CRC develop liver metastasis (CRLM), which is a major contributor to CRC‑related mortality. The present review aimed to comprehensively examine the pathogenetic development and diagnosis of CRLM and the clinical therapeutic approaches for treatment of this disease. The molecular mechanisms underlying CRLM were discussed, including the role of the tumour microenvironment and epithelial‑mesenchymal transition. The present review also highlighted the importance of early detection and the current challenges in predicting the development of CRLM. Various treatment strategies were reviewed, including surgical resection, chemotherapy and immunotherapy, and the potential of novel therapies, such as selective internal radiation therapy and Traditional Chinese Medicine. Despite recent advancements in treatment options, the treatment of CRLM remains a therapeutic challenge due to the complexity of the liver microenvironment and the heterogeneity of CRC. The present review emphasized the need for a multidisciplinary approach and the integration of emerging therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Zhenhua Jin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yin Li
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hao Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghui Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chaofeng Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shaokun Du
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenjuan Zeng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
5
|
Syed Altaf RR, Mohan A, Palani N, Mendonce KC, Monisha P, Rajadesingu S. A review of innovative design strategies: Artificial antigen presenting cells in cancer immunotherapy. Int J Pharm 2025; 669:125053. [PMID: 39667594 DOI: 10.1016/j.ijpharm.2024.125053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/07/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Developing nanocarriers that can carry medications directly to tumors is an exciting development in cancer nanomedicine. The efficacy of this intriguing therapeutic approach is, however, compromised by intricate and immunosuppressive circumstances that arise concurrently with the onset of cancer. The artificial antigen presenting cell (aAPC), a micro or nanoparticle based device that mimics an antigen presenting cell by providing crucial signal proteins to T lymphocytes to activate them against cancer, is one cutting-edge method for cancer immunotherapy. This review delves into the critical design considerations for aAPCs, particularly focusing on particle size, shape, and the non-uniform distribution of T cell activating proteins on their surfaces. Adequate surface contact between T cells and aAPCs is essential for activation, prompting engineers to develop nano-aAPCs with microscale contact areas through techniques such as shape modification and nanoparticle clustering. Additionally, we explore recommendations for future advancements in this field.
Collapse
Affiliation(s)
- Rabiya Riffath Syed Altaf
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Agilandeswari Mohan
- Department of BioChemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Naveen Palani
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Keren Celestina Mendonce
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - P Monisha
- PG & Research Department of Physics, Sri Sarada College for Women, Salem - 636016, Tamil Nadu, India
| | - Suriyaprakash Rajadesingu
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
6
|
Wang V, Savoldo B, Guimaraes JA, Dotti G, Reppel L, Bensoussan D. Alloreactive-free CAR-VST therapy: a step forward in long-term tumor control in viral context. Front Immunol 2025; 15:1527648. [PMID: 39882248 PMCID: PMC11774747 DOI: 10.3389/fimmu.2024.1527648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
CAR-T cell therapy has revolutionized immunotherapy but its allogeneic application, using various strategies, faces significant challenges including graft-versus-host disease and graft rejection. Recent advances using Virus Specific T cells to generate CAR-VST have demonstrated potential for enhanced persistence and antitumor efficacy, positioning CAR-VSTs as a promising alternative to conventional CAR-T cells in an allogeneic setting. This review provides a comprehensive overview of CAR-VST development, emphasizing strategies to mitigate immunogenicity, such as using a specialized TCR, and approaches to improve therapeutic persistence against host immune responses. In this review, we discuss the production methods of CAR-VSTs and explore optimization strategies to enhance their functionality, activation profiles, memory persistence, and exhaustion resistance. Emphasis is placed on their unique dual specificity for both antitumor and antiviral responses, along with an in-depth examination of preclinical and clinical outcomes. We highlight how these advances contribute to the efficacy and durability of CAR-VSTs in therapeutic settings, offering new perspectives for broad clinical applications. By focusing on the key mechanisms that enable CAR-VSTs to address autologous CAR-T cell challenges, this review highlights their potential as a promising strategy for developing effective allogeneic CAR-T therapies.
Collapse
Affiliation(s)
- Valentine Wang
- Unité Mixte de Recherche (UMR) 7365 Centre National de la Recherche Scientifique (CNRS), Ingénierie Moléculaire, Cellulaire et Physiopathologie (IMoPA), Université de Lorraine, Nancy, France
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - José-Arthur Guimaraes
- Unité Mixte de Recherche (UMR) 7365 Centre National de la Recherche Scientifique (CNRS), Ingénierie Moléculaire, Cellulaire et Physiopathologie (IMoPA), Université de Lorraine, Nancy, France
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Loïc Reppel
- Unité Mixte de Recherche (UMR) 7365 Centre National de la Recherche Scientifique (CNRS), Ingénierie Moléculaire, Cellulaire et Physiopathologie (IMoPA), Université de Lorraine, Nancy, France
- Centre Hospitalier Régional Universitaire (CHRU) Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, Nancy, France
| | - Danièle Bensoussan
- Unité Mixte de Recherche (UMR) 7365 Centre National de la Recherche Scientifique (CNRS), Ingénierie Moléculaire, Cellulaire et Physiopathologie (IMoPA), Université de Lorraine, Nancy, France
- Centre Hospitalier Régional Universitaire (CHRU) Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, Nancy, France
| |
Collapse
|
7
|
Rujirachaivej P, Siriboonpiputtana T, Choomee K, Supimon K, Sangsuwannukul T, Songprakhon P, Natungnuy K, Luangwattananun P, Yuti P, Junking M, Yenchitsomanus PT. Engineered T cells secreting αB7-H3-αCD3 bispecific engagers for enhanced anti-tumor activity against B7-H3 positive multiple myeloma: a novel therapeutic approach. J Transl Med 2025; 23:54. [PMID: 39806405 PMCID: PMC11727291 DOI: 10.1186/s12967-024-05923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable plasma cell malignancy with increasing global incidence. Chimeric antigen receptor (CAR) T-cell therapy targeting BCMA has shown efficacy in relapsed or refractory MM, but it faces resistance due to antigen loss and the tumor microenvironment. Bispecific T-cell engaging (BITE) antibodies also encounter clinical challenges, including short half-lives requiring continuous infusion and potential toxicities. METHODS To address these issues, we developed a lentiviral system to engineer T cells that secrete αB7-H3-αCD3 bispecific engager molecules (αB7-H3-αCD3 ENG-T cells). We evaluated their effectiveness against MM cells with varying B7-H3 expression levels, from B7-H3neg to B7-H3high. RESULTS The αB7-H3-αCD3 ENG-T cells demonstrated significant anti-tumor activity against MM cell lines expressing B7-H3. SupT-1 cells (B7-H3neg) served as controls and exhibited minimal cytotoxicity from αB7-H3-αCD3 ENG T cells. In contrast, these engineered T cells showed dose-dependent killing of B7-H3-expressing MM cells: NCI-H929 (B7-H3low), L-363 (B7-H3medium), and KMS-12-PE (B7-H3high). For NCI-H929 cells, cytotoxicity reached 38.5 ± 7.4% (p = 0.0212) and 54.0 ± 9.2% (p = 0.0317) at effector-to-target (E:T) ratios of 5:1 and 10:1, respectively. Against L-363 cells, cytotoxicity was 56.6 ± 3.2% (p < 0.0001) and 71.4 ± 5.2% (p = 0.0002) at E:T ratios of 5:1 and 10:1, respectively. For KMS-12-PE cells, significant cytotoxic effects were observed even at an E:T ratio of 1:1, with 27.2 ± 3.7% (p = 0.0004), 44.4 ± 3.7% (p < 0.0001), and 68.6 ± 9.2% (p = 0.0004) cytotoxicity at E:T ratios of 1:1, 5:1, and 10:1, respectively. CONCLUSIONS These results indicate that αB7-H3-αCD3 ENG T cells could be a promising therapy for B7-H3-positive MM. They may enhance current MM treatments and improve overall outcomes. Additional preclinical and clinical research is required to fully assess their therapeutic potential.
Collapse
Affiliation(s)
- Punchita Rujirachaivej
- Graduate Program in Clinical Pathology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Kornkan Choomee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kamonlapat Supimon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Pucharee Songprakhon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Krissada Natungnuy
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpimon Yuti
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
8
|
Shi R, Ran L, Tian Y, Guo W, Zhao L, Jin S, Cheng J, Zhang Z, Ma Y. Prospects and challenges of neoantigen applications in oncology. Int Immunopharmacol 2024; 143:113329. [PMID: 39405926 DOI: 10.1016/j.intimp.2024.113329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Neoantigen, unique peptides resulting from tumor-specific mutations, represent a promising frontier in oncology for personalized cancer immunotherapy. Their unique features allow for the development of highly specific and effective cancer treatments, which can potentially overcome the limitations of conventional therapies. This paper explores the current prospects and challenges associated with the application of neoantigens in oncology. We examine the latest advances in neoantigen identification, vaccine development, and adoptive T cell therapy. Additionally, we discuss the obstacles related to neoantigen heterogeneity, immunogenicity prediction, and the tumor microenvironment. Through a comprehensive analysis of current research and clinical trials, this paper aims to provide a detailed overview of how neoantigens could revolutionize cancer treatment and the hurdles that must be overcome to realize their full potential.
Collapse
Affiliation(s)
- Ranran Shi
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Ling Ran
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Yuan Tian
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Wei Guo
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China
| | - Lifang Zhao
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Shaoju Jin
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Henan Province Engineering & Technology Research Center of Foods for Special Medical Purpose, Luohe Medical College, Luohe 462000, China
| | - Jiang Cheng
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China; Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan 750000, China
| | - Zhe Zhang
- School of Sciences, Henan University of Technology, Zhengzhou 450001, China.
| | - Yongchao Ma
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China.
| |
Collapse
|
9
|
Ursch LT, Müschen JS, Ritter J, Klermund J, Bernard BE, Kolb S, Warmuth L, Andrieux G, Miller G, Jiménez-Muñoz M, Theis FJ, Boerries M, Busch DH, Cathomen T, Schumann K. Modulation of TCR stimulation and pifithrin-α improve the genomic safety profile of CRISPR-engineered human T cells. Cell Rep Med 2024; 5:101846. [PMID: 39637860 PMCID: PMC11722128 DOI: 10.1016/j.xcrm.2024.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/24/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
CRISPR-engineered chimeric antigen receptor (CAR) T cells are at the forefront of novel cancer treatments. However, several reports describe the occurrence of CRISPR-induced chromosomal aberrations. So far, measures to increase the genomic safety of T cell products focused mainly on the components of the CRISPR-Cas9 system and less on T cell-intrinsic features, such as their massive expansion after T cell receptor (TCR) stimulation. Here, we describe driving forces of indel formation in primary human T cells. Increased T cell activation and proliferation speed correlate with larger deletions. Editing of non-activated T cells reduces the risk of large deletions with the downside of reduced knockout efficiencies. Alternatively, the addition of the small-molecule pifithrin-α limits large deletions, chromosomal translocations, and aneuploidy in a p53-independent manner while maintaining the functionality of CRISPR-engineered T cells, including CAR T cells. Controlling T cell activation and pifithrin-α treatment are easily implementable strategies to improve the genomic integrity of CRISPR-engineered T cells.
Collapse
Affiliation(s)
- Laurenz T Ursch
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Jule S Müschen
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Julia Ritter
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Bettina E Bernard
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Saskia Kolb
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Linda Warmuth
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Gregor Miller
- Core Facility Statistical Consulting, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Marina Jiménez-Muñoz
- Core Facility Statistical Consulting, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; School of Computing, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Dirk H Busch
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany; German Center for Infection Research, Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Kathrin Schumann
- Technical University of Munich (TUM), School of Medicine and Health, Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, 81675 Munich, Germany; TUM, Institute for Advanced Study, 85748 Garching, Germany.
| |
Collapse
|
10
|
Tsao ST, Gu M, Xiong Q, Deng Y, Deng T, Fu C, Zhao Z, Zhang H, Liu C, Zhong X, Xiang F, Huang F, Wang H. Rapidly Manufactured CAR-T with Conserved Cell Stemness and Distinctive Cytokine-Secreting Profile Shows Improved Anti-Tumor Efficacy. Vaccines (Basel) 2024; 12:1348. [PMID: 39772010 PMCID: PMC11680398 DOI: 10.3390/vaccines12121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The emergence of chimeric antigen receptor T-cell (CAR-T) immunotherapy holds great promise in treating hematologic malignancies. While advancements in CAR design have enhanced therapeutic efficacy, the time-consuming manufacturing process has not been improved in the commercial production of CAR-T cells. In this study, we developed a "DASH CAR-T" process to manufacture CAR-T cells in 72 h and found the excelling anti-tumor efficacy of DASH CAR-T cells over conventionally manufactured CAR-T cells. Methods: Four different CAR-T manufacturing processes were first proposed and examined by flow cytometry in regard to cell viability, T-cell purity and activation, CAR expression, and cell apoptosis. The selected two processes, 48H DASH CAR-T and 72H DASH CAR-T, were applied to the subsequent functional assessments, including T-cell differentiation, antigen-dependent cytotoxicity and expansion, cytokines secretion profile, and in vivo anti-tumor efficacy. Results: We demonstrated that rapidly manufactured CAR-T cells generated within 48-72 h was feasible and exhibited increased naïve and memory T-cell ratios, a distinctive secretory profile, superior expansion capacity, and enhanced in vitro and in vivo anti-tumor activity compared to conventionally manufactured CAR-T cells. Conclusions: Our findings suggest that "DASH CAR-T" process is a valuable platform in reducing CAR-T manufacturing time and producing high-efficacy CAR-T cells for future clinical application.
Collapse
Affiliation(s)
- Shih-Ting Tsao
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Mingyuan Gu
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Qinghui Xiong
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Yingzhi Deng
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Tian Deng
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Chengbing Fu
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Zihao Zhao
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Haoyu Zhang
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Cuicui Liu
- Department of Regulatory Affairs, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Xiong Zhong
- Department of Medical Research, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Fang Xiang
- Department of Medical Research, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Fei Huang
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| | - Haiying Wang
- Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China
| |
Collapse
|
11
|
Han J, Huang J, Hu J, Shi W, Wang H, Zhang W, Wang J, Shao H, Shen H, Bo H, Tao C, Wu F. miR-744-5p promotes T-cell differentiation via inhibiting STK11. Gene 2024; 926:148635. [PMID: 38830518 DOI: 10.1016/j.gene.2024.148635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
T cells utilized in adoptive T cell immunotherapy are typically activated in vitro. Although these cells demonstrate proliferation and anti-tumor activity following activation, they often face difficulties in sustaining long-term survival post-reinfusion. This issue is attributed to the induction of T cells into a terminal differentiation state upon activation, whereas early-stage differentiated T cells exhibit enhanced proliferation potential and survival capabilities. In previous study, we delineated four T cell subsets at varying stages of differentiation: TN, TSCM, TCM, and TEM, and acquired their miRNA expression profiles via high-throughput sequencing. In the current study, we performed a differential analysis of miRNA across these subsets, identifying a distinct miRNA, hsa-miR-744-5p, characterized by progressively increasing expression levels upon T cell activation. This miRNA is not expressed in TSCM but is notably present in TEM. Target genes of miR-744-5p were predicted, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, revealing that these genes predominantly associate with pathways related to the 'Wnt signaling pathway'. We established that miR-744-5p directly targets STK11, influencing its expression. Further, we investigated the implications of miR-744-5p on T cell differentiation and functionality. Overexpression of miR-744-5p in T cells resulted in heightened apoptosis, reduced proliferation, an increased proportion of late-stage differentiated T cells, and elevated secretion of the cytokine TNF-α. Moreover, post-overexpression of miR-744-5p led to a marked decline in the expression of early-stage differentiation-associated genes in T cells (CCR7, CD62L, LEF1, BCL2) and a significant rise in late-stage differentiation-associated genes (KLRG1, PDCD1, GZMB). In conclusion, our findings affirm that miR-744-5p contributes to the progressive differentiation of T cells by downregulating the STK11 gene expression.
Collapse
Affiliation(s)
- Jiayi Han
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianqing Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jieming Hu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenkai Shi
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongqiong Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinquan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaben Bo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fenglin Wu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
12
|
Ploch W, Sadowski K, Olejarz W, Basak GW. Advancement and Challenges in Monitoring of CAR-T Cell Therapy: A Comprehensive Review of Parameters and Markers in Hematological Malignancies. Cancers (Basel) 2024; 16:3339. [PMID: 39409959 PMCID: PMC11475293 DOI: 10.3390/cancers16193339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment for relapsed/refractory B-cell lymphomas. Despite its success, this therapy is accompanied by a significant frequency of adverse events, including cytokine release syndrome (CRS), immune-effector-cell-associated neurotoxicity syndrome (ICANS), or cytopenias, reaching even up to 80% of patients following CAR-T cell therapy. CRS results from the uncontrolled overproduction of proinflammatory cytokines, which leads to symptoms such as fever, headache, hypoxia, or neurological complications. CAR-T cell detection is possible by the use of flow cytometry (FC) or quantitative polymerase chain reaction (qPCR) assays, the two primary techniques used for CAR-T evaluation in peripheral blood, bone marrow (BM), and cerebrospinal fluid (CSF). State-of-the-art imaging technologies play a crucial role in monitoring the distribution and persistence of CAR-T cells in clinical trials. Still, they can also be extended with the use of FC and digital PCR (dPCR). Monitoring the changes in cell populations during disease progression and treatment gives an important insight into how the response to CAR-T cell therapy develops on a cellular level. It can help improve the therapeutic design and optimize CAR-T cell therapy to make it more precise and personalized, which is crucial to overcoming the problem of tumor relapse.
Collapse
Affiliation(s)
- Weronika Ploch
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Grzegorz W. Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
13
|
Zhao W, Tang H, Liang Z, Wang N, Sun R, Su R, Yang Z, Zhou K, Peng Y, Zheng S, Xie H. Carvacrol ameliorates skin allograft rejection through modulating macrophage polarization by activating the Wnt signalling pathway. Phytother Res 2024; 38:4675-4694. [PMID: 39120138 DOI: 10.1002/ptr.8282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Post-transplantation immune rejection remains an important factor for transplant patients. However, conventional immunosuppressants are associated with substantial adverse effects. Natural immunosuppressants present a promising alternative to conventional counterparts, boasting exceptional biological activity, minimal toxicity and reduced side effects. We identified carvacrol as a prospective immunosuppressive agent following T cell proliferation experiment and validated carvacrol's immunosuppressive efficacy in the murine allogeneic skin graft model. T cell proliferation assay was used to screen natural small molecule compounds and the immunosuppressive effect of compounds was evaluated in MHC-mismatched murine allogeneic skin graft model. H&E and immunohistochemical staining were applied to evaluate the pathological grade. Furthermore, flow cytometry was uitlized to analyse the immunophenotype changes of immune cells. Western blotting and q-PCR were used to detect the expression of key molecules in macrophages. In vitro, carvacrol demonstrates significant inhibition of the proliferation of CD4+ T and CD8+ T cells. It notably reduces inflammatory factor expression within the allografts, suppresses T cell differentiation toward Th1 phenotype and expansion. Furthermore, carvacrol prominently hinders M1-type macrophages polarization by activating Wnt signaling. Notably, the anti-rejection efficacy of carvacrol was significantly weakened upon the removal of macrophages in mice using chlorophosphate liposomes. Carvacrol could significantly inhibit T cell proliferation, alleviate graft rejection and has outstanding toxicological safety. The molecular mechanism of the anti-rejection effect of carvacrol is closely related to its mediating activation of macrophage Wnt pathway, inhibiting M1 polarization and inducing T cell differentiation.
Collapse
Affiliation(s)
- Wentao Zhao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Tang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Su
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Zhentao Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyang Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
14
|
Guo J, Wang C, Luo N, Wu Y, Huang W, Zhu J, Shi W, Ding J, Ge Y, Liu C, Lu Z, Bast RC, Ai G, Yang W, Wang R, Li C, Chen R, Liu S, Jin H, Zhao B, Cheng Z. IL-2-free tumor-infiltrating lymphocyte therapy with PD-1 blockade demonstrates potent efficacy in advanced gynecologic cancer. BMC Med 2024; 22:207. [PMID: 38769543 PMCID: PMC11106999 DOI: 10.1186/s12916-024-03420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocyte (TIL) therapy has been restricted by intensive lymphodepletion and high-dose intravenous interleukin-2 (IL-2) administration. To address these limitations, we conducted preclinical and clinical studies to evaluate the safety, antitumor activity, and pharmacokinetics of an innovative modified regimen in patients with advanced gynecologic cancer. METHODS Patient-derived xenografts (PDX) were established from a local recurrent cervical cancer patient. TILs were expanded ex vivo from minced tumors without feeder cells in the modified TIL therapy regimen. Patients underwent low-dose cyclophosphamide lymphodepletion followed by TIL infusion without intravenous IL-2. The primary endpoint was safety; the secondary endpoints included objective response rate, duration of response, and T cell persistence. RESULTS In matched patient-derived xenografts (PDX) models, homologous TILs efficiently reduced tumor size (p < 0.0001) and underwent IL-2 absence in vivo. In the clinical section, all enrolled patients received TIL infusion using a modified TIL therapy regimen successfully with a manageable safety profile. Five (36%, 95% CI 16.3-61.2) out of 14 evaluable patients experienced objective responses, and three complete responses were ongoing at 19.5, 15.4, and 5.2 months, respectively. Responders had longer overall survival (OS) than non-responders (p = 0.036). Infused TILs showed continuous proliferation and long-term persistence in all patients and showed greater proliferation in responders which was indicated by the Morisita overlap index (MOI) of TCR clonotypes between infused TILs and peripheral T cells on day 14 (p = 0.004) and day 30 (p = 0.004). Higher alteration of the CD8+/CD4+ ratio on day 14 indicated a longer OS (p = 0.010). CONCLUSIONS Our modified TIL therapy regimen demonstrated manageable safety, and TILs could survive and proliferate without IL-2 intravenous administration, showing potent efficacy in patients with advanced gynecologic cancer. TRIAL REGISTRATION NCT04766320, Jan 04, 2021.
Collapse
Affiliation(s)
- Jing Guo
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyan Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ning Luo
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuliang Wu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Huang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jihui Zhu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weihui Shi
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinye Ding
- Tongji University School of Medicine, Shanghai, China
| | - Yao Ge
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunhong Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guihai Ai
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weihong Yang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Wang
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Caixia Li
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shupeng Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, Shanghai, China
| | - Huajun Jin
- Shanghai Juncell Therapeutics, Shanghai, China
| | - Binghui Zhao
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Gynecologic Minimally Invasive Surgery Research Center, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Lin CP, Levy PL, Alflen A, Apriamashvili G, Ligtenberg MA, Vredevoogd DW, Bleijerveld OB, Alkan F, Malka Y, Hoekman L, Markovits E, George A, Traets JJH, Krijgsman O, van Vliet A, Poźniak J, Pulido-Vicuña CA, de Bruijn B, van Hal-van Veen SE, Boshuizen J, van der Helm PW, Díaz-Gómez J, Warda H, Behrens LM, Mardesic P, Dehni B, Visser NL, Marine JC, Markel G, Faller WJ, Altelaar M, Agami R, Besser MJ, Peeper DS. Multimodal stimulation screens reveal unique and shared genes limiting T cell fitness. Cancer Cell 2024; 42:623-645.e10. [PMID: 38490212 PMCID: PMC11003465 DOI: 10.1016/j.ccell.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/03/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Genes limiting T cell antitumor activity may serve as therapeutic targets. It has not been systematically studied whether there are regulators that uniquely or broadly contribute to T cell fitness. We perform genome-scale CRISPR-Cas9 knockout screens in primary CD8 T cells to uncover genes negatively impacting fitness upon three modes of stimulation: (1) intense, triggering activation-induced cell death (AICD); (2) acute, triggering expansion; (3) chronic, causing dysfunction. Besides established regulators, we uncover genes controlling T cell fitness either specifically or commonly upon differential stimulation. Dap5 ablation, ranking highly in all three screens, increases translation while enhancing tumor killing. Loss of Icam1-mediated homotypic T cell clustering amplifies cell expansion and effector functions after both acute and intense stimulation. Lastly, Ctbp1 inactivation induces functional T cell persistence exclusively upon chronic stimulation. Our results functionally annotate fitness regulators based on their unique or shared contribution to traits limiting T cell antitumor activity.
Collapse
Affiliation(s)
- Chun-Pu Lin
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pierre L Levy
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Tumor Immunology and Immunotherapy Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Astrid Alflen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Georgi Apriamashvili
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten A Ligtenberg
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Yuval Malka
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Ettai Markovits
- Ella Lemelbaum Institute for Immuno-oncology and Melanoma, Sheba Medical Center, Ramat Gan 52612, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Austin George
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alex van Vliet
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Joanna Poźniak
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Carlos Ariel Pulido-Vicuña
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Beaunelle de Bruijn
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Susan E van Hal-van Veen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Julia Boshuizen
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Pim W van der Helm
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Judit Díaz-Gómez
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Hamdy Warda
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Leonie M Behrens
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Paula Mardesic
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bilal Dehni
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Gal Markel
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel; Davidoff Cancer Center and Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - William J Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michal J Besser
- Ella Lemelbaum Institute for Immuno-oncology and Melanoma, Sheba Medical Center, Ramat Gan 52612, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel; Davidoff Cancer Center and Samueli Integrative Cancer Pioneering Institute, Rabin Medical Center, Petach Tikva 4941492, Israel; Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Kann MC, Schneider EM, Almazan AJ, Lane IC, Bouffard AA, Supper VM, Takei HN, Tepper A, Leick MB, Larson RC, Ebert BL, Maus MV, Jan M. Chemical genetic control of cytokine signaling in CAR-T cells using lenalidomide-controlled membrane-bound degradable IL-7. Leukemia 2024; 38:590-600. [PMID: 38123696 PMCID: PMC11774338 DOI: 10.1038/s41375-023-02113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/19/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
CAR-T cell therapy has emerged as a breakthrough therapy for the treatment of relapsed and refractory hematologic malignancies. However, insufficient CAR-T cell expansion and persistence is a leading cause of treatment failure. Exogenous or transgenic cytokines have great potential to enhance CAR-T cell potency but pose the risk of exacerbating toxicities. Here we present a chemical-genetic system for spatiotemporal control of cytokine function gated by the off-patent anti-cancer molecular glue degrader drug lenalidomide and its analogs. When co-delivered with a CAR, a membrane-bound, lenalidomide-degradable IL-7 fusion protein enforced a clinically favorable T cell phenotype, enhanced antigen-dependent proliferative capacity, and enhanced in vivo tumor control. Furthermore, cyclical pharmacologic combined control of CAR and cytokine abundance enabled the deployment of highly active, IL-7-augmented CAR-T cells in a dual model of antitumor potency and T cell hyperproliferation.
Collapse
Affiliation(s)
- Michael C Kann
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Emily M Schneider
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Antonio J Almazan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Isabel C Lane
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Amanda A Bouffard
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Valentina M Supper
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Hana N Takei
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander Tepper
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mark B Leick
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Blood and Bone Marrow Transplant Program, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca C Larson
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Benjamin L Ebert
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Max Jan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
17
|
Wojciechowicz K, Kuncewicz K, Lisowska KA, Wardowska A, Spodzieja M. Peptides targeting the BTLA-HVEM complex can modulate T cell immune response. Eur J Pharm Sci 2024; 193:106677. [PMID: 38128840 DOI: 10.1016/j.ejps.2023.106677] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Immune checkpoints secure the proper function of the immune system and the maintenance of the BTLA-HVEM complex, an inhibitory immune checkpoint, is one of the pathways vital for T cell responsiveness to various stimuli. The present study reports the immunomodulatory potential of five peptides targeting the BTLA-HVEM complex on the activity of human T cells. Isolated T cells were exposed to the peptides alone or combined with CD3/CD28 mAb for 72 h or 120 h. The flow cytometry was used to evaluate the activation markers (CD69, CD62L, CD25), changes within the T cell memory compartment, proliferation rate, and apoptosis of T cells. The immunomodulatory effect of the peptides was visible as an increase in the percentage of CD4+ and CD8+ T cells expressing CD69 or CD25, a boost in T cell proliferation, and shifts in the T cell memory compartment. Pep(2) and Pep(5) were the most promising compounds, displaying a putative immune-restoring function.
Collapse
Affiliation(s)
- Karolina Wojciechowicz
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Katarzyna Kuncewicz
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland
| | - Katarzyna A Lisowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Anna Wardowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Poland.
| | - Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland.
| |
Collapse
|
18
|
Colina AS, Shah V, Shah RK, Kozlik T, Dash RK, Terhune S, Zamora AE. Current advances in experimental and computational approaches to enhance CAR T cell manufacturing protocols and improve clinical efficacy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1310002. [PMID: 39086435 PMCID: PMC11285593 DOI: 10.3389/fmmed.2024.1310002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 08/02/2024]
Abstract
Since the FDA's approval of chimeric antigen receptor (CAR) T cells in 2017, significant improvements have been made in the design of chimeric antigen receptor constructs and in the manufacturing of CAR T cell therapies resulting in increased in vivo CAR T cell persistence and improved clinical outcome in certain hematological malignancies. Despite the remarkable clinical response seen in some patients, challenges remain in achieving durable long-term tumor-free survival, reducing therapy associated malignancies and toxicities, and expanding on the types of cancers that can be treated with this therapeutic modality. Careful analysis of the biological factors demarcating efficacious from suboptimal CAR T cell responses will be of paramount importance to address these shortcomings. With the ever-expanding toolbox of experimental approaches, single-cell technologies, and computational resources, there is renowned interest in discovering new ways to streamline the development and validation of new CAR T cell products. Better and more accurate prognostic and predictive models can be developed to help guide and inform clinical decision making by incorporating these approaches into translational and clinical workflows. In this review, we provide a brief overview of recent advancements in CAR T cell manufacturing and describe the strategies used to selectively expand specific phenotypic subsets. Additionally, we review experimental approaches to assess CAR T cell functionality and summarize current in silico methods which have the potential to improve CAR T cell manufacturing and predict clinical outcomes.
Collapse
Affiliation(s)
- Alfredo S. Colina
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Viren Shah
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Ravi K. Shah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tanya Kozlik
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ranjan K. Dash
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Scott Terhune
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Anthony E. Zamora
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
19
|
Zhang S, Lv K, Liu Z, Zhao R, Li F. Fatty acid metabolism of immune cells: a new target of tumour immunotherapy. Cell Death Discov 2024; 10:39. [PMID: 38245525 PMCID: PMC10799907 DOI: 10.1038/s41420-024-01807-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
Metabolic competition between tumour cells and immune cells for limited nutrients is an important feature of the tumour microenvironment (TME) and is closely related to the outcome of tumour immune escape. A large number of studies have proven that tumour cells need metabolic reprogramming to cope with acidification and hypoxia in the TME while increasing energy uptake to support their survival. Among them, synthesis, oxidation and uptake of fatty acids (FAs) in the TME are important manifestations of lipid metabolic adaptation. Although different immune cell subsets often show different metabolic characteristics, various immune cell functions are closely related to fatty acids, including providing energy, providing synthetic materials and transmitting signals. In the face of the current situation of poor therapeutic effects of tumour immunotherapy, combined application of targeted immune cell fatty acid metabolism seems to have good therapeutic potential, which is blocked at immune checkpoints. Combined application of adoptive cell therapy and cancer vaccines is reflected. Therefore, it is of great interest to explore the role of fatty acid metabolism in immune cells to discover new strategies for tumour immunotherapy and improve anti-tumour immunity.
Collapse
Affiliation(s)
- Sheng Zhang
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kebing Lv
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Liu
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ran Zhao
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Li
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
- Jiangxi Clinical Research Center for Hematologic Disease, Nanchang, China.
- Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China.
| |
Collapse
|
20
|
Kaminski A, Hager FT, Kopplin L, Ticconi F, Leufgen A, Vendelova E, Rüttger L, Gasteiger G, Cerovic V, Kastenmüller W, Pabst O, Ugur M. Resident regulatory T cells reflect the immune history of individual lymph nodes. Sci Immunol 2023; 8:eadj5789. [PMID: 37874251 DOI: 10.1126/sciimmunol.adj5789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Regulatory T cells (Tregs) are present in lymphoid and nonlymphoid tissues where they restrict immune activation, prevent autoimmunity, and regulate inflammation. Tregs in nonlymphoid tissues are typically resident, whereas those in lymph nodes (LNs) are considered to recirculate. However, Tregs in LNs are not a homogenous population, and circulation kinetics of different Treg subsets are poorly characterized. Furthermore, whether Tregs can acquire memory T cell properties and persist for extended periods after their activation in LNs is unclear. Here, we used in situ labeling with a stabilized photoconvertible protein to uncover turnover rates of Tregs in LNs in vivo. We found that, whereas most Tregs in LNs recirculate, 10 to 20% are memory-like resident cells that remain in their respective LNs for weeks to months. Single-cell RNA sequencing revealed that LN-resident cells are a functionally and ontogenetically heterogeneous population and share the same core residency gene signature with conventional CD4+ and CD8+ T cells. Resident cells in LNs did not actively proliferate and did not require continuous T cell receptor (TCR) signaling for their residency. However, resident and circulating Tregs had distinct TCR repertoires, and each LN contained exclusive clonal subpopulations of resident Tregs. Our results demonstrate that, similar to conventional T cells, Tregs can form resident memory-like populations in LNs after adaptive immune responses. Specific and local suppression of immune responses by resident Tregs in draining LNs might provide previously unidentified therapeutic opportunities for the treatment of local chronic inflammatory conditions.
Collapse
Affiliation(s)
- Anne Kaminski
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Fabian Tobias Hager
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Lydia Kopplin
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Fabio Ticconi
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
- Institute for Computational Genomics, RWTH Aachen University, Aachen 52074, Germany
| | - Andrea Leufgen
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Emilia Vendelova
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Lennart Rüttger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Milas Ugur
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| |
Collapse
|
21
|
Bi Y, Kong R, Peng Y, Yu H, Zhou Z. Umbilical cord blood and peripheral blood-derived regulatory T cells therapy: Progress in type 1 diabetes. Clin Immunol 2023; 255:109716. [PMID: 37544491 DOI: 10.1016/j.clim.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Regulatory T cells (Tregs) are key regulators for the inflammatory response and play a role in maintaining the immune tolerance. Type 1 diabetes (T1D) is a relatively common autoimmune disease that results from the loss of immune tolerance to β-cell-associated antigens. Preclinical models have demonstrated the safety and efficacy of Tregs given in transplant rejection and autoimmune diseases such as T1D. Adoptive transfer of Tregs has been utilized in clinical trials for over a decade. However, the achievement of the adoptive transfer of Tregs therapy in clinical application remains challenging. In this review, we highlight the characterization of Tregs and compare the differences between umbilical cord blood and adult peripheral blood-derived Tregs. Additionally, we summarize conditional modifications in the expansion of Tregs in clinical trials, especially for the treatment of T1D. Finally, we discuss the existing technical challenges for Tregs in clinical trials for the treatment of T1D.
Collapse
Affiliation(s)
- Yuanjie Bi
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ran Kong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yani Peng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
22
|
Tang H, Zaroudi M, Zhu Y, Cheng A, Qin L, Zhang B, Liu Y. Toroidal-spiral particles as a CAR-T cell delivery device for solid tumor immunotherapy. J Control Release 2023; 362:620-630. [PMID: 37673306 PMCID: PMC10947521 DOI: 10.1016/j.jconrel.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has resulted in positive effects on patients with hematologic malignancy but shows limited efficacy in solid tumor treatments due to insufficient trafficking and tumor infiltration, intensive CAR-T-related toxicities, and antigen escape. In this work, we developed and investigated a biodegradable and biocompatible polymeric toroidal-spiral particle (TSP) as a in vivo cell incubator and delivery device that can be implanted near tumor through a minimally invasive procedure or injected near or into solid tumors by using a biopsy needle. The main matrix structure of the millimeter-sized TSP is made from crosslinking of gelatin methacrylamine (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) with a tunable degradation rate from a few days to months, providing appropriate mechanical properties and sustained release of co-encapsulated drugs and/or stimulation compounds. The toroidal-spiral layer of the particles, presenting an internal void volume for high-capacity cell loading and flexibility of co-encapsulating small and large molecular compounds with individually manipulated release schedules, is filled with collagen and suspended T cells. The TSPs promote cell proliferation, activation, and migration in the tumor micro-environment in a prolonged and sustained manner. In this study, the efficacy of mesothelin (MSLN) CAR-T cells released from the TSPs was tested in preclinical mouse tumor models. Compared to systemic and intratumoral injection, peritumoral delivery of MSLN CAR-T cells using the TSPs resulted in a superior antitumor effect. The TSPs made of FDA approved materials as an in vivo reactor may provide an option for efficiently local delivery of CAR-T cells to solid tumors for higher efficacy and lower toxicity, with a minimally invasive administration procedure.
Collapse
Affiliation(s)
- Hui Tang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Maryam Zaroudi
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Yuli Zhu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Lei Qin
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Bin Zhang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, United States; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
23
|
Palianina D, Di Roberto RB, Castellanos-Rueda R, Schlatter F, Reddy ST, Khanna N. A method for polyclonal antigen-specific T cell-targeted genome editing (TarGET) for adoptive cell transfer applications. Mol Ther Methods Clin Dev 2023; 30:147-160. [PMID: 37448595 PMCID: PMC10336339 DOI: 10.1016/j.omtm.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Adoptive cell therapy of donor-derived, antigen-specific T cells expressing native T cell receptors (TCRs) is a powerful strategy to fight viral infections in immunocompromised patients. Determining the fate of T cells following patient infusion hinges on the ability to track them in vivo. While this is possible by genetic labeling of parent cells, the applicability of this approach has been limited by the non-specificity of the edited T cells. Here, we devised a method for CRISPR-targeted genome integration of a barcoded gene into Epstein-Barr virus-antigen-stimulated T cells and demonstrated its use for exclusively identifying expanded virus-specific cell lineages. Our method facilitated the enrichment of antigen-specific T cells, which then mediated improved cytotoxicity against Epstein-Barr virus-transformed target cells. Single-cell and deep sequencing for lineage tracing revealed the expansion profile of specific T cell clones and their corresponding gene expression signature. This approach has the potential to enhance the traceability and the monitoring capabilities during immunotherapeutic T cell regimens.
Collapse
Affiliation(s)
- Darya Palianina
- Department of Biomedicine, University and University Hospital of Basel, 4056 Basel, Switzerland
| | - Raphaël B. Di Roberto
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Rocío Castellanos-Rueda
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
- Life Science Zurich Graduate School, Systems Biology, ETH Zürich, University of Zurich, 8057 Zürich, Switzerland
| | - Fabrice Schlatter
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University and University Hospital of Basel, 4056 Basel, Switzerland
- Divsion of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, 4031 Basel, Switzerland
| |
Collapse
|
24
|
Bandara V, Foeng J, Gundsambuu B, Norton TS, Napoli S, McPeake DJ, Tyllis TS, Rohani-Rad E, Abbott C, Mills SJ, Tan LY, Thompson EJ, Willet VM, Nikitaras VJ, Zheng J, Comerford I, Johnson A, Coombs J, Oehler MK, Ricciardelli C, Cowin AJ, Bonder CS, Jensen M, Sadlon TJ, McColl SR, Barry SC. Pre-clinical validation of a pan-cancer CAR-T cell immunotherapy targeting nfP2X7. Nat Commun 2023; 14:5546. [PMID: 37684239 PMCID: PMC10491676 DOI: 10.1038/s41467-023-41338-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell immunotherapy is a novel treatment that genetically modifies the patients' own T cells to target and kill malignant cells. However, identification of tumour-specific antigens expressed on multiple solid cancer types, remains a major challenge. P2X purinoceptor 7 (P2X7) is a cell surface expressed ATP gated cation channel, and a dysfunctional version of P2X7, named nfP2X7, has been identified on cancer cells from multiple tissues, while being undetectable on healthy cells. We present a prototype -human CAR-T construct targeting nfP2X7 showing potential antigen-specific cytotoxicity against twelve solid cancer types (breast, prostate, lung, colorectal, brain and skin). In xenograft mouse models of breast and prostate cancer, CAR-T cells targeting nfP2X7 exhibit robust anti-tumour efficacy. These data indicate that nfP2X7 is a suitable immunotherapy target because of its broad expression on human tumours. CAR-T cells targeting nfP2X7 have potential as a wide-spectrum cancer immunotherapy for solid tumours in humans.
Collapse
Affiliation(s)
- Veronika Bandara
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Jade Foeng
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Batjargal Gundsambuu
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Todd S Norton
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Silvana Napoli
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Dylan J McPeake
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Timona S Tyllis
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Elaheh Rohani-Rad
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Caitlin Abbott
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Stuart J Mills
- University of South Australia, STEM (Future Industries Institute) SA, Adelaide, 5095, Australia
| | - Lih Y Tan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
| | - Emma J Thompson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
| | - Vasiliki M Willet
- Reproductive Cancer Research Group, Discipline Obstetrics and Gynaecology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Victoria J Nikitaras
- Reproductive Cancer Research Group, Discipline Obstetrics and Gynaecology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jieren Zheng
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Iain Comerford
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Adam Johnson
- Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Justin Coombs
- Carina Biotech, Level 2 Innovation & Collaboration Centre, UniSA Bradley Building, Adelaide, SA, 5001, Australia
| | - Martin K Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA, 5005, Australia
| | - Carmela Ricciardelli
- Reproductive Cancer Research Group, Discipline Obstetrics and Gynaecology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Allison J Cowin
- University of South Australia, STEM (Future Industries Institute) SA, Adelaide, 5095, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5001, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Michael Jensen
- Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Timothy J Sadlon
- Department of Gastroenterology, Women's and Children's Health Network, North Adelaide, SA, 5006, Australia
| | - Shaun R McColl
- Chemokine Biology Laboratory, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Carina Biotech, Level 2 Innovation & Collaboration Centre, UniSA Bradley Building, Adelaide, SA, 5001, Australia
| | - Simon C Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, SA, 5000, Australia.
- Carina Biotech, Level 2 Innovation & Collaboration Centre, UniSA Bradley Building, Adelaide, SA, 5001, Australia.
- Department of Gastroenterology, Women's and Children's Health Network, North Adelaide, SA, 5006, Australia.
| |
Collapse
|
25
|
Ling M, Cardle II, Song K, Yan AJ, Kacherovsky N, Jensen MC, Pun SH. Aptamer-Based Chromatographic Methods for Efficient and Economical Separation of Leukocyte Populations. ACS Biomater Sci Eng 2023; 9:5062-5071. [PMID: 37467493 PMCID: PMC11016351 DOI: 10.1021/acsbiomaterials.3c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The manufacturing process of chimeric antigen receptor T cell therapies includes isolation systems that provide pure T cells. Current magnetic-activated cell sorting and immunoaffinity chromatography methods produce desired cells with high purity and yield but require expensive equipment and reagents and involve time-consuming incubation steps. Here, we demonstrate that aptamers can be employed in a continuous-flow resin platform for both depletion of monocytes and selection of CD8+ T cells from peripheral blood mononuclear cells at low cost with high purity and throughput. Aptamer-mediated cell selection could potentially enable fully synthetic, traceless isolations of leukocyte subsets from a single isolation system.
Collapse
Affiliation(s)
- Melissa Ling
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195
| | - Ian I. Cardle
- Department of Bioengineering, University of Washington, Seattle, WA 98195
- Seattle Children’s Therapeutics, Seattle, WA 98101
| | - Kefan Song
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Alexander J. Yan
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Nataly Kacherovsky
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | | | - Suzie H. Pun
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| |
Collapse
|
26
|
Wei W, Chen ZN, Wang K. CRISPR/Cas9: A Powerful Strategy to Improve CAR-T Cell Persistence. Int J Mol Sci 2023; 24:12317. [PMID: 37569693 PMCID: PMC10418799 DOI: 10.3390/ijms241512317] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
As an emerging treatment strategy for malignant tumors, chimeric antigen receptor T (CAR-T) cell therapy has been widely used in clinical practice, and its efficacy has been markedly improved in the past decade. However, the clinical effect of CAR-T therapy is not so satisfying, especially in solid tumors. Even in hematologic malignancies, a proportion of patients eventually relapse after receiving CAR-T cell infusions, owing to the poor expansion and persistence of CAR-T cells. Recently, CRISPR/Cas9 technology has provided an effective approach to promoting the proliferation and persistence of CAR-T cells in the body. This technology has been utilized in CAR-T cells to generate a memory phenotype, reduce exhaustion, and screen new targets to improve the anti-tumor potential. In this review, we aim to describe the major causes limiting the persistence of CAR-T cells in patients and discuss the application of CRISPR/Cas9 in promoting CAR-T cell persistence and its anti-tumor function. Finally, we investigate clinical trials for CRISPR/Cas9-engineered CAR-T cells for the treatment of cancer.
Collapse
Affiliation(s)
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an 710032, China;
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an 710032, China;
| |
Collapse
|
27
|
Kalinina A, Persiyantseva N, Britanova O, Lupyr K, Shagina I, Khromykh L, Kazansky D. Unique features of the TCR repertoire of reactivated memory T cells in the experimental mouse tumor model. Comput Struct Biotechnol J 2023; 21:3196-3209. [PMID: 37333858 PMCID: PMC10275742 DOI: 10.1016/j.csbj.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cell engineering with T cell receptors (TCR) specific to tumor antigens has become a breakthrough towards personalized cancer adoptive cell immunotherapy. However, the search for therapeutic TCRs is often challenging, and effective strategies are strongly required for the identification and enrichment of tumor-specific T cells that express TCRs with superior functional characteristics. Using an experimental mouse tumor model, we studied sequential changes in TCR repertoire features of T cells involved in the primary and secondary immune responses to allogeneic tumor antigens. In-depth bioinformatics analysis of TCR repertoires showed differences in reactivated memory T cells compared to primarily activated effectors. After cognate antigen re-encounter, memory cells were enriched with clonotypes that express α-chain TCR with high potential cross-reactivity and enhanced strength of interaction with both MHC and docked peptides. Our findings suggest that functionally true memory T cells could be a better source of therapeutic TCRs for adoptive cell therapy. No marked changes were observed in the physicochemical characteristics of TCRβ in reactivated memory clonotypes, indicative of the dominant role of TCRα in the secondary allogeneic immune response. The results of this study could further contribute to the development of TCR-modified T cell products based on the phenomenon of TCR chain centricity.
Collapse
Affiliation(s)
- Anastasiia Kalinina
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478 Moscow, Russian Federation
| | - Nadezda Persiyantseva
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478 Moscow, Russian Federation
| | - Olga Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, 117997 Moscow, Russian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovityanova st.1, 17997 Moscow, Russian Federation
| | - Ksenia Lupyr
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoi boulevard 30c1, 121205 Moscow, Russian Federation
- Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova st.1,build. 1, 17997 Moscow, Russian Federation
| | - Irina Shagina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, 117997 Moscow, Russian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovityanova st.1, 17997 Moscow, Russian Federation
| | - Ludmila Khromykh
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478 Moscow, Russian Federation
| | - Dmitry Kazansky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478 Moscow, Russian Federation
| |
Collapse
|
28
|
Abstract
Recent advances in cancer immunotherapy - ranging from immune-checkpoint blockade therapy to adoptive cellular therapy and vaccines - have revolutionized cancer treatment paradigms, yet the variability in clinical responses to these agents has motivated intense interest in understanding how the T cell landscape evolves with respect to response to immune intervention. Over the past decade, the advent of multidimensional single-cell technologies has provided the unprecedented ability to dissect the constellation of cell states of lymphocytes within a tumour microenvironment. In particular, the rapidly expanding capacity to definitively link intratumoural phenotypes with the antigen specificity of T cells provided by T cell receptors (TCRs) has now made it possible to focus on investigating the properties of T cells with tumour-specific reactivity. Moreover, the assessment of TCR clonality has enabled a molecular approach to track the trajectories, clonal dynamics and phenotypic changes of antitumour T cells over the course of immunotherapeutic intervention. Here, we review the current knowledge on the cellular states and antigen specificities of antitumour T cells and examine how fine characterization of T cell dynamics in patients has provided meaningful insights into the mechanisms underlying effective cancer immunotherapy. We highlight those T cell subsets associated with productive T cell responses and discuss how diverse immunotherapies might leverage the pre-existing tumour-reactive T cell pool or instruct de novo generation of antitumour specificities. Future studies aimed at elucidating the factors associated with the elicitation of productive antitumour T cell immunity are anticipated to instruct the design of more efficacious treatment strategies.
Collapse
Affiliation(s)
- Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
29
|
Li N, Quan A, Li D, Pan J, Ren H, Hoeltzel G, de Val N, Ashworth D, Ni W, Zhou J, Mackay S, Hewitt SM, Cachau R, Ho M. The IgG4 hinge with CD28 transmembrane domain improves V HH-based CAR T cells targeting a membrane-distal epitope of GPC1 in pancreatic cancer. Nat Commun 2023; 14:1986. [PMID: 37031249 PMCID: PMC10082787 DOI: 10.1038/s41467-023-37616-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 03/23/2023] [Indexed: 04/10/2023] Open
Abstract
Heterogeneous antigen expression is a key barrier influencing the activity of chimeric antigen receptor (CAR) T cells in solid tumors. Here, we develop CAR T cells targeting glypican-1 (GPC1), an oncofetal antigen expressed in pancreatic cancer. We report the generation of dromedary camel VHH nanobody (D4)-based CAR T cells targeting GPC1 and the optimization of the hinge (H) and transmembrane domain (TM) to improve activity. We find that a structurally rigid IgG4H and CD28TM domain brings the two D4 fragments in proximity, driving CAR dimerization and leading to enhanced T-cell signaling and tumor regression in pancreatic cancer models with low antigen density in female mice. Furthermore, single-cell-based proteomic and transcriptomic analysis of D4-IgG4H-CD28TM CAR T cells reveals specific genes (e.g., HMGB1) associated with high T-cell polyfunctionality. This study demonstrates the potential of VHH-based CAR T for pancreatic cancer therapy and provides an engineering strategy for developing potent CAR T cells targeting membrane-distal epitopes.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alex Quan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jiajia Pan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hua Ren
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gerard Hoeltzel
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | | | - Weiming Ni
- IsoPlexis Corporation, Branford, CT, 06405, USA
| | - Jing Zhou
- IsoPlexis Corporation, Branford, CT, 06405, USA
| | - Sean Mackay
- IsoPlexis Corporation, Branford, CT, 06405, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Raul Cachau
- Integrated Data Science Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Ahmed H, Mahmud AR, Siddiquee MFR, Shahriar A, Biswas P, Shimul MEK, Ahmed SZ, Ema TI, Rahman N, Khan MA, Mizan MFR, Emran TB. Role of T cells in cancer immunotherapy: Opportunities and challenges. CANCER PATHOGENESIS AND THERAPY 2023; 1:116-126. [PMID: 38328405 PMCID: PMC10846312 DOI: 10.1016/j.cpt.2022.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 09/01/2023]
Abstract
Immunotherapies boosting the immune system's ability to target cancer cells are promising for the treatment of various tumor types, yet clinical responses differ among patients and cancers. Recently, there has been increasing interest in novel cancer immunotherapy practices aimed at triggering T cell-mediated anti-tumor responses. Antigen-directed cytotoxicity mediated by T lymphocytes has become a central focal point in the battle against cancer utilizing the immune system. The molecular and cellular mechanisms involved in the actions of T lymphocytes have directed new therapeutic approaches in cancer immunotherapy, including checkpoint blockade, adoptive and chimeric antigen receptor (CAR) T cell therapy, and cancer vaccinology. This review addresses all the strategies targeting tumor pathogenesis, including metabolic pathways, to evaluate the clinical significance of current and future immunotherapies for patients with cancer, which are further engaged in T cell activation, differentiation, and response against tumors.
Collapse
Affiliation(s)
- Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), 4/4B, Block A, Lalmatia, Dhaka, 1209, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | | | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh
| | - Md. Ebrahim Khalil Shimul
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh
| | - Shahlaa Zernaz Ahmed
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md. Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), 4/4B, Block A, Lalmatia, Dhaka, 1209, Bangladesh
| | | | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| |
Collapse
|
31
|
Bomb K, LeValley PJ, Woodward I, Cassel SE, Sutherland BP, Bhattacharjee A, Yun Z, Steen J, Kurdzo E, McCoskey J, Burris D, Levine K, Carbrello C, Lenhoff AM, Fromen CA, Kloxin AM. Cell therapy biomanufacturing: integrating biomaterial and flow-based membrane technologies for production of engineered T-cells. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201155. [PMID: 37600966 PMCID: PMC10437131 DOI: 10.1002/admt.202201155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 08/22/2023]
Abstract
Adoptive T-cell therapies (ATCTs) are increasingly important for the treatment of cancer, where patient immune cells are engineered to target and eradicate diseased cells. The biomanufacturing of ATCTs involves a series of time-intensive, lab-scale steps, including isolation, activation, genetic modification, and expansion of a patient's T-cells prior to achieving a final product. Innovative modular technologies are needed to produce cell therapies at improved scale and enhanced efficacy. In this work, well-defined, bioinspired soft materials were integrated within flow-based membrane devices for improving the activation and transduction of T cells. Hydrogel coated membranes (HCM) functionalized with cell-activating antibodies were produced as a tunable biomaterial for the activation of primary human T-cells. T-cell activation utilizing HCMs led to highly proliferative T-cells that expressed a memory phenotype. Further, transduction efficiency was improved by several fold over static conditions by using a tangential flow filtration (TFF) flow-cell, commonly used in the production of protein therapeutics, to transduce T-cells under flow. The combination of HCMs and TFF technology led to increased cell activation, proliferation, and transduction compared to current industrial biomanufacturing processes. The combined power of biomaterials with scalable flow-through transduction techniques provides future opportunities for improving the biomanufacturing of ATCTs.
Collapse
Affiliation(s)
- Kartik Bomb
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Paige J. LeValley
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Ian Woodward
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Samantha E. Cassel
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | | | | | - Zaining Yun
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Jonathan Steen
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - Emily Kurdzo
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - Jacob McCoskey
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - David Burris
- Mechanical Engineering, University of Delaware, Newark, DE
| | - Kara Levine
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | | | - Abraham M. Lenhoff
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | | | - April M. Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
- Material Science and Engineering, University of Delaware, Newark, DE
| |
Collapse
|
32
|
Baulu E, Gardet C, Chuvin N, Depil S. TCR-engineered T cell therapy in solid tumors: State of the art and perspectives. SCIENCE ADVANCES 2023; 9:eadf3700. [PMID: 36791198 PMCID: PMC9931212 DOI: 10.1126/sciadv.adf3700] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 05/25/2023]
Abstract
T cell engineering has changed the landscape of cancer immunotherapy. Chimeric antigen receptor T cells have demonstrated a remarkable efficacy in the treatment of B cell malignancies in hematology. However, their clinical impact on solid tumors has been modest so far. T cells expressing an engineered T cell receptor (TCR-T cells) represent a promising therapeutic alternative. The target repertoire is not limited to membrane proteins, and intrinsic features of TCRs such as high antigen sensitivity and near-to-physiological signaling may improve tumor cell detection and killing while improving T cell persistence. In this review, we present the clinical results obtained with TCR-T cells targeting different tumor antigen families. We detail the different methods that have been developed to identify and optimize a TCR candidate. We also discuss the challenges of TCR-T cell therapies, including toxicity assessment and resistance mechanisms. Last, we share some perspectives and highlight future directions in the field.
Collapse
Affiliation(s)
- Estelle Baulu
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
- ErVaccine Technologies, Lyon, France
| | - Célia Gardet
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
- ErVaccine Technologies, Lyon, France
- Centre Léon Bérard, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
33
|
Shen Y, Liu G, Zhang Q, Tian X, Ouyang L, Zhang L. Construction of CAR-T cells targeting TM4SF1 and its anti-tumor capacity in ovarian cancer. Immunol Lett 2023; 255:1-9. [PMID: 36739093 DOI: 10.1016/j.imlet.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy with a 5-year survival rate of 49.1% on average. In clinical practice, cytoreduction and chemotherapy remain the conventional treatment for advanced OC. However, the overall prognosis remains poor, which urges oncologists to develop new treatments. Chimeric antigen receptor (CAR)-T therapy as a branch of immunotherapy had gained a success in treating hematological malignancies. TM4SF1, a potential biomarker in many tumors, was validated highly expressed in ovarian cancer. Here we constructed a 3rd generation CAR-T agent targeting TM4SF1 to treat ovarian cancer. CAR-T cells showed a specific cytotoxicity against TM4SF1 positive tumor cell lines in vitro and repressed SKOV3-derived tumor growth in vivo. This is the first time reporting a CAR-T therapy targeting TM4SF1 in ovarian cancer. Our results suggested that TM4SF1 could be a very promising target in curing OC and showed the possibility of TM4SF1-based immunotherapy.
Collapse
Affiliation(s)
- Yijie Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guodi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Yihao Biological Technology Co., Ltd., Shanghai, 200231, China
| | - Qian Zhang
- Shanghai Yihao Biological Technology Co., Ltd., Shanghai, 200231, China
| | - Xiaoli Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Yihao Biological Technology Co., Ltd., Shanghai, 200231, China.
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
34
|
Pathogen-specific T Cells: Targeting Old Enemies and New Invaders in Transplantation and Beyond. Hemasphere 2023; 7:e809. [PMID: 36698615 PMCID: PMC9831191 DOI: 10.1097/hs9.0000000000000809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 01/27/2023] Open
Abstract
Adoptive immunotherapy with virus-specific cytotoxic T cells (VSTs) has evolved over the last three decades as a strategy to rapidly restore virus-specific immunity to prevent or treat viral diseases after solid organ or allogeneic hematopoietic cell-transplantation (allo-HCT). Since the early proof-of-principle studies demonstrating that seropositive donor-derived T cells, specific for the commonest pathogens post transplantation, namely cytomegalovirus or Epstein-Barr virus (EBV) and generated by time- and labor-intensive protocols, could effectively control viral infections, major breakthroughs have then streamlined the manufacturing process of pathogen-specific T cells (pSTs), broadened the breadth of target recognition to even include novel emerging pathogens and enabled off-the-shelf administration or pathogen-naive donor pST production. We herein review the journey of evolution of adoptive immunotherapy with nonengineered, natural pSTs against infections and virus-associated malignancies in the transplant setting and briefly touch upon recent achievements using pSTs outside this context.
Collapse
|
35
|
Respiratory mucosal vaccination of peptide-poloxamine-DNA nanoparticles provides complete protection against lethal SARS-CoV-2 challenge. Biomaterials 2023; 292:121907. [PMID: 36436305 PMCID: PMC9673044 DOI: 10.1016/j.biomaterials.2022.121907] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
The ongoing SARS-CoV-2 pandemic represents a brutal reminder of the continual threat of mucosal infectious diseases. Mucosal immunity may provide robust protection at the predominant sites of SARS-CoV-2 infection. However, it remains unclear whether respiratory mucosal administration of DNA vaccines could confer protective immune responses against SARS-CoV-2 challenge due to insurmountable barriers posed by the airway. Here, we applied self-assembled peptide-poloxamine nanoparticles with mucus-penetrating properties for pulmonary inoculation of a COVID-19 DNA vaccine (pSpike/PP-sNp). The pSpike/PP-sNp not only displays superior gene transfection and favorable biocompatibility in the mouse airway, but also promotes a tripartite immunity consisting of systemic, cellular, and mucosal immune responses that are characterized by mucosal IgA secretion, high levels of neutralizing antibodies, and resident memory phenotype T-cell responses in the lungs of mice. Most importantly, immunization with pSpike/PP-sNp completely eliminates SARS-CoV-2 infection in both upper and lower respiratory tracts and enables 100% survival rate of mice following lethal SARS-CoV-2 challenge. Our findings indicate PP-sNp is a promising platform in mediating DNA vaccines to elicit all-around mucosal immunity against SARS-CoV-2.
Collapse
|
36
|
Rial Saborido J, Völkl S, Aigner M, Mackensen A, Mougiakakos D. Role of CAR T Cell Metabolism for Therapeutic Efficacy. Cancers (Basel) 2022; 14:5442. [PMID: 36358860 PMCID: PMC9658570 DOI: 10.3390/cancers14215442] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 08/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells hold enormous potential. However, a substantial proportion of patients receiving CAR T cells will not reach long-term full remission. One of the causes lies in their premature exhaustion, which also includes a metabolic anergy of adoptively transferred CAR T cells. T cell phenotypes that have been shown to be particularly well suited for CAR T cell therapy display certain metabolic characteristics; whereas T-stem cell memory (TSCM) cells, characterized by self-renewal and persistence, preferentially meet their energetic demands through oxidative phosphorylation (OXPHOS), effector T cells (TEFF) rely on glycolysis to support their cytotoxic function. Various parameters of CAR T cell design and manufacture co-determine the metabolic profile of the final cell product. A co-stimulatory 4-1BB domain promotes OXPHOS and formation of central memory T cells (TCM), while T cells expressing CARs with CD28 domains predominantly utilize aerobic glycolysis and differentiate into effector memory T cells (TEM). Therefore, modification of CAR co-stimulation represents one of the many strategies currently being investigated for improving CAR T cells' metabolic fitness and survivability within a hostile tumor microenvironment (TME). In this review, we will focus on the role of CAR T cell metabolism in therapeutic efficacy together with potential targets of intervention.
Collapse
Affiliation(s)
- Judit Rial Saborido
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Michael Aigner
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität and University Hospital Erlangen, 91054 Erlangen, Germany
- Medical Center, Department of Hematology and Oncology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
37
|
Derippe T, Fouliard S, Marchiq I, Dupouy S, Almena-Carrasco M, Geronimi J, Declèves X, Chenel M, Mager DE. Mechanistic Modeling of the Interplay Between Host Immune System, IL-7 and UCART19 Allogeneic CAR-T Cells in Adult B-cell Acute Lymphoblastic Leukemia. CANCER RESEARCH COMMUNICATIONS 2022; 2:1532-1544. [PMID: 36970053 PMCID: PMC10036133 DOI: 10.1158/2767-9764.crc-22-0176] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 06/18/2023]
Abstract
UNLABELLED Chimeric antigen receptor (CAR)-T cell therapies have shown tremendous results against various hematologic cancers. Prior to cell infusion, a host preconditioning regimen is required to achieve lymphodepletion and improve CAR-T cell pharmacokinetic exposure, leading to greater chances of therapeutic success. To better understand and quantify the impact of the preconditioning regimen, we built a population-based mechanistic pharmacokinetic-pharmacodynamic model describing the complex interplay between lymphodepletion, host immune system, homeostatic cytokines, and pharmacokinetics of UCART19, an allogeneic product developed against CD19+ B cells. Data were collected from a phase I clinical trial in adult relapsed/refractory B-cell acute lymphoblastic leukemia and revealed three different UCART19 temporal patterns: (i) expansion and persistence, (ii) transient expansion with subsequent rapid decline, and (iii) absence of observed expansion. On the basis of translational assumptions, the final model was able to capture this variability through the incorporation of IL-7 kinetics, which are thought to be increased owing to lymphodepletion, and through an elimination of UCART19 by host T cells, which is specific to the allogeneic context. Simulations from the final model recapitulated UCART19 expansion rates in the clinical trial, confirmed the need for alemtuzumab to observe UCART19 expansion (along with fludarabine cyclophosphamide), quantified the importance of allogeneic elimination, and suggested a high impact of multipotent memory T-cell subpopulations on UCART19 expansion and persistence. In addition to supporting the role of host cytokines and lymphocytes in CAR-T cell therapy, such a model could help optimizing the preconditioning regimens in future clinical trials. SIGNIFICANCE A mathematical mechanistic pharmacokinetic/pharmacodynamic model supports and captures quantitatively the beneficial impact of lymphodepleting patients before the infusion of an allogeneic CAR-T cell product. Mediation through IL-7 increase and host T lymphocytes decrease is underlined, and the model can be further used to optimize CAR-T cell therapies lymphodepletion regimen.
Collapse
Affiliation(s)
- Thibaud Derippe
- Institut de Recherches Internationales Servier, Suresnes, France
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Sylvain Fouliard
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Ibtissam Marchiq
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Sandra Dupouy
- Institut de Recherches Internationales Servier, Suresnes, France
| | | | - Julia Geronimi
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Xavier Declèves
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Marylore Chenel
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Donald E. Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
38
|
Chen Z, Wu Y, Yao Z, Su J, Wang Z, Xia H, Liu S. 2D Copper(II) Metalated Metal-Organic Framework Nanocomplexes for Dual-enhanced Photodynamic Therapy and Amplified Antitumor Immunity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44199-44210. [PMID: 36165392 DOI: 10.1021/acsami.2c12990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The immunosuppressive tumor microenvironment (TME) poses tremendous challenges for efficient immunotherapy. Smart nanomedicine is designed to modulate immunosuppressive TMEs based on the combination of dual-enhanced photodynamic therapy (PDT) triggered immunogenic cell death (ICD) and relieved hypoxic microenvironment. Copper(II) metalated metal-organic framework nanosheets (Cu-TCPP(Al)) are the foundation of the nanomedicine, and platinum nanoparticles (Pt NPs) and folate are subsequently introduced onto the Cu-TCPP(Al) surface (Cu-TCPP(Al)-Pt-FA). Upon targeted cellular uptake, intracellular GSH concentration is decreased because of the specific adsorption between GSH and CuII; meanwhile, Pt NPs possess catalase-like activity, which can continuously depose intracellular H2O2 to O2 to alleviate the hypoxic TME. The two factors synergistically improve the ROS concentration for dual-enhanced PDT. The highly toxic ROS can correspondingly cause amplified oxidative stress and then trigger the ICD. The ICD process stimulates antigen-presenting cells and activates the systemic antitumor immune response. Furthermore, the relieved hypoxic TME increases the infiltration of cytotoxic T lymphocytes (CTLs) at the tumor site, which can promote the transformation of the immunosuppressive M2 macrophage to immunoactive M1 phenotype. The easily prepared yet versatile nanomedicine possesses an excellent antitumor effect with the cooperation of dual-enhanced PDT and immunotherapy.
Collapse
Affiliation(s)
- Zixuan Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhipeng Yao
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
| | - Juan Su
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhi Wang
- Wuxi Institute of Inspection, Testing and Certification, Wuxi 214125, China
| | - Hongping Xia
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
39
|
Füchsl F, Krackhardt AM. Paving the Way to Solid Tumors: Challenges and Strategies for Adoptively Transferred Transgenic T Cells in the Tumor Microenvironment. Cancers (Basel) 2022; 14:4192. [PMID: 36077730 PMCID: PMC9454442 DOI: 10.3390/cancers14174192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 01/10/2023] Open
Abstract
T cells are important players in the antitumor immune response. Over the past few years, the adoptive transfer of genetically modified, autologous T cells-specifically redirected toward the tumor by expressing either a T cell receptor (TCR) or a chimeric antigen receptor (CAR)-has been adopted for use in the clinic. At the moment, the therapeutic application of CD19- and, increasingly, BCMA-targeting-engineered CAR-T cells have been approved and have yielded partly impressive results in hematologic malignancies. However, employing transgenic T cells for the treatment of solid tumors remains more troublesome, and numerous hurdles within the highly immunosuppressive tumor microenvironment (TME) need to be overcome to achieve tumor control. In this review, we focused on the challenges that these therapies must face on three different levels: infiltrating the tumor, exerting efficient antitumor activity, and overcoming T cell exhaustion and dysfunction. We aimed to discuss different options to pave the way for potent transgenic T cell-mediated tumor rejection by engineering either the TME or the transgenic T cell itself, which responds to the environment.
Collapse
Affiliation(s)
- Franziska Füchsl
- Klinik und Poliklinik für Innere Medizin III, School of Medicine, Technische Universität München, Klinikum rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
| | - Angela M. Krackhardt
- Klinik und Poliklinik für Innere Medizin III, School of Medicine, Technische Universität München, Klinikum rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
- German Cancer Consortium of Translational Cancer Research (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
40
|
Mews EA, Beckmann P, Patchava M, Wang Y, Largaespada DA, Wagner CR. Multivalent, Bispecific αB7-H3-αCD3 Chemically Self-Assembled Nanorings Direct Potent T Cell Responses against Medulloblastoma. ACS NANO 2022; 16:12185-12201. [PMID: 35876221 PMCID: PMC9885520 DOI: 10.1021/acsnano.2c02850] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Few therapeutic options have been made available for treating central nervous system tumors, especially upon recurrence. Recurrent medulloblastoma is uniformly lethal with no approved therapies. Recent preclinical studies have shown promising results for eradicating various solid tumors by targeting the overexpressed immune checkpoint molecule, B7-H3. However, due to several therapy-related toxicities and reports of tumor escape, the full potential of targeting this pan-cancer antigen has yet to be realized. Here, we designed and characterized bispecific chemically self-assembling nanorings (CSANs) that target the T cell receptor, CD3ε, and tumor associated antigen, B7-H3, derived from the humanized 8H9 single chain variable fragment. We show that the αB7-H3-αCD3 CSANs increase T cell infiltration and facilitate selective cytotoxicity of B7-H3+ medulloblastoma spheroids and that activity is independent of target cell MHC class I expression. Importantly, nonspecific T cell activation against the ONS 2303 medulloblastoma cell line can be reduced by tuning the valency of the αCD3 targeted monomer in the oligomerized CSAN. Intraperitoneal injections of αB7-H3-αCD3 bispecific CSANs were found to effectively cross the blood-tumor barrier into the brain and elicit significant antitumor T cell activity intracranially as well as systemically in an orthotopic medulloblastoma model. Moreover, following treatment with αB7-H3-αCD3 CSANs, intratumoral T cells were found to primarily have a central memory phenotype that displayed significant levels of characteristic activation markers. Collectively, these results demonstrate the ability of our multivalent, bispecific CSANs to direct potent antitumor T cell responses and indicate its potential utility as an alternative or complementary therapy for immune cell targeting of B7-H3+ brain tumors.
Collapse
Affiliation(s)
- Ellie A. Mews
- Department of Medicinal Chemistry, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6 St SE, Minneapolis, MN 55455 United States
| | - Pauline Beckmann
- Department of Pediatrics, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Malcolm Moos Tower, 515 Delaware St SE, Minneapolis, MN 55455 United States
| | - Mahathi Patchava
- Department of Pediatrics, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Malcolm Moos Tower, 515 Delaware St SE, Minneapolis, MN 55455 United States
| | - Yiao Wang
- Department of Medicinal Chemistry, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6 St SE, Minneapolis, MN 55455 United States
| | - David A. Largaespada
- Department of Pediatrics, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Malcolm Moos Tower, 515 Delaware St SE, Minneapolis, MN 55455 United States
| | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6 St SE, Minneapolis, MN 55455 United States
- Corresponding Author: Carston R Wagner: Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455 United States;
| |
Collapse
|
41
|
Yi L, Yang L. Stem-like T cells and niches: Implications in human health and disease. Front Immunol 2022; 13:907172. [PMID: 36059484 PMCID: PMC9428355 DOI: 10.3389/fimmu.2022.907172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, accumulating evidence has elucidated the important role of T cells with stem-like characteristics in long-term maintenance of T cell responses and better patient outcomes after immunotherapy. The fate of TSL cells has been correlated with many physiological and pathological human processes. In this review, we described present advances demonstrating that stem-like T (TSL) cells are central players in human health and disease. We interpreted the evolutionary characteristics, mechanism and functions of TSL cells. Moreover, we discuss the import role of distinct niches and how they affect the stemness of TSL cells. Furthermore, we also outlined currently available strategies to generate TSL cells and associated affecting factors. Moreover, we summarized implication of TSL cells in therapies in two areas: stemness enhancement for vaccines, ICB, and adoptive T cell therapies, and stemness disruption for autoimmune disorders.
Collapse
|
42
|
Miwa H, Dimatteo R, de Rutte J, Ghosh R, Di Carlo D. Single-cell sorting based on secreted products for functionally defined cell therapies. MICROSYSTEMS & NANOENGINEERING 2022; 8:84. [PMID: 35874174 PMCID: PMC9303846 DOI: 10.1038/s41378-022-00422-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 05/13/2023]
Abstract
Cell therapies have emerged as a promising new class of "living" therapeutics over the last decade and have been particularly successful for treating hematological malignancies. Increasingly, cellular therapeutics are being developed with the aim of treating almost any disease, from solid tumors and autoimmune disorders to fibrosis, neurodegenerative disorders and even aging itself. However, their therapeutic potential has remained limited due to the fundamental differences in how molecular and cellular therapies function. While the structure of a molecular therapeutic is directly linked to biological function, cells with the same genetic blueprint can have vastly different functional properties (e.g., secretion, proliferation, cell killing, migration). Although there exists a vast array of analytical and preparative separation approaches for molecules, the functional differences among cells are exacerbated by a lack of functional potency-based sorting approaches. In this context, we describe the need for next-generation single-cell profiling microtechnologies that allow the direct evaluation and sorting of single cells based on functional properties, with a focus on secreted molecules, which are critical for the in vivo efficacy of current cell therapies. We first define three critical processes for single-cell secretion-based profiling technology: (1) partitioning individual cells into uniform compartments; (2) accumulating secretions and labeling via reporter molecules; and (3) measuring the signal associated with the reporter and, if sorting, triggering a sorting event based on these reporter signals. We summarize recent academic and commercial technologies for functional single-cell analysis in addition to sorting and industrial applications of these technologies. These approaches fall into three categories: microchamber, microfluidic droplet, and lab-on-a-particle technologies. Finally, we outline a number of unmet needs in terms of the discovery, design and manufacturing of cellular therapeutics and how the next generation of single-cell functional screening technologies could allow the realization of robust cellular therapeutics for all patients.
Collapse
Affiliation(s)
- Hiromi Miwa
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Joseph de Rutte
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- Partillion Bioscience, Los Angeles, CA 90095 USA
| | - Rajesh Ghosh
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- Department of Mechanical and Aerospace Engineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
43
|
Schroeder BA, Jess J, Sankaran H, Shah NN. Clinical trials for chimeric antigen receptor T-cell therapy: lessons learned and future directions. Curr Opin Hematol 2022; 29:225-232. [PMID: 35787551 PMCID: PMC9354650 DOI: 10.1097/moh.0000000000000723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the status and utilization of chimeric antigen receptor T-cell (CAR-T) therapy based on the most recent clinical trials in patients with leukemia and lymphoma. Additionally, this review will highlight limitations in current strategies, discuss efforts in toxicity mitigation, and outline future directions for investigation. RECENT FINDINGS CD19 targeted CAR-T-cell therapy (CD19-CAR) is highly effective in patients with relapsed/refractory (r/r) B-cell hematologic malignancies. However, multiple challenges have arisen, particularly life-threatening adverse events, such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Despite these challenges, recent CD19-CAR trials, including two randomized studies, have demonstrated both impressive initial results along with durable responses. Combined with results emerging from 'real-world' experience, the efficacy of CAR-T-cells is high, propelling CAR-T-cells studies targeting alternate B-cell antigens [e.g. CD20, CD22 and CD269 (BCMA)] and other targets for hematologic malignancies, along with solid and CNS tumors. SUMMARY Given the benefit for CD19-CAR, determining the appropriate place in utilization for both an individual patient's treatment course and more broadly in the generalized treatment paradigm is critically needed. We discuss the most recent trials exploring this topic and future directions in the field.
Collapse
Affiliation(s)
- Brett A Schroeder
- National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jennifer Jess
- Pediatric Oncology Branch, Center for Cancer Research (CCR)
| | - Hari Sankaran
- Biometric Research Program, Division of Cancer Treatment and Diagnosis
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR)
| |
Collapse
|
44
|
Urueña C, Lasso P, Bernal-Estevez D, Rubio D, Salazar AJ, Olaya M, Barreto A, Tawil M, Torregrosa L, Fiorentino S. The breast cancer immune microenvironment is modified by neoadjuvant chemotherapy. Sci Rep 2022; 12:7981. [PMID: 35562400 PMCID: PMC9106657 DOI: 10.1038/s41598-022-12108-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
Neoadjuvant chemotherapy (NAT) in breast cancer (BC) has been used to reduce tumor burden prior to surgery. However, the impact on prognosis depends on the establishment of Pathological Complete Response (pCR), which is influenced by tumor-infiltrating lymphocyte levels and the activation of the antitumor immune response. Nonetheless, NAT can affect immune infiltration and the quality of the response. Here, we showed that NAT induces dynamic changes in the tumor microenvironment (TME). After NAT, an increase of regulatory T cells and a decrease of CD8+ T cells was found in tumor, correlated with the presence of metastatic cells in lymph nodes. In addition, an increase of polymorphonuclear myeloid-derived suppressor like cells was found in luminal patients post-NAT. pCR patients showed a balance between the immune populations, while non-pCR patients presented an inverse relationship in the frequency of CD68+ versus CD3+, CD8+, and CD20+ cells. Moreover, activated T cells were found in peripheral blood, as well as an increase in T cell clonality with a lower diversity post-NAT. Overall, these results shown that NAT induces an activation of immune response, however, a balance in the TME seems to be related to a better antigenic presentation and therefore a better response to treatment.
Collapse
Affiliation(s)
- Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia.
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia
| | - David Bernal-Estevez
- Grupo de Investigación en Inmunología y Oncología Clínica, Fundación Salud de los Andes, Bogotá, Colombia
| | - Diego Rubio
- Departamento de Patología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Ana Janeth Salazar
- Departamento de Patología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Mercedes Olaya
- Departamento de Patología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia
| | - Mauricio Tawil
- Departamento de Cirugía y Especialidades, Hospital Universitario San Ignacio, Centro Javeriano de Oncología, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Lilian Torregrosa
- Departamento de Cirugía y Especialidades, Hospital Universitario San Ignacio, Centro Javeriano de Oncología, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia.
| |
Collapse
|
45
|
López-Cantillo G, Urueña C, Camacho BA, Ramírez-Segura C. CAR-T Cell Performance: How to Improve Their Persistence? Front Immunol 2022; 13:878209. [PMID: 35572525 PMCID: PMC9097681 DOI: 10.3389/fimmu.2022.878209] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 01/07/2023] Open
Abstract
Adoptive cell therapy with T cells reprogrammed to express chimeric antigen receptors (CAR-T cells) has been highly successful in patients with hematological neoplasms. However, its therapeutic benefits have been limited in solid tumor cases. Even those patients who respond to this immunotherapy remain at risk of relapse due to the short-term persistence or non-expansion of CAR-T cells; moreover, the hostile tumor microenvironment (TME) leads to the dysfunction of these cells after reinfusion. Some research has shown that, in adoptive T-cell therapies, the presence of less differentiated T-cell subsets within the infusion product is associated with better clinical outcomes. Naive and memory T cells persist longer and exhibit greater antitumor activity than effector T cells. Therefore, new methods are being studied to overcome the limitations of this therapy to generate CAR-T cells with these ideal phenotypes. In this paper, we review the characteristics of T-cell subsets and their implications in the clinical outcomes of adoptive therapy with CAR-T cells. In addition, we describe some strategies developed to overcome the reduced persistence of CAR T-cells and alternatives to improve this therapy by increasing the expansion ability and longevity of modified T cells. These methods include cell culture optimization, incorporating homeostatic cytokines during the expansion phase of manufacturing, modulation of CAR-T cell metabolism, manipulating signaling pathways involved in T-cell differentiation, and strategies related to CAR construct designs.
Collapse
Affiliation(s)
- Gina López-Cantillo
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Cesar Ramírez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
- Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| |
Collapse
|
46
|
Ferrer G, Álvarez-Errico D, Esteller M. Biological and Molecular Factors Predicting Response to Adoptive Cell Therapies in Cancer. J Natl Cancer Inst 2022; 114:930-939. [PMID: 35438170 PMCID: PMC9275759 DOI: 10.1093/jnci/djac088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Adoptive cell therapy (ACT) constitutes a major breakthrough in cancer management that has expanded in the past years due to impressive results showing durable and even curative responses for some patients with hematological malignancies. ACT leverages antigen specificity and cytotoxic mechanisms of the immune system, particularly relying on the patient’s T lymphocytes to target and eliminate malignant cells. This personalized therapeutic approach exemplifies the success of the joint effort of basic, translational, and clinical researchers that has turned the patient’s immune system into a great ally in the search for a cancer cure. ACTs are constantly improving to reach a maximum beneficial clinical response. Despite being very promising therapeutic options for certain types of cancers, mainly melanoma and hematological malignancies, these individualized treatments still present several shortcomings, including elevated costs, technical challenges, management of adverse side effects, and a limited population of responder patients. Thus, it is crucial to discover and develop reliable and robust biomarkers to specifically and sensitively pinpoint the patients that will benefit the most from ACT as well as those at higher risk of developing potentially serious toxicities. Although unique readouts of infused cell therapy success have not yet been identified, certain characteristics from the adoptive cells, the tumor, and/or the tumor microenvironment have been recognized to predict patients’ outcome on ACT. Here, we comment on the importance of biomarkers to predict ACT chances of success to maximize efficacy of treatments and increase patients’ survival.
Collapse
Affiliation(s)
- Gerardo Ferrer
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Catalonia, Spain.,Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Madrid, Spain
| | | | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| |
Collapse
|
47
|
Knörck A, Schäfer G, Alansary D, Richter J, Thurner L, Hoth M, Schwarz EC. Cytotoxic Efficiency of Human CD8+ T Cell Memory Subtypes. Front Immunol 2022; 13:838484. [PMID: 35493468 PMCID: PMC9043813 DOI: 10.3389/fimmu.2022.838484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
Immunological memory is important to protect humans against recurring diseases. Memory CD8+ T cells are required for quick expansion into effector cells but also provide immediate cytotoxicity against their targets. Whereas many functions of the two main cytotoxic subtypes, effector memory CD8+ T cells (TEM) and central memory CD8+ T cells (TCM), are well defined, single TEM and TCM cell cytotoxicity has not been quantified. To quantify cytotoxic efficiency of TEM and TCM, we developed a FRET-based single cell fluorescent assay with NALM6 target cells which allows analysis of target cell apoptosis, secondary necrosis following apoptosis, and primary necrosis after TEM- or TCM-target cell contact. Both, single cell and population cytotoxicity assays reveal a higher cytotoxic efficiency of TEM compared to TCM, as quantified by target cell apoptosis and secondary necrosis. Perforin, granzyme B, FasL, but not TRAIL expression are higher in TEM compared to TCM. Higher perforin levels (likely in combination with higher granzyme levels) mediate higher cytotoxic efficiency of TEM compared to TCM. Both, TEM and TCM need the same time to find their targets, however contact time between CTL and target, time to induce apoptosis, and time to induce secondary necrosis are all shorter for TEM. In addition, immune synapse formation in TEM appears to be slightly more efficient than in TCM. Defining and quantifying single TEM and TCM cytotoxicity and the respective mechanisms is important to optimize future subset-based immune therapies.
Collapse
Affiliation(s)
- Arne Knörck
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Gertrud Schäfer
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Dalia Alansary
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Josephine Richter
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Lorenz Thurner
- Internal Medicine I, School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Eva C. Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
- *Correspondence: Eva C. Schwarz,
| |
Collapse
|
48
|
Canine memory T-cell subsets in health and disease. Vet Immunol Immunopathol 2022; 246:110401. [PMID: 35255296 DOI: 10.1016/j.vetimm.2022.110401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
A more complete understanding of canine T-lymphocyte immunity is necessary for improving diagnostic and therapeutic approaches to canine diseases, developing cell-based canine immunotherapeutics, and evaluating dogs as large mammal models for comparative immunology research. The aim of this study was to utilize CD45RA (indicating antigen inexperience) and CD62L (indicating lymph node homing capability), to quantify canine memory T-cell subsets in healthy dogs and dogs with various diseases. Peripheral blood mononuclear cells (PBMCs) were prospectively collected from dogs belonging to one of four groups:dermatologic inflammation (n = 9), solid tumors (n = 9), lymphoma (n = 9), and age-/weight-matched healthy control dogs (n = 15). Dogs receiving prednisone or any other immunomodulating medication within two weeks were excluded. Flow cytometry was performed and T-cell subsets were defined as CD4+ or CD8+, and naïve (TN), central memory (CM), effector memory (EM), or terminal effector memory re-expressing CD45RA (TEMRA). T-cell subset proportions were compared between each disease group and their healthy age-/weight-matched controls using a Mann-Whitney test. Significantly increased %CD8+ TN (P = 0.036) and decreased %CD8+ TEMRA (P = 0.045) were detected in dogs with dermatologic inflammation compared to healthy controls. Furthermore, %CD4+ TN positively correlated with Canine Atopic Dermatitis Extent and Severity Index (CADESI) score within the inflammation group (ρ = 0.817, P = 0.011). No significant differences between either cancer group and their healthy controls were detected. Taken together, these data indicate that dermatologic inflammation can alter proportions of peripheral blood T-cell subsets, possibly due to the migration of antigen-specific T-cells into tissues. Furthermore, these findings support the utility of CD45RA and CD62L in characterizing clinical canine immune responses.
Collapse
|
49
|
Glienke W, Dragon AC, Zimmermann K, Martyniszyn-Eiben A, Mertens M, Abken H, Rossig C, Altvater B, Aleksandrova K, Arseniev L, Kloth C, Stamopoulou A, Moritz T, Lode HN, Siebert N, Blasczyk R, Goudeva L, Schambach A, Köhl U, Eiz-Vesper B, Esser R. GMP-Compliant Manufacturing of TRUCKs: CAR T Cells targeting GD2 and Releasing Inducible IL-18. Front Immunol 2022; 13:839783. [PMID: 35401506 PMCID: PMC8988144 DOI: 10.3389/fimmu.2022.839783] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T cells can be highly effective in the treatment of hematological malignancies, but mostly fail in the treatment of solid tumors. Thus, approaches using 4th advanced CAR T cells secreting immunomodulatory cytokines upon CAR signaling, known as TRUCKs (“T cells redirected for universal cytokine-mediated killing”), are currently under investigation. Based on our previous development and validation of automated and closed processing for GMP-compliant manufacturing of CAR T cells, we here present the proof of feasibility for translation of this method to TRUCKs. We generated IL-18-secreting TRUCKs targeting the tumor antigen GD2 using the CliniMACS Prodigy® system using a recently described “all-in-one” lentiviral vector combining constitutive anti-GD2 CAR expression and inducible IL-18. Starting with 0.84 x 108 and 0.91 x 108 T cells after enrichment of CD4+ and CD8+ we reached 68.3-fold and 71.4-fold T cell expansion rates, respectively, in two independent runs. Transduction efficiencies of 77.7% and 55.1% was obtained, and yields of 4.5 x 109 and 3.6 x 109 engineered T cells from the two donors, respectively, within 12 days. Preclinical characterization demonstrated antigen-specific GD2-CAR mediated activation after co-cultivation with GD2-expressing target cells. The functional capacities of the clinical-scale manufactured TRUCKs were similar to TRUCKs generated in laboratory-scale and were not impeded by cryopreservation. IL-18 TRUCKs were activated in an antigen-specific manner by co-cultivation with GD2-expressing target cells indicated by an increased expression of activation markers (e.g. CD25, CD69) on both CD4+ and CD8+ T cells and an enhanced release of pro-inflammatory cytokines and cytolytic mediators (e.g. IL-2, granzyme B, IFN-γ, perforin, TNF-α). Manufactured TRUCKs showed a specific cytotoxicity towards GD2-expressing target cells indicated by lactate dehydrogenase (LDH) release, a decrease of target cell numbers, microscopic detection of cytotoxic clusters and detachment of target cells in real-time impedance measurements (xCELLigence). Following antigen-specific CAR activation of TRUCKs, CAR-triggered release IL-18 was induced, and the cytokine was biologically active, as demonstrated in migration assays revealing specific attraction of monocytes and NK cells by supernatants of TRUCKs co-cultured with GD2-expressing target cells. In conclusion, GMP-compliant manufacturing of TRUCKs is feasible and delivers high quality T cell products.
Collapse
Affiliation(s)
- Wolfgang Glienke
- ATMP-GMP Development Unit, Institute of Cellular Therapeutics, Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
- *Correspondence: Wolfgang Glienke, ; Axel Schambach,
| | - Anna Christina Dragon
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Katharina Zimmermann
- Division of Hematology/Oncology, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Alexandra Martyniszyn-Eiben
- ATMP-GMP Development Unit, Institute of Cellular Therapeutics, Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| | - Mira Mertens
- ATMP-GMP Development Unit, Institute of Cellular Therapeutics, Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Div Genetic Immunotherapy, Regensburg, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, Muenster, Germany
| | - Krasimira Aleksandrova
- Cellular Therapy Center, Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Lubomir Arseniev
- Cellular Therapy Center, Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Christina Kloth
- Division of Hematology/Oncology, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Andriana Stamopoulou
- Division of Hematology/Oncology, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Thomas Moritz
- Division of Hematology/Oncology, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Holger N. Lode
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Lilia Goudeva
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Division of Hematology/Oncology, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Wolfgang Glienke, ; Axel Schambach,
| | - Ulrike Köhl
- ATMP-GMP Development Unit, Institute of Cellular Therapeutics, Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
- Cellular Therapy Center, Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Ruth Esser
- ATMP-GMP Development Unit, Institute of Cellular Therapeutics, Integrated Research and Treatment Center for Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
50
|
Antitumor activity of T cells secreting αCD133-αCD3 bispecific T-cell engager against cholangiocarcinoma. PLoS One 2022; 17:e0265773. [PMID: 35312724 PMCID: PMC8936442 DOI: 10.1371/journal.pone.0265773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a lethal cancer of bile duct epithelial cells with a high mortality rate and limited therapeutic options. An effective treatment is, therefore, urgently needed to improve treatment outcomes for these patients. To develop a new therapeutic option, we engineered T cells secreting αCD133-αCD3 bispecific T-cell engager and evaluated their antitumor effects against CD133-expressing CCA cells. The cDNA encoding αCD133-αCD3 bispecific T-cell engager (αCD133-αCD3-ENG) was cloned into pCDH lentiviral construct and its expression was tested in Lenti-X 293T cells. T cells from healthy donors were then transduced with engineered lentiviruses to create T cells secreting αCD133-αCD3 engager to evaluate their antitumor activities. The average transduction efficiency into T cells was approximately 60.03±21.65%. In the co-culture system containing T cells secreting αCD133-αCD3 engager (as effector cells) and mWasabi-luciferase-expressing CCA cells (KKU-100 and KKU-213A; as target cells), the effector T cells exhibited significantly higher cytolytic activities against the target CCA cells (49.0±9.76% and 64.10±13.18%, respectively) than those observed against the untransduced T cells (10.97±10.65%; p = 0.0103 and 9.80±11.05%; p = 0.0054) at an effector-to-target ratio of 5:1. In addition, the secreted αCD133-αCD3 engager significantly redirected both transduced T cells and bystander T cells to kill the target CCA cells (up to 73.20±1.68%; p<0.05). Moreover, the transduced and bystander T cells could kill the target CCA spheroids at a rate approximately 5-fold higher than that of the no treatment control condition (p = 0.0011). Our findings demonstrate proof-of-principle that T cells secreting αCD133-αCD3 engager can be an alternative approach to treating CD133-positive CCA, and they pave the way for future in vivo study and clinical trials.
Collapse
|