1
|
Rigney S, York JR, LaBonne C. Krüppel-like factors play essential roles in regulating pluripotency and the formation of neural crest stem cells. Development 2025; 152:dev204634. [PMID: 40292574 DOI: 10.1242/dev.204634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025]
Abstract
The evolution of complex vertebrate body plans was driven by the acquisition of the neural crest, a stem cell population that retains broad, multi-germ layer potential after most embryonic cells have become lineage restricted. We have previously shown that neural crest cells share significant gene regulatory architecture with pluripotent blastula stem cells. Here, we examine the roles that two Krüppel-like Family (Klf) transcription factors, Klf2 and Klf17, play in these cell populations. We found that inhibition of either klf2 or klf17 expanded expression of pluripotency, neural plate border and neural crest factors in neurula stage Xenopus embryos, suggesting that Klf factors regulate the exit from pluripotency and proper establishment of the boundary of the neural crest domain. To gain further insights into the role of Klf factors in the evolution of the neural crest, we examined their expression in sea lamprey, a jawless vertebrate, and show that ectopic expression of lamprey klf17 in Xenopus embryos phenocopies Xenopus klf17. These data suggest that klf17 may have been the ancestral Klf factor that functioned in these gene regulatory networks in stem vertebrates.
Collapse
Affiliation(s)
- Sara Rigney
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Joshua R York
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Ma Z, Tan S, Lu R, Chen P, Hu Y, Yang T, Wu H, Zhu Z, Guo J, Chen X, Yang J, Zhang W, Ye Y. Interplay of chromatin remodeling BAF complexes in mouse embryonic and epiblast stem cell conversion and maintenance. J Biol Chem 2025; 301:108140. [PMID: 39730061 PMCID: PMC11791114 DOI: 10.1016/j.jbc.2024.108140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024] Open
Abstract
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are pluripotent stem cells derived from preimplantation and postimplantation embryos, respectively. These cells are capable of interconversion through manipulation of key transcription factors and signaling pathways. While BRG1/BRM-associated factor (BAF) chromatin remodeling complexes are known to play crucial roles in ESC self-renewal and pluripotency, their roles in EpiSCs and their interconversion with ESCs remain unclear. This study demonstrates that the LIF/STAT3 and Wnt signaling pathways, in conjunction with canonical BAF (cBAF) and polycomb repressive complex two complexes, inhibit EpiSC gene expression, thereby preventing ESCs from converting to EpiSCs. Upon removal of LIF, the reduced LIF/STAT3 signaling lifts this inhibition, increasing TGF/nodal pathway activity. Subsequently, the cBAF complex facilitates ESC to EpiSC conversion by promoting EpiSC gene expression. Furthermore, unlike cBAF, inhibition of the ncBAF complex downregulates TGF-β signaling, thereby hindering both ESC to EpiSC conversion and EpiSC maintenance. Moreover, this study revealed the dual mechanisms, methylating histone or non-histone protein STAT3, by which polycomb repressive complex two components participate in the regulation of ESCs to EpiSCs. This research elucidates the interplay between distinct BAF complexes and specific signaling pathways in regulating the conversion and maintenance of ESCs and EpiSCs.
Collapse
Affiliation(s)
- Zhaoru Ma
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Shuping Tan
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Renhong Lu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peixin Chen
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Yukun Hu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Tenghui Yang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Hao Wu
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Zhexin Zhu
- Hefei Comprehensive National Science Center, Institute of Health and Medicine, Heifei, China
| | - Jiayi Guo
- Research Center of Medical Science and Technology, Ningxia Medical University, Yinchuan, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.
| | - Ying Ye
- Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo, China.
| |
Collapse
|
3
|
Rigney S, York JR, LaBonne C. Krüppel-like Factors Play Essential Roles in Regulating Pluripotency and the Formation of Neural Crest Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632647. [PMID: 39868152 PMCID: PMC11761489 DOI: 10.1101/2025.01.13.632647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The evolutionary transition from simple chordate body plans to complex vertebrate body plans was driven by the acquisition of the neural crest, a stem cell population that retains broad, multi-germ layer developmental potential long after most embryonic cells have become lineage restricted. We have previously shown that neural crest cells share significant gene regulatory architecture with pluripotent blastula stem cells. Here we examine the roles that Krüppel-like Family (Klf) transcription factors play in these stem cell populations. Although Klf4 has established roles in regulating pluripotency in mammalian stem cells cultures, we find that in Xenopus it is klf2 that is highly expressed in pluripotent blastula stem cells. klf2 expression is down-regulated as cells transition to a neural crest state while a related klf factor, klf17, is significantly up regulated in response to neural crest induction. We used gain and loss of function studies to compare the activities of these closely related factors and found that they have both shared and distinct activities. Inhibition of either klf2 or klf17 activity led to significantly expanded expression of pluripotency, neural plate border and neural crest factors in neurula stage embryos, leading us to hypothesize that klf factors regulate the exit from pluripotency and proper establishment of the boundary of the neural crest domain. To gain further insights into the role of klf factors in the evolution of the neural crest, we examined their expression in the jawless vertebrate, Petromyzon marinus ( sea lamprey). We find that lamprey have a klf2/4 and a klf17 gene, but that only klf17 is expressed in blastula and neural crest stem cells. Moreover, ectopic expression of lamprey klf17 in Xenopus embryos phenocopies Xenopus klf17 activity. These data suggest that klf17, rather than klf4, may have been the ancestral klf factor that functioned in these GRNs in stem vertebrates.
Collapse
|
4
|
Fan S, Guo C, Yang G, Hong L, Li H, Ma J, Zhou Y, Fan S, Xue Y, Zeng F. GPR160 regulates the self-renewal and pluripotency of mouse embryonic stem cells via JAK1/STAT3 signaling pathway. J Genet Genomics 2024; 51:1055-1065. [PMID: 38750952 DOI: 10.1016/j.jgg.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 07/14/2024]
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and regulate various physiological and pathological processes. Despite extensive studies, the roles of GPCRs in mouse embryonic stem cells (mESCs) remain poorly understood. Here, we show that GPR160, a class A member of GPCRs, is dramatically downregulated concurrent with mESC differentiation into embryoid bodies in vitro. Knockdown of Gpr160 leads to downregulation of the expression of pluripotency-associated transcription factors and upregulation of the expression of lineage markers, accompanying with the arrest of the mESC cell-cycle in the G0/G1 phase. RNA-seq analysis shows that GPR160 participates in the JAK/STAT signaling pathway crucial for maintaining ESC stemness, and the knockdown of Gpr160 results in the downregulation of STAT3 phosphorylation level, which in turn is partially rescued by colivelin, a STAT3 activator. Consistent with these observations, GPR160 physically interacts with JAK1, and cooperates with leukemia inhibitory factor receptor (LIFR) and gp130 to activate the STAT3 pathway. In summary, our results suggest that GPR160 regulates mESC self-renewal and pluripotency by interacting with the JAK1-LIFR-gp130 complex to mediate the JAK1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Shasha Fan
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Chuanliang Guo
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Guanheng Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Lei Hong
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Hongyu Li
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Ji Ma
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Yiye Zhou
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Shuyue Fan
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Yan Xue
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China.
| | - Fanyi Zeng
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China; NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China; School of Pharmacy, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
5
|
Waite JB, Boytz R, Traeger AR, Lind TM, Lumbao-Conradson K, Torigoe SE. A suboptimal OCT4-SOX2 binding site facilitates the naïve-state specific function of a Klf4 enhancer. PLoS One 2024; 19:e0311120. [PMID: 39348365 PMCID: PMC11441684 DOI: 10.1371/journal.pone.0311120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Enhancers have critical functions in the precise, spatiotemporal control of transcription during development. It is thought that enhancer grammar, or the characteristics and arrangements of transcription factor binding sites, underlie the specific functions of developmental enhancers. In this study, we sought to identify grammatical constraints that direct enhancer activity in the naïve state of pluripotency, focusing on the enhancers for the naïve-state specific gene, Klf4. Using a combination of biochemical tests, reporter assays, and endogenous mutations in mouse embryonic stem cells, we have studied the binding sites for the transcription factors OCT4 and SOX2. We have found that the three Klf4 enhancers contain suboptimal OCT4-SOX2 composite binding sites. Substitution with a high-affinity OCT4-SOX2 binding site in Klf4 enhancer E2 rescued enhancer function and Klf4 expression upon loss of the ESRRB and STAT3 binding sites. We also observed that the low-affinity of the OCT4-SOX2 binding site is crucial to drive the naïve-state specific activities of Klf4 enhancer E2. Altogether, our work suggests that the affinity of OCT4-SOX2 binding sites could facilitate enhancer functions in specific states of pluripotency.
Collapse
Affiliation(s)
- Jack B Waite
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - RuthMabel Boytz
- Biology Department, Lewis & Clark College, Portland, Oregon, United States of America
| | - Alexis R Traeger
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Torrey M Lind
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Koya Lumbao-Conradson
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
| | - Sharon E Torigoe
- Biochemistry & Molecular Biology Program, Lewis & Clark College, Portland, Oregon, United States of America
- Biology Department, Lewis & Clark College, Portland, Oregon, United States of America
| |
Collapse
|
6
|
Monteleone E, Corrieri P, Provero P, Viavattene D, Pulvirenti L, Raggi L, Carbognin E, Bianchi ME, Martello G, Oliviero S, Pandolfi PP, Poli V. STAT3-dependent long non-coding RNA Lncenc1 contributes to mouse ES cells pluripotency via stabilizing Klf4 mRNA. Brief Funct Genomics 2024; 23:651-662. [PMID: 37801430 PMCID: PMC11428181 DOI: 10.1093/bfgp/elad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023] Open
Abstract
Embryonic stem cells (ESCs) preserve the unique ability to differentiate into any somatic cell lineage while maintaining their self-renewal potential, relying on a complex interplay of extracellular signals regulating the expression/activity of pluripotency transcription factors and their targets. Leukemia inhibitory factor (LIF)-activated STAT3 drives ESCs' stemness by a number of mechanisms, including the transcriptional induction of pluripotency factors such as Klf4 and the maintenance of a stem-like epigenetic landscape. However, it is unknown if STAT3 directly controls stem-cell specific non-coding RNAs, crucial to balance pluripotency and differentiation. Applying a bioinformatic pipeline, here we identify Lncenc1 in mouse ESCs as an STAT3-dependent long non-coding RNA that supports pluripotency. Lncenc1 acts in the cytoplasm as a positive feedback regulator of the LIF-STAT3 axis by competing for the binding of microRNA-128 to the 3'UTR of the Klf4 core pluripotency factor mRNA, enhancing its expression. Our results unveil a novel non-coding RNA-based mechanism for LIF-STAT3-mediated pluripotency.
Collapse
Affiliation(s)
- Emanuele Monteleone
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Paola Corrieri
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Daniele Viavattene
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Lorenzo Pulvirenti
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Laura Raggi
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
| | | | | | | | | | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
- William N. Pennington Cancer Institute, Nevada System of Higher Education, Reno, Nevada
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
7
|
Neira JA, Conrad JV, Rusteika M, Chu LF. The progress of induced pluripotent stem cells derived from pigs: a mini review of recent advances. Front Cell Dev Biol 2024; 12:1371240. [PMID: 38979033 PMCID: PMC11228285 DOI: 10.3389/fcell.2024.1371240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 07/10/2024] Open
Abstract
Pigs (Sus scrofa) are widely acknowledged as an important large mammalian animal model due to their similarity to human physiology, genetics, and immunology. Leveraging the full potential of this model presents significant opportunities for major advancements in the fields of comparative biology, disease modeling, and regenerative medicine. Thus, the derivation of pluripotent stem cells from this species can offer new tools for disease modeling and serve as a stepping stone to test future autologous or allogeneic cell-based therapies. Over the past few decades, great progress has been made in establishing porcine pluripotent stem cells (pPSCs), including embryonic stem cells (pESCs) derived from pre- and peri-implantation embryos, and porcine induced pluripotent stem cells (piPSCs) using a variety of cellular reprogramming strategies. However, the stabilization of pPSCs was not as straightforward as directly applying the culture conditions developed and optimized for murine or primate PSCs. Therefore, it has historically been challenging to establish stable pPSC lines that could pass stringent pluripotency tests. Here, we review recent advances in the establishment of stable porcine PSCs. We focus on the evolving derivation methods that eventually led to the establishment of pESCs and transgene-free piPSCs, as well as current challenges and opportunities in this rapidly advancing field.
Collapse
Affiliation(s)
- Jaime A Neira
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Li-Fang Chu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
8
|
Shi Z, Wu H. CTPredictor: A comprehensive and robust framework for predicting cell types by integrating multi-scale features from single-cell Hi-C data. Comput Biol Med 2024; 173:108336. [PMID: 38513390 DOI: 10.1016/j.compbiomed.2024.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/01/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Single-cell Hi-C (scHi-C) has emerged as a powerful technology for deciphering cell-to-cell variability in three-dimensional (3D) chromatin organization, providing insights into genome-wide chromatin interactions and their correlation with cellular functions. Nevertheless, the accurate identification of cell types across different datasets remains a formidable challenge, hindering comprehensive investigations into genome structure. In response, we introduce CTPredictor, an innovative computational method that integrates multi-scale features to accurately predict cell types in various datasets. CTPredictor strategically incorporates three distinct feature sets, namely, small intra-domain contact probability (SICP), smoothed small intra-domain contact probability (SSICP), and smoothed bin contact probability (SBCP). The resulting fusion classification model significantly enhances the accuracy of cell type prediction based on single-cell Hi-C data (scHi-C). Rigorous benchmarking against established methods and three conventional machine learning approaches demonstrates the robust performance of CTPredictor, positioning it as an advanced tool for cell type prediction within scHi-C data. Beyond its prediction capabilities, CTPredictor holds promise in illuminating 3D genome structures and their functional significance across a wide array of biological processes.
Collapse
Affiliation(s)
- Zhenqi Shi
- School of Software, Shandong University, 250100, Jinan, China
| | - Hao Wu
- School of Software, Shandong University, 250100, Jinan, China.
| |
Collapse
|
9
|
Hang C, Moawad MS, Lin Z, Guo H, Xiong H, Zhang M, Lu R, Liu J, Shi D, Xie D, Liu Y, Liang D, Chen YH, Yang J. Biosafe cerium oxide nanozymes protect human pluripotent stem cells and cardiomyocytes from oxidative stress. J Nanobiotechnology 2024; 22:132. [PMID: 38532378 DOI: 10.1186/s12951-024-02383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) have the highest mortality worldwide. Human pluripotent stem cells (hPSCs) and their cardiomyocyte derivatives (hPSC-CMs) offer a valuable resource for disease modeling, pharmacological screening, and regenerative therapy. While most CVDs are linked to significant over-production of reactive oxygen species (ROS), the effects of current antioxidants targeting excessive ROS are limited. Nanotechnology is a powerful tool to develop antioxidants with improved selectivity, solubility, and bioavailability to prevent or treat various diseases related to oxidative stress. Cerium oxide nanozymes (CeONZs) can effectively scavenge excessive ROS by mimicking the activity of endogenous antioxidant enzymes. This study aimed to assess the nanotoxicity of CeONZs and their potential antioxidant benefits in stressed human embryonic stem cells (hESCs) and their derived cardiomyocytes (hESC-CMs). RESULTS CeONZs demonstrated reliable nanosafety and biocompatibility in hESCs and hESC-CMs within a broad range of concentrations. CeONZs exhibited protective effects on the cell viability of hESCs and hESC-CMs by alleviating excessive ROS-induced oxidative stress. Moreover, CeONZs protected hESC-CMs from doxorubicin (DOX)-induced cardiotoxicity and partially ameliorated the insults from DOX in neonatal rat cardiomyocytes (NRCMs). Furthermore, during hESCs culture, CeONZs were found to reduce ROS, decrease apoptosis, and enhance cell survival without affecting their self-renewal and differentiation potential. CONCLUSIONS CeONZs displayed good safety and biocompatibility, as well as enhanced the cell viability of hESCs and hESC-CMs by shielding them from oxidative damage. These promising results suggest that CeONZs may be crucial, as a safe nanoantioxidant, to potentially improve the therapeutic efficacy of CVDs and be incorporated into regenerative medicine.
Collapse
Affiliation(s)
- Chengwen Hang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Mohamed S Moawad
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, 3725005, Egypt.
| | - Zheyi Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Hui Xiong
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dan Shi
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Duanyang Xie
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Yi-Han Chen
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Jian Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| |
Collapse
|
10
|
Gong Z, Shu Z, Zhou Y, Chen Y, Zhu H. KLF2 regulates stemness of human mesenchymal stem cells by targeting FGFR3. Biotech Histochem 2023; 98:447-455. [PMID: 37381732 DOI: 10.1080/10520295.2023.2225225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are an attractive source of pluripotent cells for regenerative therapy; however, maintaining stemness and self-renewal of MSCs during expansion ex vivo is challenging. For future clinical applications, it is essential to define the roles and signaling pathways that regulate the fate of MSCs. Based on our earlier finding that Krüppel-like factor 2 (KLF2) participates in maintaining stemness in MSCs, we examined further the role of this factor in intrinsic signaling pathways. Using a chromatin immunoprecipitation (ChIP)-sequence assay, we found that the FGFR3 gene is a KLF2 binding site. Knockdown of FGFR3 significantly decreased the levels of key pluripotency factors, enhanced the expression of differentiation-related genes and down-regulated colony formation of human bone marrow MSCs (hBMSCs). Using alizarin red S and oil red O staining, we found that knockdown of FGFR3 inhibited the osteogenic and adipogenic ability of MSCs under conditions of differentiation. The ChIP-qPCR assay confirmed that KLF2 interacts with the promoter regions of FGFR3. Our findings suggest that KLF2 promotes hBMSC stemness by direct regulation of FGFR. Our findings may contribute to enhanced MSC stemness by genetic modification of stemness-related genes.
Collapse
Affiliation(s)
- Zhiyuan Gong
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Zhanhao Shu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Ying Zhou
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Huiyong Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| |
Collapse
|
11
|
Zhao Y, Li J, Lian Y, Zhou Q, Wu Y, Kang J. METTL3-Dependent N6-Methyladenosine Modification Programs Human Neural Progenitor Cell Proliferation. Int J Mol Sci 2023; 24:15535. [PMID: 37958523 PMCID: PMC10647291 DOI: 10.3390/ijms242115535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
METTL3, a methyltransferase responsible for N6-methyladenosine (m6A) modification, plays key regulatory roles in mammal central neural system (CNS) development. However, the specific epigenetic mechanisms governing human CNS development remain poorly elucidated. Here, we generated small-molecule-assisted shut-off (SMASh)-tagged hESC lines to reduce METTL3 protein levels, and found that METTL3 is not required for human neural progenitor cell (hNPC) formation and neuron differentiation. However, METTL3 deficiency inhibited hNPC proliferation by reducing SLIT2 expression. Mechanistic studies revealed that METTL3 degradation in hNPCs significantly decreased the enrichment of m6A in SLIT2 mRNA, consequently reducing its expression. Our findings reveal a novel functional target (SLIT2) for METTL3 in hNPCs and contribute to a better understanding of m6A-dependent mechanisms in hNPC proliferation.
Collapse
Affiliation(s)
- Yuan Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yilin Lian
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qian Zhou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
12
|
Pajanoja C, Hsin J, Olinger B, Schiffmacher A, Yazejian R, Abrams S, Dapkunas A, Zainul Z, Doyle AD, Martin D, Kerosuo L. Maintenance of pluripotency-like signature in the entire ectoderm leads to neural crest stem cell potential. Nat Commun 2023; 14:5941. [PMID: 37741818 PMCID: PMC10518019 DOI: 10.1038/s41467-023-41384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/01/2023] [Indexed: 09/25/2023] Open
Abstract
The ability of the pluripotent epiblast to contribute progeny to all three germ layers is thought to be lost after gastrulation. The later-forming neural crest (NC) rises from ectoderm and it remains poorly understood how its exceptionally high stem-cell potential to generate mesodermal- and endodermal-like derivatives is obtained. Here, we monitor transcriptional changes from gastrulation to neurulation using single-cell-Multiplex-Spatial-Transcriptomics (scMST) complemented with RNA-sequencing. We show maintenance of pluripotency-like signature (Nanog, Oct4/PouV, Klf4-positive) in undecided pan-ectodermal stem-cells spanning the entire ectoderm late during neurulation with ectodermal patterning completed only at the end of neurulation when the pluripotency-like signature becomes restricted to NC, challenging our understanding of gastrulation. Furthermore, broad ectodermal pluripotency-like signature is found at multiple axial levels unrelated to the NC lineage the cells later commit to, suggesting a general role in stemness enhancement and proposing a mechanism by which the NC acquires its ability to form derivatives beyond "ectodermal-capacity" in chick and mouse embryos.
Collapse
Affiliation(s)
- Ceren Pajanoja
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jenny Hsin
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA
| | - Bradley Olinger
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Schiffmacher
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Rita Yazejian
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA
| | - Shaun Abrams
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA
| | - Arvydas Dapkunas
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Zarin Zainul
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA
| | - Andrew D Doyle
- National Institute of Dental and Craniofacial Research, Intramural Research Program, NIDCR Imaging Core, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Martin
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Genomics and Computational Biology Core, National Institutes of Health, Bethesda, MD, USA
| | - Laura Kerosuo
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA.
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Iwatsuki K, Oikawa M, Kobayashi H, Penfold CA, Sanbo M, Yamamoto T, Hochi S, Kurimoto K, Hirabayashi M, Kobayashi T. Rat post-implantation epiblast-derived pluripotent stem cells produce functional germ cells. CELL REPORTS METHODS 2023; 3:100542. [PMID: 37671016 PMCID: PMC10475792 DOI: 10.1016/j.crmeth.2023.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 09/07/2023]
Abstract
In mammals, pluripotent cells transit through a continuum of distinct molecular and functional states en route to initiating lineage specification. Capturing pluripotent stem cells (PSCs) mirroring in vivo pluripotent states provides accessible in vitro models to study the pluripotency program and mechanisms underlying lineage restriction. Here, we develop optimal culture conditions to derive and propagate post-implantation epiblast-derived PSCs (EpiSCs) in rats, a valuable model for biomedical research. We show that rat EpiSCs (rEpiSCs) can be reset toward the naive pluripotent state with exogenous Klf4, albeit not with the other five candidate genes (Nanog, Klf2, Esrrb, Tfcp2l1, and Tbx3) effective in mice. Finally, we demonstrate that rat EpiSCs retain competency to produce authentic primordial germ cell-like cells that undergo functional gametogenesis leading to the birth of viable offspring. Our findings in the rat model uncover principles underpinning pluripotency and germline competency across species.
Collapse
Affiliation(s)
- Kenyu Iwatsuki
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Laboratory of Regenerative Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Nara 634-0813, Japan
| | - Christopher A. Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
- Wellcome Trust – Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Kyoto 606-8501, Japan
| | - Shinichi Hochi
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Nara 634-0813, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
- The Graduate University of Advanced Studies, Aichi 444-8787, Japan
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| |
Collapse
|
14
|
Chen CP, Chen PC, Pan YL, Hsu YC. Prenatal lipopolysaccharide exposure induces anxiety-like behaviour in male mouse offspring and aberrant glial differentiation of embryonic neural stem cells. Cell Mol Biol Lett 2023; 28:67. [PMID: 37592237 PMCID: PMC10436442 DOI: 10.1186/s11658-023-00480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Prenatal infection has been implicated in the development of neuropsychiatric disorders in children. We hypothesised that exposure to lipopolysaccharide during prenatal development could induce anxiety-like behaviour and sensorineural hearing loss in offspring, as well as disrupt neural differentiation during embryonic neural development. METHODS We simulated prenatal infection in FVB mice and mouse embryonic stem cell (ESC) lines, specifically 46C and E14Tg2a, through lipopolysaccharide treatment. Gene expression profiling analyses and behavioural tests were utilized to study the effects of lipopolysaccharide on the offspring and alterations in toll-like receptor (TLR) 2-positive and TLR4-positive cells during neural differentiation in the ESCs. RESULTS Exposure to lipopolysaccharide (25 µg/kg) on gestation day 9 resulted in anxiety-like behaviour specifically in male offspring, while no effects were detected in female offspring. We also found significant increases in the expression of GFAP and CNPase, as well as higher numbers of GFAP + astrocytes and O4+ oligodendrocytes in the prefrontal cortex of male offspring. Furthermore, increased scores for genes related to oligodendrocyte and lipid metabolism, particularly ApoE, were observed in the prefrontal cortex regions. Upon exposure to lipopolysaccharide during the ESC-to-neural stem cell (NSC) transition, Tuj1, Map2, Gfap, O4, and Oligo2 mRNA levels increased in the differentiated neural cells on day 14. In vitro experiments demonstrated that lipopolysaccharide exposure induced inflammatory responses, as evidenced by increased expression of IL1b and ApoB mRNA. CONCLUSIONS Our findings suggest that prenatal infection at different stages of neural differentiation may result in distinct disturbances in neural differentiation during ESC-NSC transitions. Furthermore, early prenatal challenges with lipopolysaccharide selectively induce anxiety-like behaviour in male offspring. This behaviour may be attributed to the abnormal differentiation of astrocytes and oligodendrocytes in the brain, potentially mediated by ApoB/E signalling pathways in response to inflammatory stimuli.
Collapse
Affiliation(s)
- Chie-Pein Chen
- Division of High Risk Pregnancy, Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Pei-Chun Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yu-Ling Pan
- Department of Audiology and Speech-Language Pathology, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Chao Hsu
- Department of Audiology and Speech-Language Pathology, MacKay Medical College, New Taipei City, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
15
|
Li X, Chen P, Ji J, Duan Q, Cao J, Huang R, Ye SD. Rhox6 regulates the expression of distinct target genes to mediate mouse PGCLC formation and ESC self-renewal. Cell Biosci 2023; 13:145. [PMID: 37553721 PMCID: PMC10408072 DOI: 10.1186/s13578-023-01096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Mouse embryonic stem cells (mESCs) not only retain the property of self-renewal but also have the ability to develop into primordial germ cell-like cells (PGCLCs). However, knowledge about the mechanisms of transcriptional regulation is still limited. Rhox6, a member of the homeobox family that is located on the X chromosome, is highly expressed within PGCLCs in vivo and in vitro. However, the detailed effects of Rhox6 on PGCLC specification and mESC maintenance remain unclear. RESULTS In this study, we found that overexpression of Rhox6 favors the formation of PGCLCs, while depletion of Rhox6 inhibits the generation of PGCLCs. Mechanistically, Rhox6 directly induces the expression of Nanos3 during the specification of PGCLCs. Subsequently, downregulation of Nanos3 expression is sufficient to decrease the ability of Rhox6 to induce PGCLC formation. Moreover, we found that depletion of Rhox6 expression facilitates the self-renewal of mESCs. High-throughput sequencing revealed that suppression of Rhox6 transcription significantly increases the expression of pluripotency genes. Functional studies further demonstrated that Rhox6 directly represses the transcription of Tbx3. Therefore, knockdown of the expression of the latter impairs the self-renewal of mESCs promoted by Rhox6 downregulation. CONCLUSIONS Our study reveals that overexpression of Rhox6 is beneficial for PGCLC generation through induction of Nanos3, while downregulation of Rhox6 contributes to mESC self-renewal by increasing Tbx3. These findings help elucidate the early development of mouse embryos.
Collapse
Affiliation(s)
- Xiaofeng Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Peng Chen
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Junxiang Ji
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Quanchao Duan
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Jianjian Cao
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Ru Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
16
|
Klein DC, Lardo SM, McCannell KN, Hainer SJ. FACT regulates pluripotency through proximal and distal regulation of gene expression in murine embryonic stem cells. BMC Biol 2023; 21:167. [PMID: 37542287 PMCID: PMC10403911 DOI: 10.1186/s12915-023-01669-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The FACT complex is a conserved histone chaperone with critical roles in transcription and histone deposition. FACT is essential in pluripotent and cancer cells, but otherwise dispensable for most mammalian cell types. FACT deletion or inhibition can block induction of pluripotent stem cells, yet the mechanism through which FACT regulates cell fate decisions remains unclear. RESULTS To explore the mechanism for FACT function, we generated AID-tagged murine embryonic cell lines for FACT subunit SPT16 and paired depletion with nascent transcription and chromatin accessibility analyses. We also analyzed SPT16 occupancy using CUT&RUN and found that SPT16 localizes to both promoter and enhancer elements, with a strong overlap in binding with OCT4, SOX2, and NANOG. Over a timecourse of SPT16 depletion, nucleosomes invade new loci, including promoters, regions bound by SPT16, OCT4, SOX2, and NANOG, and TSS-distal DNaseI hypersensitive sites. Simultaneously, transcription of Pou5f1 (encoding OCT4), Sox2, Nanog, and enhancer RNAs produced from these genes' associated enhancers are downregulated. CONCLUSIONS We propose that FACT maintains cellular pluripotency through a precise nucleosome-based regulatory mechanism for appropriate expression of both coding and non-coding transcripts associated with pluripotency.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Santana M Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kurtis N McCannell
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Yamashita N, Kawahara M, Imai T, Tatsumi G, Asai-Nishishita A, Andoh A. Loss of Nudt15 thiopurine detoxification increases direct DNA damage in hematopoietic stem cells. Sci Rep 2023; 13:11908. [PMID: 37488179 PMCID: PMC10366091 DOI: 10.1038/s41598-023-38952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
Thiopurines, such as 6-mercaptopurine (6-MP), are widely used as cytotoxic agents and immunosuppressants for leukemia and autoimmune or inflammatory diseases. A nonsynonymous single nucleotide polymorphism (p.Arg139Cys; R139C) of the nucleoside diphosphate-linked moiety X-type motif 15 (NUDT15) gene causes the loss of thiopurine detoxification, inducing myelosuppression. To understand such hematotoxicity, we investigate the effects of NUDT15 R139C on hematopoietic stem cells (HSCs) upon thiopurine administration. Using previously established Nudt15R138C knock-in mice, which mimic myelosuppression in NUDT15R139C homozygous or heterozygous patients following thiopurine administration, we investigated the numerical changes of HSCs and hematopoietic progenitor cells following 6-MP administration using in vivo flowcytometry and ex vivo HSC expansion. Genes differentially expressed between Nudt15+/+ HSCs and Nudt15R138C/R138C HSCs were identified using RNA-sequencing before the emergence of 6-MP-induced HSC-damage. Gene Ontology (GO) and Transcriptional Regulatory Relationships Unraveled by Sentence-based Text Mining (TRRUST) analyses were performed to elucidate the molecular effects of 6-MP on HSCs. In Nudt15R138C/R138C mice, 6-MP induced exhaustion of HSCs faster than that of multipotent progenitors and as fast as that of myeloid-committed progenitors. Ex vivo-expanded Nudt15R138C/R138C HSCs were dose- and time-dependently damaged by 6-MP. GO analysis identified the DNA damage response and cell cycle process as the most strongly influenced processes in Nudt15R138C/R138C HSCs. TRRUST analysis revealed that the Trp53-regulated transcriptional regulatory network is influenced prior to HSC exhaustion in Nudt15R138C/R138C HSCs. The loss of NUDT15 thiopurine detoxification enhances thiopurine-mediated DNA damage via the Trp53 networks in HSCs. Therefore, caution is required in long-term thiopurine use in patients with NUDT15 R139C in view of its adverse effects on HSCs in the form of DNA damage.
Collapse
Affiliation(s)
- Noriaki Yamashita
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Masahiro Kawahara
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan.
| | - Takayuki Imai
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Goichi Tatsumi
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Ai Asai-Nishishita
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Akira Andoh
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
18
|
Varzideh F, Gambardella J, Kansakar U, Jankauskas SS, Santulli G. Molecular Mechanisms Underlying Pluripotency and Self-Renewal of Embryonic Stem Cells. Int J Mol Sci 2023; 24:8386. [PMID: 37176093 PMCID: PMC10179698 DOI: 10.3390/ijms24098386] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. ESCs have two distinctive properties: ability to proliferate indefinitely, a feature referred as "self-renewal", and to differentiate into different cell types, a peculiar characteristic known as "pluripotency". Self-renewal and pluripotency of ESCs are finely orchestrated by precise external and internal networks including epigenetic modifications, transcription factors, signaling pathways, and histone modifications. In this systematic review, we examine the main molecular mechanisms that sustain self-renewal and pluripotency in both murine and human ESCs. Moreover, we discuss the latest literature on human naïve pluripotency.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Stanislovas S. Jankauskas
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
19
|
Zeng L, Zhu Y, Moreno CS, Wan Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin Cancer Biol 2023; 90:29-44. [PMID: 36806560 PMCID: PMC10023514 DOI: 10.1016/j.semcancer.2023.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/04/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Despite the development of cancer therapies, the success of most treatments has been impeded by drug resistance. The crucial role of tumor cell plasticity has emerged recently in cancer progression, cancer stemness and eventually drug resistance. Cell plasticity drives tumor cells to reversibly convert their cell identity, analogous to differentiation and dedifferentiation, to adapt to drug treatment. This phenotypical switch is driven by alteration of the transcriptome. Several pluripotent factors from the KLF and SOX families are closely associated with cancer pathogenesis and have been revealed to regulate tumor cell plasticity. In this review, we particularly summarize recent studies about KLF4, KLF5 and SOX factors in cancer development and evolution, focusing on their roles in cancer initiation, invasion, tumor hierarchy and heterogeneity, and lineage plasticity. In addition, we discuss the various regulation of these transcription factors and related cutting-edge drug development approaches that could be used to drug "undruggable" transcription factors, such as PROTAC and PPI targeting, for targeted cancer therapy. Advanced knowledge could pave the way for the development of novel drugs that target transcriptional regulation and could improve the outcome of cancer therapy.
Collapse
Affiliation(s)
- Lidan Zeng
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Department of Biomedical Informatics, Winship Cancer Institute, Emory University School of Medicine, USA.
| | - Yong Wan
- Department of Pharmacology and Chemical Biology, Department of Hematology and oncology, Winship Cancer Institute, Emory University School of Medicine, USA.
| |
Collapse
|
20
|
Zhou J, Hu J, Wang Y, Gao S. Induction and application of human naive pluripotency. Cell Rep 2023; 42:112379. [PMID: 37043354 DOI: 10.1016/j.celrep.2023.112379] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/18/2022] [Accepted: 03/26/2023] [Indexed: 04/13/2023] Open
Abstract
Over the past few decades, many attempts have been made to capture different states of pluripotency in vitro. Naive and primed pluripotent stem cells, corresponding to the pluripotency states of pre- and post-implantation epiblasts, respectively, have been well characterized in mice and can be interconverted in vitro. Here, we summarize the recently reported strategies to generate human naive pluripotent stem cells in vitro. We discuss their applications in studies of regulatory mechanisms involved in early developmental processes, including identification of molecular features, X chromosome inactivation modeling, transposable elements regulation, metabolic characteristics, and cell fate regulation, as well as potential for extraembryonic differentiation and blastoid construction for embryogenesis modeling. We further discuss the naive pluripotency-related research, including 8C-like cell establishment and disease modeling. We also highlight limitations of current naive pluripotency studies, such as imperfect culture conditions and inadequate responsiveness to differentiation signals.
Collapse
Affiliation(s)
- Jianfeng Zhou
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Jindian Hu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yixuan Wang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| |
Collapse
|
21
|
Cao L, Wang R, Liu G, Zhang Y, Thorne RF, Zhang XD, Li J, Xia Y, Guo L, Shao F, Gu H, Wu M. Glycolytic Pfkp acts as a Lin41 protein kinase to promote endodermal differentiation of embryonic stem cells. EMBO Rep 2023; 24:e55683. [PMID: 36660859 PMCID: PMC9986826 DOI: 10.15252/embr.202255683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Unveiling the principles governing embryonic stem cell (ESC) differentiation into specific lineages is critical for understanding embryonic development and for stem cell applications in regenerative medicine. Here, we establish an intersection between LIF-Stat3 signaling that is essential for maintaining murine (m) ESCs pluripotency, and the glycolytic enzyme, the platelet isoform of phosphofructokinase (Pfkp). In the pluripotent state, Stat3 transcriptionally suppresses Pfkp in mESCs while manipulating the cells to lift this repression results in differentiation towards the ectodermal lineage. Pfkp exhibits substrate specificity changes to act as a protein kinase, catalyzing serine phosphorylation of the developmental regulator Lin41. Such phosphorylation stabilizes Lin41 by impeding its autoubiquitination and proteasomal degradation, permitting Lin41-mediated binding and destabilization of mRNAs encoding ectodermal specification markers to favor the expression of endodermal specification genes. This provides new insights into the wiring of pluripotency-differentiation circuitry where Pfkp plays a role in germ layer specification during mESC differentiation.
Collapse
Affiliation(s)
- Leixi Cao
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Ruijie Wang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Guangzhi Liu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Yuwei Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
- School of Biomedical Sciences & PharmacyUniversity of NewcastleNewcastleNSWAustralia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
- School of Environmental & Life SciencesUniversity of NewcastleNewcastleNSWAustralia
| | - Jinming Li
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Yang Xia
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Lili Guo
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Fengmin Shao
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Hao Gu
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
- School of Clinical MedicineHenan UniversityZhengzhouChina
- CAS Centre for Excellence in Molecular Cell Sciencethe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
22
|
Dinarello A, Mills TS, Tengesdal IW, Powers NE, Azam T, Dinarello CA. Dexamethasone and OLT1177 Cooperate in the Reduction of Melanoma Growth by Inhibiting STAT3 Functions. Cells 2023; 12:294. [PMID: 36672229 PMCID: PMC9856388 DOI: 10.3390/cells12020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The NLRP3 inflammasome is a multimolecular complex that processes inactive IL-1β and IL-18 into proinflammatory cytokines. OLT1177 is an orally active small compound that specifically inhibits NLRP3. Here, B16F10 melanoma were implanted in mice and treated with OLT1177 as well as combined with the glucocorticoid dexamethasone. At sacrifice, OLT1177 treated mice had significantly smaller tumors compared to tumor-bearing mice treated with vehicle. However, the combined treatment of OLT1177 plus dexamethasone revealed a greater suppression of tumor growth. This reduction was accompanied by a downregulation of nuclear and mitochondrial STAT3-dependent gene transcription and by a significant reduction of STAT3 Y705 and S727 phosphorylations in the tumors. In vitro, the human melanoma cell line 1205Lu, stimulated with IL-1α, exhibited significantly lower levels of STAT3 Y705 phosphorylation by the combination treatment, thus affecting the nuclear functions of STAT3. In the same cells, STAT3 serine 727 phosphorylation was also lower, affecting the mitochondrial functions of STAT3. In addition, metabolic analyses revealed a marked reduction of ATP production rate and glycolytic reserve in cells treated with the combination of OLT1177 plus dexamethasone. These findings demonstrate that the combination of OLT1177 and dexamethasone reduces tumor growth by targeting nuclear as well as mitochondrial functions of STAT3.
Collapse
Affiliation(s)
- Alberto Dinarello
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Taylor S. Mills
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Isak W. Tengesdal
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Nicholas E. Powers
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Tania Azam
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
23
|
Lee SJ, Kim J, Han G, Hong SP, Kim D, Cho C. Impaired Blastocyst Formation in Lnx2-Knockdown Mouse Embryos. Int J Mol Sci 2023; 24:ijms24021385. [PMID: 36674899 PMCID: PMC9867088 DOI: 10.3390/ijms24021385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Ligand of Numb-protein X 2 (LNX2) is an E3 ubiquitin ligase that is known to regulate Notch signaling by participating in NUMB protein degradation. Notch signaling is important for differentiation and proliferation in mammals, and plays a significant role in blastocyst formation during early embryonic development. In this study, we investigated Lnx2 in mouse preimplantation embryos. Expression analysis showed that Lnx2 is expressed in oocytes and preimplantation embryos. Lnx2-knockdown embryos normally progress to the morula stage, but the majority of them do not develop into normal blastocysts. Transcript analysis revealed that the expression levels of genes critical for cell lineage specification, including octamer-binding transcription factor 4 (Oct4), are increased in Lnx2 knockdown embryos. Furthermore, the expression levels of Notch and Hippo signaling-related genes are also increased by Lnx2 knockdown. Collectively, our results show that Lnx2 is important for blastocyst formation in mice, suggest that this may act via lineage specification of inner cell mass, and further show that Lnx2 may be involved in transcriptionally regulating various genes implicated in early embryonic development.
Collapse
Affiliation(s)
- Seung-Jae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jaehwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Gwidong Han
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seung-Pyo Hong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dayeon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Correspondence:
| |
Collapse
|
24
|
Nucleosome remodeling and deacetylation complex and MBD3 influence mouse embryonic stem cell naïve pluripotency under inhibition of protein kinase C. Cell Death Dis 2022; 8:344. [PMID: 35915078 PMCID: PMC9343426 DOI: 10.1038/s41420-022-01131-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022]
Abstract
The pluripotency of naïve mouse embryonic stem cells (mES) is regulated by multiple signaling pathways, with inhibition of protein kinase C (PKCi) playing a particularly important role in maintaining naïve mES. However, the regulatory function of nucleosome remodeling and deacetylase (NuRD) complex in mES cultured in a PKCi system is unknown. We found that, compared with 2iL-derived mES, PKCi-derived mES showed low mRNA expression of NuRD complex subunits, including MBD3, HDAC1/HDAC2, MTA1, and RbAP46/RbAP48. Western blot showed that PKCi-derived mES expressed lower protein levels of MBD3 and HDAC2 at passage 3, as well as MBD3, HDAC2, and MTA1 at passage 10, indicating that PKCi suppressed NuRD complex expression. Knockdown of MBD3 increased PKCi-derived mES pluripotency by increasing NANOG and OCT4 expression and colony formation. By contrast, overexpression of MBD3 or removal of PKC inhibitor-induced differentiation of mES, results in reduced NANOG, OCT4, and REX1 expression and colony formation, increased differentiation-related gene expression, and differentiation into flat cells. Knockdown of MBD3 in mES upon PKC inhibitor removal partially reversed cell differentiation. Our results show that the regulatory NuRD complex and its MBD3 subunit influence the naïve pluripotency of mES cultured in a PKCi system.
Collapse
|
25
|
Kumar S, De Leon EM, Granados J, Whitworth DJ, VandeBerg JL. Monodelphis domestica Induced Pluripotent Stem Cells Reveal Metatherian Pluripotency Architecture. Int J Mol Sci 2022; 23:12623. [PMID: 36293487 PMCID: PMC9604385 DOI: 10.3390/ijms232012623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Marsupials have been a powerful comparative model to understand mammalian biology. However, because of the unique characteristics of their embryology, marsupial pluripotency architecture remains to be fully understood, and nobody has succeeded in developing embryonic stem cells (ESCs) from any marsupial species. We have developed an integration-free iPSC reprogramming method and established validated iPSCs from two inbred strains of a marsupial, Monodelphis domestica. The monoiPSCs showed a significant (6181 DE-genes) and highly uniform (r2 [95% CI] = 0.973 ± 0.007) resetting of the cellular transcriptome and were similar to eutherian ESCs and iPSCs in their overall transcriptomic profiles. However, monoiPSCs showed unique regulatory architecture of the core pluripotency transcription factors and were more like marsupial epiblasts. Our results suggest that POU5F1 and the splice-variant-specific expression of POU5F3 synergistically regulate the opossum pluripotency gene network. It is plausible that POU5F1, POU5F3 splice variant XM_016427856.1, and SOX2 form a self-regulatory network. NANOG expression, however, was specific to monoiPSCs and epiblasts. Furthermore, POU5F1 was highly expressed in trophectoderm cells, whereas all other pluripotency transcription factors were significantly downregulated, suggesting that the regulatory architecture of core pluripotency genes of marsupials may be distinct from that of eutherians.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA
| | - Erica M. De Leon
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA
| | - Jose Granados
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA
| | - Deanne J. Whitworth
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | - John L. VandeBerg
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| |
Collapse
|
26
|
Li Y, Yang Z, Li X, Yu Y, Li X, Chen P, Li B, Wang X, Ye SD. Prdm14 promotes mouse ESC self-renewal and PGCLC specification through enhancement of Stat3 activity. iScience 2022; 25:105293. [PMID: 36300005 PMCID: PMC9589213 DOI: 10.1016/j.isci.2022.105293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/13/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Prdm14 plays an important role in the maintenance of mouse embryonic stem cell (mESC) pluripotency and the specification of primordial germ cells (PGCs). However, the mechanism downstream of Prdm14 is still not fully understood. Here, using high-throughput sequencing, chromatin immunoprecipitation, and luciferase reporter assays, we show that Prdm14 directly binds to the promoter of Socs3 and represses its transcription to increase the phosphorylation level of Stat3 protein, a critical downstream effector of LIF. Therefore, ectopic expression of Socs3 is able to decrease the ability of Prdm14 to promote mouse mESC self-renewal and PGC-like cell generation. As expected, similar phenotypes were observed in Prdm14-transfected mESCs after knockdown of Stat3 transcripts or treatment with a pan-inhibitor of JAKs, positive modulators of the LIF/Stat3 signaling pathway. These data will facilitate a better understanding of the regulatory network governing ESC identity and germ cell development.
Collapse
Affiliation(s)
- Yuting Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Ziqiong Yang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xiangfen Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Yang Yu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xiaofeng Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Peng Chen
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Bing Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xiaoxiao Wang
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
- Corresponding author
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Corresponding author
| |
Collapse
|
27
|
Roodgar M, Suchy FP, Nguyen LH, Bajpai VK, Sinha R, Vilches-Moure JG, Van Bortle K, Bhadury J, Metwally A, Jiang L, Jian R, Chiang R, Oikonomopoulos A, Wu JC, Weissman IL, Mankowski JL, Holmes S, Loh KM, Nakauchi H, VandeVoort CA, Snyder MP. Chimpanzee and pig-tailed macaque iPSCs: Improved culture and generation of primate cross-species embryos. Cell Rep 2022; 40:111264. [PMID: 36044843 PMCID: PMC10075238 DOI: 10.1016/j.celrep.2022.111264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/06/2022] [Accepted: 08/04/2022] [Indexed: 12/26/2022] Open
Abstract
As our closest living relatives, non-human primates uniquely enable explorations of human health, disease, development, and evolution. Considerable effort has thus been devoted to generating induced pluripotent stem cells (iPSCs) from multiple non-human primate species. Here, we establish improved culture methods for chimpanzee (Pan troglodytes) and pig-tailed macaque (Macaca nemestrina) iPSCs. Such iPSCs spontaneously differentiate in conventional culture conditions, but can be readily propagated by inhibiting endogenous WNT signaling. As a unique functional test of these iPSCs, we injected them into the pre-implantation embryos of another non-human species, rhesus macaques (Macaca mulatta). Ectopic expression of gene BCL2 enhances the survival and proliferation of chimpanzee and pig-tailed macaque iPSCs within the pre-implantation embryo, although the identity and long-term contribution of the transplanted cells warrants further investigation. In summary, we disclose transcriptomic and proteomic data, cell lines, and cell culture resources that may be broadly enabling for non-human primate iPSCs research.
Collapse
Affiliation(s)
- Morteza Roodgar
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Fabian P Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lan H Nguyen
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vivek K Bajpai
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jose G Vilches-Moure
- Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kevin Van Bortle
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Joydeep Bhadury
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Biomedicine, Sahlgrenska University Hospital, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Ahmed Metwally
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Rosaria Chiang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Angelos Oikonomopoulos
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Kyle M Loh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Catherine A VandeVoort
- California National Primate Research Center and Department of Obstetrics and Gynecology, University of California, Davis, Davis, CA, USA.
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
28
|
Yi L, Yang L. Stem-like T cells and niches: Implications in human health and disease. Front Immunol 2022; 13:907172. [PMID: 36059484 PMCID: PMC9428355 DOI: 10.3389/fimmu.2022.907172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, accumulating evidence has elucidated the important role of T cells with stem-like characteristics in long-term maintenance of T cell responses and better patient outcomes after immunotherapy. The fate of TSL cells has been correlated with many physiological and pathological human processes. In this review, we described present advances demonstrating that stem-like T (TSL) cells are central players in human health and disease. We interpreted the evolutionary characteristics, mechanism and functions of TSL cells. Moreover, we discuss the import role of distinct niches and how they affect the stemness of TSL cells. Furthermore, we also outlined currently available strategies to generate TSL cells and associated affecting factors. Moreover, we summarized implication of TSL cells in therapies in two areas: stemness enhancement for vaccines, ICB, and adoptive T cell therapies, and stemness disruption for autoimmune disorders.
Collapse
|
29
|
Wang X, Wu Q. The Divergent Pluripotent States in Mouse and Human Cells. Genes (Basel) 2022; 13:genes13081459. [PMID: 36011370 PMCID: PMC9408542 DOI: 10.3390/genes13081459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Pluripotent stem cells (PSCs), which can self-renew and give rise to all cell types in all three germ layers, have great potential in regenerative medicine. Recent studies have shown that PSCs can have three distinct but interrelated pluripotent states: naive, formative, and primed. The PSCs of each state are derived from different stages of the early developing embryo and can be maintained in culture by different molecular mechanisms. In this review, we summarize the current understanding on features of the three pluripotent states and review the underlying molecular mechanisms of maintaining their identities. Lastly, we discuss the interrelation and transition among these pluripotency states. We believe that comprehending the divergence of pluripotent states is essential to fully harness the great potential of stem cells in regenerative medicine.
Collapse
Affiliation(s)
| | - Qiang Wu
- Correspondence: ; Tel.: +853-8897-2708
| |
Collapse
|
30
|
Liberti DC, Liberti Iii WA, Kremp MM, Penkala IJ, Cardenas-Diaz FL, Morley MP, Babu A, Zhou S, Fernandez Iii RJ, Morrisey EE. Klf5 defines alveolar epithelial type 1 cell lineage commitment during lung development and regeneration. Dev Cell 2022; 57:1742-1757.e5. [PMID: 35803279 DOI: 10.1016/j.devcel.2022.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Alveolar epithelial cell fate decisions drive lung development and regeneration. Using transcriptomic and epigenetic profiling coupled with genetic mouse and organoid models, we identified the transcription factor Klf5 as an essential determinant of alveolar epithelial cell fate across the lifespan. We show that although dispensable for both adult alveolar epithelial type 1 (AT1) and alveolar epithelial type 2 (AT2) cell homeostasis, Klf5 enforces AT1 cell lineage fidelity during development. Using infectious and non-infectious models of acute respiratory distress syndrome, we demonstrate that Klf5 represses AT2 cell proliferation and enhances AT2-AT1 cell differentiation in a spatially restricted manner during lung regeneration. Moreover, ex vivo organoid assays identify that Klf5 reduces AT2 cell sensitivity to inflammatory signaling to drive AT2-AT1 cell differentiation. These data define the roll of a major transcriptional regulator of AT1 cell lineage commitment and of the AT2 cell response to inflammatory crosstalk during lung regeneration.
Collapse
Affiliation(s)
- Derek C Liberti
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - William A Liberti Iii
- Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720, USA
| | - Madison M Kremp
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian J Penkala
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - Fabian L Cardenas-Diaz
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Zhou
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rafael J Fernandez Iii
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Ding L, Roeck K, Zhang C, Zidek B, Rodman E, Hernandez-Barco Y, Zhang JS, Bamlet W, Oberg A, Zhang L, Bardeesy N, Li H, Billadeau D. Nuclear GSK-3β and Oncogenic KRas Lead to the Retention of Pancreatic Ductal Progenitor Cells Phenotypically Similar to Those Seen in IPMN. Front Cell Dev Biol 2022; 10:853003. [PMID: 35646902 PMCID: PMC9136019 DOI: 10.3389/fcell.2022.853003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a downstream target of oncogenic KRas and can accumulate in the nucleus in pancreatic ductal adenocarcinoma (PDA). To determine the interplay between oncogenic KRas and nuclear GSK-3β in PDA development, we generated Lox-STOP-Lox (LSL) nuclear-targeted GSK-3β animals and crossed them with LSL-KRasG12D mice under the control of the Pdx1-cre transgene—referred to as KNGC. Interestingly, 4-week-old KNGC animals show a profound loss of acinar cells, the expansion of ductal cells, and the rapid development of cystic-like lesions reminiscent of intraductal papillary mucinous neoplasm (IPMN). RNA-sequencing identified the expression of several ductal cell lineage genes including AQP5. Significantly, the Aqp5+ ductal cell pool was proliferative, phenotypically distinct from quiescent pancreatic ductal cells, and deletion of AQP5 limited expansion of the ductal pool. Aqp5 is also highly expressed in human IPMN along with GSK-3β highlighting the putative role of Aqp5+ ductal cells in human preneoplastic lesion development. Altogether, these data identify nGSK-3β and KRasG12D as an important signaling node promoting the retention of pancreatic ductal progenitor cells, which could be used to further characterize pancreatic ductal development as well as lineage biomarkers related to IPMN and PDA.
Collapse
Affiliation(s)
- Li Ding
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Li Ding, ; Daniel Billadeau,
| | - Kaely Roeck
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Cheng Zhang
- Department of Molecular and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Brooke Zidek
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Esther Rodman
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Jin-San Zhang
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - William Bamlet
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ann Oberg
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lizhi Zhang
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Nabeel Bardeesy
- Center for Cancer Research, Harvard Medical School, Boston, MA, United States
| | - Hu Li
- Department of Molecular and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Li Ding, ; Daniel Billadeau,
| |
Collapse
|
32
|
Quan Y, Wang M, Xu C, Wang X, Wu Y, Qin D, Lin Y, Lu X, Lu F, Li L. Cnot8 eliminates naïve regulation networks and is essential for naïve-to-formative pluripotency transition. Nucleic Acids Res 2022; 50:4414-4435. [PMID: 35390160 PMCID: PMC9071485 DOI: 10.1093/nar/gkac236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/11/2022] [Accepted: 03/26/2022] [Indexed: 11/14/2022] Open
Abstract
Mammalian early epiblasts at different phases are characterized by naïve, formative, and primed pluripotency states, involving extensive transcriptome changes. Here, we report that deadenylase Cnot8 of Ccr4-Not complex plays essential roles during the transition from naïve to formative state. Knock out (KO) Cnot8 resulted in early embryonic lethality in mice, but Cnot8 KO embryonic stem cells (ESCs) could be established. Compared with the cells differentiated from normal ESCs, Cnot8 KO cells highly expressed a great many genes during their differentiation into the formative state, including several hundred naïve-like genes enriched in lipid metabolic process and gene expression regulation that may form the naïve regulation networks. Knockdown expression of the selected genes of naïve regulation networks partially rescued the differentiation defects of Cnot8 KO ESCs. Cnot8 depletion led to the deadenylation defects of its targets, increasing their poly(A) tail lengths and half-life, eventually elevating their expression levels. We further found that Cnot8 was involved in the clearance of targets through its deadenylase activity and the binding of Ccr4-Not complex, as well as the interacting with Tob1 and Pabpc1. Our results suggest that Cnot8 eliminates naïve regulation networks through mRNA clearance, and is essential for naïve-to-formative pluripotency transition.
Collapse
Affiliation(s)
- Yujun Quan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meijiao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuxuan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Chakraborty AR, Vassilev A, Jaiswal SK, O'Connell CE, Ahrens JF, Mallon BS, Pera MF, DePamphilis ML. Selective elimination of pluripotent stem cells by PIKfyve specific inhibitors. Stem Cell Reports 2022; 17:397-412. [PMID: 35063131 PMCID: PMC8828683 DOI: 10.1016/j.stemcr.2021.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/05/2023] Open
Abstract
Inhibition of PIKfyve phosphoinositide kinase selectively kills autophagy-dependent cancer cells by disrupting lysosome homeostasis. Here, we show that PIKfyve inhibitors can also selectively eliminate pluripotent embryonal carcinoma cells (ECCs), embryonic stem cells, and induced pluripotent stem cells under conditions where differentiated cells remain viable. PIKfyve inhibitors prevented lysosome fission, induced autophagosome accumulation, and reduced cell proliferation in both pluripotent and differentiated cells, but they induced death only in pluripotent cells. The ability of PIKfyve inhibitors to distinguish between pluripotent and differentiated cells was confirmed with xenografts derived from ECCs. Pretreatment of ECCs with the PIKfyve specific inhibitor WX8 suppressed their ability to form teratocarcinomas in mice, and intraperitoneal injections of WX8 into mice harboring teratocarcinoma xenografts selectively eliminated pluripotent cells. Differentiated cells continued to proliferate, but at a reduced rate. These results provide a proof of principle that PIKfyve specific inhibitors can selectively eliminate pluripotent stem cells in vivo as well as in vitro.
Collapse
Affiliation(s)
- Arup R Chakraborty
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA
| | - Alex Vassilev
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA
| | - Sushil K Jaiswal
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA
| | - Constandina E O'Connell
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA
| | - John F Ahrens
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA
| | - Barbara S Mallon
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Melvin L DePamphilis
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA.
| |
Collapse
|
34
|
p57 Suppresses the Pluripotency and Proliferation of Mouse Embryonic Stem Cells by Positively Regulating p53 Activation. Stem Cells Int 2022; 2021:4968649. [PMID: 34976070 PMCID: PMC8720024 DOI: 10.1155/2021/4968649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Embryonic stem cells (ESCs) are pluripotent stem cells that have indefinite self-renewal capacities under appropriate culture conditions in vitro. The pluripotency maintenance and proliferation of these cells are delicately governed by the concert effect of a complex transcriptional regulatory network. Herein, we discovered that p57Kip2 (p57), a cyclin-dependent kinase inhibitor canonically inhibiting cell proliferation, played a role in suppressing the pluripotency state of mouse ESCs (mESCs). p57 knockdown significantly stimulated the expressions of core pluripotency factors NANOG, OCT4, and SOX2, while p57 overexpression inhibited the expressions of these factors in mESCs. In addition, consistent with its function in somatic cells, p57 suppressed mESC proliferation. Further analysis showed that p57 could interact with and contribute to the activation of p53 in mESCs. In conclusion, the present study showed that p57 could antagonize the pluripotency state and the proliferation process of mESCs. This finding uncovers a novel function of p57 and provides new evidence for elucidating the complex regulatory of network of mESC fate.
Collapse
|
35
|
Almeida FRCL, Dias ALNA. Pregnancy in pigs: the journey of an early life. Domest Anim Endocrinol 2022; 78:106656. [PMID: 34474228 DOI: 10.1016/j.domaniend.2021.106656] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/12/2023]
Abstract
Embryo mortality is responsible for greater losses in litter size in pigs. It is well known that pregnancy establishment is a complex process, and important changes occur continuously in both the corpora lutea and the endometrium, which varies depending on the pre-natal development phase: embryonic, pre-implantation or fetal stages. The placenta is a key organ responsible for the exchange of nutrients, metabolites and respiratory gases between mother and fetuses. The porcine placenta is diffuse, epitheliochorial, and placentation begins with implantation, which involves specialized cell adhesion and cell migration, leading to the attachment of the trophectoderm to the uterine endometrial lumen epithelium. The efficiency with which the placenta provides adequate amounts of nutrients and oxygen to the fetus is crucial for proper fetal growth and development. In the last decades, emphasis on selection for sow prolificacy has resulted in a substantial increase in the number of piglets born per litter, which had a direct effect on piglet quality, compromising birth weight and litter uniformity. Placental insufficiency will lead to fetal intrauterine growth restriction. This review addresses the main events of early embryo development, including preimplantation and implantation periods. In addition, placentation and its role on fetal development are covered, as well as intrauterine growth restriction, as it is a natural condition in the pig, with long lasting detrimental effects to the production chain.
Collapse
Affiliation(s)
- F R C L Almeida
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, CEP 31207-901, Belo Horizonte, MG, Brazil.
| | - A L N Alvarenga Dias
- Faculty of Veterinary Medicine, Federal University of Uberlandia, Rodovia BR-050, km 78 - CEP 38410-337, Uberlandia, MG, Brazil
| |
Collapse
|
36
|
Yeh CY, Huang WH, Chen HC, Meir YJJ. Capturing Pluripotency and Beyond. Cells 2021; 10:cells10123558. [PMID: 34944066 PMCID: PMC8700150 DOI: 10.3390/cells10123558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
During the development of a multicellular organism, the specification of different cell lineages originates in a small group of pluripotent cells, the epiblasts, formed in the preimplantation embryo. The pluripotent epiblast is protected from premature differentiation until exposure to inductive cues in strictly controlled spatially and temporally organized patterns guiding fetus formation. Epiblasts cultured in vitro are embryonic stem cells (ESCs), which recapitulate the self-renewal and lineage specification properties of their endogenous counterparts. The characteristics of totipotency, although less understood than pluripotency, are becoming clearer. Recent studies have shown that a minor ESC subpopulation exhibits expanded developmental potential beyond pluripotency, displaying a characteristic reminiscent of two-cell embryo blastomeres (2CLCs). In addition, reprogramming both mouse and human ESCs in defined media can produce expanded/extended pluripotent stem cells (EPSCs) similar to but different from 2CLCs. Further, the molecular roadmaps driving the transition of various potency states have been clarified. These recent key findings will allow us to understand eutherian mammalian development by comparing the underlying differences between potency network components during development. Using the mouse as a paradigm and recent progress in human PSCs, we review the epiblast's identity acquisition during embryogenesis and their ESC counterparts regarding their pluripotent fates and beyond.
Collapse
Affiliation(s)
- Chih-Yu Yeh
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Wei-Han Huang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Hung-Chi Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| | - Yaa-Jyuhn James Meir
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| |
Collapse
|
37
|
Lea RA, McCarthy A, Boeing S, Fallesen T, Elder K, Snell P, Christie L, Adkins S, Shaikly V, Taranissi M, Niakan KK. KLF17 promotes human naïve pluripotency but is not required for its establishment. Development 2021; 148:272511. [PMID: 34661235 PMCID: PMC8645209 DOI: 10.1242/dev.199378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/11/2021] [Indexed: 12/11/2022]
Abstract
Current knowledge of the transcriptional regulation of human pluripotency is incomplete, with lack of interspecies conservation observed. Single-cell transcriptomics analysis of human embryos previously enabled us to identify transcription factors, including the zinc-finger protein KLF17, that are enriched in the human epiblast and naïve human embryonic stem cells (hESCs). Here, we show that KLF17 is expressed coincident with the known pluripotency-associated factors NANOG and SOX2 across human blastocyst development. We investigate the function of KLF17 using primed and naïve hESCs for gain- and loss-of-function analyses. We find that ectopic expression of KLF17 in primed hESCs is sufficient to induce a naïve-like transcriptome and that KLF17 can drive transgene-mediated resetting to naïve pluripotency. This implies a role for KLF17 in establishing naïve pluripotency. However, CRISPR-Cas9-mediated knockout studies reveal that KLF17 is not required for naïve pluripotency acquisition in vitro. Transcriptome analysis of naïve hESCs identifies subtle effects on metabolism and signalling pathways following KLF17 loss of function, and possible redundancy with other KLF paralogues. Overall, we show that KLF17 is sufficient, but not necessary, for naïve pluripotency under the given in vitro conditions. Summary: Given that KLF17 was shown to be sufficient, but not necessary, to establish naïve pluripotent hESCs, KLF17 might function as a peripheral regulator of human pluripotent stem cells.
Collapse
Affiliation(s)
- Rebecca A Lea
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stefan Boeing
- Bioinformatics and Biostatistics Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Todd Fallesen
- Crick Advanced Light Microscopy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Sarah Adkins
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | - Valerie Shaikly
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | | | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.,The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
38
|
Pluripotency Stemness and Cancer: More Questions than Answers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:77-100. [PMID: 34725790 DOI: 10.1007/5584_2021_663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Embryonic stem cells and induced pluripotent stem cells provided us with fascinating new knowledge in recent years. Mechanistic insight into intricate regulatory circuitry governing pluripotency stemness and disclosing parallels between pluripotency stemness and cancer instigated numerous studies focusing on roles of pluripotency transcription factors, including Oct4, Sox2, Klf4, Nanog, Sall4 and Tfcp2L1, in cancer. Although generally well substantiated as tumour-promoting factors, oncogenic roles of pluripotency transcription factors and their clinical impacts are revealing themselves as increasingly complex. In certain tumours, both Oct4 and Sox2 behave as genuine oncogenes, and reporter genes driven by composite regulatory elements jointly recognized by both the factors can identify stem-like cells in a proportion of tumours. On the other hand, cancer stem cells seem to be biologically very heterogeneous both among different tumour types and among and even within individual tumours. Pluripotency transcription factors are certainly implicated in cancer stemness, but do not seem to encompass its entire spectrum. Certain cancer stem cells maintain their stemness by biological mechanisms completely different from pluripotency stemness, sometimes even by engaging signalling pathways that promote differentiation of pluripotent stem cells. Moreover, while these signalling pathways may well be antithetical to stemness in pluripotent stem cells, they may cooperate with pluripotency factors in cancer stem cells - a paradigmatic example is provided by the MAPK-AP-1 pathway. Unexpectedly, forced expression of pluripotency transcription factors in cancer cells frequently results in loss of their tumour-initiating ability, their phenotypic reversion and partial epigenetic normalization. Besides the very different signalling contexts operating in pluripotent and cancer stem cells, respectively, the pronounced dose dependency of reprogramming pluripotency factors may also contribute to the frequent loss of tumorigenicity observed in induced pluripotent cancer cells. Finally, contradictory cell-autonomous and non-cell-autonomous effects of various signalling molecules operate during pluripotency (cancer) reprogramming. The effects of pluripotency transcription factors in cancer are thus best explained within the concept of cancer stem cell heterogeneity.
Collapse
|
39
|
Liu Y, Yamane J, Tanaka A, Fujibuchi W, Yamashita JK. AMPK activation reverts mouse epiblast stem cells to naive state. iScience 2021; 24:102783. [PMID: 34308289 PMCID: PMC8283141 DOI: 10.1016/j.isci.2021.102783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/01/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Despite increasing knowledge on primed and naive pluripotency, the cell signaling that regulates the pluripotency type in stem cells remains not fully understood. Here we show that AMP kinase (AMPK) activators can induce the reversion of primed mouse epiblast stem cells (mEpiSCs) to the naive pluripotent state. The addition of AMPK activators alone or together with leukemia inhibitory factor to primed mEpiSCs induced the appearance of naive-like cells. After passaging in naive culture conditions, the colony morphology, protein expression, and global gene expression profiles indicated the naive state, as did germline transmission ability. Loss-of-function and gain-of-function studies suggested that p38 is a critical downstream target in AMPK activation. Finally, single-cell RNA sequencing analysis revealed that the reversion process through AMPK signaling passes an intermediate naive-like population. In conclusion, the AMPK pathway is a critical driving force in the reversion of primed to naive pluripotency.
Collapse
Affiliation(s)
- Yajing Liu
- The Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Junko Yamane
- The Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Akito Tanaka
- The Department of Animal Research Facility, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Wataru Fujibuchi
- The Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Jun K. Yamashita
- The Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
40
|
Auxin-degron system identifies immediate mechanisms of OCT4. Stem Cell Reports 2021; 16:1818-1831. [PMID: 34143975 PMCID: PMC8282470 DOI: 10.1016/j.stemcr.2021.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
The pluripotency factor OCT4 is essential for the maintenance of naive pluripotent stem cells in vitro and in vivo. However, the specific role of OCT4 in this process remains unknown. Here, we developed a rapid protein-level OCT4 depletion system that demonstrates that the immediate downstream response to loss of OCT4 is reduced expression of key pluripotency factors. Our data show a requirement for OCT4 for the efficient transcription of several key pluripotency factors and suggest that expression of trophectoderm markers is a subsequent event. In addition, we find that NANOG is able to bind to the genome in the absence of OCT4, and this binding is in fact enhanced. Globally, however, the active enhancer-associated histone mark H3K27ac is depleted. Our work establishes that, while OCT4 is required for the maintenance of the naive transcription factor network, at a normal embryonic stem cell levels it antagonizes this network through inhibition of NANOG binding.
Collapse
|
41
|
He L, Gao K, Liu H, Wang J, Li X, He C. Smooth muscle cell-specific knockout of interferon gamma (IFN-γ) receptor attenuates intimal hyperplasia via STAT1-KLF4 activation. Life Sci 2021:119651. [PMID: 34048810 DOI: 10.1016/j.lfs.2021.119651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Intimal hyperplasia is a main contributor to in-stent restenosis. Previous researches have shown that interferon-gamma (IFN-γ), a pleiotropic pro-inflammatory factor, plays a pathological role in intimal hyperplasia. However, the specific role and molecular mechanism of vascular smooth muscle cells (VSMCs)-derived IFN-γ receptor in intimal hyperplasia remains unknown. METHODS We examined the distribution of IFN-γ receptor in human restenosis arteries. Then, the role of IFN-γ receptor in intimal hyperplasia was detected using VSMC-specific IFN-γ receptor-knock out carotid ligation injury models. We performed immunostaining, transwell assay and EdU staining to identify the role of IFN-γ in VSMCs proliferation and migration. The effect of IFN-γ on VSMCs phenotype switching was also investigated. Finally, we evaluated whether the mechanism of IFN-γ on intimal hyperplasia is STAT1-KLF4 dependent. RESULTS The distribution of IFN-γ receptor in human restenosis arteries with VSMC-rich neointima is eventually upregulated. Specific deletion of IFN-γ receptor exhibits thinner intima and lesser proliferating VSMCs. In vitro, treatment with IFN-γ promotes human aortic VSMC (HAVSMCs) proliferation and migration, whereas specifically knock out IFN-γ receptor results in the opposite effect. Deficiency of IFN-γ receptor regulates VSMCs phenotypic switching, such as upregulated contractile markers and downregulated proliferation markers. Mechanistic studies suggest that ablation of IFN-γ receptor prevents VSMCs proliferation, migration and dedifferentiation via STAT1-KLF4 activation. CONCLUSION These results reveal that knockout of VSMC-derived IFN-γ receptor potentiates neointimal hyperplasia by preventing VSMCs proliferation, migration and dedifferentiation. Our finding implies that targeting IFN-γ-STAT1-KLF4 signaling could provide a new therapeutic strategy to attenuate vessel restenosis.
Collapse
Affiliation(s)
- Lu He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Kun Gao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Hongxia Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xinwei Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Chaoyong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
42
|
Seo L, Kim YI, Kim H, Hyun K, Kim J, Lee JE. Discovery of Klf2 interactors in mouse embryonic stem cells by immunoprecipitation-mass spectrometry utilizing exogenously expressed bait. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140672. [PMID: 34000451 DOI: 10.1016/j.bbapap.2021.140672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/04/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Krüppel-like factor 2 (Klf2) is a DNA-binding transcription factor that regulates embryonic stem cell-specific gene expression. Transcription cofactors such as p300 acetyltransferase and Erk kinases interact with Klf2, providing an additional layer of transcription regulation in embryonic stem cells. To carry out a thorough survey of the Klf2 interactome in embryonic stem cells and identify novel transcription cofactors, we designed a modified immunoprecipitation-mass spectrometry (IP-MS) method. In this method, recombinant Klf2, expressed and purified from Sf9 insect cells instead of ectopically expressed in cells, was used as bait. Using this modified IP-MS method, we discovered nine Klf2-interacting proteins, including the previously reported Crebbp and p300. These proteins showed at least an 8-fold increase in signal intensity in Klf2 pull-downs compared with controls, with P-values <0.010. Among the identified Klf2-binding proteins confirmed using our IP-MS workflow was Snd1, which we found to interact directly with Klf2 and function as a transcriptional coactivator of Klf2 to drive the Oct4 gene expression. Collectively, our IP-MS protocol may offer a useful tool for identifying novel transcription cofactors in stem cells.
Collapse
Affiliation(s)
- Lin Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Yong-In Kim
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea
| | - Hyoungmin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Kwangbeom Hyun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - J Eugene Lee
- Division of Policy and Strategy, Korea Research Institute of Standards and Science, Daejeon 34113, South Korea.
| |
Collapse
|
43
|
Yu J, Xiong C, Zhuo B, Wen Z, Shen J, Liu C, Chang L, Wang K, Wang M, Wu C, Wu X, Xu X, Ruan H, Li G. Analysis of Local Chromatin States Reveals Gene Transcription Potential during Mouse Neural Progenitor Cell Differentiation. Cell Rep 2021; 32:107953. [PMID: 32726618 DOI: 10.1016/j.celrep.2020.107953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 01/23/2023] Open
Abstract
Chromatin dynamics play a critical role in cell fate determination and maintenance by regulating the expression of genes essential for development and differentiation. In mouse embryonic stem cells (mESCs), maintenance of pluripotency coincides with a poised chromatin state containing active and repressive histone modifications. However, the structural features of poised chromatin are largely uncharacterized. By adopting mild time-course MNase-seq with computational analysis, the low-compact chromatin in mESCs is featured in two groups: one in more open regions, corresponding to an active state, and the other enriched with bivalent histone modifications, considered the poised state. A parameter called the chromatin opening potential index (COPI) is also devised to quantify the transcription potential based on the dynamic changes of MNase-seq signals at promoter regions. Use of COPI provides effective prediction of gene activation potential and, more importantly, reveals a few developmental factors essential for mouse neural progenitor cell (NPC) differentiation.
Collapse
Affiliation(s)
- Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chaoyang Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Baowen Zhuo
- Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen 518102, China
| | - Zengqi Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Shen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Luyuan Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kehui Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenyi Wu
- Molecular Biophysics Laboratories, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Xudong Wu
- Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Xueqing Xu
- Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen 518102, China.
| | - Haihe Ruan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
44
|
Kang X, Li C. A Dimension Reduction Approach for Energy Landscape: Identifying Intermediate States in Metabolism-EMT Network. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003133. [PMID: 34026435 PMCID: PMC8132071 DOI: 10.1002/advs.202003133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/18/2020] [Indexed: 05/08/2023]
Abstract
Dimension reduction is a challenging problem in complex dynamical systems. Here, a dimension reduction approach of landscape (DRL) for complex dynamical systems is proposed, by mapping a high-dimensional system on a low-dimensional energy landscape. The DRL approach is applied to three biological networks, which validates that new reduced dimensions preserve the major information of stability and transition of original high-dimensional systems. The consistency of barrier heights calculated from the low-dimensional landscape and transition actions calculated from the high-dimensional system further shows that the landscape after dimension reduction can quantify the global stability of the system. The epithelial-mesenchymal transition (EMT) and abnormal metabolism are two hallmarks of cancer. With the DRL approach, a quadrastable landscape for metabolism-EMT network is identified, including epithelial (E), abnormal metabolic (A), hybrid E/M (H), and mesenchymal (M) cell states. The quantified energy landscape and kinetic transition paths suggest that for the EMT process, the cells at E state need to first change their metabolism, then enter the M state. The work proposes a general framework for the dimension reduction of a stochastic dynamical system, and advances the mechanistic understanding of the underlying relationship between EMT and cellular metabolism.
Collapse
Affiliation(s)
- Xin Kang
- School of Mathematical SciencesFudan UniversityShanghai200433China
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
| | - Chunhe Li
- Shanghai Center for Mathematical SciencesFudan UniversityShanghai200433China
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| |
Collapse
|
45
|
Song M, He J, Pan QZ, Yang J, Zhao J, Zhang YJ, Huang Y, Tang Y, Wang Q, He J, Gu J, Li Y, Chen S, Zeng J, Zhou ZQ, Yang C, Han Y, Chen H, Xiang T, Weng DS, Xia JC. Cancer-Associated Fibroblast-Mediated Cellular Crosstalk Supports Hepatocellular Carcinoma Progression. Hepatology 2021; 73:1717-1735. [PMID: 33682185 DOI: 10.1002/hep.31792] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Cancer-associated fibroblasts (CAFs) are key players in multicellular, stromal-dependent alterations leading to HCC pathogenesis. However, the intricate crosstalk between CAFs and other components in the tumor microenvironment (TME) remains unclear. This study aimed to investigate the cellular crosstalk among CAFs, tumor cells, and tumor-associated neutrophils (TANs) during different stages of HCC pathogenesis. APPROACH AND RESULTS In the HCC-TME, CAF-derived cardiotrophin-like cytokine factor 1 (CLCF1) increased chemokine (C-X-C motif) ligand 6 (CXCL6) and TGF-β secretion in tumor cells, which subsequently promoted tumor cell stemness in an autocrine manner and TAN infiltration and polarization in a paracrine manner. Moreover, CXCL6 and TGF-β secreted by HCC cells activated extracellular signal-regulated kinase (ERK) 1/2 signaling of CAFs to produce more CLCF1, thus forming a positive feedback loop to accelerate HCC progression. Inhibition of ERK1/2 or CLCF1/ciliary neurotrophic factor receptor signaling efficiently impaired CLCF1-mediated crosstalk among CAFs, tumor cells, and TANs both in vitro and in vivo. In clinical samples, up-regulation of the CLCF1-CXCL6/TGF-β axis exhibited a marked correlation with increased cancer stem cells, "N2"-polarized TANs, tumor stage, and poor prognosis. CONCLUSIONS This study reveals a cytokine-mediated cellular crosstalk and clinical network involving the CLCF1-CXCL6/TGF-β axis, which regulates the positive feedback loop among CAFs, tumor stemness, and TANs, HCC progression, and patient prognosis. These results may support the CLCF1 cascade as a potential prognostic biomarker and suggest that selective blockade of CLCF1/ciliary neurotrophic factor receptor or ERK1/2 signaling could provide an effective therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Mengjia Song
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Junyi He
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Qiu-Zhong Pan
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jieying Yang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jingjing Zhao
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yao-Jun Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yue Huang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yan Tang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Qijing Wang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jia He
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jiamei Gu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yongqiang Li
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shiping Chen
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jianxiong Zeng
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Zi-Qi Zhou
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chaopin Yang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yulong Han
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hao Chen
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tong Xiang
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - De-Sheng Weng
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jian-Chuan Xia
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
46
|
Genolet O, Monaco AA, Dunkel I, Boettcher M, Schulz EG. Identification of X-chromosomal genes that drive sex differences in embryonic stem cells through a hierarchical CRISPR screening approach. Genome Biol 2021; 22:110. [PMID: 33863351 PMCID: PMC8051100 DOI: 10.1186/s13059-021-02321-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND X-chromosomal genes contribute to sex differences, in particular during early development, when both X chromosomes are active in females. Double X-dosage shifts female pluripotent cells towards the naive stem cell state by increasing pluripotency factor expression, inhibiting the differentiation-promoting MAP kinase (MAPK) signaling pathway, and delaying differentiation. RESULTS To identify the genetic basis of these sex differences, we use a two-step CRISPR screening approach to comprehensively identify X-linked genes that cause the female pluripotency phenotype in murine embryonic stem cells. A primary chromosome-wide CRISPR knockout screen and three secondary screens assaying for different aspects of the female pluripotency phenotype allow us to uncover multiple genes that act in concert and to disentangle their relative roles. Among them, we identify Dusp9 and Klhl13 as two central players. While Dusp9 mainly affects MAPK pathway intermediates, Klhl13 promotes pluripotency factor expression and delays differentiation, with both factors jointly repressing MAPK target gene expression. CONCLUSIONS Here, we elucidate the mechanisms that drive sex-induced differences in pluripotent cells and our approach serves as a blueprint to discover the genetic basis of the phenotypic consequences of other chromosomal effects.
Collapse
Affiliation(s)
- Oriana Genolet
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anna A Monaco
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Present address: BIMSB, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michael Boettcher
- Medical Faculty, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
47
|
Lackner A, Sehlke R, Garmhausen M, Giuseppe Stirparo G, Huth M, Titz-Teixeira F, van der Lelij P, Ramesmayer J, Thomas HF, Ralser M, Santini L, Galimberti E, Sarov M, Stewart AF, Smith A, Beyer A, Leeb M. Cooperative genetic networks drive embryonic stem cell transition from naïve to formative pluripotency. EMBO J 2021; 40:e105776. [PMID: 33687089 PMCID: PMC8047444 DOI: 10.15252/embj.2020105776] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large‐scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre‐ to post‐implantation epiblast in utero. We identified 496 naïve state‐associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition.
Collapse
Affiliation(s)
- Andreas Lackner
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Robert Sehlke
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marius Garmhausen
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Giuliano Giuseppe Stirparo
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Living Systems Institute, University of Exeter, Exeter, UK
| | - Michelle Huth
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Fabian Titz-Teixeira
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Petra van der Lelij
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Julia Ramesmayer
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Henry F Thomas
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Meryem Ralser
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Laura Santini
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Elena Galimberti
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - A Francis Stewart
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Austin Smith
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Living Systems Institute, University of Exeter, Exeter, UK
| | - Andreas Beyer
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
48
|
Vazquez N, Lopez A, Cuello V, Persans M, Schuenzel E, Innis-Whitehouse W, Keniry M. NVP-BEZ235 or JAKi Treatment leads to decreased survival of examined GBM and BBC cells. Cancer Treat Res Commun 2021; 27:100340. [PMID: 33636591 DOI: 10.1016/j.ctarc.2021.100340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
Cancer cells almost universally harbor constitutively active Phosphatidylinositol-3 Kinase (PI3K) Pathway activity via mutation of key signaling components and/or epigenetic mechanisms. Scores of PI3K Pathway inhibitors are currently under investigation as putative chemotherapeutics. However, feedback and stem cell mechanisms induced by PI3K Pathway inhibition can lead to reduced treatment efficacy. To address therapeutic barriers, we examined whether JAKi would reduce stem gene expression in a setting of PI3K Pathway inhibition in order to improve treatment efficacy. We targeted the PI3K Pathway with NVP-BEZ235 (dual PI3K and mTOR inhibitor) in combination with the Janus Kinase inhibitor JAKi in glioblastoma (GBM) and basal-like breast cancer (BBC) cell lines. We examined growth, gene expression, and apoptosis in cells treated with NVP-BEZ235 and/or JAKi. Growth and recovery assays showed no significant impact of dual treatment with NVP-BEZ235/JAKi compared to NVP-BEZ235 treatment alone. Gene expression and flow cytometry revealed that single and dual treatments induced apoptosis. Stem gene expression was retained in dual NVP-BEZ235/JAKi treatment samples. Future in vivo studies may give further insight into the impact of combined NVP-BEZ235/JAKi treatment in GBM and BBC.
Collapse
Affiliation(s)
- Neftali Vazquez
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Alma Lopez
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Victoria Cuello
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Michael Persans
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Erin Schuenzel
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Wendy Innis-Whitehouse
- School of Medicine, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Megan Keniry
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States.
| |
Collapse
|
49
|
Wang H, Hou W, Perera A, Bettler C, Beach JR, Ding X, Li J, Denning MF, Dhanarajan A, Cotler SJ, Joyce C, Yin J, Ahmed F, Roberts LR, Qiu W. Targeting EphA2 suppresses hepatocellular carcinoma initiation and progression by dual inhibition of JAK1/STAT3 and AKT signaling. Cell Rep 2021; 34:108765. [PMID: 33626345 PMCID: PMC7954228 DOI: 10.1016/j.celrep.2021.108765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the deadliest malignancies worldwide. One major obstacle to treatment is a lack of effective molecular-targeted therapies. In this study, we find that EphA2 expression and signaling are enriched in human HCC and associated with poor prognosis. Loss of EphA2 suppresses the initiation and growth of HCC both in vitro and in vivo. Furthermore, CRISPR/CAS9-mediated EphA2 inhibition significantly delays tumor development in a genetically engineered murine model of HCC. Mechanistically, we discover that targeting EphA2 suppresses both AKT and JAK1/STAT3 signaling, two separate oncogenic pathways in HCC. We also identify a small molecule kinase inhibitor of EphA2 that suppresses tumor progression in a murine HCC model. Together, our results suggest EphA2 as a promising therapeutic target for HCC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Benzamides/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Databases, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Janus Kinase 1/genetics
- Janus Kinase 1/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Inbred C57BL
- Molecular Targeted Therapy
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, EphA2/antagonists & inhibitors
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- Retrospective Studies
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Hao Wang
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Aldeb Perera
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Carlee Bettler
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Mitchell F Denning
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Asha Dhanarajan
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Scott J Cotler
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Cara Joyce
- Department of Public Health Sciences, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Jun Yin
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fowsiyo Ahmed
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA.
| |
Collapse
|
50
|
Semi K, Takashima Y. Pluripotent stem cells for the study of early human embryology. Dev Growth Differ 2021; 63:104-115. [PMID: 33570781 PMCID: PMC8251740 DOI: 10.1111/dgd.12715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Forty years have passed since the first pluripotent stem cells (PSCs), mouse embryonic stem cells (ESCs), were established. Since then, several PSCs have been reported, including human ESCs in 1998, mouse epiblast stem cells (EpiSCs) in 2007, induced PSCs (iPSCs) in 2006 and 2007, and naïve human PSCs in 2014. Naïve PSCs are thought to correspond to pre-implantation epiblast cells, whereas conventional (or primed) human PSCs correspond to post-implantation epiblast cells. Thus, naïve and primed PSCs are classified by their developmental stages and have stage-specific characteristics, despite sharing the common feature of pluripotency. In this review, we discuss the current status of PSCs and their use to model human peri-implantation development.
Collapse
Affiliation(s)
- Katsunori Semi
- Center for iPS Cell Research and ApplicationKyoto UniversityKyotoJapan
| | | |
Collapse
|