1
|
Wu J, Xu S, Li Z, Cong B, Yang Z, Yang Z, Gao W, Liu S, Yu Z, Xu S, Li N, Hou J, Wang G, Cao X, Liu S. SARS-CoV-2 enhances complement-mediated endothelial injury via the suppression of membrane complement regulatory proteins. Emerg Microbes Infect 2025; 14:2467781. [PMID: 39945674 PMCID: PMC11873982 DOI: 10.1080/22221751.2025.2467781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
Complement hyperactivation and thrombotic microangiopathy are closely associated with severe COVID-19. Endothelial dysfunction is a key mechanism underlying thrombotic microangiopathy. To address the relationship between endothelial injury, complement activation and thrombotic microangiopathy of severe COVID-19, we wonder whether, and if so, what and how SARS-CoV-2 factors make endothelial cells (ECs) sensitive to complement-mediated cytotoxicity. We revealed that multiple SARS-CoV-2 proteins enhanced complement-mediated cytotoxicity to ECs by inhibiting membrane complement regulatory proteins (CRPs) and enhancing the deposition of complement-recognizing component FCN1. By screening with CRISPR/Cas9-gRNA libraries, we identified that ADAMTS9, SYAP1, and HIGD1A as intrinsic regulators of CD59 on ECs, which were inhibited by the SARS-CoV-2 M, NSP16, and ORF9b proteins. IFN-γ, GM-CSF, and IFN-α upregulated CD55 and CD59, while IFN-γ antagonized the inhibition of CD59 by the three SARS-CoV-2 proteins. So, the deficiency of IFN-γ weakened the protection of ECs by CRPs against complement-mediated injury which may be enhanced during infection. Our findings illustrated the regulation of protection against complement-mediated attack on self-cells by SARS-CoV-2 infection and immune responses, providing insights into endothelial injury, thrombotic microangiopathy, and potential targets for treating severe COVID-19.
Collapse
Affiliation(s)
- Jian Wu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Sanpeng Xu
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Zhiqing Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Boyi Cong
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Zongheng Yang
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhichao Yang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Wanfeng Gao
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Shuo Liu
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhou Yu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Sheng Xu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Guoping Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Shuxun Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Arnaldo L, Mena J, Serradell M, Gaig C, Adamuz D, Vilas D, Samaniego D, Ispierto L, Montini A, Mayà G, Álvarez R, Pastor P, Iranzo A, Beyer K. Platelet miRNAs as early biomarkers for progression of idiopathic REM sleep behavior disorder to a synucleinopathy. Sci Rep 2025; 15:12136. [PMID: 40204936 PMCID: PMC11982324 DOI: 10.1038/s41598-025-96926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
Individuals diagnosed with isolated REM sleep behavior disorder (IRBD) have a high risk of developing Lewy body disorders (LBD), mainly Parkinson's disease (PD) or dementia with Lewy bodies (DLB). As we have previously identified seven platelet-derived miRNAs as potential biomarkers for DLB, in this pilot study we aimed to investigate whether specific expression changes of these miRNAs are also present in IRBD. RNA was obtained from platelets of individuals with IRBD (n = 29) and controls (n = 34), and miRNA levels were determined with a miRCURY LNA miRNA Custom PCR Panel. miRNA interactomes of deregulated miRNAs were determined, and mRNA quantification of miRNA target genes was carried out using real-time PCR and the ΔΔCt method. We found that the expression of hsa-miR- 139 - 5p (p = 0.010) and hsa-miR- 142 - 3p (p = 0.017) was diminished, while hsa-miR- 191 - 5p (p = 0.023) was increased in platelets of IRBD patients compared with controls. Interactome analysis of these miRNAs showed that hsa-miR- 142 - 3p regulates genes related to the structure and maintenance of the cytoskeleton. Of the 15 genes expressed in platelets, the expression of WASL, a gene involved in actin filament organization, was increased in platelets of IRBD patients. Additionally, WASL expression correlated inversely with hsa-miR- 142 - 3p expression. Since the interactomes of hsa-miR- 139 - 5p and hsa-miR- 191 - 5p play a role in several cancer types, their expression was not addressed. Changes in hsa-miR- 142 - 3p, hsa-miR- 139 - 5p, and hsa-miR- 191 - 5p expression were found in IRBD platelets and might represent early biomarkers for LBD involving cytoskeleton dysfunction. Increased expression of WASL could indicate that altered platelet activation occurs early during the development of LBD.
Collapse
Affiliation(s)
- Laura Arnaldo
- Department of Neuroscience, Research Institute Germans Trias i Pujol, Badalona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jorge Mena
- Department of Neuroscience, Research Institute Germans Trias i Pujol, Badalona, Spain
| | - Mònica Serradell
- Department of Neurology, Sleep Unit, Hospital Clínic de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Carles Gaig
- Department of Neurology, Sleep Unit, Hospital Clínic de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - David Adamuz
- Department of Neuroscience, Research Institute Germans Trias i Pujol, Badalona, Spain
| | - Dolores Vilas
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias I Pujol and the Germans Trias I Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Daniela Samaniego
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias I Pujol and the Germans Trias I Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Lourdes Ispierto
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias I Pujol and the Germans Trias I Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Angelica Montini
- Department of Neurology, Sleep Unit, Hospital Clínic de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Gerard Mayà
- Department of Neurology, Sleep Unit, Hospital Clínic de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Ramiro Álvarez
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias I Pujol and the Germans Trias I Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Pau Pastor
- Department of Neuroscience, Research Institute Germans Trias i Pujol, Badalona, Spain.
- Department of Neurology, Sleep Unit, Hospital Clínic de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain.
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias I Pujol and the Germans Trias I Pujol Research Institute (IGTP) Badalona, Barcelona, Spain.
| | - Alex Iranzo
- Department of Neurology, Sleep Unit, Hospital Clínic de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain.
- Neurology Service, Sleep Unit, Hospital Clínic de Barcelona, Barcelona, Spain.
| | - Katrin Beyer
- Department of Neuroscience, Research Institute Germans Trias i Pujol, Badalona, Spain.
- Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Zhou Y, Feng Y, Xin N, Lu J, Xu X. Assessing Stroke Recurrence Risk by Using a Lipoprotein-Associated Phospholipase A2 and Platelet Count-Based Nomogram. Mol Neurobiol 2025; 62:2835-2845. [PMID: 39177733 DOI: 10.1007/s12035-024-04439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Stroke recurrence remains a critical challenge in clinical neurology, necessitating the identification of reliable predictive markers for better management and treatment strategies. This study investigates the interaction between lipoprotein-associated phospholipase A2 (Lp-PLA2) and platelets as a potential predictor for stroke recurrence, aiming to refine risk assessment and therapeutic approaches. In a retrospective cohort of 580 ischemic stroke patients, we analyzed clinical data with a focus on Lp-PLA2 and platelet levels. By using multivariable logistic regression, we identified independent predictors of stroke recurrence. These predictors were then used to develop a comprehensive nomogram. The study established diabetes mellitus, hypertension, low-density lipoprotein (LDL), Lp-PLA2 levels, and platelet counts as independent predictors of stroke recurrence. Crucially, the interaction parameter Lp-PLA2 * platelet (multiplication of Lp-PLA2 and platelet count) exhibited superior predictive power over each factor considered separately. Our nomogram incorporated diabetes mellitus, cerebral infarction causes, hypertension, LDL, and the Lp-PLA2 * platelet count interaction and demonstrated enhanced accuracy in predicting stroke recurrence compared to traditional risk models. The interaction between Lp-PLA2 and platelets emerged as a significant predictor for stroke recurrence when integrated with traditional risk factors. The developed nomogram offers a novel and practical tool in molecular neurobiology for assessing individual risks, facilitating personalized treatment strategies. This approach underscores the importance of multifactorial assessment in stroke management and opens avenues for targeted interventions to mitigate recurrence risks.
Collapse
Affiliation(s)
- Yanlong Zhou
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221600, China
| | - Yu Feng
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221600, China
| | - Ning Xin
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221600, China.
| | - Jun Lu
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221600, China
| | - Xingshun Xu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
4
|
Monnens L. Weibel-Palade bodies: function and role in thrombotic thrombocytopenic purpura and in diarrhea phase of STEC-hemolytic uremic syndrome. Pediatr Nephrol 2025; 40:5-13. [PMID: 38967838 PMCID: PMC11584422 DOI: 10.1007/s00467-024-06440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Vascular endothelial cells are equipped with numerous specialized granules called Weibel-Palade bodies (WPBs). They contain a cocktail of proteins that can be rapidly secreted (3-5 min) into the vascular lumen after an appropriate stimulus such as thrombin. These proteins are ready without synthesis. Von Willebrand factor (VWF) and P-selectin are the main constituents of WPBs. Upon stimulation, release of ultralarge VWF multimers occurs and assembles into VWF strings on the apical side of endothelium. The VWF A1 domain becomes exposed in a shear-dependent manner recruiting and activating platelets. VWF is able to recruit leukocytes via direct leukocyte binding or via the activated platelets promoting NETosis. Ultralarge VWF strings are ultimately cleaved into smaller pieces by the protease ADAMTS-13 preventing excessive platelet adhesion. Under carefully performed flowing conditions and adequate dose of Shiga toxins, the toxin induces the release of ultralarge VWF multimers from cultured endothelial cells. This basic information allows insight into the pathogenesis of thrombotic thrombocytopenic purpura (TTP) and of STEC-HUS in the diarrhea phase. In TTP, ADAMTS-13 activity is deficient and systemic aggregation of platelets will occur after a second trigger. In STEC-HUS, stimulated release of WPB components in the diarrhea phase of the disease can be presumed to be the first hit in the damage of Gb3 positive endothelial cells.
Collapse
Affiliation(s)
- Leo Monnens
- Department of Physiology, Radboud University Centre, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Kumar V, Stewart Iv JH. Platelet's plea to Immunologists: Please do not forget me. Int Immunopharmacol 2024; 143:113599. [PMID: 39547015 DOI: 10.1016/j.intimp.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Platelets are non-nucleated mammalian cells originating from the cytoplasmic expulsion of the megakaryocytes. Megakaryocytes develop during hematopoiesis through megakaryopoiesis, whereas platelets develop from megakaryocytes through thrombopoiesis. Since their first discovery, platelets have been studied as critical cells controlling hemostasis or blood coagulation. However, coagulation and innate immune response are evolutionarily linked processes. Therefore, it has become critical to investigate the immunological functions of platelets to maintain immune homeostasis. Advances in immunology and platelet biology research have explored different critical roles of platelets, including phagocytosis, release of different immune mediators, and controlling functions of different immune cells by direct interaction and immune mediators. The current article discusses platelet's development and their critical role as innate immune cells, which express different pattern recognition receptors (PRRs), recognizing different pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and death/damage-associated molecular patterns (DAMPs) and their direct interactions with innate and adaptive immune cells to maintain immune homeostasis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA.
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA
| |
Collapse
|
6
|
Oakes A, Liu Y, Dubielecka PM. Complement or insult: the emerging link between complement cascade deficiencies and pathology of myeloid malignancies. J Leukoc Biol 2024; 116:966-984. [PMID: 38836653 PMCID: PMC11531810 DOI: 10.1093/jleuko/qiae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The complement cascade is an ancient and highly conserved arm of the immune system. The accumulating evidence highlights elevated activity of the complement cascade in cancer microenvironment and emphasizes its effects on the immune, cancer, and cancer stroma cells, pointing to a role in inflammation-mediated etiology of neoplasms. The role the cascade plays in development, progression, and relapse of solid tumors is increasingly recognized, however its role in hematological malignancies, especially those of myeloid origin, has not been thoroughly assessed and remains obscure. As the role of inflammation and autoimmunity in development of myeloid malignancies is becoming recognized, in this review we focus on summarizing the links that have been identified so far for complement cascade involvement in the pathobiology of myeloid malignancies. Complement deficiencies are primary immunodeficiencies that cause an array of clinical outcomes including an increased risk of a range of infectious as well as local or systemic inflammatory and thrombotic conditions. Here, we discuss the impact that deficiencies in complement cascade initiators, mid- and terminal-components and inhibitors have on the biology of myeloid neoplasms. The emergent conclusions indicate that the links between complement cascade, inflammatory signaling, and the homeostasis of hematopoietic system exist, and efforts should continue to detail the mechanistic involvement of complement cascade in the development and progression of myeloid cancers.
Collapse
Affiliation(s)
- Alissa Oakes
- Department of Medicine, Alpert Medical School, Brown University, 69 Brown St, Providence, RI 02906, USA
- Division of Hematology/Oncology, Rhode Island Hospital, 69 Brown St, Providence, RI 02906, USA
- Therapeutic Sciences Graduate program, Brown University, 69 Brown St, Providence, RI 02906, USA
| | - Yuchen Liu
- Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, 22. S. Greene St., Baltimore, MD 21201-1595, USA
| | - Patrycja M Dubielecka
- Department of Medicine, Alpert Medical School, Brown University, 69 Brown St, Providence, RI 02906, USA
- Division of Hematology/Oncology, Rhode Island Hospital, 69 Brown St, Providence, RI 02906, USA
- Therapeutic Sciences Graduate program, Brown University, 69 Brown St, Providence, RI 02906, USA
- Legorreta Cancer Center, Brown University, One Hoppin St., Coro West, Suite 5.01, Providence, RI 02903, USA
| |
Collapse
|
7
|
Mickael C, Jordan M, Posey JN, Tuder RM, Nozik ES, Thurman JM, Stenmark KR, Graham BB, Delaney CA. Activation of platelets and the complement system in mice with Schistosoma-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L661-L668. [PMID: 39254088 PMCID: PMC11563640 DOI: 10.1152/ajplung.00165.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Schistosomiasis-induced pulmonary hypertension (PH) presents a significant global health burden, yet the underlying mechanisms remain poorly understood. Here, we investigate the involvement of platelets and the complement system in the initiation events leading to Schistosoma-induced PH. We demonstrate that Schistosoma exposure leads to thrombocytopenia, platelet accumulation in the lung, and platelet activation. In addition, we observed increased plasma complement anaphylatoxins C3a and C5a, indicative of complement system activation, and elevated platelet expression of C1q, C3, decay activating factor (DAF), and complement C3a and C5a receptors. Our findings suggest the active involvement of platelets in responding to complement system signals induced by Schistosoma exposure and form the basis for future mechanistic studies on how complement may regulate platelet activation and promote the development of Schistosoma-induced PH.NEW & NOTEWORTHY Schistosomiasis-induced pulmonary hypertension (PH) is a significant global health burden, yet the underlying mechanisms remain poorly understood. We demonstrate that Schistosoma exposure leads to platelet accumulation in the lung and platelet activation. We observed increased plasma levels of C3a and C5a, indicative of complement system activation, and elevated expression of platelet complement proteins and receptors. These findings underscore the role of platelets and complement in the inflammatory responses associated with Schistosoma-induced PH.
Collapse
Grants
- K01HL161024 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R25HL146166 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Entelligence Young Investigator Award Entelligence
- Early Career Investigator American Thoracic Society (ATS)
- P01HL152961 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 1R35HL139726 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135872 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01DK076690 HHS | National Institutes of Health (NIH)
Collapse
Affiliation(s)
- Claudia Mickael
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Mariah Jordan
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Janelle N Posey
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rubin M Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Eva S Nozik
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Joshua M Thurman
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kurt R Stenmark
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States
| | - Brian B Graham
- Department of Medicine, University of California, San Francisco, California, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States
| | - Cassidy A Delaney
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
8
|
Chen HL, Wang QY, Qi RM, Cai JP. Identification of the changes in the platelet proteomic profile of elderly individuals. Front Cardiovasc Med 2024; 11:1384679. [PMID: 38807946 PMCID: PMC11130443 DOI: 10.3389/fcvm.2024.1384679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Background Platelet hyperreactivity is a risk factor for thrombosis in elderly patients with cardiovascular diseases. However, the mechanism of platelet hyperactivation has not been elucidated. This study aims to investigate alterations in the proteomes of platelets and their correlation with platelet hyperreactivity among elderly individuals. Methods This study included 10 young (28.1 ± 1.9 years), 10 middle-aged (60.4 ± 2.2 years), and 10 old (74.2 ± 3.0 years) subjects. Washed platelets were used in the present study. Platelet samples were analysed by using data-independent acquisition (DIA) quantitative mass spectrometry (MS). Results The results showed that the platelet proteomic profile exhibited high similarity between the young and middle-aged groups. However, there were significant differences in protein expression profiles between the old group and the young group. By exploring the dynamic changes in the platelet proteome with ageing, clusters of proteins that changed significantly with ageing were selected for further investigation. These clusters were related to the initial triggering of complement, phagosome and haemostasis based on enrichment analysis. We found that platelet degranulation was the major characteristic of the differentially expressed proteins between the old and young populations. Moreover, complement activation, the calcium signalling pathway and the nuclear factor-κB (NF-κB) signalling pathway were enriched in differentially expressed proteins. Conclusions The present study showed that there are obvious differences in the protein profiles of the elderly compared with young and middle-aged populations. The results provide novel evidence showing changes in platelet hyperactivity and susceptibility to thrombosis in the elderly population.
Collapse
Affiliation(s)
- Hui-Lian Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qing-Yu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ruo-Mei Qi
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Li J, Li XL, Li CQ. Immunoregulation mechanism of VEGF signaling pathway inhibitors and its efficacy on the kidney. Am J Med Sci 2023; 366:404-412. [PMID: 37699444 DOI: 10.1016/j.amjms.2023.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 05/10/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Angiogenesis and immunosuppression are closely related pathophysiologic processes. Widely prescribed in malignant tumor and proliferative retinal lesions, VEGF signaling pathway inhibitors may cause hypertension and renal injury in some patients, presenting with proteinuria, nephrotic syndrome, renal failure and thrombotic microangiopathy. VEGF signaling pathway inhibitors block the action of both VEGF-A and VEGF-C. However, VEGF-A and VEGF-C produced by podocytes are vital to maintain the physiological function of glomerular endothelial cells and podocytes. There is still no effective treatment for kidney disease associated with VEGF signaling pathway inhibitors and some patients have progressive renal failure even after withdrawal of the drug. Recent studies reveal that blocking of VEGF-A and VEGF-C can activate CD4 +and CD8+ T cells, augment antigen-presenting function of dendritic cells, enhance cytotoxicity of macrophages and initiate complement cascade activation. VEGF and VEGFR are expressed in immune cells, which are involved in the immunosuppression and cross-talk among immune cells. This review summarizes the expression and function of VEGF-A and VEGF-C in the kidney. The current immunoregulation mechanisms of VEGF signaling pathway inhibitors are reviewed. Finally, combinate strategies are summarized to highlight the proposal for VEGF signaling pathway inhibitors.
Collapse
Affiliation(s)
- Jun Li
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Jiangsu, China.
| | - Xiao-Lin Li
- Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Chun-Qing Li
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Jiangsu, China
| |
Collapse
|
10
|
Braï MA, Hannachi N, El Gueddari N, Baudoin JP, Dahmani A, Lepidi H, Habib G, Camoin-Jau L. The Role of Platelets in Infective Endocarditis. Int J Mol Sci 2023; 24:ijms24087540. [PMID: 37108707 PMCID: PMC10143005 DOI: 10.3390/ijms24087540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Over the last decade, the incidence of infective endocarditis (IE) has increased, with a change in the frequency of causative bacteria. Early evidence has substantially demonstrated the crucial role of bacterial interaction with human platelets, with no clear mechanistic characterization in the pathogenesis of IE. The pathogenesis of endocarditis is so complex and atypical that it is still unclear how and why certain bacterial species will induce the formation of vegetation. In this review, we will analyze the key role of platelets in the physiopathology of endocarditis and in the formation of vegetation, depending on the bacterial species. We provide a comprehensive outline of the involvement of platelets in the host immune response, investigate the latest developments in platelet therapy, and discuss prospective research avenues for solving the mechanistic enigma of bacteria-platelet interaction for preventive and curative medicine.
Collapse
Affiliation(s)
- Mustapha Abdeljalil Braï
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France
| | - Nadji Hannachi
- Laboratoire de Biopharmacie et Pharmacotechnie, Faculté de Médecine, Université Ferhat Abbas Sétif I, Sétif 19000, Algeria
| | - Nabila El Gueddari
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Service de Chirurgie Cardiaque, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, 13385 Marseille, France
| | - Jean-Pierre Baudoin
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France
| | - Abderrhamane Dahmani
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France
| | - Hubert Lepidi
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Service d'Anatomo-Pathologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, 13385 Marseille, France
| | - Gilbert Habib
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Service de Cardiologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, 13385 Marseille, France
| | - Laurence Camoin-Jau
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Laboratoire d'Hématologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, 13385 Marseille, France
| |
Collapse
|
11
|
Wang Y, Huang X, Li F, Jia X, Jia N, Fu J, Liu S, Zhang J, Ge H, Huang S, Hui Y, Sun C, Xiao F, Cui X, Luu LDW, Qu D, Li J, Tai J. Serum-integrated omics reveal the host response landscape for severe pediatric community-acquired pneumonia. Crit Care 2023; 27:79. [PMID: 36859478 PMCID: PMC9976684 DOI: 10.1186/s13054-023-04378-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE Community-acquired pneumonia (CAP) is the primary cause of death for children under five years of age globally. Hence, it is essential to investigate new early biomarkers and potential mechanisms involved in disease severity. METHODS Proteomics combined with metabolomics was performed to identify biomarkers suitable for early diagnosis of severe CAP. In the training cohort, proteomics and metabolomics were performed on serum samples obtained from 20 severe CAPs (S-CAPs), 15 non-severe CAPs (NS-CAPs) and 15 healthy controls (CONs). In the verification cohort, selected biomarkers and their combinations were validated using ELISA and metabolomics in an independent cohort of 129 subjects. Finally, a combined proteomics and metabolomics analysis was performed to understand the major pathological features and reasons for severity of CAP. RESULTS The proteomic and metabolic signature was markedly different between S-CAPs, NS-CAPs and CONs. A new serum biomarker panel including 2 proteins [C-reactive protein (CRP), lipopolysaccharide (LBP)] and 3 metabolites [Fasciculol C, PE (14:0/16:1(19Z)), PS (20:0/22:6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z))] was developed to identify CAP and to distinguish severe pneumonia. Pathway analysis of changes revealed activation of the cell death pathway, a dysregulated complement system, coagulation cascade and platelet function, and the inflammatory responses as contributors to tissue damage in children with CAP. Additionally, activation of glycolysis and higher levels of nucleotides led to imbalanced deoxyribonucleotide pools contributing to the development of severe CAP. Finally, dysregulated lipid metabolism was also identified as a potential pathological mechanism for severe progression of CAP. CONCLUSION The integrated analysis of the proteome and metabolome might open up new ways in diagnosing and uncovering the complexity of severity of CAP.
Collapse
Affiliation(s)
- Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, People's Republic of China.
| | - Xiaolan Huang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, People's Republic of China
| | - Fang Li
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, People's Republic of China
| | - Xinbei Jia
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Nan Jia
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, People's Republic of China
| | - Jin Fu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, People's Republic of China
| | - Shuang Liu
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, People's Republic of China
| | - Jin Zhang
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, People's Republic of China
| | - Haiyan Ge
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, People's Republic of China
| | - Siyuan Huang
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, People's Republic of China
| | - Yi Hui
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, People's Republic of China
| | - Chunrong Sun
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, People's Republic of China
| | - Fei Xiao
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, People's Republic of China
| | - Xiaodai Cui
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, People's Republic of China
| | | | - Dong Qu
- Department of Critical Medicine, Children's Hospital Affiliated Capital Institute of Pediatrics, Beijing, 100020, People's Republic of China.
| | - Jieqiong Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100027, People's Republic of China.
| | - Jun Tai
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Wang H, Zhang B, Zhong X, Qin D, Li Z. Mechanism Research of Platelet Core Marker Prediction and Molecular Recognition in Cardiovascular Events. Comb Chem High Throughput Screen 2023; 26:103-115. [PMID: 35345996 DOI: 10.2174/1386207325666220328091748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thrombosis triggered by platelet activation plays a vital role in the pathogenesis of cardiovascular and cerebrovascular diseases. OBJECTIVE This study aims to find platelet combined biomarkers for cardiovascular diseases and investigate the possibility of Concanavalin A (ConA) acting on platelets as a new pharmacological target. METHODS High-throughput Technology and bioinformatics analysis were combined and groups of microarray chip gene expression profiles for acute myocardial infarction (AMI) and sickle cell disease (SCD) were obtained using GEO database screening. R language limma package was used to obtain differentially expressed genes (DEGs). GO, KEGG, and other databases were utilized to perform the enrichment analysis of DEGs' functions, pathways, etc. PPI network was constructed using STRING database and Cytoscape software, and MCC algorithm was used to obtain the 200 core genes of the two groups of DEGs. Core targets were confirmed by constructing an intersection area screening. A type of molecular probe, ConA, was molecularly docked with the above core targets on the Zdock, HEX, and 3D-DOCK servers. RESULTS We found six core markers, CD34, SOCS2, ABL1, MTOR, VEGFA, and SMURF1, which were simultaneously related to both diseases, and the docking effect showed that VEGFA is the best-performing. CONCLUSION VEGFA is most likely to reduce its expression by binding to ConA, which could affect the downstream regulation of the PI3K/Akt signaling pathway during platelet activation. Some other core targets also have the opportunity to interact with ConA to affect platelet-activated thrombosis and trigger changes in cardiovascular events.
Collapse
Affiliation(s)
- Hongdan Wang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Bingyu Zhang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xianhua Zhong
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Dui Qin
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhangyong Li
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
13
|
Landsem A, Emblem Å, Lau C, Christiansen D, Gerogianni A, Karlsen BO, Mollnes TE, Nilsson PH, Brekke OL. Complement C3b contributes to Escherichia coli-induced platelet aggregation in human whole blood. Front Immunol 2022; 13:1020712. [PMID: 36591264 PMCID: PMC9797026 DOI: 10.3389/fimmu.2022.1020712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Platelets have essential functions as first responders in the immune response to pathogens. Activation and aggregation of platelets in bacterial infections can lead to life-threatening conditions such as arterial thromboembolism or sepsis-associated coagulopathy. Methods In this study, we investigated the role of complement in Escherichia coli (E. coli)-induced platelet aggregation in human whole blood, using Multiplate® aggregometry, flow cytometry, and confocal microscopy. Results and Discussion We found that compstatin, which inhibits the cleavage of complement component C3 to its components C3a and C3b, reduced the E. coli-induced platelet aggregation by 42%-76% (p = 0.0417). This C3-dependent aggregation was not C3a-mediated as neither inhibition of C3a using a blocking antibody or a C3a receptor antagonist, nor the addition of purified C3a had any effects. In contrast, a C3b-blocking antibody significantly reduced the E. coli-induced platelet aggregation by 67% (p = 0.0133). We could not detect opsonized C3b on platelets, indicating that the effect of C3 was not dependent on C3b-fragment deposition on platelets. Indeed, inhibition of glycoprotein IIb/IIIa (GPIIb/IIIa) and complement receptor 1 (CR1) showed that these receptors were involved in platelet aggregation. Furthermore, aggregation was more pronounced in hirudin whole blood than in hirudin platelet-rich plasma, indicating that E. coli-induced platelet aggregation involved other blood cells. In conclusion, the E. coli-induced platelet aggregation in human whole blood is partly C3b-dependent, and GPIIb/IIIa and CR1 are also involved in this process.
Collapse
Affiliation(s)
- Anne Landsem
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,*Correspondence: Anne Landsem,
| | - Åse Emblem
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Corinna Lau
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Dorte Christiansen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Alexandra Gerogianni
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden,Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Bård Ove Karlsen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Tom Eirik Mollnes
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Per H. Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden,Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ole-Lars Brekke
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
14
|
Mariotti A, Ezzraimi AE, Camoin-Jau L. Effect of antiplatelet agents on Escherichia coli sepsis mechanisms: A review. Front Microbiol 2022; 13:1043334. [PMID: 36569083 PMCID: PMC9780297 DOI: 10.3389/fmicb.2022.1043334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Despite ever-increasing improvements in the prognosis of sepsis, this condition remains a frequent cause of hospitalization and mortality in Western countries. Sepsis exposes the patient to multiple complications, including thrombotic complications, due to the ability of circulating bacteria to activate platelets. One of the bacteria most frequently implicated in sepsis, Escherichia coli, a Gram-negative bacillus, has been described as being capable of inducing platelet activation during sepsis. However, to date, the mechanisms involved in this activation have not been clearly established, due to their multiple characteristics. Many signaling pathways are thought to be involved. At the same time, reports on the use of antiplatelet agents in sepsis to reduce platelet activation have been published, with variable results. To date, their use in sepsis remains controversial. The aim of this review is to summarize the currently available knowledge on the mechanisms of platelet activation secondary to Escherichia coli sepsis, as well as to provide an update on the effects of antiplatelet agents in these pathological circumstances.
Collapse
Affiliation(s)
- Antoine Mariotti
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France,IHU Méditerranée Infection, Marseille, France,Haematology Laboratory, Hôpital de la Timone, APHM, Marseille, France
| | - Amina Ezzeroug Ezzraimi
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France,IHU Méditerranée Infection, Marseille, France
| | - Laurence Camoin-Jau
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France,IHU Méditerranée Infection, Marseille, France,Haematology Laboratory, Hôpital de la Timone, APHM, Marseille, France,*Correspondence: Laurence Camoin-Jau,
| |
Collapse
|
15
|
Regulatory Effects of Curcumin on Platelets: An Update and Future Directions. Biomedicines 2022; 10:biomedicines10123180. [PMID: 36551934 PMCID: PMC9775400 DOI: 10.3390/biomedicines10123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
The rhizomatous plant turmeric, which is frequently used as a spice and coloring ingredient, yields curcumin, a bioactive compound. Curcumin inhibits platelet activation and aggregation and improves platelet count. Platelets dysfunction results in several disorders, including inflammation, atherothrombosis, and thromboembolism. Several studies have proved the beneficial role of curcumin on platelets and hence proved it is an important candidate for the treatment of the aforementioned diseases. Moreover, curcumin is also frequently employed as an anti-inflammatory agent in conventional medicine. In arthritic patients, it has been shown to reduce the generation of pro-inflammatory eicosanoids and to reduce edema, morning stiffness, and other symptoms. Curcumin taken orally also reduced rats' acute inflammation brought on by carrageenan. Curcumin has also been proven to prevent atherosclerosis and platelet aggregation, as well as to reduce angiogenesis in adipose tissue. In the cerebral microcirculation, curcumin significantly lowered platelet and leukocyte adhesion. It largely modulated the endothelium to reduce platelet adhesion. Additionally, P-selectin expression and mice survival after cecal ligation and puncture were improved by curcumin, which also altered platelet and leukocyte adhesion and blood-brain barrier dysfunction. Through regulating many processes involved in platelet aggregation, curcuminoids collectively demonstrated detectable antiplatelet activity. Curcuminoids may therefore be able to prevent disorders linked to platelet activation as possible therapeutic agents. This review article proposes to highlight and discuss the regulatory effects of curcumin on platelets.
Collapse
|
16
|
Steubing RD, Szepanowski F, David C, Mohamud Yusuf A, Mencl S, Mausberg AK, Langer HF, Sauter M, Deuschl C, Forsting M, Fender AC, Hermann DM, Casas AI, Langhauser F, Kleinschnitz C. Platelet depletion does not alter long-term functional outcome after cerebral ischaemia in mice. Brain Behav Immun Health 2022; 24:100493. [PMID: 35928516 PMCID: PMC9343933 DOI: 10.1016/j.bbih.2022.100493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/12/2022] Open
Abstract
Platelets are key mediators of thrombus formation and inflammation during the acute phase of ischaemic stroke. Particularly, the platelet glycoprotein (GP) receptors GPIbα and GPVI have been shown to mediate platelet adhesion and activation in the ischaemic brain. GPIbα and GPVI blockade could reduce infarct volumes and improve functional outcome in mouse models of acute ischaemic stroke, without concomitantly increasing intracerebral haemorrhage. However, the functional role of platelets during long-term stroke recovery has not been elucidated so far. Thus, we here examined the impact of platelet depletion on post-stroke recovery after transient middle cerebral artery occlusion (tMCAO) in adult male mice. Platelet depleting antibodies or isotype control were applied from day 3–28 after tMCAO in mice matched for infarct size. Long-term functional recovery was assessed over the course of 28 days by behavioural testing encompassing motor and sensorimotorical functions, as well as anxiety-like or spontaneous behaviour. Whole brain flow cytometry and light sheet fluorescent microscopy were used to identify resident and infiltrated immune cell types, and to determine the effects of platelet depletion on the cerebral vascular architecture, respectively. We found that delayed platelet depletion does not improve long-term functional outcome in the tMCAO stroke model. Immune cell abundance, the extent of thrombosis and the organisation of the cerebral vasculature were also comparable between platelet-depleted and control mice. Our study demonstrates that, despite their critical role in the acute stroke setting, platelets appear to contribute only marginally to tissue reorganisation and functional recovery at later stroke stages. Stable and safe global platelet depletion can be achieved for a prolonged period. Platelets only play a minor role in neurological recovery during the chronic phase. Platelet depletion after infarct maturation does not alter inflammatory response. Cerebral architecture after stroke is not influenced by delayed platelet depletion.
Collapse
|
17
|
Yoshida Y, Nishi H. The role of the complement system in kidney glomerular capillary thrombosis. Front Immunol 2022; 13:981375. [PMID: 36189215 PMCID: PMC9515535 DOI: 10.3389/fimmu.2022.981375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system is part of the innate immune system. The crucial step in activating the complement system is the generation and regulation of C3 convertase complexes, which are needed to generate opsonins that promote phagocytosis, to generate C3a that regulates inflammation, and to initiate the lytic terminal pathway through the generation and activity of C5 convertases. A growing body of evidence has highlighted the interplay between the complement system, coagulation system, platelets, neutrophils, and endothelial cells. The kidneys are highly susceptible to complement-mediated injury in several genetic, infectious, and autoimmune diseases. Atypical hemolytic uremic syndrome (aHUS) and lupus nephritis (LN) are both characterized by thrombosis in the glomerular capillaries of the kidneys. In aHUS, congenital or acquired defects in complement regulators may trigger platelet aggregation and activation, resulting in the formation of platelet-rich thrombi in the kidneys. Because glomerular vasculopathy is usually noted with immunoglobulin and complement accumulation in LN, complement-mediated activation of tissue factors could partly explain the autoimmune mechanism of thrombosis. Thus, kidney glomerular capillary thrombosis is mediated by complement dysregulation and may also be associated with complement overactivation. Further investigation is required to clarify the interaction between these vascular components and develop specific therapeutic approaches.
Collapse
Affiliation(s)
- Yoko Yoshida
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
18
|
Sharma D, Bhaskar SMM. Prognostic Role of the Platelet-Lymphocyte Ratio in Acute Ischemic Stroke Patients Undergoing Reperfusion Therapy: A Meta-Analysis. J Cent Nerv Syst Dis 2022; 14:11795735221110373. [PMID: 35860715 PMCID: PMC9290168 DOI: 10.1177/11795735221110373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Both inflammation and thrombotic/hemostatic mechanisms may play a role in acute ischemic stroke (AIS) pathogenesis, and a biomarker, such as the platelet-to-lymphocyte ratio (PLR), considering both mechanisms may be of clinical utility. Objectives This meta-analysis sought to examine the effect of PLR on functional outcomes, early neurological changes, bleeding complications, mortality, and adverse outcomes in AIS patients treated with reperfusion therapy (RT). Design Systematic Review and Meta-Analysis. Data Sources and Methods Individual studies were retrieved from the PubMed/Medline, EMBASE and Cochrane databases. References thereof were also consulted. Data were extracted using a standardised data sheet, and systematic reviews and meta-analyses on the association of admission (pre-RT) or delayed (post-RT) PLR with defined clinical and safety outcomes were conducted. In the case of multiple delayed PLR timepoints, the timepoint closest to 24 hours was selected. Results Eighteen studies (n=4878) were identified for the systematic review, of which 14 (n=4413) were included in the meta-analyses. PLR collected at admission was significantly negatively associated with 90-day good functional outcomes (SMD=-.32; 95% CI = -.58 to -.05; P=.020; z=-2.328), as was PLR collected at delayed timepoints (SMD=-.43; 95% CI = -.54 to -.32; P<.0001; z=-7.454). PLR at delayed timepoints was also significantly negatively associated with ENI (SMD=-.18; 95% CI = -.29 to -.08; P=.001. Conversely, the study suggested that a higher PLR at delayed timepoints may be associated with radiological bleeding and mortality. The results varied based on the type of RT administered. Conclusions A higher PLR is associated with worse outcomes after stroke in terms of morbidity, mortality, and safety outcomes after stroke.
Collapse
Affiliation(s)
- Divyansh Sharma
- Global Health Neurology and Translational Neuroscience Laboratory, Sydney and Neurovascular Imaging Laboratory, Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- University of New South Wales (UNSW), South Western Sydney Clinical School, Sydney, NSW, Australia
| | - Sonu M. M. Bhaskar
- Global Health Neurology and Translational Neuroscience Laboratory, Sydney and Neurovascular Imaging Laboratory, Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- University of New South Wales (UNSW), South Western Sydney Clinical School, Sydney, NSW, Australia
- Department of Neurology & Neurophysiology, Liverpool Hospital and South Western Sydney Local Health District (SWSLHD), Sydney, NSW, Australia
- NSW Brain Clot Bank, NSW Health Pathology, NSW, Sydney, Australia
| |
Collapse
|
19
|
Wang MJ, Sun Y, Song Y, Ma JN, Wang ZQ, Ding XQ, Chen HY, Zhang XB, Song MM, Hu XM. Mechanism and Molecular Targets of Ejiao Siwu Decoction for Treating Primary Immune Thrombocytopenia Based on High-Performance Liquid Chromatograph, Network Pharmacology, Molecular Docking and Cytokines Validation. Front Med (Lausanne) 2022; 9:891230. [PMID: 35911404 PMCID: PMC9326259 DOI: 10.3389/fmed.2022.891230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
We explored the mechanisms and molecular targets of Ejiao Siwu Decoction (EJSW) for treating primary immune thrombocytopenia (ITP) using network pharmacology and molecular docking. Active compounds of EJSW were identified by high-performance liquid chromatography-diode array detector (HPLC-DAD) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) and their targets were obtained from HERB and SwissTargetPrediction, and ITP targets were obtained from Comparative Toxicogenomics Database (CTD) and GeneCards. STRING and Cytoscape were used for protein-protein interaction (PPI) network analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses by WebGestalt yielded a gene-pathway network, Autodock molecular docking was applied to screen targets and active compounds, and cytokines were detected using a cytometric bead array (CBA) human inflammation kit. We identified 14 compounds and 129 targets, and 1,726 ITP targets. RAC-alpha serine/threonine-protein kinase (AKT1), tumour necrosis factor (TNF), interleukin-6 (IL6), caspase-3 (CASP3) and tumour suppressor protein (TP53) were core targets (nodes and edges). Functional annotation identified cofactor binding and coenzyme binding, and 20 significantly enriched pathways. Active compounds of EJSW were successfully docked with ITP targets. Tumour necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) were upregulated in ITP patients, vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor D (VEGF-D) were downregulated, and EJSW treatment reversed these trends. EJSW may regulate key ITP targets based on the in silico analyses, and protect vascular integrity through AGE-RAGE signalling, complement and coagulation cascades, and VEGF signalling by downregulating TNF-α, IL-1β and other inflammatory factors.
Collapse
Affiliation(s)
- Ming Jing Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Sun
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ju Ning Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zi Qing Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Qing Ding
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hai Yan Chen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Bin Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Min Song
- Nankou Hospital, Beijing, China
- *Correspondence: Min Min Song,
| | - Xiao Mei Hu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Min Min Song,
| |
Collapse
|
20
|
Dong YJ, Lin MQ, Fang X, Xie ZY, Luo R, Teng X, Li B, Li B, Li LZ, Jin HY, Yu QX, Lv GY, Chen SH. Modulating effects of a functional food containing Dendrobium officinale on immune response and gut microbiota in mice treated with cyclophosphamide. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
Xing Z, Wang Y, Gong K, Chen Y. Plasma C4 level was associated with mortality, cardiovascular and cerebrovascular complications in hemodialysis patients. BMC Nephrol 2022; 23:232. [PMID: 35768780 PMCID: PMC9245318 DOI: 10.1186/s12882-022-02829-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients on maintenance hemodialysis (HD) exhibit a high risk of death, cardiovascular and cerebrovascular diseases (CCDs). Previous studies indicated complement activation associated with the increased risk of cardiovascular diseases in HD patients. This study aimed to explore whether the critical complement factors were associated with the adverse outcomes in HD patients. METHODS A total of 108 HD patients were included and followed up for 52 months. The baseline clinical characteristics and plasma C3c, C1q, CFH, CFB, C4, MAC, C5a, C3a and MBL were measured. The three endpoints were death, cardiovascular and cerebrovascular events (CCEs) and the composition of them. Univariate and multivariate Cox regression identified factors associated with the three endpoints respectively. X-tile analyses determined the optimal cut-off values for high risks. Restricted cubic spline plots illustrated the dose-response relationships. Correlations between the complement factors and risk factors for CCDs were analyzed. RESULTS Baseline plasma C4 was finally selected by univariate and multivariate Cox regression analyses for three endpoints, including all-cause mortality, CCEs and the composition of them. When baseline plasma C4 exceeded 0.47 (P = 0.001) or 0.44 (P = 0.018) g/L respectively, the risks for death or achieving the composite endpoint enhanced significantly. The relationships of C4 and HR for the three endpoints showed a positive linear trend. Plasma C4 had prominent correlations with blood TG (r = 0.62, P < 0.001) and HDL (r = -0.38, P < 0.001). CONCLUSIONS A higher baseline plasma C4 level was significantly associated with the future incidence of decease, CCEs and either of them. Plasma C4 level correlated with blood TG and HDL.
Collapse
Affiliation(s)
- Zheyu Xing
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Yaqin Wang
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Kunjing Gong
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Yuqing Chen
- Renal Division, Peking University First Hospital, Beijing, China. .,Institute of Nephrology, Peking University, Beijing, China. .,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China. .,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China.
| |
Collapse
|
22
|
Liu Y, Zhang Y, Chen D, Fu Y. Current Status of and Global Trends in Platelet Transfusion Refractoriness From 2004 to 2021: A Bibliometric Analysis. Front Med (Lausanne) 2022; 9:873500. [PMID: 35602482 PMCID: PMC9121734 DOI: 10.3389/fmed.2022.873500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Platelet transfusion refractoriness (PTR) is common in patients with hematology and oncology and is becoming an important barrier in the treatment of thrombocytopenia and hemorrhage. Bibliometrics is an effective method for identifying existing research achievements, important breakthroughs, current research hotspots, and future development trends in any given field. In recent years, research on PTR has received increasing attention, but a bibliometric analysis of this field has not yet been reported. In this study, we applied bibliometrics to analyze the existing literature on PTR research over the past 17 years. On November 1, 2021, we began a publications analysis of PTR research using the Science Citation Index Expanded of the Web of Science Core Collection with collection dates from 2004 to 2021. This research aimed to summarize the state of PTR research using Bibliometrix to identify connections between different elements (i.e., authors, institutions, countries, journals, references, and keywords) using VOS viewer analyses to visualize key topics and trends in PTR research using Cite Space and gCLUTO. The results of all 310 studies showed that the annual number of publications focused on PTR is steadily increasing, with the United States of America and Japan making significant contributions. We noted that the research group led by Dr. Sherrill J. Slichter was prominent in this field, while Estcourt Lise may become the most influential newcomer. Transfusion was the most popular journal, and Blood was the most cited journal. Using various analyses, including co-cited analysis, historiography analysis, citation burst analysis, and factorial analysis, we pointed out and discussed contributing publications. According to occurrence analysis, co-word biclustering analysis, landform map, thematic evolution, and thematic map, we believe that “activation,” “p-selection,” “CD36 deficiency,” “gene-frequencies,” “CD109,” “HPA-1,” and “beta (3) integrin” may become new trends in PTR research. The outcome of our bibliometric analyses has, for the first time, revealed profound insights into the current state and trends in PTR research. The systematic analysis provided by our study clearly demonstrates the field's significant advancements to all researchers who are interested in a quick and comprehensive introduction to the field.
Collapse
Affiliation(s)
- Ying Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangzhou Blood Center, Guangzhou, China
| | - Yufan Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University Guangzhou, Guangzhou, China
| | - Dawei Chen
- Guangzhou Blood Center, Guangzhou, China
| | - Yongshui Fu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangzhou Blood Center, Guangzhou, China
- *Correspondence: Yongshui Fu
| |
Collapse
|
23
|
Nording H, Sauter M, Lin C, Steubing R, Geisler S, Sun Y, Niethammer J, Emschermann F, Wang Y, Zieger B, Nieswandt B, Kleinschnitz C, Simon DI, Langer HF. Activated Platelets Upregulate β 2 Integrin Mac-1 (CD11b/CD18) on Dendritic Cells, Which Mediates Heterotypic Cell-Cell Interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1729-1741. [PMID: 35277420 DOI: 10.4049/jimmunol.2100557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
Recent evidence suggests interaction of platelets with dendritic cells (DCs), while the molecular mechanisms mediating this heterotypic cell cross-talk are largely unknown. We evaluated the role of integrin Mac-1 (αMβ2, CD11b/CD18) on DCs as a counterreceptor for platelet glycoprotein (GP) Ibα. In a dynamic coincubation model, we observed interaction of human platelets with monocyte-derived DCs, but also that platelet activation induced a sharp increase in heterotypic cell binding. Inhibition of CD11b or GPIbα led to significant reduction of DC adhesion to platelets in vitro independent of GPIIbIIIa, which we confirmed using platelets from Glanzmann thrombasthenia patients and transgenic mouse lines on C57BL/6 background (GPIbα-/-, IL4R-GPIbα-tg, and muMac1 mice). In vivo, inhibition or genetic deletion of CD11b and GPIbα induced a significant reduction of platelet-mediated DC adhesion to the injured arterial wall. Interestingly, only intravascular antiCD11b inhibited DC recruitment, suggesting a dynamic DC-platelet interaction. Indeed, we could show that activated platelets induced CD11b upregulation on Mg2+-preactivated DCs, which was related to protein kinase B (Akt) and dependent on P-selectin and P-selectin glycoprotein ligand 1. Importantly, specific pharmacological targeting of the GPIbα-Mac-1 interaction site blocked DC-platelet interaction in vitro and in vivo. These results demonstrate that cross-talk of platelets with DCs is mediated by GPIbα and Mac-1, which is upregulated on DCs by activated platelets in a P-selectin glycoprotein ligand 1-dependent manner.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,German Research Centre for Cardiovascular Research, Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Chaolan Lin
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Rebecca Steubing
- Department of Neurology and Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Sven Geisler
- Cell Analysis Core Facility, University of Lübeck, Lübeck, Germany
| | - Ying Sun
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Joel Niethammer
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Fréderic Emschermann
- Department of Cardiovascular Medicine, University Hospital, Eberhard Karls University, Tübingen, Germany
| | - Yunmei Wang
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine and Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Barbara Zieger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany; and
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Daniel I Simon
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine and Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH.,University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Harald F Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany; .,German Research Centre for Cardiovascular Research, Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
24
|
Kiss MG, Binder CJ. The multifaceted impact of complement on atherosclerosis. Atherosclerosis 2022; 351:29-40. [DOI: 10.1016/j.atherosclerosis.2022.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
|
25
|
Cavalcante JDS, de Almeida CAS, Clasen MA, da Silva EL, de Barros LC, Marinho AD, Rossini BC, Marino CL, Carvalho PC, Jorge RJB, Dos Santos LD. A fingerprint of plasma proteome alteration after local tissue damage induced by Bothrops leucurus snake venom in mice. J Proteomics 2022; 253:104464. [PMID: 34954398 DOI: 10.1016/j.jprot.2021.104464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 12/21/2022]
Abstract
Bothrops spp. is responsible for about 70% of snakebites in Brazil, causing a diverse and complex pathophysiological condition. Bothrops leucurus is the main species of medical relevance found in the Atlantic coast in the Brazilian Northeast region. The pathophysiological effects involved B. leucurus snakebite as well as the organism's reaction in response to this envenoming, it has not been explored yet. Thus, edema was induced in mice paw using 1.2, 2.5, and 5.0 μg of B. leucurus venom, the percentage of edema was measured 30 min after injection and the blood plasma was collected and analyzed by shotgun proteomic strategy. We identified 80 common plasma proteins with differential abundance among the experimental groups and we can understand the early aspects of this snake envenomation, regardless of the suggestive severity of an ophidian accident. The results showed B. leucurus venom triggers a thromboinflammation scenario where family's proteins of the Serpins, Apolipoproteins, Complement factors and Component subunits, Cathepsins, Kinases, Oxidoreductases, Proteases inhibitors, Proteases, Collagens, Growth factors are related to inflammation, complement and coagulation systems, modulators platelets and neutrophils, lipid and retinoid metabolism, oxidative stress and tissue repair. Our findings set precedents for future studies in the area of early diagnosis and/or treatment of snakebites. SIGNIFICANCE: The physiopathological effects that the snake venoms can cause have been investigated through classical and reductionist tools, which allowed, so far, the identification of action mechanisms of individual components associated with specific tissue damage. The currently incomplete limitations of this knowledge must be expanded through new approaches, such as proteomics, which may represent a big leap in understanding the venom-modulated pathological process. The exploration of the complete protein set that suffer modifications by the simultaneous action of multiple toxins, provides a map of the establishment of physiopathological phenotypes, which favors the identification of multiple toxin targets, that may or may not act in synergy, as well as favoring the discovery of biomarkers and therapeutic targets for manifestations that are not neutralized by the antivenom.
Collapse
Affiliation(s)
- Joeliton Dos Santos Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Milan Avila Clasen
- Laboratory for Structural and Computational Proteomics, ICC, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, PR, Brazil
| | - Emerson Lucena da Silva
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Luciana Curtolo de Barros
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Aline Diogo Marinho
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Bruno Cesar Rossini
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil; Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Celso Luís Marino
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil; Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Paulo Costa Carvalho
- Laboratory for Structural and Computational Proteomics, ICC, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, PR, Brazil
| | - Roberta Jeane Bezerra Jorge
- Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Lucilene Delazari Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil; Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
26
|
Liu Y, Wen M, He Q, Dang X, Feng S, Liu T, Ding X, Li X, He X. Lipid metabolism contribute to the pathogenesis of IgA Vasculitis. Diagn Pathol 2022; 17:28. [PMID: 35148801 PMCID: PMC8840790 DOI: 10.1186/s13000-021-01185-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 12/03/2021] [Indexed: 12/04/2022] Open
Abstract
Background and objectives The underlying mechanism of IgA vasculitis (IgAV) and IgA vasculitis with nephritis (IgAVN) remains unclear. Therefore, there are no accurate diagnostic methods. Lipid metabolism is related to many immune related diseases, so this study set out to explore the relationship of lipids and IgAV and IgAVN. Methods Fifty-eighth patients with IgAV and 28 healthy controls were recruited, which were divided into six separate pools to investigate the alterations of serum lipids according to the clinical characteristics: healthy controls group (HCs) and IgAV group (IgAVs), IgAVN group (IgAV-N) and IgAV without nephritis group (IgAV-C), initial IgAV group (IgAV0) and IgAV in treatment with glucocorticoids group (IgAV1). Results 31 identified lipid ions significantly changed in IgAVs with p < 0.05, variable importance of the projection (VIP) > 1 and fold change (FC) > 1.5. All these 31 lipid ions belong to 6 classes: triacylglycerols (TG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine, ceramide, and lysophosphatidylcholine. TG (16:0/18:1/22:6) +NH4 over 888875609.05, PC (32:1) +H over 905307459.90 and PE (21:4)-H less than 32236196.59 increased the risk of IgAV significantly (OR>1). PC (38:6) +H was significantly decreased (p < 0.05, VIP>1 and FC>1.5) in IgAVN. PC (38:6) less than 4469726623 conferred greater risks of IgAV (OR=45.833, 95%CI: 6.689~341.070). Conclusion We suggest that lipid metabolism may affect the pathogenesis of IgAV via cardiovascular disease, insulin resistance, cell apoptosis, and inflammation. The increase of TG(16:0/18:1/22:6) + NH4, and PC(32:1) + H as well as PE (21:4)-H allow a good prediction of IgAV. PE-to-PC conversion may participate in the damage of kidney in IgAV. PC (38:6) + H may be a potential biomarker for IgAVN. Supplementary Information The online version contains supplementary material available at 10.1186/s13000-021-01185-1.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Wen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiqiang Dang
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shipin Feng
- Department of Pediatric Nephrology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Taohua Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Li
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China. .,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
27
|
Tokarz-Deptuła B, Palma J, Baraniecki Ł, Stosik M, Kołacz R, Deptuła W. What Function Do Platelets Play in Inflammation and Bacterial and Viral Infections? Front Immunol 2021; 12:770436. [PMID: 34970260 PMCID: PMC8713818 DOI: 10.3389/fimmu.2021.770436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
The article presents the function of platelets in inflammation as well as in bacterial and viral infections, which are the result of their reaction with the endovascular environment, including cells of damaged vascular endothelium and cells of the immune system. This role of platelets is conditioned by biologically active substances present in their granules and in their specific structures - EV (extracellular vesicles).
Collapse
Affiliation(s)
| | - Joanna Palma
- Department of Biochemical Sciences, Pomeranian Medical University, Szczecin, Poland
| | | | - Michał Stosik
- Institute of Biological Science, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
| | - Roman Kołacz
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
28
|
Recent Advances in the Discovery and Function of Antimicrobial Molecules in Platelets. Int J Mol Sci 2021; 22:ijms221910230. [PMID: 34638568 PMCID: PMC8508203 DOI: 10.3390/ijms221910230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/14/2022] Open
Abstract
The conventional function described for platelets is maintaining vascular integrity. Nevertheless, increasing evidence reveals that platelets can additionally play a crucial role in responding against microorganisms. Activated platelets release molecules with antimicrobial activity. This ability was first demonstrated in rabbit serum after coagulation and later in rabbit platelets stimulated with thrombin. Currently, multiple discoveries have allowed the identification and characterization of PMPs (platelet microbicidal proteins) and opened the way to identify kinocidins and CHDPs (cationic host defense peptides) in human platelets. These molecules are endowed with microbicidal activity through different mechanisms that broaden the platelet participation in normal and pathologic conditions. Therefore, this review aims to integrate the currently described platelet molecules with antimicrobial properties by summarizing the pathways towards their identification, characterization, and functional evaluation that have promoted new avenues for studying platelets based on kinocidins and CHDPs secretion.
Collapse
|
29
|
Nording H, Baron L, Haberthür D, Emschermann F, Mezger M, Sauter M, Sauter R, Patzelt J, Knoepp K, Nording A, Meusel M, Meyer-Saraei R, Hlushchuk R, Sedding D, Borst O, Eitel I, Karsten CM, Feil R, Pichler B, Erdmann J, Verschoor A, Chavakis E, Chavakis T, von Hundelshausen P, Köhl J, Gawaz M, Langer HF. The C5a/C5a receptor 1 axis controls tissue neovascularization through CXCL4 release from platelets. Nat Commun 2021; 12:3352. [PMID: 34099640 PMCID: PMC8185003 DOI: 10.1038/s41467-021-23499-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Platelets contribute to the regulation of tissue neovascularization, although the specific factors underlying this function are unknown. Here, we identified the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) on platelets as a negative regulatory mechanism of vessel formation. We showed that platelets expressing C5aR1 exert an inhibitory effect on endothelial cell functions such as migration and 2D and 3D tube formation. Growth factor- and hypoxia-driven vascularization was markedly increased in C5ar1-/- mice. Platelet-specific deletion of C5aR1 resulted in a proangiogenic phenotype with increased collateralization, capillarization and improved pericyte coverage. Mechanistically, we found that C5a induced preferential release of CXC chemokine ligand 4 (CXCL4, PF4) from platelets as an important antiangiogenic paracrine effector molecule. Interfering with the C5aR1-CXCL4 axis reversed the antiangiogenic effect of platelets both in vitro and in vivo.In conclusion, we identified a mechanism for the control of tissue neovascularization through C5a/C5aR1 axis activation in platelets and subsequent induction of the antiangiogenic factor CXCL4.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - David Haberthür
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Frederic Emschermann
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Matthias Mezger
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Johannes Patzelt
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Kai Knoepp
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Anne Nording
- grid.10392.390000 0001 2190 1447Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | - Moritz Meusel
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Roza Meyer-Saraei
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Ruslan Hlushchuk
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Daniel Sedding
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Oliver Borst
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Ingo Eitel
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Robert Feil
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Bernd Pichler
- grid.10392.390000 0001 2190 1447Institute for Preclinical Imaging, Eberhard Karls University, Tübingen, Germany
| | - Jeanette Erdmann
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Admar Verschoor
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Emmanouil Chavakis
- grid.411088.40000 0004 0578 8220Department for Internal Medicine III/Cardiology, University Hospital of the Johann-Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Triantafyllos Chavakis
- grid.4488.00000 0001 2111 7257Department of Clinical Pathobiochemistry, Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Philipp von Hundelshausen
- grid.5252.00000 0004 1936 973XInstitute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
| | - Jörg Köhl
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany ,grid.239573.90000 0000 9025 8099Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Meinrad Gawaz
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
30
|
Rawish E, Sauter M, Sauter R, Nording H, Langer HF. Complement, inflammation and thrombosis. Br J Pharmacol 2021; 178:2892-2904. [PMID: 33817781 DOI: 10.1111/bph.15476] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022] Open
Abstract
A mutual relationship exists between immune activation and mechanisms of thrombus formation. In particular, elements of the innate immune response such as the complement system can modulate platelet activation and subsequently thrombus formation. Several components of the complement system including C3 or the membrane attack complex have been reported to be associated with platelets and become functionally active in the micromilieu of platelet activation. The exact mechanisms how this interplay is regulated and its consequences for tissue inflammation, damage or recovery remain to be defined. This review addresses the current state of knowledge on this topic and puts it into context with diseases featuring both thrombosis and complement activation. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Harald F Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
31
|
Aslan JE. Platelet Proteomes, Pathways, and Phenotypes as Informants of Vascular Wellness and Disease. Arterioscler Thromb Vasc Biol 2021; 41:999-1011. [PMID: 33441027 PMCID: PMC7980774 DOI: 10.1161/atvbaha.120.314647] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelets rapidly undergo responsive transitions in form and function to repair vascular endothelium and mediate hemostasis. In contrast, heterogeneous platelet subpopulations with a range of primed or refractory phenotypes gradually arise in chronic inflammatory and other conditions in a manner that may indicate or support disease. Qualitatively distinguishable platelet phenotypes are increasingly associated with a variety of physiological and pathological circumstances; however, the origins and significance of platelet phenotypic variation remain unclear and conceptually vague. As changes in platelet function in disease exhibit many similarities to platelets following the activation of platelet agonist receptors, the intracellular responses of platelets common to hemostasis and inflammation may provide insights to the molecular basis of platelet phenotype. Here, we review concepts around how protein-level relations-from platelet receptors through intracellular signaling events-may help to define platelet phenotypes in inflammation, immune responses, aging, and other conditions. We further discuss how representing systems-wide platelet proteomics data profiles as circuit-like networks of causally related intracellular events, or, pathway maps, may inform molecular definitions of platelet phenotype. In addition to offering insights into platelets as druggable targets, maps of causally arranged intracellular relations underlying platelet function can also advance precision and interceptive medicine efforts by leveraging platelets as accessible, dynamic, endogenous, circulating biomarkers of vascular wellness and disease. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Joseph E. Aslan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry and School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
32
|
Rawish E, Nording H, Münte T, Langer HF. Platelets as Mediators of Neuroinflammation and Thrombosis. Front Immunol 2020; 11:548631. [PMID: 33123127 PMCID: PMC7572851 DOI: 10.3389/fimmu.2020.548631] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Beyond platelets function in hemostasis, there is emerging evidence to suggest that platelets contribute crucially to inflammation and immune responses. Therefore, considering the detrimental role of inflammatory conditions in severe neurological disorders such as multiple sclerosis or stroke, this review outlines platelets involvement in neuroinflammation. For this, distinct mechanisms of platelet-mediated thrombosis and inflammation are portrayed, focusing on the interaction of platelet receptors with other immune cells as well as brain endothelial cells. Furthermore, we draw attention to the intimate interplay between platelets and the complement system as well as between platelets and plasmatic coagulation factors in the course of neuroinflammation. Following the thorough exposition of preclinical approaches which aim at ameliorating disease severity after inducing experimental autoimmune encephalomyelitis (a counterpart of multiple sclerosis in mice) or brain ischemia-reperfusion injury, the clinical relevance of platelet-mediated neuroinflammation is addressed. Thus, current as well as future propitious translational and clinical strategies for the treatment of neuro-inflammatory diseases by affecting platelet function are illustrated, emphasizing that targeting platelet-mediated neuroinflammation could become an efficient adjunct therapy to mitigate disease severity of multiple sclerosis or stroke associated brain injury.
Collapse
Affiliation(s)
- Elias Rawish
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Henry Nording
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Thomas Münte
- University Hospital Schleswig-Holstein, Clinic for Neurology, Lübeck, Germany
| | - Harald F. Langer
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| |
Collapse
|
33
|
Integrative Multi-Omics Analysis in Calcific Aortic Valve Disease Reveals a Link to the Formation of Amyloid-Like Deposits. Cells 2020; 9:cells9102164. [PMID: 32987857 PMCID: PMC7600313 DOI: 10.3390/cells9102164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is the most prevalent valvular heart disease in the developed world, yet no pharmacological therapy exists. Here, we hypothesize that the integration of multiple omic data represents an approach towards unveiling novel molecular networks in CAVD. Databases were searched for CAVD omic studies. Differentially expressed molecules from calcified and control samples were retrieved, identifying 32 micro RNAs (miRNA), 596 mRNAs and 80 proteins. Over-representation pathway analysis revealed platelet degranulation and complement/coagulation cascade as dysregulated pathways. Multi-omics integration of overlapping proteome/transcriptome molecules, with the miRNAs, identified a CAVD protein–protein interaction network containing seven seed genes (apolipoprotein A1 (APOA1), hemoglobin subunit β (HBB), transferrin (TF), α-2-macroglobulin (A2M), transforming growth factor β-induced protein (TGFBI), serpin family A member 1 (SERPINA1), lipopolysaccharide binding protein (LBP), inter-α-trypsin inhibitor heavy chain 3 (ITIH3) and immunoglobulin κ constant (IGKC)), four input miRNAs (miR-335-5p, miR-3663-3p, miR-21-5p, miR-93-5p) and two connector genes (amyloid beta precursor protein (APP) and transthyretin (TTR)). In a metabolite–gene–disease network, Alzheimer’s disease exhibited the highest degree of betweenness. To further strengthen the associations based on the multi-omics approach, we validated the presence of APP and TTR in calcified valves from CAVD patients by immunohistochemistry. Our study suggests a novel molecular CAVD network potentially linked to the formation of amyloid-like structures. Further investigations on the associated mechanisms and therapeutic potential of targeting amyloid-like deposits in CAVD may offer significant health benefits.
Collapse
|
34
|
Nording H, Baron L, Langer HF. Platelets as therapeutic targets to prevent atherosclerosis. Atherosclerosis 2020; 307:97-108. [DOI: 10.1016/j.atherosclerosis.2020.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
|
35
|
Luo S, Hu D, Wang M, Zipfel PF, Hu Y. Complement in Hemolysis- and Thrombosis- Related Diseases. Front Immunol 2020; 11:1212. [PMID: 32754149 PMCID: PMC7366831 DOI: 10.3389/fimmu.2020.01212] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
The complement system, originally classified as part of innate immunity, is a tightly self-regulated system consisting of liquid phase, cell surface, and intracellular proteins. In the blood circulation, the complement system, platelets, coagulation system, and fibrinolysis system form a close and complex network. They activate and regulate each other and jointly mediate immune monitoring and tissue homeostasis. The dysregulation of each cascade system results in clinical manifestations and the progression of different diseases, such as sepsis, atypical hemolytic uremic syndrome, C3 glomerulonephritis, systemic lupus erythematosus, or ischemia–reperfusion injury. In this review, we summarize the crosstalk between the complement system, platelets, and coagulation, provide integrative insights into how complement dysfunction leads to hemopathic progression, and further discuss the therapeutic relevance of complement in hemolytic and thrombotic diseases.
Collapse
Affiliation(s)
- Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Abstract
In sepsis, coagulation is activated and there is an increased risk of developing a consumptive coagulopathy with attendant increase in mortality. The processes that regulate hemostasis evolved as a component of the inflammatory response to infection. Many points of interaction occur on the endothelial cell surface linking the 2 cell types in the initiation and regulation of hemostasis and inflammation. Consequently, inflammation stimulates both platelets and endothelial cells in ways that affect both hemostasis and the immune response. Platelets are also prime drivers of the inflammatory response. This article discusses the pathways wherein inflammation regulates platelet and endothelial cell function.
Collapse
Affiliation(s)
- Tom van der Poll
- Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Meibergdreef 9, Room G2-130, Amsterdam 1105AZ, the Netherlands
| | - Robert I Parker
- Department of Pediatrics, Pediatric Hematology/Oncology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8111, USA.
| |
Collapse
|
37
|
Xiao L, Harrison DG. Inflammation in Hypertension. Can J Cardiol 2020; 36:635-647. [PMID: 32389337 DOI: 10.1016/j.cjca.2020.01.013] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
For more than 50 years, evidence has accumulated that inflammation contributes to the pathogenesis of hypertension. Immune cells have been observed in vessels and kidneys of hypertensive humans. Biomarkers of inflammation, including high sensitivity C-reactive protein, various cytokines, and products of the complement pathway are elevated in humans with hypertension. Emerging evidence suggests that hypertension is accompanied and indeed initiated by activation of complement, the inflammasome, and by a change in the phenotype of circulating immune cells, particularly myeloid cells. High-dimensional transcriptomic analyses are providing insight into new subclasses of immune cells that are likely injurious in hypertension. These inflammatory events are interdependent and there is ultimately engagement of the adaptive immune system through mechanisms involving oxidative stress, modification of endogenous proteins, and alterations in antigen processing and presentation. These observations suggest new therapeutic opportunities to reduce end organ damage in hypertension might be used and guided by levels of inflammatory biomarkers.
Collapse
Affiliation(s)
- Liang Xiao
- Departments of Medicine, Pharmacology, and Physiology, and Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David G Harrison
- Departments of Medicine, Pharmacology, and Physiology, and Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
38
|
Yu Z, Shibazaki M, Otsuka H, Takada H, Nakamura M, Endo Y. Dynamics of Platelet Behaviors as Defenders and Guardians: Accumulations in Liver, Lung, and Spleen in Mice. Biol Pharm Bull 2020; 42:1253-1267. [PMID: 31366863 DOI: 10.1248/bpb.b18-00975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic platelet behaviors in experimental animals are often assessed by infusion of isotope-labeled platelets and measuring them under anesthesia. However, such procedures alter, therefore may not reveal, real-life platelet behaviors. 5-Hydroxytryptamine (5HT or serotonin) is present within limited cell-types, including platelets. In our studies, by measuring 5HT as a platelet-marker in non-anesthetized mice, we identified stimulation- and time-dependent accumulations in liver, lung, and/or spleen as important systemic platelet behaviors. For example, intravenous, intraperitoneal, or intragingival injection of lipopolysaccharide (LPS, a cell-wall component of Gram-negative bacteria), interleukin (IL)-1, or tumor necrosis factor (TNF)-α induced hepatic platelet accumulation (HPA) and platelet translocation into the sinusoidal and perisinusoidal spaces or hepatocytes themselves. These events occurred "within a few hours" of the injection, caused hypoglycemia, and exhibited protective or causal effects on hepatitis. Intravenous injection of larger doses of LPS into normal mice, or intravenous antigen-challenge to sensitized mice, induced pulmonary platelet accumulation (PPA), as well as HPA. These reactions occurred "within a few min" of the LPS injection or antigen challenge and resulted in shock. Intravenous injection of 5HT or a catecholamine induced a rapid PPA "within 6 s." Intravenous LPS injection, within a minute, increased the pulmonary catecholamines that mediate the LPS-induced PPA. Macrophage-depletion from liver and spleen induced "day-scale" splenic platelet accumulation, suggesting the spleen is involved in clearing senescent platelets. These findings indicate the usefulness of 5HT as a marker of platelet behaviors, and provide a basis for a discussion of the roles of platelets as both "defenders" and "guardians."
Collapse
Affiliation(s)
- Zhiqian Yu
- Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University
| | - Masahiro Shibazaki
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University
| | - Hirotada Otsuka
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University
| | - Haruhiko Takada
- Department of Microbiology and Immunology, Graduate School of Dentistry, Tohoku University
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University
| | - Yasuo Endo
- Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University
| |
Collapse
|
39
|
Meinke S, Karlström C, Höglund P. Complement as an Immune Barrier in Platelet Transfusion Refractoriness. Transfus Med Rev 2019; 33:231-235. [PMID: 31679761 DOI: 10.1016/j.tmrv.2019.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
Patients with hematological cancers often have low platelet counts because of progressing bone marrow failure or cytostatic therapy. A large fraction of those patients need platelet transfusions, which can be life-saving if bleedings occur and also allow diagnostic and therapeutic interventions. The outcomes of platelet transfusions are not always easy to predict in terms of bleeding control or increase in platelet count. Reasons could be disease-specific factors, fever, or infections leading to platelet consumption, but the immune system may also be involved, in particular, in patients previously immunized against foreign human leukocyte antigens (HLA). Mechanisms underlying immune-mediated platelet destruction in the presence of antibodies again HLA are not well understood in clinical situations. This review discusses the role of complement in platelet refractoriness, with a focus on HLA antibody-mediated platelet refractoriness. We summarize recent work in this area, discuss complement-platelet interactions in general terms, and a suggest a possible role of complement in platelet transfusion in general.
Collapse
Affiliation(s)
- Stephan Meinke
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Sweden
| | - Cecilia Karlström
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Sweden; Theme Hematology, Karolinska University Hospital, Sweden
| | - Petter Höglund
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Sweden; Function area Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Sweden.
| |
Collapse
|
40
|
McDonald B, Dunbar M. Platelets and Intravascular Immunity: Guardians of the Vascular Space During Bloodstream Infections and Sepsis. Front Immunol 2019; 10:2400. [PMID: 31681291 PMCID: PMC6797619 DOI: 10.3389/fimmu.2019.02400] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Despite their humble origins as anuclear fragments of megakaryocytes, platelets have emerged as versatile mediators of thrombosis and immunity. The diverse spectrum of platelet functions are on full display during the host response to severe infection and sepsis, with platelets taking center-stage in the intravascular immune response to blood-borne pathogens. Platelets are endowed with a comprehensive armamentarium of pathogen detection systems that enable them to function as sentinels in the bloodstream for rapid identification of microbial invasion. Through both autonomous anti-microbial effector functions and collaborations with other innate immune cells, platelets orchestrate a complex intravascular immune defense system that protects against bacterial dissemination. As with any powerful immune defense system, dysregulation of platelet-mediated intravascular immunity can lead to profound collateral damage to host cells and tissues, resulting in sepsis-associated organ dysfunction. In this article, the cellular and molecular contributions of platelets to intravascular immune defenses in sepsis will be reviewed, including the roles of platelets in surveillance of the microcirculation and elicitation of protective anti-bacterial responses. Mechanisms of platelet-mediated thromboinflammatory organ dysfunction will be explored, with linkages to clinical biomarkers of platelet homeostasis that aid in the diagnosis and prognostication of human sepsis. Lastly, we discuss novel therapeutic opportunities that take advantage of our evolving understanding of platelets and intravascular immunity in severe infection.
Collapse
Affiliation(s)
- Braedon McDonald
- Department of Critical Care Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mary Dunbar
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
41
|
Wu Y, Zhu CP, Zhang Y, Li Y, Sun JR. Immunomodulatory and antioxidant effects of pomegranate peel polysaccharides on immunosuppressed mice. Int J Biol Macromol 2019; 137:504-511. [PMID: 31229542 DOI: 10.1016/j.ijbiomac.2019.06.139] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
This work aims to analyze the immunomodulatory effect of pomegranate peel polysaccharides (PPP) on the immunosuppressed mice induced by cyclophosphamide (CTX). All the mice were divided into 6 groups randomly and the immunoprophylaxis mice were administrated with PPP [100, 200, 400 mg/(kg·d)] by gavage for consecutive 28 days. The results showed that PPP can slow down the decline of body weight and increase the immune organ index of the immunosuppressed mice. Compared to the model mice, the enzymatic activity of LDH (lactate dehydrogenase) and ACP (acid phosphatase) of the mice spleen administrated with PPP by gavage was enhanced significantly. PPP stimulated proliferation and secretion of splenic lymphocytes and markedly increased the immunoglobulin (Ig-A, Ig-G and Ig-M) expression and the release of cytokines (TNF-α, IL-2 and INF-γ) in cyclophosphamide-induced immunosuppressed mice. Hepatic antioxidant enzymatic activities of T-AOC (total antioxidant capacity), T-SOD (total superoxide dismutase), GSH-PX (glutathione peroxidase) and CAT (catalase) were markedly increased when the mice were administrated with high dosage of PPP. So it can be concluded that PPP could be used as an efficacious adjacent immunopotentiating therapy or an alternative means in lessening chemotherapy-induced immunosuppression, and also can be utilized as immunostimulants for food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yuan Wu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Cai-Ping Zhu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Center of Shaanxi Province for Food and Health Sciences, Xi'an 710119, China.
| | - Yang Zhang
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yun Li
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jing-Ru Sun
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
42
|
Zhu Y, Jiang P, Luo B, Lan F, He J, Wu Y. Dynamic protein corona influences immune-modulating osteogenesis in magnetic nanoparticle (MNP)-infiltrated bone regeneration scaffolds in vivo. NANOSCALE 2019; 11:6817-6827. [PMID: 30912535 DOI: 10.1039/c8nr08614a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An inflammatory reaction initiates fracture healing and directly influences the osteoinductive effect of the magnetic hydroxyapatite (MHA) scaffold, but the underlying mechanism is yet to be elucidated. Protein corona as a real biological identity of a biomaterial significantly affects the biological function of the bone regenerative scaffold. Hence, we developed a simple and effective in vivo dynamic model for the protein corona of MHA scaffolds to predict the correlation between the inflammatory reaction and bone wound healing, as well as the underlying mechanism governing such a process. Certain proteins including proteins related to the immune response and inflammation, bone and wound healing, extracellular matrix, cell behavior, and signaling increased in the protein corona of the magnetic nanoparticle (MNP)-infiltrated scaffolds in a time-dependent manner. Moreover, the enriched proteins related to the immune response and inflammation adsorbed on the MHA scaffolds correlated well with the proteins that significantly enhanced bone wound healing, as suggested by the same variation tendency of the proteins related to bone and wound healing, and immune response and inflammation. The presence of MNPs suppressed the chronic inflammatory responses and highly promoted the acute inflammatory responses. More importantly, the activation of the acute inflammatory responses led to the recruitment of immune cells, remodeling of the extracellular matrix and even the acceleration of bone healing. The bone repair in vivo model and inflammatory cytokine in vitro model results further corroborated the critical involvement of inflammatory reaction in enhancing bone wound healing. This opens up the great potential of protein corona formation to understand the complicated mechanisms involved in immune-modulated bone wound healing.
Collapse
Affiliation(s)
- Yue Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, P.R. China.
| | | | | | | | | | | |
Collapse
|
43
|
Sereni L, Castiello MC, Di Silvestre D, Della Valle P, Brombin C, Ferrua F, Cicalese MP, Pozzi L, Migliavacca M, Bernardo ME, Pignata C, Farah R, Notarangelo LD, Marcus N, Cattaneo L, Spinelli M, Giannelli S, Bosticardo M, van Rossem K, D'Angelo A, Aiuti A, Mauri P, Villa A. Lentiviral gene therapy corrects platelet phenotype and function in patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2019; 144:825-838. [PMID: 30926529 PMCID: PMC6721834 DOI: 10.1016/j.jaci.2019.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022]
Abstract
Background Thrombocytopenia is a serious issue for all patients with classical Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT) because it causes severe and life-threatening bleeding. Lentiviral gene therapy (GT) for WAS has shown promising results in terms of immune reconstitution. However, despite the reduced severity and frequency of bleeding events, platelet counts remain low in GT-treated patients. Objective We carefully investigated platelet defects in terms of phenotype and function in untreated patients with WAS and assessed the effect of GT treatment on platelet dysfunction. Methods We analyzed a cohort of 20 patients with WAS/XLT, 15 of them receiving GT. Platelet phenotype and function were analyzed by using electron microscopy, flow cytometry, and an aggregation assay. Platelet protein composition was assessed before and after GT by means of proteomic profile analysis. Results We show that platelets from untreated patients with WAS have reduced size, abnormal ultrastructure, and a hyperactivated phenotype at steady state, whereas activation and aggregation responses to agonists are decreased. GT restores platelet size and function early after treatment and reduces the hyperactivated phenotype proportionally to WAS protein expression and length of follow-up. Conclusions Our study highlights the coexistence of morphologic and multiple functional defects in platelets lacking WAS protein and demonstrates that GT normalizes the platelet proteomic profile with consequent restoration of platelet ultrastructure and phenotype, which might explain the observed reduction of bleeding episodes after GT. These results are instrumental also from the perspective of a future clinical trial in patients with XLT only presenting with microthrombocytopenia.
Collapse
Affiliation(s)
- Lucia Sereni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Patrizia Della Valle
- Coagulation Service & Thrombosis Research Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brombin
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Pediatric Immunohematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Loris Pozzi
- Coagulation Service & Thrombosis Research Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Migliavacca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Roula Farah
- Department of Pediatrics, Division of Hematology-Oncology, Saint George Hospital University Medical Centre, Beirut, Lebanon
| | - Lucia Dora Notarangelo
- Pediatric Onco-Haematology and BMT Unit, Children's Hospital, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Nufar Marcus
- Department of Pediatrics, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Kipper Institute of Immunology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Marco Spinelli
- Pediatric Clinic, MBBM Foundation, Maria Letizia Verga Center, Monza, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marita Bosticardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Koen van Rossem
- Rare Diseases Unit, GlaxoSmithKline, Brentford, United Kingdom
| | - Armando D'Angelo
- Coagulation Service & Thrombosis Research Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Pediatric Immunohematology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy.
| |
Collapse
|
44
|
Palm F, Sjöholm K, Malmström J, Shannon O. Complement Activation Occurs at the Surface of Platelets Activated by Streptococcal M1 Protein and This Results in Phagocytosis of Platelets. THE JOURNAL OF IMMUNOLOGY 2018; 202:503-513. [PMID: 30541884 DOI: 10.4049/jimmunol.1800897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
Abstract
Platelets circulate the bloodstream and principally maintain hemostasis. Disturbed hemostasis, a dysregulated inflammatory state, and a decreased platelet count are all hallmarks of severe invasive Streptococcus pyogenes infection, sepsis. We have previously demonstrated that the released M1 protein from S. pyogenes activates platelets, and this activation is dependent on the binding of M1 protein, fibrinogen, and M1-specific IgG to platelets in susceptible donors. In this study, we characterize the M1-associated protein interactions in human plasma and investigate the acquisition of proteins to the surface of activated platelets and the consequences for platelet immune function. Using quantitative mass spectrometry, M1 protein was determined to form a protein complex in plasma with statistically significant enrichment of fibrinogen, IgG3, and complement components, especially C1q. Using flow cytometry, these plasma proteins were also confirmed to be acquired to the platelet surface, resulting in complement activation on M1-activated human platelets. Furthermore, we demonstrated an increased phagocytosis of M1-activated platelets by monocytes, which was not observed with other physiological platelet agonists. This reveals a novel mechanism of complement activation during streptococcal sepsis, which contributes to the platelet consumption that occurs in sepsis.
Collapse
Affiliation(s)
- Frida Palm
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Kristoffer Sjöholm
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
45
|
Eisinger F, Patzelt J, Langer HF. The Platelet Response to Tissue Injury. Front Med (Lausanne) 2018; 5:317. [PMID: 30483508 PMCID: PMC6242949 DOI: 10.3389/fmed.2018.00317] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, various studies have increasingly explained platelet functions not only in their central role as a regulator in cellular hemostasis and coagulation. In fact, there is growing evidence that under specific conditions, platelets act as a mediator between the vascular system, hemostasis, and the immune system. Therefore, they are essential in many processes involved in tissue remodeling and tissue reorganization after injury or inflammatory responses. These processes include the promotion of inflammatory processes, the contribution to innate and adaptive immune responses during bacterial and viral infections, the modulation of angiogenesis, and the regulation of cell apoptosis in steady-state tissue homeostasis or after tissue breakdown. All in all platelets may contribute to the control of tissue homeostasis much more than generally assumed. This review summarizes the current knowledge of platelets as part of the tissue remodeling network and seeks to provide possible translational implications for clinical therapy.
Collapse
Affiliation(s)
- Felix Eisinger
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Johannes Patzelt
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Harald F. Langer
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
46
|
Affiliation(s)
- Claudia Kemper
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD20892, USA; Institute for Systemic Inflammation Research, University of Lübeck, 23562Lübeck, Germany; School of Immunology & Microbial Sciences, King's College London, King's College London, LondonSE1 9RT, UK
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH45229, USA
| |
Collapse
|
47
|
Berger N, Alayi TD, Resuello RRG, Tuplano JV, Reis ES, Lambris JD. New Analogs of the Complement C3 Inhibitor Compstatin with Increased Solubility and Improved Pharmacokinetic Profile. J Med Chem 2018; 61:6153-6162. [PMID: 29920096 DOI: 10.1021/acs.jmedchem.8b00560] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Improper regulation of complement is associated with various pathologies, and the clinical demand for compounds that can regulate complement activation is therefore imperative. Cp40, an analog of the peptide compstatin, inhibits all complement pathways at the level of the central component C3. We have further developed Cp40, using either PEGylation at the N-terminus or insertion of charged amino acids at the C-terminus. The PEGylated analogs are highly soluble and retained their inhibitory activity, with C3b binding affinity dependent on the length of the PEG chain. The addition of two or three residues of lysine, in turn, not only improved the peptide's solubility but also increased the binding affinity for C3b while retaining its inhibitory potency. Three of the new derivatives showed improved pharmacokinetic profiles in vivo in non-human primates. Given their compelling solubility and pharmacokinetic profiles, these new Cp40 analogs should broaden the spectrum of administration routes, likely reducing dosing frequency during chronic treatment and potentially expanding their range of clinical application.
Collapse
Affiliation(s)
- Nadja Berger
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Tchilabalo Dilezitoko Alayi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Ranillo R G Resuello
- Simian Conservation Breeding and Research Center (SICONBREC) , Makati City 1231 , Philippines
| | - Joel V Tuplano
- Simian Conservation Breeding and Research Center (SICONBREC) , Makati City 1231 , Philippines
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|