1
|
Seyfried TN, Lee DC, Duraj T, Ta NL, Mukherjee P, Kiebish M, Arismendi-Morillo G, Chinopoulos C. The Warburg hypothesis and the emergence of the mitochondrial metabolic theory of cancer. J Bioenerg Biomembr 2025:10.1007/s10863-025-10059-w. [PMID: 40199815 DOI: 10.1007/s10863-025-10059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Otto Warburg originally proposed that cancer arose from a two-step process. The first step involved a chronic insufficiency of mitochondrial oxidative phosphorylation (OxPhos), while the second step involved a protracted compensatory energy synthesis through lactic acid fermentation. His extensive findings showed that oxygen consumption was lower while lactate production was higher in cancerous tissues than in non-cancerous tissues. Warburg considered both oxygen consumption and extracellular lactate as accurate markers for ATP production through OxPhos and glycolysis, respectively. Warburg's hypothesis was challenged from findings showing that oxygen consumption remained high in some cancer cells despite the elevated production of lactate suggesting that OxPhos was largely unimpaired. New information indicates that neither oxygen consumption nor lactate production are accurate surrogates for quantification of ATP production in cancer cells. Warburg also did not know that a significant amount of ATP could come from glutamine-driven mitochondrial substrate level phosphorylation in the glutaminolysis pathway with succinate produced as end product, thus confounding the linkage of oxygen consumption to the origin of ATP production within mitochondria. Moreover, new information shows that cytoplasmic lipid droplets and elevated aerobic lactic acid fermentation are both biomarkers for OxPhos insufficiency. Warburg's original hypothesis can now be linked to a more complete understanding of how OxPhos insufficiency underlies dysregulated cancer cell growth. These findings can also address several questionable assumptions regarding the origin of cancer thus allowing the field to advance with more effective therapeutic strategies for a less toxic metabolic management and prevention of cancer.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA.
| | - Derek C Lee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Tomas Duraj
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Nathan L Ta
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | | | - Gabriel Arismendi-Morillo
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, Venezuela
- Department of Medicine, Faculty of Health Sciences, University of Deusto, Bilbao (Bizkaia), Spain
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
2
|
Rajan A, Fame RM. Brain development and bioenergetic changes. Neurobiol Dis 2024; 199:106550. [PMID: 38849103 PMCID: PMC11495523 DOI: 10.1016/j.nbd.2024.106550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024] Open
Abstract
Bioenergetics describe the biochemical processes responsible for energy supply in organisms. When these changes become dysregulated in brain development, multiple neurodevelopmental diseases can occur, implicating bioenergetics as key regulators of neural development. Historically, the discovery of disease processes affecting individual stages of brain development has revealed critical roles that bioenergetics play in generating the nervous system. Bioenergetic-dependent neurodevelopmental disorders include neural tube closure defects, microcephaly, intellectual disability, autism spectrum disorders, epilepsy, mTORopathies, and oncogenic processes. Developmental timing and cell-type specificity of these changes determine the long-term effects of bioenergetic disease mechanisms on brain form and function. Here, we discuss key metabolic regulators of neural progenitor specification, neuronal differentiation (neurogenesis), and gliogenesis. In general, transitions between glycolysis and oxidative phosphorylation are regulated in early brain development and in oncogenesis, and reactive oxygen species (ROS) and mitochondrial maturity play key roles later in differentiation. We also discuss how bioenergetics interface with the developmental regulation of other key neural elements, including the cerebrospinal fluid brain environment. While questions remain about the interplay between bioenergetics and brain development, this review integrates the current state of known key intersections between these processes in health and disease.
Collapse
Affiliation(s)
- Arjun Rajan
- Developmental Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ryann M Fame
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Seyfried TN, Arismendi-Morillo G, Zuccoli G, Lee DC, Duraj T, Elsakka AM, Maroon JC, Mukherjee P, Ta L, Shelton L, D'Agostino D, Kiebish M, Chinopoulos C. Metabolic management of microenvironment acidity in glioblastoma. Front Oncol 2022; 12:968351. [PMID: 36059707 PMCID: PMC9428719 DOI: 10.3389/fonc.2022.968351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM), similar to most cancers, is dependent on fermentation metabolism for the synthesis of biomass and energy (ATP) regardless of the cellular or genetic heterogeneity seen within the tumor. The transition from respiration to fermentation arises from the documented defects in the number, the structure, and the function of mitochondria and mitochondrial-associated membranes in GBM tissue. Glucose and glutamine are the major fermentable fuels that drive GBM growth. The major waste products of GBM cell fermentation (lactic acid, glutamic acid, and succinic acid) will acidify the microenvironment and are largely responsible for drug resistance, enhanced invasion, immunosuppression, and metastasis. Besides surgical debulking, therapies used for GBM management (radiation, chemotherapy, and steroids) enhance microenvironment acidification and, although often providing a time-limited disease control, will thus favor tumor recurrence and complications. The simultaneous restriction of glucose and glutamine, while elevating non-fermentable, anti-inflammatory ketone bodies, can help restore the pH balance of the microenvironment while, at the same time, providing a non-toxic therapeutic strategy for killing most of the neoplastic cells.
Collapse
Affiliation(s)
- Thomas N. Seyfried
- Biology Department, Boston College, Chestnut Hill, MA, United States
- *Correspondence: Thomas N. Seyfried,
| | - Gabriel Arismendi-Morillo
- Instituto de Investigaciones Biológicas, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Giulio Zuccoli
- The Program for the Study of Neurodevelopment in Rare Disorders (NDRD), University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek C. Lee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Tomas Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, Madrid, Spain
| | - Ahmed M. Elsakka
- Neuro Metabolism, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Joseph C. Maroon
- Department of Neurosurgery, University of Pittsburgh, Medical Center, Pittsburgh, PA, United States
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Linh Ta
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | | | - Dominic D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | | | | |
Collapse
|
4
|
Grespi F, Vianello C, Cagnin S, Giacomello M, De Mario A. The Interplay of Microtubules with Mitochondria–ER Contact Sites (MERCs) in Glioblastoma. Biomolecules 2022; 12:biom12040567. [PMID: 35454156 PMCID: PMC9030160 DOI: 10.3390/biom12040567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Gliomas are heterogeneous neoplasms, classified into grade I to IV according to their malignancy and the presence of specific histological/molecular hallmarks. The higher grade of glioma is known as glioblastoma (GB). Although progress has been made in surgical and radiation treatments, its clinical outcome is still unfavorable. The invasive properties of GB cells and glioma aggressiveness are linked to the reshaping of the cytoskeleton. Recent works suggest that the different susceptibility of GB cells to antitumor immune response is also associated with the extent and function of mitochondria–ER contact sites (MERCs). The presence of MERCs alterations could also explain the mitochondrial defects observed in GB models, including abnormalities of energy metabolism and disruption of apoptotic and calcium signaling. Based on this evidence, the question arises as to whether a MERCs–cytoskeleton crosstalk exists, and whether GB progression is linked to an altered cytoskeleton–MERCs interaction. To address this possibility, in this review we performed a meta-analysis to compare grade I and grade IV GB patients. From this preliminary analysis, we found that GB samples (grade IV) are characterized by altered expression of cytoskeletal and MERCs related genes. Among them, the cytoskeleton-associated protein 4 (CKAP4 or CLIMP-63) appears particularly interesting as it encodes a MERCs protein controlling the ER anchoring to microtubules (MTs). Although further in-depth analyses remain necessary, this perspective review may provide new hints to better understand GB molecular etiopathogenesis, by suggesting that cytoskeletal and MERCs alterations cooperate to exacerbate the cellular phenotype of high-grade GB and that MERCs players can be exploited as novel biomarkers/targets to enhance the current therapy for GB.
Collapse
Affiliation(s)
- Francesca Grespi
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
| | - Caterina Vianello
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
| | - Stefano Cagnin
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
- CRIBI Biotechnology Center, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- CIR-Myo Myology Center, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
| | - Marta Giacomello
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- Correspondence: (M.G.); (A.D.M.)
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- Correspondence: (M.G.); (A.D.M.)
| |
Collapse
|
5
|
Duraj T, Carrión-Navarro J, Seyfried TN, García-Romero N, Ayuso-Sacido A. Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Mol Metab 2021; 54:101389. [PMID: 34749013 PMCID: PMC8637646 DOI: 10.1016/j.molmet.2021.101389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aberrant metabolism is recognized as a hallmark of cancer, a pillar necessary for cellular proliferation. Regarding bioenergetics (ATP generation), most cancers display a preference not only toward aerobic glycolysis ("Warburg effect") and glutaminolysis (mitochondrial substrate level-phosphorylation) but also toward other metabolites such as lactate, pyruvate, and fat-derived sources. These secondary metabolites can assist in proliferation but cannot fully cover ATP demands. SCOPE OF REVIEW The concept of a static metabolic profile is challenged by instances of heterogeneity and flexibility to meet fuel/anaplerotic demands. Although metabolic therapies are a promising tool to improve therapeutic outcomes, either via pharmacological targets or press-pulse interventions, metabolic plasticity is rarely considered. Lack of bioenergetic analysis in vitro and patient-derived models is hindering translational potential. Here, we review the bioenergetics of cancer and propose a simple analysis of major metabolic pathways, encompassing both affordable and advanced techniques. A comprehensive compendium of Seahorse XF bioenergetic measurements is presented for the first time. MAJOR CONCLUSIONS Standardization of principal readouts might help researchers to collect a complete metabolic picture of cancer using the most appropriate methods depending on the sample of interest.
Collapse
Affiliation(s)
- Tomás Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, 28668, Madrid, Spain.
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain.
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043, Madrid, Spain; Faculty of Medicine, Universidad Francisco de Vitoria, 28223, Madrid, Spain.
| |
Collapse
|
6
|
Voss M, Wenger KJ, von Mettenheim N, Bojunga J, Vetter M, Diehl B, Franz K, Gerlach R, Ronellenfitsch MW, Harter PN, Hattingen E, Steinbach JP, Rödel C, Rieger J. Short-term fasting in glioma patients: analysis of diet diaries and metabolic parameters of the ERGO2 trial. Eur J Nutr 2021; 61:477-487. [PMID: 34487222 PMCID: PMC8783850 DOI: 10.1007/s00394-021-02666-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022]
Abstract
Purpose The prospective, randomized ERGO2 trial investigated the effect of calorie-restricted ketogenic diet and intermittent fasting (KD-IF) on re-irradiation for recurrent brain tumors. The study did not meet its primary endpoint of improved progression-free survival in comparison to standard diet (SD). We here report the results of the quality of life/neurocognition and a detailed analysis of the diet diaries. Methods 50 patients were randomized 1:1 to re-irradiation combined with either SD or KD-IF. The KD-IF schedule included 3 days of ketogenic diet (KD: 21–23 kcal/kg/d, carbohydrate intake limited to 50 g/d), followed by 3 days of fasting and again 3 days of KD. Follow-up included examination of cognition, quality of life and serum samples. Results The 20 patients who completed KD-IF met the prespecified goals for calorie and carbohydrate restriction. Substantial decreases in leptin and insulin and an increase in uric acid were observed. The SD group, of note, had a lower calorie intake than expected (21 kcal/kg/d instead of 30 kcal/kg/d). Neither quality of life nor cognition were affected by the diet. Low glucose emerged as a significant prognostic parameter in a best responder analysis. Conclusion The strict caloric goals of the ERGO2 trial were tolerated well by patients with recurrent brain cancer. The short diet schedule led to significant metabolic changes with low glucose emerging as a candidate marker of better prognosis. The unexpected lower calorie intake of the control group complicates the interpretation of the results. Clinicaltrials.gov number: NCT01754350; Registration: 21.12.2012. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02666-1.
Collapse
Affiliation(s)
- Martin Voss
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany. .,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany. .,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.
| | - Katharina J Wenger
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.,Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany
| | - Nina von Mettenheim
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany
| | - Jörg Bojunga
- Department of Medicine 1, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Manuela Vetter
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany
| | - Bianca Diehl
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany
| | - Kea Franz
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.,Department of Neurosurgery, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany
| | - Ruediger Gerlach
- Department of Neurosurgery, HELIOS Hospital Erfurt, Nordhäuser Straße 74, 99089, Erfurt, Germany
| | - Michael W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany
| | - Patrick N Harter
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.,Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann Strasse 7, 60528, Frankfurt/Main, Germany
| | - Elke Hattingen
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.,Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany
| | - Claus Rödel
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.,Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Johannes Rieger
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,Interdisciplinary Division of Neuro-Oncology, University Hospital Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| |
Collapse
|
7
|
Leão Barros MB, Pinheiro DDR, Borges BDN. Mitochondrial DNA Alterations in Glioblastoma (GBM). Int J Mol Sci 2021; 22:ijms22115855. [PMID: 34072607 PMCID: PMC8199454 DOI: 10.3390/ijms22115855] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma (GBM) is an extremely aggressive tumor originating from neural stem cells of the central nervous system, which has high histopathological and genomic diversity. Mitochondria are cellular organelles associated with the regulation of cellular metabolism, redox signaling, energy generation, regulation of cell proliferation, and apoptosis. Accumulation of mutations in mitochondrial DNA (mtDNA) leads to mitochondrial dysfunction that plays an important role in GBM pathogenesis, favoring abnormal energy and reactive oxygen species production and resistance to apoptosis and to chemotherapeutic agents. The present review summarizes the known mitochondrial DNA alterations related to GBM, their cellular and metabolic consequences, and their association with diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Mariceli Baia Leão Barros
- Molecular Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belém, PA 66075, Brazil;
| | | | - Bárbara do Nascimento Borges
- Molecular Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belém, PA 66075, Brazil;
- Correspondence:
| |
Collapse
|
8
|
Abstract
ATP is required for mammalian cells to remain viable and to perform genetically programmed functions. Maintenance of the ΔG′ATP hydrolysis of −56 kJ/mole is the endpoint of both genetic and metabolic processes required for life. Various anomalies in mitochondrial structure and function prevent maximal ATP synthesis through OxPhos in cancer cells. Little ATP synthesis would occur through glycolysis in cancer cells that express the dimeric form of pyruvate kinase M2. Mitochondrial substrate level phosphorylation (mSLP) in the glutamine-driven glutaminolysis pathway, substantiated by the succinate-CoA ligase reaction in the TCA cycle, can partially compensate for reduced ATP synthesis through both OxPhos and glycolysis. A protracted insufficiency of OxPhos coupled with elevated glycolysis and an auxiliary, fully operational mSLP, would cause a cell to enter its default state of unbridled proliferation with consequent dedifferentiation and apoptotic resistance, i.e., cancer. The simultaneous restriction of glucose and glutamine offers a therapeutic strategy for managing cancer.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Gabriel Arismendi-Morillo
- Electron Microscopy Laboratory, Biological Researches Institute, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
9
|
Fan W, Song Y, Ren Z, Cheng X, Li P, Song H, Jia L. Glioma cells are resistant to inflammation‑induced alterations of mitochondrial dynamics. Int J Oncol 2020; 57:1293-1306. [PMID: 33174046 PMCID: PMC7646598 DOI: 10.3892/ijo.2020.5134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence suggests that inflammation is present in solid tumors. However, it is poorly understood whether inflammation exists in glioma and how it affects the metabolic signature of glioma. By analyzing immunohistochemical data and gene expression data downloaded from bioinformatic datasets, the present study revealed an accumulation of inflammatory cells in glioma, activation of microglia, upregulation of proinflammatory factors (including IL-6, IL-8, hypoxia-inducible factor-1α, STAT3, NF-κB1 and NF-κB2), destruction of mitochondrial structure and altered expression levels of electron transfer chain complexes and metabolic enzymes. By monitoring glioma cells following proinflammatory stimulation, the current study observed a remodeling of their mitochondrial network via mitochondrial fission. More than half of the mitochondria presented ring-shaped or spherical morphologies. Transmission electron microscopic analyses revealed mitochondrial swelling with partial or total cristolysis. Furthermore, proinflammatory stimuli resulted in increased generation of reactive oxygen species, decreased mitochondrial membrane potential and reprogrammed metabolism. The defective mitochondria were not eliminated via mitophagy. However, cell viability was not affected, and apoptosis was decreased in glioma cells after proinflammatory stimuli. Overall, the present findings suggested that inflammation may be present in glioma and that glioma cells may be resistant to inflammation-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Wange Fan
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yanan Song
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Zongyao Ren
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaoli Cheng
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Pu Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Huiling Song
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Liyun Jia
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
10
|
Chinopoulos C, Seyfried TN. Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis. ASN Neuro 2019; 10:1759091418818261. [PMID: 30909720 PMCID: PMC6311572 DOI: 10.1177/1759091418818261] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant of the primary adult brain cancers. Ultrastructural and biochemical evidence shows that GBM cells exhibit mitochondrial abnormalities incompatible with energy production through oxidative phosphorylation (OxPhos). Under such conditions, the mitochondrial F0-F1 ATP synthase operates in reverse at the expense of ATP hydrolysis to maintain a moderate membrane potential. Moreover, expression of the dimeric M2 isoform of pyruvate kinase in GBM results in diminished ATP output, precluding a significant ATP production from glycolysis. If ATP synthesis through both glycolysis and OxPhos was impeded, then where would GBM cells obtain high-energy phosphates for growth and invasion? Literature is reviewed suggesting that the succinate-CoA ligase reaction in the tricarboxylic acid cycle can substantiate sufficient ATP through mitochondrial substrate-level phosphorylation (mSLP) to maintain GBM growth when OxPhos is impaired. Production of high-energy phosphates would be supported by glutaminolysis—a hallmark of GBM metabolism—through the sequential conversion of glutamine → glutamate → alpha-ketoglutarate → succinyl CoA → succinate. Equally important, provision of ATP through mSLP would maintain the adenine nucleotide translocase in forward mode, thus preventing the reverse-operating F0-F1 ATP synthase from depleting cytosolic ATP reserves. Because glucose and glutamine are the primary fuels driving the rapid growth of GBM and most tumors for that matter, simultaneous restriction of these two substrates or inhibition of mSLP should diminish cancer viability, growth, and invasion.
Collapse
|
11
|
Krylova NG, Drobysh MS, Semenkova GN, Kulahava TA, Pinchuk SV, Shadyro OI. Cytotoxic and antiproliferative effects of thymoquinone on rat C6 glioma cells depend on oxidative stress. Mol Cell Biochem 2019; 462:195-206. [PMID: 31493190 DOI: 10.1007/s11010-019-03622-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/23/2019] [Indexed: 01/01/2023]
Abstract
Thymoquinone (TQ) is a highly perspective chemotherapeutic agent against gliomas and glioblastomas because of its ability to cross the blood-brain barrier and its selective cytotoxicity for glioblastoma cells compared to primary astrocytes. Here, we tested the hypothesis that TQ-induced mild oxidative stress provokes C6 glioma cell apoptosis through redox-dependent alteration of MAPK proteins. We showed that low concentrations of TQ (20-50 μM) promoted cell-cycle arrest and induced hydrogen peroxide generation as a result of NADH-quinone oxidoreductase 1-catalyzed two-electron reduction of this quinone. Similarly, low concentrations of TQ efficiently conjugated intracellular GSH disturbing redox state of glioma cells and provoking mitochondrial dysfunction. We demonstrated that high concentrations of TQ (70-100 μM) induced reactive oxygen species generation due to its one-electron reduction. TQ provoked apoptosis in C6 glioma cells through mitochondrial potential dissipation and permeability transition pore opening. The identified TQ modes of action on C6 glioma cells open up the possibility of considering it as a promising agent to enhance the sensitivity of cancer cells to standard chemotherapeutic drugs.
Collapse
Affiliation(s)
- N G Krylova
- Department of Biophysics, Faculty of Physics, Belarusian State University, 4 Nezavisimosti ave., 220030, Minsk, Belarus
| | - M S Drobysh
- Department of Radiation Chemistry and Pharmaceutical Technologies, Faculty of Chemistry, Belarusian State University, 14 Leningradskaya st., 220030, Minsk, Belarus
| | - G N Semenkova
- Department of Radiation Chemistry and Pharmaceutical Technologies, Faculty of Chemistry, Belarusian State University, 14 Leningradskaya st., 220030, Minsk, Belarus
| | - T A Kulahava
- Department of Biophysics, Faculty of Physics, Belarusian State University, 4 Nezavisimosti ave., 220030, Minsk, Belarus.
| | - S V Pinchuk
- Institute of Biophysics and Cell Engineering of National Academy of Sciences of Belarus, 27 Academicheskaya st., 220072, Minsk, Belarus
| | - O I Shadyro
- Department of Radiation Chemistry and Pharmaceutical Technologies, Faculty of Chemistry, Belarusian State University, 14 Leningradskaya st., 220030, Minsk, Belarus
| |
Collapse
|
12
|
Mukherjee P, Augur ZM, Li M, Hill C, Greenwood B, Domin MA, Kondakci G, Narain NR, Kiebish MA, Bronson RT, Arismendi-Morillo G, Chinopoulos C, Seyfried TN. Therapeutic benefit of combining calorie-restricted ketogenic diet and glutamine targeting in late-stage experimental glioblastoma. Commun Biol 2019; 2:200. [PMID: 31149644 PMCID: PMC6541653 DOI: 10.1038/s42003-019-0455-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/01/2019] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive primary human brain tumour that has resisted effective therapy for decades. Although glucose and glutamine are the major fuels that drive GBM growth and invasion, few studies have targeted these fuels for therapeutic management. The glutamine antagonist, 6-diazo-5-oxo-L-norleucine (DON), was administered together with a calorically restricted ketogenic diet (KD-R) to treat late-stage orthotopic growth in two syngeneic GBM mouse models: VM-M3 and CT-2A. DON targets glutaminolysis, while the KD-R reduces glucose and, simultaneously, elevates neuroprotective and non-fermentable ketone bodies. The diet/drug therapeutic strategy killed tumour cells while reversing disease symptoms, and improving overall mouse survival. The therapeutic strategy also reduces edema, hemorrhage, and inflammation. Moreover, the KD-R diet facilitated DON delivery to the brain and allowed a lower dosage to achieve therapeutic effect. The findings support the importance of glucose and glutamine in driving GBM growth and provide a therapeutic strategy for non-toxic metabolic management.
Collapse
Affiliation(s)
- Purna Mukherjee
- Department of Biology, Boston College, Chestnut Hill, MA 02467 USA
| | - Zachary M. Augur
- Department of Biology, Boston College, Chestnut Hill, MA 02467 USA
| | - Mingyi Li
- Department of Biology, Boston College, Chestnut Hill, MA 02467 USA
| | | | | | - Marek A. Domin
- Mass Spectrometry Center, Chemistry Department, Boston College, Chestnut Hill, 02467 USA
| | | | | | | | | | - Gabriel Arismendi-Morillo
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, 526 Maracaibo, Venezuela
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094 Hungary
| | | |
Collapse
|
13
|
Seyfried TN, Shelton L, Arismendi-Morillo G, Kalamian M, Elsakka A, Maroon J, Mukherjee P. Provocative Question: Should Ketogenic Metabolic Therapy Become the Standard of Care for Glioblastoma? Neurochem Res 2019; 44:2392-2404. [PMID: 31025151 DOI: 10.1007/s11064-019-02795-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022]
Abstract
No major advances have been made in improving overall survival for glioblastoma (GBM) in almost 100 years. The current standard of care (SOC) for GBM involves immediate surgical resection followed by radiotherapy with concomitant temozolomide chemotherapy. Corticosteroid (dexamethasone) is often prescribed to GBM patients to reduce tumor edema and inflammation. The SOC disrupts the glutamate-glutamine cycle thus increasing availability of glucose and glutamine in the tumor microenvironment. Glucose and glutamine are the prime fermentable fuels that underlie therapy resistance and drive GBM growth through substrate level phosphorylation in the cytoplasm and the mitochondria, respectively. Emerging evidence indicates that ketogenic metabolic therapy (KMT) can reduce glucose availability while elevating ketone bodies that are neuroprotective and non-fermentable. Information is presented from preclinical and case report studies showing how KMT could target tumor cells without causing neurochemical damage thus improving progression free and overall survival for patients with GBM.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - Laura Shelton
- Human Metabolome Technologies America, 24 Denby Rd., Boston, MA, 02134, USA
| | - Gabriel Arismendi-Morillo
- Instituto de Investigaciones Biológicas, Facultad de Medicina, Universidad del Zulia, Maracaibo, 526, Venezuela
| | | | - Ahmed Elsakka
- Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Joseph Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, Suite 5C, 200 Lothrop St., Pittsburgh, PA, USA
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
14
|
Libby CJ, Tran AN, Scott SE, Griguer C, Hjelmeland AB. The pro-tumorigenic effects of metabolic alterations in glioblastoma including brain tumor initiating cells. Biochim Biophys Acta Rev Cancer 2018; 1869:175-188. [PMID: 29378228 PMCID: PMC6596418 DOI: 10.1016/j.bbcan.2018.01.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/20/2018] [Accepted: 01/20/2018] [Indexed: 02/06/2023]
Abstract
De-regulated cellular energetics is an emerging hallmark of cancer with alterations to glycolysis, oxidative phosphorylation, the pentose phosphate pathway, lipid oxidation and synthesis and amino acid metabolism. Understanding and targeting of metabolic reprogramming in cancers may yield new treatment options, but metabolic heterogeneity and plasticity complicate this strategy. One highly heterogeneous cancer for which current treatments ultimately fail is the deadly brain tumor glioblastoma. Therapeutic resistance, within glioblastoma and other solid tumors, is thought to be linked to subsets of tumor initiating cells, also known as cancer stem cells. Recent profiling of glioblastoma and brain tumor initiating cells reveals changes in metabolism, as compiled here, that may be more broadly applicable. We will summarize the profound role for metabolism in tumor progression and therapeutic resistance and discuss current approaches to target glioma metabolism to improve standard of care.
Collapse
Affiliation(s)
- Catherine J. Libby
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA 35294
| | - Anh Nhat Tran
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA 35294
| | - Sarah E. Scott
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA 35294
| | - Corinne Griguer
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA 35294
| | - Anita B. Hjelmeland
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA 35294,, corresponding author, Anita Hjelmeland, Ph.D., Assistant Professor, University of Alabama at Birmingham, Department of Cell, Developmental, and Integrative Biology, 1900 University Blvd, THT 979, Birmingham Al 35294,
| |
Collapse
|
15
|
Elsakka AMA, Bary MA, Abdelzaher E, Elnaggar M, Kalamian M, Mukherjee P, Seyfried TN. Management of Glioblastoma Multiforme in a Patient Treated With Ketogenic Metabolic Therapy and Modified Standard of Care: A 24-Month Follow-Up. Front Nutr 2018; 5:20. [PMID: 29651419 PMCID: PMC5884883 DOI: 10.3389/fnut.2018.00020] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/15/2018] [Indexed: 01/01/2023] Open
Abstract
Few advances have been made in overall survival for glioblastoma multiforme (GBM) in more than 40 years. Here, we report the case of a 38-year-old man who presented with chronic headache, nausea, and vomiting accompanied by left partial motor seizures and upper left limb weakness. Enhanced brain magnetic resonance imaging revealed a solid cystic lesion in the right partial space suggesting GBM. Serum testing revealed vitamin D deficiency and elevated levels of insulin and triglycerides. Prior to subtotal tumor resection and standard of care (SOC), the patient conducted a 72-h water-only fast. Following the fast, the patient initiated a vitamin/mineral-supplemented ketogenic diet (KD) for 21 days that delivered 900 kcal/day. In addition to radiotherapy, temozolomide chemotherapy, and the KD (increased to 1,500 kcal/day at day 22), the patient received metformin (1,000 mg/day), methylfolate (1,000 mg/day), chloroquine phosphate (150 mg/day), epigallocatechin gallate (400 mg/day), and hyperbaric oxygen therapy (HBOT) (60 min/session, 5 sessions/week at 2.5 ATA). The patient also received levetiracetam (1,500 mg/day). No steroid medication was given at any time. Post-surgical histology confirmed the diagnosis of GBM. Reduced invasion of tumor cells and thick-walled hyalinized blood vessels were also seen suggesting a therapeutic benefit of pre-surgical metabolic therapy. After 9 months treatment with the modified SOC and complimentary ketogenic metabolic therapy (KMT), the patient’s body weight was reduced by about 19%. Seizures and left limb weakness resolved. Biomarkers showed reduced blood glucose and elevated levels of urinary ketones with evidence of reduced metabolic activity (choline/N-acetylaspartate ratio) and normalized levels of insulin, triglycerides, and vitamin D. This is the first report of confirmed GBM treated with a modified SOC together with KMT and HBOT, and other targeted metabolic therapies. As rapid regression of GBM is rare following subtotal resection and SOC alone, it is possible that the response observed in this case resulted in part from the modified SOC and other novel treatments. Additional studies are needed to validate the efficacy of KMT administered with alternative approaches that selectively increase oxidative stress in tumor cells while restricting their access to glucose and glutamine. The patient remains in excellent health (Karnofsky Score, 100%) with continued evidence of significant tumor regression.
Collapse
Affiliation(s)
- Ahmed M A Elsakka
- Neuro-Metabolism, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mohamed Abdel Bary
- Neurosurgery, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Eman Abdelzaher
- Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mostafa Elnaggar
- Cancer Management and Research Department, Faculty of Medicine, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | | | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Thomas N Seyfried
- Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
16
|
Abstract
Mitochondria are cytosolic organelles essential for generating energy and maintaining cell homeostasis. Despite their critical function, the handful of proteins expressed by the mitochondrial genome is insufficient to maintain mitochondrial structure or activity. Accordingly, mitochondrial metabolism is fully dependent on factors encoded by the nuclear DNA, including many proteins synthesized in the cytosol and imported into mitochondria via established mechanisms. However, there is growing evidence that mammalian mitochondria can also import cytosolic noncoding RNA via poorly understood processes. Here, we summarize our knowledge of mitochondrial RNA, discuss recent progress in understanding the molecular mechanisms and functional impact of RNA import into mitochondria, and identify rising challenges and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Kyoung Mi Kim
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
17
|
Poff A, Koutnik AP, Egan KM, Sahebjam S, D'Agostino D, Kumar NB. Targeting the Warburg effect for cancer treatment: Ketogenic diets for management of glioma. Semin Cancer Biol 2017; 56:135-148. [PMID: 29294371 DOI: 10.1016/j.semcancer.2017.12.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/07/2017] [Accepted: 12/29/2017] [Indexed: 12/29/2022]
Abstract
Gliomas are a highly heterogeneous tumor, refractory to treatment and the most frequently diagnosed primary brain tumor. Although the current WHO grading system (2016) demonstrates promise towards identifying novel treatment modalities and better prediction of prognosis over time, to date, existing targeted and mono therapy approaches have failed to elicit a robust impact on disease progression and patient survival. It is possible that tumor heterogeneity as well as specifically targeted agents fail because redundant molecular pathways in the tumor make it refractory to such approaches. Additionally, the underlying metabolic pathology, which is significantly altered during neoplastic transformation and tumor progression, is unaccounted for. With several molecular and metabolic pathways implicated in the carcinogenesis of CNS tumors, including glioma, we postulate that a systemic, broad spectrum approach to produce robust targeting of relevant and multiple molecular and metabolic regulation of growth and survival pathways, critical to the modulation of hallmarks of carcinogenesis, without clinically limiting toxicity, may provide a more sustained impact on clinical outcomes compared to the modalities of treatment evaluated to date. The objective of this review is to examine the emerging hallmark of reprogramming energy metabolism of the tumor cells and the tumor microenvironment during carcinogenesis, and to provide a rationale for exploiting this hallmark and its biological capabilities as a target for secondary chemoprevention and treatment of glioma. This review will primarily focus on interventions to induce ketosis to target the glycolytic phenotype of many cancers, with specific application to secondary chemoprevention of low grade glioma- to halt the progression of lower grade tumors to more aggressive subtypes, as evidenced by reduction in validated intermediate endpoints of disease progression including clinical symptoms.
Collapse
Affiliation(s)
- Angela Poff
- The University of South Florida, Department of Molecular Pharmacology and Physiology, 12901 Bruce B. Downs Blvd, MDC 8, Tampa, FL 33612, United States.
| | - Andrew P Koutnik
- The University of South Florida, Department of Molecular Pharmacology and Physiology, 12901 Bruce B. Downs Blvd, MDC 8, Tampa, FL 33612, United States.
| | - Kathleen M Egan
- Moffitt Cancer Center, H. Lee Moffitt Cancer Center and Research Institute, Department of Cancer Epidemiology, 12902 Magnolia Drive, MRC/CANCONT, Tampa, FL 22612-9497, United States.
| | - Solmaz Sahebjam
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Department of Cancer Epidemiology, 12902 Magnolia Drive, Tampa, FL 22612-9497, United States.
| | - Dominic D'Agostino
- The University of South Florida, Department of Molecular Pharmacology and Physiology, 12901 Bruce B. Downs Blvd, MDC 8, Tampa, FL 33612, United States.
| | - Nagi B Kumar
- Moffitt Cancer Center, H. Lee Moffitt Cancer Center and Research Institute, Department of Cancer Epidemiology, 12902 Magnolia Drive, MRC/CANCONT, Tampa, FL 22612-9497, United States.
| |
Collapse
|
18
|
Filippova N, Yang X, Ananthan S, Sorochinsky A, Hackney JR, Gentry Z, Bae S, King P, Nabors LB. Hu antigen R (HuR) multimerization contributes to glioma disease progression. J Biol Chem 2017; 292:16999-17010. [PMID: 28790173 DOI: 10.1074/jbc.m117.797878] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/27/2017] [Indexed: 12/21/2022] Open
Abstract
Among primary brain cancers, gliomas are the most deadly and most refractory to current treatment modalities. Previous reports overwhelmingly support the role of the RNA-binding protein Hu antigen R (HuR) as a positive regulator of glioma disease progression. HuR expression is consistently elevated in tumor tissues, and a cytoplasmic localization appears essential for HuR-dependent oncogenic transformation. Here, we report HuR aggregation (multimerization) in glioma and the analysis of this tumor-specific HuR protein multimerization in clinical brain tumor samples. Using a split luciferase assay, a bioluminescence resonance energy transfer technique, and site-directed mutagenesis, we examined the domains involved in HuR multimerization. Results obtained with the combination of the split HuR luciferase assay with the bioluminescence resonance energy transfer technique suggested that multiple (at least three) HuR molecules come together during HuR multimerization in glioma cells. Using these data, we developed a model of HuR multimerization in glioma cells. We also demonstrate that exposing glioma cells to the HuR inhibitor tanshinone group compound 15,16-dihydrotanshinone-I or to the newly identified compound 5 disrupts HuR multimerization modules and reduces tumor cell survival and proliferation. In summary, our findings provide new insights into HuR multimerization in glioma and highlight possible pharmacological approaches for targeting HuR domains involved in cancer cell-specific multimerization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sejong Bae
- Medicine, School of Medicine, University of Alabama, Birmingham, Alabama 35294
| | - Peter King
- From the Departments of Neurology.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| | | |
Collapse
|
19
|
Liguori L, Stidder B, Alcaraz JP, Lenormand JL, Cinquin P, Martin DK. Cell-free production of VDAC directly into liposomes for integration with biomimetic membrane systems. Prep Biochem Biotechnol 2017; 46:546-51. [PMID: 26443900 DOI: 10.1080/10826068.2015.1068800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mitochondrial voltage-dependent anion channel (VDAC) is a pivotal protein since it provides the major transport pathway between the cytosol and the mitochondrial intermembrane space and it is implicated in cell apoptosis by functioning as a gatekeeper for the trafficking of mitochondrial death molecules. VDAC is a beta-barrel channel with a large conductance, and we use it as a model transport protein for the design of biomimetic systems. To overcome the limitations of classical overexpression methods for producing and purifying membrane proteins (MPs) we describe here the use of an optimized cell-free system. In a one-step reaction VDAC is obtained directly integrated into liposomes and purified by ultracentrifugation. We then combine proteoliposomes with different bilayers models in order to validate VDAC insertion and functionality. This VDAC biomimetic model is the first example validating the use of a cell-free expression system for production of MPs into liposomes and tethered bilayers as a toolbox to build a wide range of biomimetic devices.
Collapse
Affiliation(s)
- Lavinia Liguori
- a University of Grenoble 1-Joseph Fourier/CNRS/TIMC-IMAG UMR 5525 (Equipe SyNaBi) , Grenoble , France
| | - Barry Stidder
- a University of Grenoble 1-Joseph Fourier/CNRS/TIMC-IMAG UMR 5525 (Equipe SyNaBi) , Grenoble , France
| | - Jean-Pierre Alcaraz
- a University of Grenoble 1-Joseph Fourier/CNRS/TIMC-IMAG UMR 5525 (Equipe SyNaBi) , Grenoble , France
| | - Jean-Luc Lenormand
- a University of Grenoble 1-Joseph Fourier/CNRS/TIMC-IMAG UMR 5525 (Equipe SyNaBi) , Grenoble , France
| | - Philippe Cinquin
- a University of Grenoble 1-Joseph Fourier/CNRS/TIMC-IMAG UMR 5525 (Equipe SyNaBi) , Grenoble , France
| | - Donald K Martin
- a University of Grenoble 1-Joseph Fourier/CNRS/TIMC-IMAG UMR 5525 (Equipe SyNaBi) , Grenoble , France
| |
Collapse
|
20
|
Guntuku L, Naidu VGM, Yerra VG. Mitochondrial Dysfunction in Gliomas: Pharmacotherapeutic Potential of Natural Compounds. Curr Neuropharmacol 2016; 14:567-83. [PMID: 26791479 PMCID: PMC4981742 DOI: 10.2174/1570159x14666160121115641] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/08/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
Gliomas are the most common primary brain tumors either benign or malignant originating from the glial tissue. Glioblastoma multiforme (GBM) is the most prevalent and aggressive form among all gliomas, associated with decimal prognosis due to it`s high invasive nature. GBM is also characterized by high recurrence rate and apoptosis resistance features which make the therapeutic targeting very challenging. Mitochondria are key cellular organelles that are acting as focal points in diverse array of cellular functions such as cellular energy metabolism, regulation of ion homeostasis, redox signaling and cell death. Eventual findings of mitochondrial dysfunction include preference of glycolysis over oxidative phosphorylation, enhanced reactive oxygen species generation and abnormal mitochondria mediated apoptotic machinery are frequently observed in various malignancies including gliomas. In particular, gliomas harbor mitochondrial structure abnormalities, genomic mutations in mtDNA, altered energy metabolism (Warburg effect) along with mutations in isocitrate dehydrogenase (IDH) enzyme. Numerous natural compounds have shown efficacy in the treatment of gliomas by targeting mitochondrial aberrant signaling cascades. Some of the natural compounds directly target the components of mitochondria whereas others act indirectly through modulating metabolic abnormalities that are consequence of the mitochondrial dysfunction. The present review offers a molecular insight into mitochondrial pathology in gliomas and therapeutic mechanisms of some of the promising natural compounds that target mitochondrial dysfunction. This review also sheds light on the challenges and possible ways to overcome the hurdles associated with these natural compounds to enter into the clinical market.
Collapse
Affiliation(s)
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, India.
| | | |
Collapse
|
21
|
Overexpression and Nucleolar Localization of γ-Tubulin Small Complex Proteins GCP2 and GCP3 in Glioblastoma. J Neuropathol Exp Neurol 2015; 74:723-42. [PMID: 26079448 DOI: 10.1097/nen.0000000000000212] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The expression, cellular distribution, and subcellular sorting of the microtubule (MT)-nucleating γ-tubulin small complex (γTuSC) proteins, GCP2 and GCP3, were studied in human glioblastoma cell lines and in clinical tissue samples representing all histologic grades of adult diffuse astrocytic gliomas (n = 54). Quantitative real-time polymerase chain reaction revealed a significant increase in the expression of GCP2 and GCP3 transcripts in glioblastoma cells versus normal human astrocytes; these were associated with higher amounts of both γTuSC proteins. GCP2 and GCP3 were concentrated in the centrosomes in interphase glioblastoma cells, but punctate and diffuse localizations were also detected in the cytosol and nuclei/nucleoli. Nucleolar localization was fixation dependent. GCP2 and GCP3 formed complexes with γ-tubulin in the nucleoli as confirmed by reciprocal immunoprecipitation experiments and immunoelectron microscopy. GCP2 and GCP3 depletion caused accumulation of cells in G2/M and mitotic delay but did not affect nucleolar integrity. Overexpression of GCP2 antagonized the inhibitory effect of the CDK5 regulatory subunit-associated tumor suppressor protein 3 (C53) on DNA damage G2/M checkpoint activity. Tumor cell GCP2 and GCP3 immunoreactivity was significantly increased over that in normal brains in glioblastoma samples; it was also associated with microvascular proliferation. These findings suggest that γTuSC protein dysregulation in glioblastomas may be linked to altered transcriptional checkpoint activity or interaction with signaling pathways associated with a malignant phenotype.
Collapse
|
22
|
Katsetos CD, Reginato MJ, Baas PW, D'Agostino L, Legido A, Tuszyn Ski JA, Dráberová E, Dráber P. Emerging microtubule targets in glioma therapy. Semin Pediatr Neurol 2015; 22:49-72. [PMID: 25976261 DOI: 10.1016/j.spen.2015.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Major advances in the genomics and epigenomics of diffuse gliomas and glioblastoma to date have not been translated into effective therapy, necessitating pursuit of alternative treatment approaches for these therapeutically challenging tumors. Current knowledge of microtubules in cancer and the development of new microtubule-based treatment strategies for high-grade gliomas are the topic in this review article. Discussed are cellular, molecular, and pharmacologic aspects of the microtubule cytoskeleton underlying mitosis and interactions with other cellular partners involved in cell cycle progression, directional cell migration, and tumor invasion. Special focus is placed on (1) the aberrant overexpression of βIII-tubulin, a survival factor associated with hypoxic tumor microenvironment and dynamic instability of microtubules; (2) the ectopic overexpression of γ-tubulin, which in addition to its conventional role as a microtubule-nucleating protein has recently emerged as a transcription factor interacting with oncogenes and kinases; (3) the microtubule-severing ATPase spastin and its emerging role in cell motility of glioblastoma cells; and (4) the modulating role of posttranslational modifications of tubulin in the context of interaction of microtubules with motor proteins. Specific antineoplastic strategies discussed include downregulation of targeted molecules aimed at achieving a sensitization effect on currently used mainstay therapies. The potential role of new classes of tubulin-binding agents and ATPase inhibitors is also examined. Understanding the cellular and molecular mechanisms underpinning the distinct behaviors of microtubules in glioma tumorigenesis and drug resistance is key to the discovery of novel molecular targets that will fundamentally change the prognostic outlook of patients with diffuse high-grade gliomas.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA.
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | - Luca D'Agostino
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Agustin Legido
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Jack A Tuszyn Ski
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
23
|
Mao C, Zhang J, Lin S, Jing L, Xiang J, Wang M, Wang B, Xu P, Liu W, Song X, Lv C. MiRNA-30a inhibits AECs-II apoptosis by blocking mitochondrial fission dependent on Drp-1. J Cell Mol Med 2014; 18:2404-16. [PMID: 25284615 PMCID: PMC4302646 DOI: 10.1111/jcmm.12420] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/09/2014] [Indexed: 12/27/2022] Open
Abstract
Apoptosis of type II alveolar epithelial cells (AECs-II) is a key determinant of initiation and progression of lung fibrosis. However, the mechanism of miR-30a participation in the regulation of AECs-II apoptosis is ambiguous. In this study, we investigated whether miR-30a could block AECs-II apoptosis by repressing mitochondrial fission dependent on dynamin-related protein-1 (Drp-1). The levels of miR-30a in vivo and in vitro were determined through quantitative real-time PCR (qRT-PCR). The inhibition of miR-30a in AECs-II apoptosis, mitochondrial fission and its dependence on Drp-1, and Drp-1 expression and translocation were detected using miR-30a mimic, inhibitor-transfection method (gain- and loss-of-function), or Drp-1 siRNA technology. Results showed that miR-30a decreased in lung fibrosis. Gain- and loss-of-function studies revealed that the up-regulation of miR-30a could decrease AECs-II apoptosis, inhibit mitochondrial fission, and reduce Drp-1 expression and translocation. MiR-30a mimic/inhibitor and Drp-1 siRNA co-transfection showed that miR-30a could inhibit the mitochondrial fission dependent on Drp-1. This study demonstrated that miR-30a inhibited AECs-II apoptosis by repressing the mitochondrial fission dependent on Drp-1, and could function as a novel therapeutic target for lung fibrosis.
Collapse
Affiliation(s)
- Cuiping Mao
- Molecular Medicine Research Center, Binzhou Medical University, Yantai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wallace KB. Drug-induced mitochondrial neuropathy in children: a conceptual framework for critical windows of development. J Child Neurol 2014; 29:1241-8. [PMID: 25008905 DOI: 10.1177/0883073814538510] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial disease arises from genetic or nongenetic events that interfere either directly or indirectly with the bioenergetic function of the mitochondrion and manifest clinically in some form of metabolic disorder. In primary mitochondrial disease, the critical molecular target is one or more of the individual subunits of the respiratory complexes or their assembly and incorporation into the inner mitochondrial membrane, whereas with secondary mitochondrial disease the bioenergetic deficits are secondary to effects on targets other than the electron transport chain and oxidative phosphorylation. Primary genetic events include mutations to or altered expression of proteins targeted to the mitochondrial compartment, whether they are encoded by the nuclear or mitochondrial genome. In this review, we emphasize the occurrence of nongenetic mitochondrial disease resulting from therapeutic drug administration, review the broad scope of drugs implicated in affecting specific primary mitochondrial targets, and describe evidence demonstrating critical windows of risk for the developing neonate to drug-induced mitochondrial disease and neuropathy.
Collapse
Affiliation(s)
- Kendall B Wallace
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota
| |
Collapse
|
25
|
Seyfried TN, Flores R, Poff AM, D'Agostino DP, Mukherjee P. Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett 2014; 356:289-300. [PMID: 25069036 DOI: 10.1016/j.canlet.2014.07.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023]
Abstract
Little progress has been made in the long-term management of glioblastoma multiforme (GBM), considered among the most lethal of brain cancers. Cytotoxic chemotherapy, steroids, and high-dose radiation are generally used as the standard of care for GBM. These procedures can create a tumor microenvironment rich in glucose and glutamine. Glucose and glutamine are suggested to facilitate tumor progression. Recent evidence suggests that many GBMs are infected with cytomegalovirus, which could further enhance glucose and glutamine metabolism in the tumor cells. Emerging evidence also suggests that neoplastic macrophages/microglia, arising through possible fusion hybridization, can comprise an invasive cell subpopulation within GBM. Glucose and glutamine are major fuels for myeloid cells, as well as for the more rapidly proliferating cancer stem cells. Therapies that increase inflammation and energy metabolites in the GBM microenvironment can enhance tumor progression. In contrast to current GBM therapies, metabolic therapy is designed to target the metabolic malady common to all tumor cells (aerobic fermentation), while enhancing the health and vitality of normal brain cells and the entire body. The calorie restricted ketogenic diet (KD-R) is an anti-angiogenic, anti-inflammatory and pro-apoptotic metabolic therapy that also reduces fermentable fuels in the tumor microenvironment. Metabolic therapy, as an alternative to the standard of care, has the potential to improve outcome for patients with GBM and other malignant brain cancers.
Collapse
Affiliation(s)
| | | | - Angela M Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida, 33612 Tampa, FL, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, 33612 Tampa, FL, USA
| | | |
Collapse
|
26
|
Katsetos CD, Koutzaki S, Melvin JJ. Mitochondrial dysfunction in neuromuscular disorders. Semin Pediatr Neurol 2013; 20:202-15. [PMID: 24331362 DOI: 10.1016/j.spen.2013.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review deciphers aspects of mitochondrial (mt) dysfunction among nosologically, pathologically, and genetically diverse diseases of the skeletal muscle, lower motor neuron, and peripheral nerve, which fall outside the traditional realm of mt cytopathies. Special emphasis is given to well-characterized mt abnormalities in collagen VI myopathies (Ullrich congenital muscular dystrophy and Bethlem myopathy), megaconial congenital muscular dystrophy, limb-girdle muscular dystrophy type 2 (calpainopathy), centronuclear myopathies, core myopathies, inflammatory myopathies, spinal muscular atrophy, Charcot-Marie-Tooth neuropathy type 2, and drug-induced peripheral neuropathies. Among inflammatory myopathies, mt abnormalities are more prominent in inclusion body myositis and a subset of polymyositis with mt pathology, both of which are refractory to corticosteroid treatment. Awareness is raised about instances of phenotypic mimicry between cases harboring primary mtDNA depletion, in the context of mtDNA depletion syndrome, and established neuromuscular disorders such as spinal muscular atrophy. A substantial body of experimental work, derived from animal models, attests to a major role of mitochondria (mt) in the early process of muscle degeneration. Common mechanisms of mt-related cell injury include dysregulation of the mt permeability transition pore opening and defective autophagy. The therapeutic use of mt permeability transition pore modifiers holds promise in various neuromuscular disorders, including muscular dystrophies.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA.
| | - Sirma Koutzaki
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA
| | - Joseph J Melvin
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|