1
|
Zhang M, Zhang L, Liu J, Zhao J, Mei J, Zou J, Luo Y, Cai C. Mammary stem cells: molecular cues, orchestrated regulatory mechanisms and its implications in breast cancer. J Genet Genomics 2025:S1673-8527(25)00116-X. [PMID: 40254157 DOI: 10.1016/j.jgg.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Mammary stem cells (MaSCs), endowed with self-renewal and multilineage differentiation capabilities, are crucial for mammary gland development, function, and disease initiation. Recent advances in MaSCs biology research encompass molecular marker identification, regulatory pathway dissection, and microenvironmental crosstalk. This review synthesizes key progress and remaining challenges in MaSC research. Molecular profiling advances have identified key markers recently, such as Procr, Dll1, Bcl11b, and PD-L1. Central to their regulatory logic are evolutionarily conserved pathways, including Wnt, Notch, Hedgehog, and Hippo, which exhibit context-dependent thresholds to balance self-renewal and differentiation. Beyond intrinsic signaling, the dynamic interplay between MaSCs and their microenvironment, such as luminal-derived Wnt4, macrophage-mediated TNF-α signaling, and adrenergic inputs from sympathetic nerves, spatially orchestrates stem cell behavior. In addition, this review also discusses the roles of breast cancer stem cells (BCSCs) in tumorigenesis and therapeutic resistance, focusing on the molecular mechanisms underlying MaSC transformation into BCSCs. Despite progress, challenges remain: human MaSCs functional assays lack standardization, pathway inhibitors risk off-target effects, and delivery systems lack precision. Emerging tools like spatial multi-omics, organoids, and biomimetic scaffolds address these gaps. By integrating MaSCs and BCSCs biology, this review links mechanisms to breast cancer and outlines strategies to target malignancy to accelerate clinical translation.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Lingxian Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jie Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahui Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiayu Mei
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahua Zou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Yaogan Luo
- Mengniu Institute of Nutrition Science, Shanghai 200124, China
| | - Cheguo Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
2
|
Kurani H, Slingerland JM. DOT1L Mediates Stem Cell Maintenance and Represents a Therapeutic Vulnerability in Cancer. Cancer Res 2025; 85:838-847. [PMID: 39700409 PMCID: PMC11873724 DOI: 10.1158/0008-5472.can-24-3304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Tumor-initiating cancer stem cells (CSC) pose a challenge in human malignancies as they are largely treatment resistant and can seed local recurrence and metastasis. Epigenetic mechanisms governing cell fate decisions in embryonic and adult stem cells are deregulated in CSCs. This review focuses on the methyltransferase disruptor of telomeric silencing protein 1-like (DOT1L), which methylates histone H3 lysine 79 and is a key epigenetic regulator governing embryonic organogenesis and adult tissue stem cell maintenance. DOT1L is overexpressed in many human malignancies, and dysregulated histone H3 lysine 79 methylation is pathogenic in acute myeloid leukemia and several solid tumors. DOT1L regulates core stem cell genes governing CSC self-renewal, tumorigenesis, and multidrug resistance. Recent work has situated DOT1L as an attractive stem cell target in cancer. These reports showed that DOT1L is overexpressed and its protein activated specifically in malignant stem cells compared with bulk tumor cells, making them vulnerable to DOT1L inhibition in vitro and in vivo. Although early DOT1L inhibitor clinical trials were limited by inadequate drug bioavailability, accumulating preclinical data indicate that DOT1L critically regulates CSC self-renewal and might be more effective when given with other anticancer therapies. The appropriate combinations of DOT1L inhibitors with other agents and the sequence and timing of drug delivery for maximum efficacy warrant further investigation.
Collapse
Affiliation(s)
- Hetakshi Kurani
- Cancer Host Interactions Program, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Joyce M. Slingerland
- Cancer Host Interactions Program, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| |
Collapse
|
3
|
Van Keymeulen A. Mechanisms of Regulation of Cell Fate in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:167-184. [PMID: 39821026 DOI: 10.1007/978-3-031-70875-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This chapter focuses on the mechanisms of regulation of cell fate in breast development, occurring mainly after birth, as well as in breast cancer. First, we will review how the microenvironment of the breast, as well as external cues, plays a crucial role in mammary gland cell specification and will describe how it has been shown to reprogram non-mammary cells into mammary epithelial cells. Then we will focus on the transcription factors and master regulators which have been established to be determinant for basal (BC) and luminal cell (LC) identity, and will describe the experiments of ectopic expression or loss of function of these transcription factors which demonstrated that they were crucial for cell fate. We will also discuss how master regulators are involved in the fate choice of LCs between estrogen receptor (ER)-positive cells and ER- cells, which will give rise to alveolar cells upon pregnancy and lactation. We will describe how oncogene expression induces reprogramming and change of fate of mammary epithelial cells before tumor appearance, which could be an essential step in tumorigenesis. Finally, we will describe the involvement of master regulators of mammary epithelial cells in breast cancer.
Collapse
Affiliation(s)
- Alexandra Van Keymeulen
- Laboratory of Stem Cells and Cancer (LSCC), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
4
|
Dawson CA, Milevskiy MJG, Capaldo BD, Yip RKH, Song X, Vaillant F, Prokopuk L, Jackling FC, Smyth GK, Chen Y, Lindeman GJ, Visvader JE. Hormone-responsive progenitors have a unique identity and exhibit high motility during mammary morphogenesis. Cell Rep 2024; 43:115073. [PMID: 39700014 DOI: 10.1016/j.celrep.2024.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Hormone-receptor-positive (HR+) luminal cells largely mediate the response to estrogen and progesterone during mammary gland morphogenesis. However, there remains a lack of consensus on the precise nature of the precursor cells that maintain this essential HR+ lineage. Here we refine the identification of HR+ progenitors and demonstrate their unique regenerative capacity compared to mature HR+ cells. HR+ progenitors proliferate but do not expand, suggesting rapid differentiation. Subcellular resolution, 3D intravital microscopy was performed on terminal end buds (TEBs) during puberty to dissect the contribution of each luminal lineage. Surprisingly, HR+ TEB progenitors were highly elongated and motile compared to columnar HR- progenitors and static, conoid HR+ cells within ducts. This dynamic behavior was also observed in response to hormones. Development of an AI model for motility dynamics analysis highlighted stark behavioral changes in HR+ progenitors as they transitioned to mature cells. This work provides valuable insights into how progenitor behavior contributes to mammary morphogenesis.
Collapse
Affiliation(s)
- Caleb A Dawson
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael J G Milevskiy
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Bianca D Capaldo
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Raymond K H Yip
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Xiaoyu Song
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - François Vaillant
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lexie Prokopuk
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Felicity C Jackling
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yunshun Chen
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Geoffrey J Lindeman
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; Parkville Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC 3052, Australia
| | - Jane E Visvader
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.
| |
Collapse
|
5
|
Ma J, Gong Y, Sun X, Liu C, Li X, Sun Y, Yang D, He J, Wang M, Du J, Zhang J, Xu W, Wang T, Chi X, Tang Y, Song J, Wang Y, Ma F, Chen C, Zhang H, Zhan J. Tumor suppressor FRMD3 controls mammary epithelial cell fate determination via notch signaling pathway. SCIENCE ADVANCES 2024; 10:eadk8958. [PMID: 38959315 PMCID: PMC11221522 DOI: 10.1126/sciadv.adk8958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/17/2024] [Indexed: 07/05/2024]
Abstract
The luminal-to-basal transition in mammary epithelial cells (MECs) is accompanied by changes in epithelial cell lineage plasticity; however, the underlying mechanism remains elusive. Here, we report that deficiency of Frmd3 inhibits mammary gland lineage development and induces stemness of MECs, subsequently leading to the occurrence of triple-negative breast cancer. Loss of Frmd3 in PyMT mice results in a luminal-to-basal transition phenotype. Single-cell RNA sequencing of MECs indicated that knockout of Frmd3 inhibits the Notch signaling pathway. Mechanistically, FERM domain-containing protein 3 (FRMD3) promotes the degradation of Disheveled-2 by disrupting its interaction with deubiquitinase USP9x. FRMD3 also interrupts the interaction of Disheveled-2 with CK1, FOXK1/2, and NICD and decreases Disheveled-2 phosphorylation and nuclear localization, thereby impairing Notch-dependent luminal epithelial lineage plasticity in MECs. A low level of FRMD3 predicts poor outcomes for breast cancer patients. Together, we demonstrated that FRMD3 is a tumor suppressor that functions as an endogenous activator of the Notch signaling pathway, facilitating the basal-to-luminal transformation in MECs.
Collapse
Affiliation(s)
- Ji Ma
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yuqing Gong
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xiaoran Sun
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | - Cheng Liu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xueying Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yi Sun
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Decao Yang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Junming He
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Mengyuan Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Juan Du
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Weizhi Xu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Tianzhuo Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xiaochun Chi
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yan Tang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yunling Wang
- Institute of Cardiovascular Research, Peking University Health Science Center, Beijing 100191, China
| | - Fei Ma
- National Cancer Center, State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
6
|
Ray SK, Mukherjee S. Breast cancer stem cells as novel biomarkers. Clin Chim Acta 2024; 557:117855. [PMID: 38453050 DOI: 10.1016/j.cca.2024.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer is the most common cancer and the leading cause of mortality worldwide. Despite advancements in detection and treatment, it remains a major cause of cancer-related deaths in women. Breast cancer stem cells (BCSCs) are a crucial group of cells responsible for carcinogenesis, metastasis, medication resistance, and tumor recurrence. Identifying and understanding their molecular pathways is essential for developing effective breast cancer therapy. BCSCs are responsible for tumor genesis, development, metastasis, treatment resistance, and recurrence. Biomarkers are essential tools for identifying high-risk patients, improving diagnostic accuracy, developing follow-up programs, assessing treatment susceptibility, and predicting prognostic outcomes. Stem cell intervention therapy can provide specialized tools for precision therapy. Biomarker analysis in cancer patients is crucial to identify cells associated with disease progression and post-therapeutic relapse. However, negative post-therapeutic impacts can enhance cancer stemness by boosting BCSCs plasticity phenotypes, activating stemness pathways in non-BCSCs, and promoting senescence escape, leading to tumor relapse and metastasis. Despite the advancements in precision medicine, challenges persist in identifying stem cell markers, limiting the number of eligible patients for treatment. The diversity of biomedical research hinders the development of individualization-based preventative, monitoring, and treatment strategies, especially in oncology. Integrating and interpreting clinical and scientific data remains challenging. The development of stem cell-related indicators could significantly improve disease precision, enabling stem cell-targeted therapy and personalized treatment plans, although BCSCs are promising for breast cancer treatment optimization, serving as biomarkers for current therapy modalities. This summary discusses recent advancements in breast cancer stem cell research, including biomarkers, identification methods, molecular mechanisms, and tools for studying their biological origin and lineage development for precision medicine.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462020, India.
| |
Collapse
|
7
|
Sinha S, Hembram KC, Chatterjee S. Targeting signaling pathways in cancer stem cells: A potential approach for developing novel anti-cancer therapeutics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:157-209. [PMID: 38663959 DOI: 10.1016/bs.ircmb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cancer stem cells (CSCs) have emerged as prime players in the intricate landscape of cancer development, progression, and resistance to traditional treatments. These unique cellular subpopulations own the remarkable capability of self-renewal and differentiation, giving rise to the diverse cellular makeup of tumors and fostering their recurrence following conventional therapies. In the quest for developing more effective cancer therapeutics, the focus has now shifted toward targeting the signaling pathways that govern CSCs behavior. This chapter underscores the significance of these signaling pathways in CSC biology and their potential as pivotal targets for the development of novel chemotherapy approaches. We delve into several key signaling pathways essential for maintaining the defining characteristics of CSCs, including the Wnt, Hedgehog, Notch, JAK-STAT, NF-κB pathways, among others, shedding light on their potential crosstalk. Furthermore, we highlight the latest advancements in CSC-targeted therapies, spanning from promising preclinical models to ongoing clinical trials. A comprehensive understanding of the intricate molecular aspects of CSC signaling pathways and their manipulation holds the prospective to revolutionize cancer treatment paradigms. This, in turn, could lead to more efficacious and personalized therapies with the ultimate goal of eradicating CSCs and enhancing overall patient outcomes. The exploration of CSC signaling pathways represents a key step towards a brighter future in the battle against cancer.
Collapse
Affiliation(s)
- Saptarshi Sinha
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Subhajit Chatterjee
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States.
| |
Collapse
|
8
|
Wicker MN, Wagner KU. Cellular Plasticity in Mammary Gland Development and Breast Cancer. Cancers (Basel) 2023; 15:5605. [PMID: 38067308 PMCID: PMC10705338 DOI: 10.3390/cancers15235605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Cellular plasticity is a phenomenon where cells adopt different identities during development and tissue homeostasis as a response to physiological and pathological conditions. This review provides a general introduction to processes by which cells change their identity as well as the current definition of cellular plasticity in the field of mammary gland biology. Following a synopsis of the evolving model of the hierarchical development of mammary epithelial cell lineages, we discuss changes in cell identity during normal mammary gland development with particular emphasis on the effect of the gestation cycle on the emergence of new cellular states. Next, we summarize known mechanisms that promote the plasticity of epithelial lineages in the normal mammary gland and highlight the importance of the microenvironment and extracellular matrix. A discourse of cellular reprogramming during the early stages of mammary tumorigenesis that follows focuses on the origin of basal-like breast cancers from luminal progenitors and oncogenic signaling networks that orchestrate diverse developmental trajectories of transforming epithelial cells. In addition to the epithelial-to-mesenchymal transition, we highlight events of cellular reprogramming during breast cancer progression in the context of intrinsic molecular subtype switching and the genesis of the claudin-low breast cancer subtype, which represents the far end of the spectrum of epithelial cell plasticity. In the final section, we will discuss recent advances in the design of genetically engineered models to gain insight into the dynamic processes that promote cellular plasticity during mammary gland development and tumorigenesis in vivo.
Collapse
Affiliation(s)
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, 4100 John R, EL01TM, Detroit, MI 48201, USA
| |
Collapse
|
9
|
Ling J, Tang Z, Yang W, Li Y, Dong X. Pygo2 activates BRPF1 via Pygo2-H3K4me2/3 interaction to maintain malignant progression in colon cancer. Exp Cell Res 2023; 431:113696. [PMID: 37423512 DOI: 10.1016/j.yexcr.2023.113696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Epigenetic alterations have essential roles during colon adenocarcinoma (COAD) progression. As the coactivator of Wnt/b-catenin signaling, Pygopus 2 (Pygo2) binds H3K4me2/3 and participate in chromatin remodeling in multiple cancers. However, It remains unclear whether the Pygo2-H3K4me2/3 association has significance in COAD. We aimed to elucidate the roles of Pygo2 in COAD. Functionally, Pygo2 inhibition attenuated cell proliferation, self-renewal capacities in vitro. Pygo2 overexpression enhanced in vivo tumor growth. Besides, Pygo2 overexpression could also enhance cell migration ability and in vivo distal metastasis. Mechanistically, Pygo2 correlates positively with BRPF1 expressions, one epigenetic reader of histone acetylation. The luciferase reporter assay and Chromatin Immunoprecipitation (ChIP)-qPCR assay were used to find that Pygo2 coordinated with H3K4me2/3 modifications to activate BRPF1 transcriptions via binding to the promoter. Both Pygo2 and BRPF1 expressed highly in tumors and Pygo2 relied on BRPF1 to accelerate COAD progression, including cell proliferation rate, migration abilities, stemness features and in vivo tumor growth. Targeting BPRF1 (GSK5959) is effective to suppress in vitro growth of Pygo2high cell lines, and has mild effect on Pygo2low cells. The subcutaneous tumor model further demonstrated that GSK5959 could effectively suppress the in vivo growth of Pygo2high COAD, but not the Pygo2low subtype. Collectively, our study represented Pygo2/BRPF1 as an epigenetic vulnerability for COAD treatment with predictive significance.
Collapse
Affiliation(s)
- Jie Ling
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China; Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Zhijie Tang
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Wei Yang
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Ye Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Xiaoqiang Dong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
10
|
Shi Y, Qin B, Fan X, Li Y, Wang Y, Yuan W, Jiang Z, Zhu P, Chen J, Chen Y, Li F, Wan Y, Wu X, Zhuang J. Novel biphasic mechanism of the canonical Wnt signalling component PYGO2 promotes cardiomyocyte differentiation from hUC-MSCs. Cell Tissue Res 2023:10.1007/s00441-023-03774-6. [PMID: 37233752 DOI: 10.1007/s00441-023-03774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are used to regenerate the myocardium during cardiac repair after myocardial infarction. However, the regulatory mechanism underlying their ability to form mesodermal cells and differentiate into cardiomyocytes remains unclear. Here, we established a human-derived MSCs line isolated from healthy umbilical cords and established a cell model of the natural state to examine the differentiation of hUC-MSCs into cardiomyocytes. Quantitative RT-PCR, western blotting, immunofluorescence, flow cytometry, RNA Seq, and inhibitors of canonical Wnt signalling were used to detect the germ-layer markers T and MIXL1; the markers of cardiac progenitor cells MESP1, GATA4, and NKX2.5 and the cardiomyocyte-marker cTnT to identify the molecular mechanism associated with PYGO2, a key component of the canonical Wnt signalling pathway that regulates the formation of cardiomyocyte-like cells. We demonstrated that PYGO2 promotes the formation of mesodermal-like cells and their differentiation into cardiomyocytes through the hUC-MSC-dependent canonical Wnt signalling by promoting the early-stage entry of β-catenin into the nucleus. Surprisingly, PYGO2 did not alter the expression of the canonical-Wnt, NOTCH, or BMP signalling pathways during the middle-late stages. In contrast, PI3K-Akt signalling promoted hUC-MSCs formation and their differentiation into cardiomyocyte-like cells. To the best of our knowledge, this is the first study to demonstrate that PYGO2 uses a biphasic mechanism to promote cardiomyocyte formation from hUC-MSCs.
Collapse
Affiliation(s)
- Yan Shi
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Bin Qin
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Xiongwei Fan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Yongqing Li
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Yuequn Wang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Wuzhou Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Zhigang Jiang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jimei Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Yu Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Fang Li
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Yongqi Wan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China.
| | - Xiushan Wu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
11
|
Zhu Y, Zhao Y, Wen J, Liu S, Huang T, Hatial I, Peng X, Janabi HA, Huang G, Mittlesteadt J, Cheng M, Bhardwaj A, Ashfeld BL, Kao KR, Maeda DY, Dai X, Wiest O, Blagg BS, Lu X, Cheng L, Wan J, Lu X. Targeting the chromatin effector Pygo2 promotes cytotoxic T cell responses and overcomes immunotherapy resistance in prostate cancer. Sci Immunol 2023; 8:eade4656. [PMID: 36897957 PMCID: PMC10336890 DOI: 10.1126/sciimmunol.ade4656] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/16/2023] [Indexed: 03/12/2023]
Abstract
The noninflamed microenvironment in prostate cancer represents a barrier to immunotherapy. Genetic alterations underlying cancer cell-intrinsic oncogenic signaling are increasingly appreciated for their role in shaping the immune landscape. Recently, we identified Pygopus 2 (PYGO2) as the driver oncogene for the amplicon at 1q21.3 in prostate cancer. Here, using transgenic mouse models of metastatic prostate adenocarcinoma, we found that Pygo2 deletion decelerated tumor progression, diminished metastases, and extended survival. Pygo2 loss augmented the activation and infiltration of cytotoxic T lymphocytes (CTLs) and sensitized tumor cells to T cell killing. Mechanistically, Pygo2 orchestrated a p53/Sp1/Kit/Ido1 signaling network to foster a microenvironment hostile to CTLs. Genetic or pharmacological inhibition of Pygo2 enhanced the antitumor efficacy of immunotherapies using immune checkpoint blockade (ICB), adoptive cell transfer, or agents inhibiting myeloid-derived suppressor cells. In human prostate cancer samples, Pygo2 expression was inversely correlated with the infiltration of CD8+ T cells. Analysis of the ICB clinical data showed association between high PYGO2 level and worse outcome. Together, our results highlight a potential path to improve immunotherapy using Pygo2-targeted therapy for advanced prostate cancer.
Collapse
Affiliation(s)
- Yini Zhu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yun Zhao
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jiling Wen
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tianhe Huang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ishita Hatial
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xiaoxia Peng
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hawraa Al Janabi
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gang Huang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jackson Mittlesteadt
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael Cheng
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Atul Bhardwaj
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brandon L. Ashfeld
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kenneth R. Kao
- Terry Fox Cancer Research Labs, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s Campus, NL A1B 3V6, Canada
| | | | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brian S.J. Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xuemin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pathology and Laboratory Medicine, Brown University Warren Alpert Medical School, Lifespan Academic Medical Center, and the Legorreta Cancer Center at Brown University, Providence, RI, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- School of Informatics and Computing, Indiana University - Purdue University at Indianapolis, Indianapolis, IN 46202, USA
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Brahim S, Negulescu AM, Geneste C, Schott T, Lin S, Morel LO, Rama N, Gadot N, Treilleux I, Mehlen P, Meurette O. Notch3 regulates Mybl2 via HeyL to limit proliferation and tumor initiation in breast cancer. Cell Death Dis 2023; 14:171. [PMID: 36854682 PMCID: PMC9975231 DOI: 10.1038/s41419-023-05674-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
Notch signaling is a conserved signaling pathway that participates in many aspects of mammary gland development and homeostasis, and has extensively been associated with breast tumorigenesis. Here, to unravel the as yet debated role of Notch3 in breast cancer development, we investigated its expression in human breast cancer samples and effects of its loss in mice. Notch3 expression was very weak in breast cancer cells and was associated with good patient prognosis. Interestingly, its expression was very strong in stromal cells of these patients, though this had no prognostic value. Mechanistically, we demonstrated that Notch3 prevents tumor initiation via HeyL-mediated inhibition of Mybl2, an important regulator of cell cycle. In the mammary glands of Notch3-deficient mice, we observed accelerated tumor initiation and proliferation in a MMTV-Neu model. Notch3-null tumors were enriched in Mybl2 mRNA signature and protein expression. Hence, our study reinforces the anti-tumoral role of Notch3 in breast tumorigenesis.
Collapse
Affiliation(s)
- Sonia Brahim
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Ana-Maria Negulescu
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Clara Geneste
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Thomas Schott
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Shuheng Lin
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Louis-Oscar Morel
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Nicolas Rama
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
| | - Nicolas Gadot
- Centre Léon Bérard, Pathology Department, 69008, Lyon, France
| | | | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France
- Centre Léon Bérard, Department of Translational Research and Innovation, 69008, Lyon, France
| | - Olivier Meurette
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008, Lyon, France.
| |
Collapse
|
13
|
Bhal S, Kundu CN. Targeting crosstalk of signaling pathways in cancer stem cells: a promising approach for development of novel anti-cancer therapeutics. Med Oncol 2023; 40:82. [PMID: 36662310 DOI: 10.1007/s12032-022-01905-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/21/2022] [Indexed: 01/21/2023]
Abstract
Wnt, Hedgehog (Hh), and Notch signaling pathways are the evolutionarily conserved signaling pathways that regulate the embryonic development and also play crucial role in maintaining stemness properties of cancer stem cells (CSCs) and inducing epithelial-to-mesenchymal transition (EMT), metastasis, and angiogenesis. It has been highly challenging to inhibit the CSCs growth and proliferation as these are capable of evading chemotherapeutic drugs and cause cancer recurrence through multiple signaling pathways. Therefore, novel therapeutic strategies to target the key players involved in the crosstalk of these signaling pathways need to be developed. In this review, we have identified the interacting molecules of Wnt, Hh, and Notch pathways responsible for enhancing the malignant properties of CSCs. Analyzing the functions of these crosstalk molecules will help us to find an approach toward the development of new anti-cancer drugs for inhibition of CSCs growth and progression. Long non-coding RNAs (LncRNAs) play a significant role in various cellular processes, like chromatin remodeling, epigenetic modifications, transcriptional, and post-transcriptional regulations. Here, we have highlighted the research findings suggesting the involvement of LncRNAs in maintenance of the stemness properties of CSCs through modulation of the above-mentioned signaling pathways. We have also discussed about the different therapeutic approaches targeting those key players responsible for mediating the crosstalk between the pathways. Overall, this review article will surely help the cancer biologists to design novel anti-CSCs agents that will open up a new horizon in the field of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Subhasmita Bhal
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
14
|
Qin G, Park ES, Chen X, Han S, Xiang D, Ren F, Liu G, Chen H, Yuan GC, Li Z. Distinct niche structures and intrinsic programs of fallopian tube and ovarian surface epithelial cells. iScience 2022; 26:105861. [PMID: 36624845 PMCID: PMC9823228 DOI: 10.1016/j.isci.2022.105861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
Epithelial ovarian cancer (EOC) can originate from either fallopian tube epithelial (FTE) or ovarian surface epithelial (OSE) cells, but with different latencies and disease outcomes. To address the basis of these differences, we performed single cell RNA-sequencing of mouse cells isolated from the distal half of fallopian tube (FT) and surface layer of ovary. We find at the molecular level, FTE secretory stem/progenitor cells and OSE cells resemble mammary luminal progenitors and basal cells, respectively. An FT stromal subpopulation, enriched with Pdgfra + and Esr1 + cells, expresses multiple secreted factor (e.g., IGF1) and Hedgehog pathway genes and may serve as a niche for FTE cells. In contrast, Lgr5 + OSE cells express similar genes largely by themselves, raising a possibility that they serve as their own niche. The differences in intrinsic expression programs and niche organizations of FTE and OSE cells may contribute to their different courses toward the development of EOCs.
Collapse
Affiliation(s)
- Guyu Qin
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Eun-Sil Park
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Xueqing Chen
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sen Han
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Dongxi Xiang
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Fang Ren
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gang Liu
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Huidong Chen
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02215, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02215, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA,Corresponding author
| |
Collapse
|
15
|
Langille E, Al-Zahrani KN, Ma Z, Liang M, Uuskula-Reimand L, Espin R, Teng K, Malik A, Bergholtz H, El Ghamrasni S, Afiuni-Zadeh S, Tsai R, Alvi S, Elia A, Lü Y, Oh RH, Kozma KJ, Trcka D, Narimatsu M, Liu JC, Nguyen T, Barutcu S, Loganathan SK, Bremner R, Bader GD, Egan SE, Cescon DW, Sørlie T, Wrana JL, Jackson HW, Wilson MD, Witkiewicz AK, Knudsen ES, Pujana MA, Wahl GM, Schramek D. Loss of Epigenetic Regulation Disrupts Lineage Integrity, Induces Aberrant Alveogenesis, and Promotes Breast Cancer. Cancer Discov 2022; 12:2930-2953. [PMID: 36108220 PMCID: PMC9812400 DOI: 10.1158/2159-8290.cd-21-0865] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2022] [Accepted: 09/13/2022] [Indexed: 01/21/2023]
Abstract
Systematically investigating the scores of genes mutated in cancer and discerning disease drivers from inconsequential bystanders is a prerequisite for precision medicine but remains challenging. Here, we developed a somatic CRISPR/Cas9 mutagenesis screen to study 215 recurrent "long-tail" breast cancer genes, which revealed epigenetic regulation as a major tumor-suppressive mechanism. We report that components of the BAP1 and COMPASS-like complexes, including KMT2C/D, KDM6A, BAP1, and ASXL1/2 ("EpiDrivers"), cooperate with PIK3CAH1047R to transform mouse and human breast epithelial cells. Mechanistically, we find that activation of PIK3CAH1047R and concomitant EpiDriver loss triggered an alveolar-like lineage conversion of basal mammary epithelial cells and accelerated formation of luminal-like tumors, suggesting a basal origin for luminal tumors. EpiDriver mutations are found in ∼39% of human breast cancers, and ∼50% of ductal carcinoma in situ express casein, suggesting that lineage infidelity and alveogenic mimicry may significantly contribute to early steps of breast cancer etiology. SIGNIFICANCE Infrequently mutated genes comprise most of the mutational burden in breast tumors but are poorly understood. In vivo CRISPR screening identified functional tumor suppressors that converged on epigenetic regulation. Loss of epigenetic regulators accelerated tumorigenesis and revealed lineage infidelity and aberrant expression of alveogenesis genes as potential early events in tumorigenesis. This article is highlighted in the In This Issue feature, p. 2711.
Collapse
Affiliation(s)
- Ellen Langille
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Khalid N. Al-Zahrani
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Zhibo Ma
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Minggao Liang
- Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | | | - Roderic Espin
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Katie Teng
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ahmad Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Helga Bergholtz
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450 Oslo, Norway
| | - Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Somaieh Afiuni-Zadeh
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sana Alvi
- Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Andrew Elia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - YiQing Lü
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Robin H. Oh
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Katelyn J. Kozma
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Daniel Trcka
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Masahiro Narimatsu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jeff C. Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Nguyen
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Seda Barutcu
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sampath K. Loganathan
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Rod Bremner
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Gary D. Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sean E. Egan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - David W. Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Therese Sørlie
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Jeffrey L. Wrana
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hartland W. Jackson
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael D. Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | | | - Erik S. Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Miguel Angel Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Geoffrey M. Wahl
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Chung WC, Egan SE, Xu K. A tumor-suppressive function for Notch3 in the parous mammary gland. Development 2022; 149:277236. [DOI: 10.1242/dev.200913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Notch3 promotes mammary luminal cell specification and forced Notch3 activation can induce mammary tumor formation. However, recent studies suggest a tumor-suppressive role for Notch3. Here, we report on Notch3 expression and functional analysis in the mouse mammary gland. Notch3 is expressed in the luminal compartment throughout mammary gland development, but switches to basal cells with initiation of post-lactational involution. Deletion of Notch3 caused a decrease of Notch activation in luminal cells and diminished luminal progenitors at puberty, as well as reduced alveolar progenitors during pregnancy. Parous Notch3−/− mammary glands developed hyperplasia with accumulation of CD24hiCD49flo cells, some of which progressed to invasive tumors with luminal features. Notch3 deletion abolished Notch activation in basal cells during involution, accompanied by altered apoptosis and reduced brown adipocytes, leading to expansion of parity-identified mammary epithelial cells (PI-MECs). Interestingly, the postpartum microenvironment is required for the stem cell activity of Notch3−/− PI-MECs. Finally, high expression of NOTCH3 is associated with prolonged survival in patients with luminal breast cancer. These results highlight an unexpected tumor-suppressive function for Notch3 in the parous mammary gland through restriction of PI-MEC expansion.
Collapse
Affiliation(s)
- Wen-Cheng Chung
- Cancer Center and Research Institute, University of Mississippi Medical Center 1 , Jackson, MS 39216, USA
| | - Sean E. Egan
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children 2 , Toronto, ON M5G 0A4 , Canada
| | - Keli Xu
- Cancer Center and Research Institute, University of Mississippi Medical Center 1 , Jackson, MS 39216, USA
- University of Mississippi Medical Center 3 Department of Cell and Molecular Biology , , Jackson, MS 39216, USA
| |
Collapse
|
17
|
Basu B, Ghosh MK. Ubiquitination and deubiquitination in the regulation of epithelial-mesenchymal transition in cancer: Shifting gears at the molecular level. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119261. [PMID: 35307468 DOI: 10.1016/j.bbamcr.2022.119261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The process of conversion of non-motile epithelial cells to their motile mesenchymal counterparts is known as epithelial-mesenchymal transition (EMT), which is a fundamental event during embryonic development, tissue repair, and for the maintenance of stemness. However, this crucial process is hijacked in cancer and becomes the means by which cancer cells acquire further malignant properties such as increased invasiveness, acquisition of stem cell-like properties, increased chemoresistance, and immune evasion ability. The switch from epithelial to mesenchymal phenotype is mediated by a wide variety of effector molecules such as transcription factors, epigenetic modifiers, post-transcriptional and post-translational modifiers. Ubiquitination and de-ubiquitination are two post-translational processes that are fundamental to the ubiquitin-proteasome system (UPS) of the cell, and the shift in equilibrium between these two processes during cancer dictates the suppression or activation of different intracellular processes, including EMT. Here, we discuss the complex and dynamic relationship between components of the UPS and EMT in cancer.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
18
|
Gutierrez G, Sun P, Han Y, Dai X. Defining mammary basal cell transcriptional states using single-cell RNA-sequencing. Sci Rep 2022; 12:4893. [PMID: 35318370 PMCID: PMC8940936 DOI: 10.1038/s41598-022-08870-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/08/2022] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is a heterogenous disease that can be classified into multiple subtypes including the most aggressive basal-like and triple-negative subtypes. Understanding the heterogeneity within the normal mammary basal epithelial cells holds the key to inform us about basal-like cancer cell differentiation dynamics as well as potential cells of origin. Although it is known that the mammary basal compartment contains small pools of stem cells that fuel normal tissue morphogenesis and regeneration, a comprehensive yet focused analysis of the transcriptional makeup of the basal cells is lacking. We used single-cell RNA-sequencing and multiplexed RNA in-situ hybridization to characterize mammary basal cell heterogeneity. We used bioinformatic and computational pipelines to characterize the molecular features as well as predict differentiation dynamics and cell-cell communications of the newly identified basal cell states. We used genetic cell labeling to map the in vivo fates of cells in one of these states. We identified four major distinct transcriptional states within the mammary basal cells that exhibit gene expression signatures suggestive of different functional activity and metabolic preference. Our in vivo labeling and ex vivo organoid culture data suggest that one of these states, marked by Egr2 expression, represents a dynamic transcriptional state that all basal cells transit through during pubertal mammary morphogenesis. Our study provides a systematic approach to understanding the molecular heterogeneity of mammary basal cells and identifies previously unknown dynamics of basal cell transcriptional states.
Collapse
Affiliation(s)
- Guadalupe Gutierrez
- Department of Biological Chemistry, School of Medicine, University of California, D250 Med Sci I, Irvine, CA, 92697-1700, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, D250 Med Sci I, Irvine, CA, 92697-1700, USA
| | - Yingying Han
- Department of Biological Chemistry, School of Medicine, University of California, D250 Med Sci I, Irvine, CA, 92697-1700, USA
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, D250 Med Sci I, Irvine, CA, 92697-1700, USA.
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
19
|
Han Y, Villarreal-Ponce A, Gutierrez G, Nguyen Q, Sun P, Wu T, Sui B, Berx G, Brabletz T, Kessenbrock K, Zeng YA, Watanabe K, Dai X. Coordinate control of basal epithelial cell fate and stem cell maintenance by core EMT transcription factor Zeb1. Cell Rep 2022; 38:110240. [PMID: 35021086 PMCID: PMC9894649 DOI: 10.1016/j.celrep.2021.110240] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/30/2021] [Accepted: 12/16/2021] [Indexed: 02/04/2023] Open
Abstract
Maintenance of undifferentiated, long-lived, and often quiescent stem cells in the basal compartment is important for homeostasis and regeneration of multiple epithelial tissues, but the molecular mechanisms that coordinately control basal cell fate and stem cell quiescence are elusive. Here, we report an epithelium-intrinsic requirement for Zeb1, a core transcriptional inducer of epithelial-to-mesenchymal transition, for mammary epithelial ductal side branching and for basal cell regenerative capacity. Our findings uncover an evolutionarily conserved role of Zeb1 in promoting basal cell fate over luminal differentiation. We show that Zeb1 loss results in increased basal cell proliferation at the expense of quiescence and self-renewal. Moreover, Zeb1 cooperates with YAP to activate Axin2 expression, and inhibition of Wnt signaling partially restores stem cell function to Zeb1-deficient basal cells. Thus, Zeb1 is a transcriptional regulator that maintains both basal cell fate and stem cell quiescence, and it functions in part through suppressing Wnt signaling.
Collapse
Affiliation(s)
- Yingying Han
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,These authors contributed equally
| | - Alvaro Villarreal-Ponce
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,These authors contributed equally
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Quy Nguyen
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Ting Wu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Benjamin Sui
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Geert Berx
- Molecular and Cellular Oncology Lab, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium,Cancer Research Institute Ghent, Ghent, Belgium
| | - Thomas Brabletz
- Department of Experimental Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine I, University, Erlangen-Nuernberg Glueckstr. 6, 91054 Erlangen, Germany
| | - Kai Kessenbrock
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Yi Arial Zeng
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Kazuhide Watanabe
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, D250 Med Sci I, University of California, Irvine, Irvine, CA 92697-1700, USA,Lead contact,Correspondence:
| |
Collapse
|
20
|
McNeil M, Han Y, Sun P, Watanabe K, Jiang J, Chen N, Yu Z, Zhou B, Dai X. Nfatc1's Role in Mammary Epithelial Morphogenesis and Basal Stem/progenitor Cell Self-renewal. J Mammary Gland Biol Neoplasia 2021; 26:357-365. [PMID: 34932179 PMCID: PMC8858291 DOI: 10.1007/s10911-021-09502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/05/2021] [Indexed: 11/26/2022] Open
Abstract
Mammary gland is an outstanding system to study the regulatory mechanisms governing adult epithelial stem cell activity. Stem cells in the basal layer of the mammary gland fuel the morphogenesis and regeneration of a complex epithelial network during development and upon transplantation. The self-renewal of basal stem/progenitor cells is subjected to regulation by both cell-intrinsic and extrinsic mechanisms. Nfatc1 is a transcription factor that regulates breast tumorigenesis and metastasis, but its role in mammary epithelial development and stem cell function has not been investigated. Here we show that Nfatc1 is expressed in a small subset of mammary basal epithelial cells and its epithelial-specific deletion results in mild defects in side branching and basal-luminal cell balance. Moreover, Nfatc1-deficient basal cells exhibit reduced colony forming ability in vitro and somewhat compromised regenerative potential upon transplantation. Thus, our study provides evidence for a detectable yet non-essential role of Nfatc1 in mammary epithelial morphogenesis and basal stem/progenitor cell self-renewal.
Collapse
Affiliation(s)
- Melissa McNeil
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Yingying Han
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Kazuhide Watanabe
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Jun Jiang
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Natasha Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Bin Zhou
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), The Wilf Cardiovascular Research Institute, The Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
21
|
Sun P, Han Y, Plikus M, Dai X. Altered Epithelial-mesenchymal Plasticity as a Result of Ovol2 Deletion Minimally Impacts the Self-renewal of Adult Mammary Basal Epithelial Cells. J Mammary Gland Biol Neoplasia 2021; 26:377-386. [PMID: 34984648 PMCID: PMC8858298 DOI: 10.1007/s10911-021-09508-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Stem-cell containing mammary basal epithelial cells exist in a quasi-mesenchymal transcriptional state characterized by simultaneous expression of typical epithelial genes and typical mesenchymal genes. Whether robust maintenance of such a transcriptional state is required for adult basal stem cells to fuel self-renewal and regeneration remains unclear. In this work, we utilized SMA-CreER to direct efficient basal cell-specific deletion of Ovol2, which encodes a transcription factor that inhibits epithelial-to-mesenchymal transition (EMT), in adult mammary gland. We identified a basal cell-intrinsic role of Ovol2 in promoting epithelial, and suppressing mesenchymal, molecular traits. Interestingly, Ovol2-deficient basal cells display minimal perturbations in their ability to support tissue homeostasis, colony formation, and transplant outgrowth. These findings underscore the ability of adult mammary basal cells to tolerate molecular perturbations associated with altered epithelia-mesenchymal plasticity without drastically compromising their self-renewal potential.
Collapse
Affiliation(s)
- Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, CA, Irvine, 92697, USA
| | - Yingying Han
- Department of Biological Chemistry, School of Medicine, University of California, CA, Irvine, 92697, USA
| | - Maksim Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, CA, Irvine, 92697, USA.
| |
Collapse
|
22
|
Schachter NF, Adams JR, Skowron P, Kozma KJ, Lee CA, Raghuram N, Yang J, Loch AJ, Wang W, Kucharczuk A, Wright KL, Quintana RM, An Y, Dotzko D, Gorman JL, Wojtal D, Shah JS, Leon-Gomez P, Pellecchia G, Dupuy AJ, Perou CM, Ben-Porath I, Karni R, Zacksenhaus E, Woodgett JR, Done SJ, Garzia L, Sorana Morrissy A, Reimand J, Taylor MD, Egan SE. Single allele loss-of-function mutations select and sculpt conditional cooperative networks in breast cancer. Nat Commun 2021; 12:5238. [PMID: 34475389 PMCID: PMC8413298 DOI: 10.1038/s41467-021-25467-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
The most common events in breast cancer (BC) involve chromosome arm losses and gains. Here we describe identification of 1089 gene-centric common insertion sites (gCIS) from transposon-based screens in 8 mouse models of BC. Some gCIS are driver-specific, others driver non-specific, and still others associated with tumor histology. Processes affected by driver-specific and histology-specific mutations include well-known cancer pathways. Driver non-specific gCIS target the Mediator complex, Ca++ signaling, Cyclin D turnover, RNA-metabolism among other processes. Most gCIS show single allele disruption and many map to genomic regions showing high-frequency hemizygous loss in human BC. Two gCIS, Nf1 and Trps1, show synthetic haploinsufficient tumor suppressor activity. Many gCIS act on the same pathway responsible for tumor initiation, thereby selecting and sculpting just enough and just right signaling. These data highlight ~1000 genes with predicted conditional haploinsufficient tumor suppressor function and the potential to promote chromosome arm loss in BC.
Collapse
Affiliation(s)
- Nathan F Schachter
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jessica R Adams
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Patryk Skowron
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Katelyn J Kozma
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christian A Lee
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Nandini Raghuram
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Joanna Yang
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amanda J Loch
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Wei Wang
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Aaron Kucharczuk
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Katherine L Wright
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rita M Quintana
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Natera, San Francisco, CA, USA
| | - Yeji An
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniel Dotzko
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer L Gorman
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Daria Wojtal
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Juhi S Shah
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul Leon-Gomez
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Giovanna Pellecchia
- The Center for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam J Dupuy
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eldad Zacksenhaus
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jim R Woodgett
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Susan J Done
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- The Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- The Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Livia Garzia
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Cancer Research Program, McGill University, Montreal, QC, Canada
| | - A Sorana Morrissy
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary and Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
| | - Jüri Reimand
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sean E Egan
- Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Slepicka PF, Somasundara AVH, Dos Santos CO. The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021; 114:93-112. [PMID: 33082117 PMCID: PMC8052380 DOI: 10.1016/j.semcdb.2020.09.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
24
|
Lin MJ, Lu CPJ. Glandular stem cells in the skin during development, homeostasis, wound repair and regeneration. Exp Dermatol 2021; 30:598-604. [PMID: 33686662 DOI: 10.1111/exd.14319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
Glands in the skin are essential for various physiological functions involving exocrine secretion. Like other tissues and organs, they possess the ability to repair injury and self-renew during homeostasis. Progenitor cells in glands are mostly unipotent but include some multipotent stem cells that function when extensive remodelling or regeneration is required. In this review, using two glandular models in skin, mouse sweat gland and mammary gland, we discuss lineage restriction that develops during glandular morphogenesis, as well as the mechanisms regulating cell fate and plasticity during wound repair and regeneration. Understanding the intrinsic and extrinsic factors that control the behaviours of glandular stem cell and maintain glandular functions will provide insight into future prospects for glandular regeneration.
Collapse
Affiliation(s)
- Meng-Ju Lin
- The Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY, USA
| | - Catherine Pei-Ju Lu
- The Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
25
|
Hu L, Su L, Cheng H, Mo C, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Zhang J, Xie Y. Single-Cell RNA Sequencing Reveals the Cellular Origin and Evolution of Breast Cancer in BRCA1 Mutation Carriers. Cancer Res 2021; 81:2600-2611. [PMID: 33727227 DOI: 10.1158/0008-5472.can-20-2123] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/29/2020] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
The cell of origin and the development of breast cancer are not fully elucidated in BRCA1 mutation carriers, especially for estrogen receptor (ER)-positive breast cancers. Here, we performed single-cell RNA sequencing (RNA-seq) on 82,122 cells isolated from the breast cancer tissues and adjacent or prophylactic normal breast tissues from four BRCA1 mutation carriers and three noncarriers. Whole-exome sequencing was performed on breast tumors from the four BRCA1 mutation carriers; for validation, bulk RNA-seq was performed on adjacent normal breast tissues from eight additional BRCA1 mutation carriers and 14 noncarriers. Correlation analyses suggested that breast cancers in BRCA1 mutation carriers might originate from luminal cells. The aberrant luminal progenitor cells with impaired differentiation were significantly increased in normal breast tissues in BRCA1 mutation carriers compared with noncarriers. These observations were further validated by the bulk RNA-seq data from additional BRCA1 mutation carriers. These data suggest that the cell of origin of basal-like breast tumors (ERneg) in BRCA1 mutation carriers might be luminal progenitor cells. The expression of TP53 and BRCA1 was decreased in luminal progenitor cells from normal breast tissue in BRCA1 mutation carriers, which might trigger the basal/mesenchymal transition of luminal progenitors and might result in basal-like tumor development. Furthermore, ERhigh luminal tumors might originate from mature luminal cells. Our study provides in-depth evidence regarding the cells of origin of different breast cancer subtypes in BRCA1 mutation carriers. SIGNIFICANCE: Single-cell RNA-seq data indicate that basal-like breast cancer (ERneg) might originate from luminal progenitors, and ERhigh luminal breast cancer might originate from mature luminal cells in BRCA1 mutation carriers.
Collapse
Affiliation(s)
- Li Hu
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Liming Su
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Hainan Cheng
- Berry Oncology Co., Ltd. (Berry Genomics Group), Beijing, P.R. China
| | - Chunling Mo
- Berry Oncology Co., Ltd. (Berry Genomics Group), Beijing, P.R. China
| | - Tao Ouyang
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Jinfeng Li
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Tianfeng Wang
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Zhaoqing Fan
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Tie Fan
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Benyao Lin
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Jianguang Zhang
- Berry Oncology Co., Ltd. (Berry Genomics Group), Beijing, P.R. China.
| | - Yuntao Xie
- Breast Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| |
Collapse
|
26
|
Zhang D, Liu Y, Wu Q, Zheng Y, Kaweme NM, Zhang Z, Cai M, Dong Y. Pygo2 as a novel biomarker in gastric cancer for monitoring drug resistance by upregulating MDR1. J Cancer 2021; 12:2952-2959. [PMID: 33854595 PMCID: PMC8040896 DOI: 10.7150/jca.53356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/28/2021] [Indexed: 11/18/2022] Open
Abstract
Chemotherapy is the main therapy for gastric cancer (GC) both before and after surgery, but the emergence of multidrug resistance (MDR) often leads to disease progression and recurrence. P-glycoprotein, encoded by MDR1, is a well-known multidrug efflux transporter involved in drug resistance development. Pygo2 overexpression has been identified in several cancers. Previous studies have shown that abnormal expression of Pygo2 is related to tumorigenesis, chemoresistance, and tumor progression. In this study, to evaluate the underlying relationship between Pygo2 and MDR1 in GC, we constructed GC drug-resistant cell lines, SGC7901/cis-platinum (DDP), and collected tissue from GC patients' pre-and post-chemotherapy. We found that Pygo2 was overexpressed in GC, especially in GC drug-resistant cell lines and GC patients who underwent neoadjuvant DDP-based chemotherapy. Pygo2 overexpression may precede MDR1 and correlates with MDR1 in GC patients. Furthermore, knock-down of Pygo2 induced downregulation of MDR1 and restored SGC7901/DDP's sensitivity to DDP. Further mechanistic analysis demonstrated that Pygo2 could modulate MDR1 transcription by binding to the MDR1 promoter region and promoting MDR1 activation. The overall findings reveal that Pygo2 may be a promising biomarker for monitoring drug resistance in GC by regulating MDR1.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, China
| | - Yu Liu
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, P.R. China
| | - Qiuwan Wu
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, P.R. China
| | - Yahong Zheng
- Xiamen Huli District Maternal and Child Health Hospital, 361005 Xiamen, Fujian, China
| | | | - Zhiming Zhang
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, P.R. China
| | - Mingquan Cai
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of clinical Medicine, Fujian Medical University, Xiamen 361003, Fujian Province, P.R. China
| | - Youhong Dong
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, China
| |
Collapse
|
27
|
Harmston N, Lim JYS, Arqués O, Palmer HG, Petretto E, Virshup DM, Madan B. Widespread Repression of Gene Expression in Cancer by a Wnt/β-Catenin/MAPK Pathway. Cancer Res 2020; 81:464-475. [PMID: 33203702 DOI: 10.1158/0008-5472.can-20-2129] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
Aberrant Wnt signaling drives a number of cancers through regulation of diverse downstream pathways. Wnt/β-catenin signaling achieves this in part by increasing the expression of proto-oncogenes such as MYC and cyclins. However, global assessment of the Wnt-regulated transcriptome in vivo in genetically distinct cancers demonstrates that Wnt signaling suppresses the expression of as many genes as it activates. In this study, we examined the set of genes that are upregulated upon inhibition of Wnt signaling in Wnt-addicted pancreatic and colorectal cancer models. Decreasing Wnt signaling led to a marked increase in gene expression by activating ERK and JNK; these changes in gene expression could be mitigated in part by concurrent inhibition of MEK. These findings demonstrate that increased Wnt signaling in cancer represses MAPK activity, preventing RAS-mediated senescence while allowing cancer cells to proliferate. These results shift the paradigm from Wnt/β-catenin primarily as an activator of transcription to a more nuanced view where Wnt/β-catenin signaling drives both widespread gene repression and activation. SIGNIFICANCE: These findings show that Wnt/β-catenin signaling causes widespread gene repression via inhibition of MAPK signaling, thus fine tuning the RAS-MAPK pathway to optimize proliferation in cancer.
Collapse
Affiliation(s)
- Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore.,Science Division, Yale-NUS College, Singapore
| | - Jun Yi Stanley Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Oriol Arqués
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), CIBERONC, Barcelona, Spain
| | - Héctor G Palmer
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), CIBERONC, Barcelona, Spain
| | - Enrico Petretto
- Center for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore. .,Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore.
| |
Collapse
|
28
|
Sjöqvist M, Antfolk D, Suarez-Rodriguez F, Sahlgren C. From structural resilience to cell specification - Intermediate filaments as regulators of cell fate. FASEB J 2020; 35:e21182. [PMID: 33205514 PMCID: PMC7839487 DOI: 10.1096/fj.202001627r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
During the last decades intermediate filaments (IFs) have emerged as important regulators of cellular signaling events, ascribing IFs with functions beyond the structural support they provide. The organ and developmental stage‐specific expression of IFs regulate cell differentiation within developing or remodeling tissues. Lack of IFs causes perturbed stem cell differentiation in vasculature, intestine, nervous system, and mammary gland, in transgenic mouse models. The aberrant cell fate decisions are caused by deregulation of different stem cell signaling pathways, such as Notch, Wnt, YAP/TAZ, and TGFβ. Mutations in genes coding for IFs cause an array of different diseases, many related to stem cell dysfunction, but the molecular mechanisms remain unresolved. Here, we provide a comprehensive overview of how IFs interact with and regulate the activity, localization and function of different signaling proteins in stem cells, and how the assembly state and PTM profile of IFs may affect these processes. Identifying when, where and how IFs and cell signaling congregate, will expand our understanding of IF‐linked stem cell dysfunction during development and disease.
Collapse
Affiliation(s)
- Marika Sjöqvist
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Freddy Suarez-Rodriguez
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
29
|
Keratinocyte-Macrophage Crosstalk by the Nrf2/Ccl2/EGF Signaling Axis Orchestrates Tissue Repair. Cell Rep 2020; 33:108417. [PMID: 33238115 DOI: 10.1016/j.celrep.2020.108417] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/06/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Unveiling the molecular mechanisms underlying tissue regeneration provides new opportunities to develop treatments for diabetic ulcers and other chronic skin lesions. Here, we show that Ccl2 secretion by epidermal keratinocytes is directly orchestrated by Nrf2, a prominent transcriptional regulator of tissue regeneration that is activated early after cutaneous injury. Through a unique feedback mechanism, we find that Ccl2 from epidermal keratinocytes not only drives chemotaxis of macrophages into the wound but also triggers macrophage expression of EGF, which in turn activates basal epidermal keratinocyte proliferation. Notably, we find dysfunctional activation of Nrf2 in epidermal keratinocytes of diabetic mice after wounding, which partly explains regenerative impairments associated with diabetes. These findings provide mechanistic insight into the critical relationship between keratinocyte and macrophage signaling during tissue repair, providing the basis for continued investigation of the therapeutic value of Nrf2.
Collapse
|
30
|
Söderholm S, Cantù C. The WNT/β‐catenin dependent transcription: A tissue‐specific business. WIREs Mech Dis 2020; 13:e1511. [PMID: 33085215 PMCID: PMC9285942 DOI: 10.1002/wsbm.1511] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
β‐catenin‐mediated Wnt signaling is an ancient cell‐communication pathway in which β‐catenin drives the expression of certain genes as a consequence of the trigger given by extracellular WNT molecules. The events occurring from signal to transcription are evolutionarily conserved, and their final output orchestrates countless processes during embryonic development and tissue homeostasis. Importantly, a dysfunctional Wnt/β‐catenin pathway causes developmental malformations, and its aberrant activation is the root of several types of cancer. A rich literature describes the multitude of nuclear players that cooperate with β‐catenin to generate a transcriptional program. However, a unified theory of how β‐catenin drives target gene expression is still missing. We will discuss two types of β‐catenin interactors: transcription factors that allow β‐catenin to localize at target regions on the DNA, and transcriptional co‐factors that ultimately activate gene expression. In contrast to the presumed universality of β‐catenin's action, the ensemble of available evidence suggests a view in which β‐catenin drives a complex system of responses in different cells and tissues. A malleable armamentarium of players might interact with β‐catenin in order to activate the right “canonical” targets in each tissue, developmental stage, or disease context. Discovering the mechanism by which each tissue‐specific β‐catenin response is executed will be crucial to comprehend how a seemingly universal pathway fosters a wide spectrum of processes during development and homeostasis. Perhaps more importantly, this could ultimately inform us about which are the tumor‐specific components that need to be targeted to dampen the activity of oncogenic β‐catenin. This article is categorized under:Cancer > Molecular and Cellular Physiology Cancer > Genetics/Genomics/Epigenetics Cancer > Stem Cells and Development
Collapse
Affiliation(s)
- Simon Söderholm
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| |
Collapse
|
31
|
Saxena M, Kalathur RKR, Rubinstein N, Vettiger A, Sugiyama N, Neutzner M, Coto-Llerena M, Kancherla V, Ercan C, Piscuoglio S, Fischer J, Fagiani E, Cantù C, Basler K, Christofori G. A Pygopus 2-Histone Interaction Is Critical for Cancer Cell Dedifferentiation and Progression in Malignant Breast Cancer. Cancer Res 2020; 80:3631-3648. [PMID: 32586983 DOI: 10.1158/0008-5472.can-19-2910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/19/2020] [Accepted: 06/22/2020] [Indexed: 11/16/2022]
Abstract
Pygopus 2 (Pygo2) is a coactivator of Wnt/β-catenin signaling that can bind bi- or trimethylated lysine 4 of histone-3 (H3K4me2/3) and participate in chromatin reading and writing. It remains unknown whether the Pygo2-H3K4me2/3 association has a functional relevance in breast cancer progression in vivo. To investigate the functional relevance of histone-binding activity of Pygo2 in malignant progression of breast cancer, we generated a knock-in mouse model where binding of Pygo2 to H3K4me2/3 was rendered ineffective. Loss of Pygo2-histone interaction resulted in smaller, differentiated, and less metastatic tumors, due, in part, to decreased canonical Wnt/β-catenin signaling. RNA- and ATAC-sequencing analyses of tumor-derived cell lines revealed downregulation of TGFβ signaling and upregulation of differentiation pathways such as PDGFR signaling. Increased differentiation correlated with a luminal cell fate that could be reversed by inhibition of PDGFR activity. Mechanistically, the Pygo2-histone interaction potentiated Wnt/β-catenin signaling, in part, by repressing the expression of Wnt signaling antagonists. Furthermore, Pygo2 and β-catenin regulated the expression of miR-29 family members, which, in turn, repressed PDGFR expression to promote dedifferentiation of wild-type Pygo2 mammary epithelial tumor cells. Collectively, these results demonstrate that the histone binding function of Pygo2 is important for driving dedifferentiation and malignancy of breast tumors, and loss of this binding activates various differentiation pathways that attenuate primary tumor growth and metastasis formation. Interfering with the Pygo2-H3K4me2/3 interaction may therefore serve as an attractive therapeutic target for metastatic breast cancer. SIGNIFICANCE: Pygo2 represents a potential therapeutic target in metastatic breast cancer, as its histone-binding capability promotes β-catenin-mediated Wnt signaling and transcriptional control in breast cancer cell dedifferentiation, EMT, and metastasis.
Collapse
Affiliation(s)
- Meera Saxena
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | | | | | - Andrea Vettiger
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Nami Sugiyama
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Melanie Neutzner
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | - Caner Ercan
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Jonas Fischer
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ernesta Fagiani
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Wallenberg Centre for Molecular Medicine Linköping; Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
32
|
Endocardial Notch Signaling Promotes Cardiomyocyte Proliferation in the Regenerating Zebrafish Heart through Wnt Pathway Antagonism. Cell Rep 2020; 26:546-554.e5. [PMID: 30650349 PMCID: PMC6366857 DOI: 10.1016/j.celrep.2018.12.048] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Previous studies demonstrate that the regenerative zebrafish heart responds to injury by upregulating Notch receptors in the endocardium and epicardium. Moreover, global suppression of Notch activity following injury impairs cardiomyocyte proliferation and induces scarring. However, the lineage-specific requirements for Notch signaling and full array of downstream targets remain unidentified. Here, we demonstrate that inhibition of endocardial Notch signaling following ventricular amputation compromises cardiomyocyte proliferation and stimulates fibrosis. RNA sequencing uncovered reduced levels of two transcripts encoding secreted Wnt antagonists, Wif1 and Notum1b, in Notch-suppressed hearts. Like Notch receptors, wif1 and notum1b are induced following injury in the endocardium and epicardium. Small-molecule-mediated activation of Wnt signaling is sufficient to impair cardiomyocyte proliferation and induce scarring. Last, Wnt pathway suppression partially restored cardiomyocyte proliferation in hearts experiencing endocardial Notch inhibition. Taken together, our data demonstrate that Notch signaling supports cardiomyocyte proliferation by dampening myocardial Wnt activity during zebrafish heart regeneration. The highly regenerative zebrafish heart responds to injury by upregulating Notch receptors in the endocardium and epicardium to support myocardial proliferation and regeneration. Zhao et al. demonstrate that endocardial (EC) Notch signaling augments the expression of secreted endocardial Wnt antagonists that dampen myocardial Wnt signaling to support regenerative cardiomyocyte renewal.
Collapse
|
33
|
Sunkara RR, Sarate RM, Setia P, Shah S, Gupta S, Chaturvedi P, Gera P, Waghmare SK. SFRP1 in Skin Tumor Initiation and Cancer Stem Cell Regulation with Potential Implications in Epithelial Cancers. Stem Cell Reports 2020; 14:271-284. [PMID: 31928951 PMCID: PMC7013199 DOI: 10.1016/j.stemcr.2019.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022] Open
Abstract
Wnt signaling is involved in the regulation of cancer stem cells (CSCs); however, the molecular mechanism involved is still obscure. SFRP1, a Wnt inhibitor, is downregulated in various human cancers; however, its role in tumor initiation and CSC regulation remains unexplored. Here, we used a skin carcinogenesis model, which showed early tumor initiation in Sfrp1−/− (Sfrp1 knockout) mice and increased tumorigenic potential of Sfrp1−/− CSCs. Expression profiling on Sfrp1−/− CSCs showed upregulation of genes involved in epithelial to mesenchymal transition, stemness, proliferation, and metastasis. Further, SOX-2 and SFRP1 expression was validated in human skin cutaneous squamous cell carcinoma, head and neck squamous cell carcinoma, and breast cancer. The data showed downregulation of SFRP1 and upregulation of SOX-2, establishing their inverse correlation. Importantly, we broadly uncover an inverse correlation of SFRP1 and SOX-2 in epithelial cancers that may be used as a potential prognostic marker in the management of cancer. Loss of Sfrp1 accelerates murine skin tumor initiation and SCC progression Sfrp1 loss enhances in vivo tumorigenic potential of murine skin CSCs We found enhanced EMT and Sox-2 in Sfrp1−/− murine skin SCC Sfrp1 and Sox-2 are inversely correlated in multiple human epithelial cancers
Collapse
Affiliation(s)
- Raghava R Sunkara
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Rahul M Sarate
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Priyanka Setia
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Sanket Shah
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | | | - Poonam Gera
- Cancer Research Institute, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Sanjeev K Waghmare
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India.
| |
Collapse
|
34
|
Fu NY, Nolan E, Lindeman GJ, Visvader JE. Stem Cells and the Differentiation Hierarchy in Mammary Gland Development. Physiol Rev 2019; 100:489-523. [PMID: 31539305 DOI: 10.1152/physrev.00040.2018] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mammary gland is a highly dynamic organ that undergoes profound changes within its epithelium during puberty and the reproductive cycle. These changes are fueled by dedicated stem and progenitor cells. Both short- and long-lived lineage-restricted progenitors have been identified in adult tissue as well as a small pool of multipotent mammary stem cells (MaSCs), reflecting intrinsic complexity within the epithelial hierarchy. While unipotent progenitor cells predominantly execute day-to-day homeostasis and postnatal morphogenesis during puberty and pregnancy, multipotent MaSCs have been implicated in coordinating alveologenesis and long-term ductal maintenance. Nonetheless, the multipotency of stem cells in the adult remains controversial. The advent of large-scale single-cell molecular profiling has revealed striking changes in the gene expression landscape through ontogeny and the presence of transient intermediate populations. An increasing number of lineage cell-fate determination factors and potential niche regulators have now been mapped along the hierarchy, with many implicated in breast carcinogenesis. The emerging diversity among stem and progenitor populations of the mammary epithelium is likely to underpin the heterogeneity that characterizes breast cancer.
Collapse
Affiliation(s)
- Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Emma Nolan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey J Lindeman
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Visvader
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
35
|
Bhat V, Lee-Wing V, Hu P, Raouf A. Isolation and characterization of a new basal-like luminal progenitor in human breast tissue. Stem Cell Res Ther 2019; 10:269. [PMID: 31443683 PMCID: PMC6708178 DOI: 10.1186/s13287-019-1361-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 11/10/2022] Open
Abstract
Background Adult stem cells and progenitors are responsible for breast tissue regeneration. Human breast epithelial progenitors are organized in a lineage hierarchy consisting of bipotent progenitors (BPs), myoepithelial- and luminal-restricted progenitors (LRPs) where the LRP differentiation into mature luminal cells requires estrogen receptor (ER) signaling. However, the experimental evidence exploring the relationship between the BPs and LRPs has remained elusive. In this study, we report the presence of a basal-like luminal progenitor (BLP) in human breast epithelial cells. Methods Breast reduction samples were used to obtain different subsets of human breast epithelial cell based on cell surface marker expression using flow cytometry. Loss of function and gain of function studies were employed to demonstrate the role of NOTCH3 (NR3)-FRIZZLED7 (FZD7) signaling in luminal cell fate commitment. Results Our results suggest that, NR3-FZD7 signaling axis was necessary for luminal cell fate commitment. Similar to LRPs, BLPs (NR3highFZD7highCD90+MUC1−ER−) differentiate to generate NR3medFZD7medCD90−MUC1+ER+ luminal cells. Unlike LRPs however, BLP’s proliferation and differentiation potentials depend on NR3 and regulated in part by FZD7 signaling. Lastly, we show that BLPs have a higher colony-forming potential than LRPs and that they are continuously generated from the NOTCH3−FZD7low subset of the bipotent progenitors. Conclusion Our data indicate that BPs differentiate to generate basal-like luminal progenitors that in turn differentiate into LRPs. These results provide new insights into the hierarchical organization of human breast epithelial cell and how cooperation between the Notch and Wnt signaling pathways define a new progenitor cell type. Electronic supplementary material The online version of this article (10.1186/s13287-019-1361-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vasudeva Bhat
- Department of Immunology, Max Rady Faculty of Health Sciences, University of Manitoba, 471 Apotex Centre, 750 McDermot Avenue, Winnipeg, Manitoba, R3E 0T5, Canada.,Research Institute for Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Victoria Lee-Wing
- Research Institute for Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Pingzhao Hu
- Research Institute for Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Afshin Raouf
- Department of Immunology, Max Rady Faculty of Health Sciences, University of Manitoba, 471 Apotex Centre, 750 McDermot Avenue, Winnipeg, Manitoba, R3E 0T5, Canada. .,Research Institute for Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
36
|
Tharmapalan P, Mahendralingam M, Berman HK, Khokha R. Mammary stem cells and progenitors: targeting the roots of breast cancer for prevention. EMBO J 2019; 38:e100852. [PMID: 31267556 PMCID: PMC6627238 DOI: 10.15252/embj.2018100852] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/11/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer prevention is daunting, yet not an unsurmountable goal. Mammary stem and progenitors have been proposed as the cells-of-origin in breast cancer. Here, we present the concept of limiting these breast cancer precursors as a risk reduction approach in high-risk women. A wealth of information now exists for phenotypic and functional characterization of mammary stem and progenitor cells in mouse and human. Recent work has also revealed the hormonal regulation of stem/progenitor dynamics as well as intrinsic lineage distinctions between mammary epithelial populations. Leveraging these insights, molecular marker-guided chemoprevention is an achievable reality.
Collapse
Affiliation(s)
| | - Mathepan Mahendralingam
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| | - Hal K Berman
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| | - Rama Khokha
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| |
Collapse
|
37
|
Pellacani D, Tan S, Lefort S, Eaves CJ. Transcriptional regulation of normal human mammary cell heterogeneity and its perturbation in breast cancer. EMBO J 2019; 38:e100330. [PMID: 31304632 PMCID: PMC6627240 DOI: 10.15252/embj.2018100330] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/22/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
The mammary gland in adult women consists of biologically distinct cell types that differ in their surface phenotypes. Isolation and molecular characterization of these subpopulations of mammary cells have provided extensive insights into their different transcriptional programs and regulation. This information is now serving as a baseline for interpreting the heterogeneous features of human breast cancers. Examination of breast cancer mutational profiles further indicates that most have undergone a complex evolutionary process even before being detected. The consequent intra-tumoral as well as inter-tumoral heterogeneity of these cancers thus poses major challenges to deriving information from early and hence likely pervasive changes in potential therapeutic interest. Recently described reproducible and efficient methods for generating human breast cancers de novo in immunodeficient mice transplanted with genetically altered primary cells now offer a promising alternative to investigate initial stages of human breast cancer development. In this review, we summarize current knowledge about key transcriptional regulatory processes operative in these partially characterized subpopulations of normal human mammary cells and effects of disrupting these processes in experimentally produced human breast cancers.
Collapse
Affiliation(s)
- Davide Pellacani
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| | - Susanna Tan
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| | - Sylvain Lefort
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| | - Connie J Eaves
- Terry Fox LaboratoryBritish Columbia Cancer AgencyVancouverBCCanada
| |
Collapse
|
38
|
Chatterjee S, Sil PC. Targeting the crosstalks of Wnt pathway with Hedgehog and Notch for cancer therapy. Pharmacol Res 2019; 142:251-261. [PMID: 30826456 DOI: 10.1016/j.phrs.2019.02.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/23/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Abstract
Wnt pathway is an evolutionarily conserved signaling pathway determining patterning of animal embryos, cell fate, cell polarity, and a substantial role in the origin and maintenance of stem cells. It has been found to crosstalk with two other major developmental pathways, Hedgehog and Notch, in many embryological development cascades and in maintaining stemness of stem cells Research has shown that all the three pathways are potent in inducing tumorigenesis, driving tumor progression and aiding epithelial to mesenchymal transition in malignant cells, apart from maintaining cancer stem cells population inside the tumor tissue. Cancer stem cells are thought to aid in the process of tumor relapse, as they survive therapy by displaying drug resistance and then repopulating tumor tissues. Hence the role of these crosstalks in cancer is under intensive research. Inhibition of all the three pathways individually have resulted in tumor regression, but not optimally, as treatment failure and cancer relapse have been found to occur. Hence, instead of targeting a single pathway, targeting the crosstalk network could be a better alternative to conventional cancer treatment. Also, elimination of both tumor cells as well as cancer stem cells implies a reduced chance of relapse. Drugs developed to target these crosstalking networks, when used in combinatorial therapy, can potentially increase the efficacy of the therapy to a very large extent.
Collapse
Affiliation(s)
- Sharmistha Chatterjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
39
|
Hormones induce the formation of luminal-derived basal cells in the mammary gland. Cell Res 2019; 29:206-220. [PMID: 30631153 DOI: 10.1038/s41422-018-0137-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022] Open
Abstract
In the mammary gland, it is widely believed that the luminal cells are unipotent after birth, contributing only to the luminal compartment in normal development. Here, by lineage tracing, we uncovered an unexpected potential of luminal cells that can give rise to basal cells during pregnancy. These luminal-derived basal cells (LdBCs) persisted through mammary regression and generated more progeny in successive rounds of pregnancies. LdBCs express basal markers as well as estrogen receptor α (ERα). In ovariectomized (OVX) mice, stimulation with estrogen and progesterone promoted the formation of LdBCs. In serial transplantation assays, LdBCs were able to reconstitute new mammary glands in a hormone-dependent manner. Transcriptome analysis and genetic experiments suggest that Wnt/β-catenin signaling is essential for the formation and maintenance of LdBCs. Our data uncover an unexpected bi-potency of luminal cells in a physiological context. The discovery of ERα+ basal cells, which can respond to hormones and are endowed with stem cell-like regenerative capacity in parous mammary gland, provides new insights into the association of hormones and breast cancer.
Collapse
|
40
|
Jiao X, Li Z, Wang M, Katiyar S, Di Sante G, Farshchian M, South AP, Cocola C, Colombo D, Reinbold R, Zucchi I, Wu K, Tabas I, Spike BT, Pestell RG. Dachshund Depletion Disrupts Mammary Gland Development and Diverts the Composition of the Mammary Gland Progenitor Pool. Stem Cell Reports 2018; 12:135-151. [PMID: 30554919 PMCID: PMC6335505 DOI: 10.1016/j.stemcr.2018.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/31/2022] Open
Abstract
DACH1 abundance is reduced in human malignancies, including breast cancer. Herein DACH1 was detected among multipotent fetal mammary stem cells in the embryo, among mixed lineage precursors, and in adult basal cells and (ERα+) luminal progenitors. Dach1 gene deletion at 6 weeks in transgenic mice reduced ductal branching, reduced the proportion of mammary basal cells (Lin− CD24med CD29high) and reduced abundance of basal cytokeratin 5, whereas DACH1 overexpression induced ductal branching, increased Gata3 and Notch1, and expanded mammosphere formation in LA-7 breast cells. Mammary gland-transforming growth factor β (TGF-β) activity, known to reduce ductal branching and to reduce the basal cell population, increased upon Dach1 deletion, associated with increased SMAD phosphorylation. Association of the scaffold protein Smad anchor for receptor activation with Smad2/3, which facilitates TGF-β activation, was reduced by endogenous DACH1. DACH1 increases basal cells, enhances ductal formation and restrains TGF-β activity in vivo. Dach1 is expressed in mammary gland fetal stem cells and adult luminal cells Dach1 expands mammary gland basal/myoepithelial cells Dach1 induces post-natal mammary gland ductal formation Dach1 retrains TGF-β activity in the mammary gland in vivo
Collapse
Affiliation(s)
- Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Zhiping Li
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Min Wang
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Sanjay Katiyar
- Department of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10(th) Street, Philadelphia, PA 19107, USA
| | - Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Mehdi Farshchian
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10(th) Street, Philadelphia, PA 19107, USA
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10(th) Street, Philadelphia, PA 19107, USA
| | - Cinzia Cocola
- Istituto Tecnologie Biomediche, Consiglio Nazionale Delle Ricerche, Via Cervi 93, Segrate, 20090 Milano, Italy
| | - Daniele Colombo
- Istituto Tecnologie Biomediche, Consiglio Nazionale Delle Ricerche, Via Cervi 93, Segrate, 20090 Milano, Italy
| | - Rolland Reinbold
- Istituto Tecnologie Biomediche, Consiglio Nazionale Delle Ricerche, Via Cervi 93, Segrate, 20090 Milano, Italy
| | - Ileana Zucchi
- Istituto Tecnologie Biomediche, Consiglio Nazionale Delle Ricerche, Via Cervi 93, Segrate, 20090 Milano, Italy
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benjamin T Spike
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, 2000 Circle of Hope, Room 2505, Salt Lake City, UT 84112, USA
| | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
41
|
Olabi S, Ucar A, Brennan K, Streuli CH. Integrin-Rac signalling for mammary epithelial stem cell self-renewal. Breast Cancer Res 2018; 20:128. [PMID: 30348189 PMCID: PMC6198444 DOI: 10.1186/s13058-018-1048-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Background Stem cells are precursors for all mammary epithelia, including ductal and alveolar epithelia, and myoepithelial cells. In vivo mammary epithelia reside in a tissue context and interact with their milieu via receptors such as integrins. Extracellular matrix receptors coordinate important cellular signalling platforms, of which integrins are the central architects. We have previously shown that integrins are required for mammary epithelial development and function, including survival, cell cycle, and polarity, as well as for the expression of mammary-specific genes. In the present study we looked at the role of integrins in mammary epithelial stem cell self-renewal. Methods We used an in vitro stem cell assay with primary mouse mammary epithelial cells isolated from genetically altered mice. This involved a 3D organoid assay, providing an opportunity to distinguish the stem cell- or luminal progenitor-driven organoids as structures with solid or hollow appearances, respectively. Results We demonstrate that integrins are essential for the maintenance and self-renewal of mammary epithelial stem cells. Moreover integrins activate the Rac1 signalling pathway in stem cells, which leads to the stimulation of a Wnt pathway, resulting in expression of β-catenin target genes such as Axin2 and Lef1. Conclusions Integrin/Rac signalling has a role in specifying the activation of a canonical Wnt pathway that is required for mammary epithelial stem cell self-renewal. Electronic supplementary material The online version of this article (10.1186/s13058-018-1048-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Safiah Olabi
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ahmet Ucar
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Keith Brennan
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Charles H Streuli
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
42
|
Abstract
Differentiation of stem cells into highly specialised cells requires gene expression changes brought about by remodelling of the chromatin architecture. During this lineage-commitment process, the majority of DNA needs to be packaged into inactive heterochromatin, allowing only a subset of regulatory elements to remain open and functionally required genes to be expressed. Epigenetic mechanisms such as DNA methylation, post-translational modifications to histone tails, and nucleosome positioning all potentially contribute to the changes in higher order chromatin structure during differentiation. The mammary gland is a particularly useful model to study these complex epigenetic processes since the majority of its development is postnatal, the gland is easily accessible, and development occurs in a highly reproducible manner. Inappropriate epigenetic remodelling can also drive tumourigenesis; thus, insights into epigenetic remodelling during mammary gland development advance our understanding of breast cancer aetiology. We review the current literature surrounding DNA methylation and histone modifications in the developing mammary gland and its implications for breast cancer.
Collapse
Affiliation(s)
- Holly Holliday
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia
| | - Laura A Baker
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia
| | - Simon R Junankar
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia
| | - Susan J Clark
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia.,Epigenetics Research Program, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia. .,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
43
|
The role of Pygo2 for Wnt/ß-catenin signaling activity during intestinal tumor initiation and progression. Oncotarget 2018; 7:80612-80632. [PMID: 27811361 PMCID: PMC5348345 DOI: 10.18632/oncotarget.13016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
Pygo2 acts as a co-activator of Wnt signaling in a nuclear complex with ß-catenin/BCL9/BCL9-2 to increase target gene transcription. Previous studies showed that Pygo2 is upregulated in murine intestinal tumors and human colon cancer, but is apparently dispensable for normal intestinal homeostasis. Here, we have evaluated the in vivo role of Pygo2 during intestinal tumorigenesis using Pygo2 deficient mice. We analyzed chemically induced colon tumor development and conditional intestine specific mouse models harboring either Apc loss-of-function (LOF) or Ctnnb1 gain-of-function (ß-catenin GOF). Remarkably, the number and size of chemically induced tumors was significantly reduced in Pygo2 deficient mice, suggesting that Pygo2 has a tumor promoting function. Furthermore, loss of Pygo2 rescued early tumorigenesis of Ctnnb1 GOF mutants. In contrast, Pygo2 ablation was not sufficient to prevent tumor development of Apc LOF mice. The effect on tumor formation by Pygo2 knockout was linked to the repression of specific deregulated Wnt target genes, in particular of c-Myc. Moreover, the role of Pygo2 appears to be associated with the signaling output of deregulated Wnt signaling in the different tumor models. Thus, targeting Pygo2 might provide a novel strategy to suppress tumor formation in a context dependent manner.
Collapse
|
44
|
Abstract
The mammary epithelium is organized in a hierarchy of mammary stem cells (MaSCs), progenitors, and differentiated cells. The development and homeostasis of mammary gland are tightly controlled by a complex network of cell lineage regulators. These determinants of cellular hierarchy are frequently deregulated in breast tumor cells and closely associated with cancer progression and metastasis. They also contribute to the diversity of breast cancer subtypes and their distinct metastatic patterns. Cell fate regulators that normally promote stem/progenitor activities can serve as drivers for epithelial-mesenchymal transition and metastasis whereas regulators that promote terminal differentiation generally suppress metastasis. In this review, we discuss how some of the key factors function in normal mammary lineage determination and how these processes are hijacked by tumor cells to enhance metastasis. Understanding the molecular connections between normal development and cancer metastasis will enable the development of more specific and effective therapeutic approaches targeting metastatic tumor cells.
Collapse
Affiliation(s)
- Wei Lu
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ, 08544, USA.
| |
Collapse
|
45
|
Lv C, Li F, Li X, Tian Y, Zhang Y, Sheng X, Song Y, Meng Q, Yuan S, Luan L, Andl T, Feng X, Jiao B, Xu M, Plikus MV, Dai X, Lengner C, Cui W, Ren F, Shuai J, Millar SE, Yu Z. MiR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists. Nat Commun 2017; 8:1036. [PMID: 29051494 PMCID: PMC5648844 DOI: 10.1038/s41467-017-01059-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/15/2017] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-mediated post-transcriptional regulation plays key roles in stem cell self-renewal and tumorigenesis. However, the in vivo functions of specific microRNAs in controlling mammary stem cell (MaSC) activity and breast cancer formation remain poorly understood. Here we show that miR-31 is highly expressed in MaSC-enriched mammary basal cell population and in mammary tumors, and is regulated by NF-κB signaling. We demonstrate that miR-31 promotes mammary epithelial proliferation and MaSC expansion at the expense of differentiation in vivo. Loss of miR-31 compromises mammary tumor growth, reduces the number of cancer stem cells, as well as decreases tumor-initiating ability and metastasis to the lung, supporting its pro-oncogenic function. MiR-31 modulates multiple signaling pathways, including Prlr/Stat5, TGFβ and Wnt/β-catenin. Particularly, it activates Wnt/β-catenin signaling by directly targeting Wnt antagonists, including Dkk1. Importantly, Dkk1 overexpression partially rescues miR31-induced mammary defects. Together, these findings identify miR-31 as the key regulator of MaSC activity and breast tumorigenesis. MicroRNAs play an important role in stem cell fate and tumorigenesis. In this work, the authors show that miR-31 controls mammary stem cell self-renewal and tumorigenesis by simultaneously activating Wnt/β-catenin and repressing TGFβ signaling pathways.
Collapse
Affiliation(s)
- Cong Lv
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fengyin Li
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiang Li
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuhua Tian
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Xiaole Sheng
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongli Song
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qingyong Meng
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shukai Yuan
- Department of Biochemistry and Molecular Biology, Basic Medical College, Tianjin Medical University, Tianjin, 300070, China
| | - Liming Luan
- Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Thomas Andl
- Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Xu Feng
- State Key Laboratory of Genetic Resources and Evolution of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Mingang Xu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research, Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Xing Dai
- Departments of Biological Chemistry and Dermatology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Christopher Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wei Cui
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Fazheng Ren
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jianwei Shuai
- Department of Physics and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| | - Sarah E Millar
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
46
|
Gao J, Long B, Wang Z. Role of Notch signaling pathway in pancreatic cancer. Am J Cancer Res 2017; 7:173-186. [PMID: 28337369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 09/28/2022] Open
Abstract
Pancreatic cancer (PC) is one of the highly aggressive malignancies in the United States. It has been shown that multiple signaling pathways are involved in the pathogenesis of PC, such as JNK, PI3K/AKT, Rho GTPase, Hedgehog (Hh) and Skp2. In recent years, accumulated evidence has demonstrated that Notch signaling pathway plays critical roles in the development and progression of PC. Therefore, in this review we discuss the recent literature regarding the function and regulation of Notch in the pathogenesis of PC. Moreover, we describe that Notch signaling pathway could be down-regulated by its inhibitors or natural compounds, which could be a novel approach for the treatment of PC patients.
Collapse
Affiliation(s)
- Jiankun Gao
- Sichuan College of Tranditional Chinese Medicine Mianyang, Sichuan, China
| | - Bo Long
- Department of Infectious Diseases, Mianyang 404 Hospital Mianyang, Sichuan, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow UniversitySuzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolMA 02215, USA
| |
Collapse
|
47
|
Yu H, Jiang Y, Liu L, Shan W, Chu X, Yang Z, Yang ZQ. Integrative genomic and transcriptomic analysis for pinpointing recurrent alterations of plant homeodomain genes and their clinical significance in breast cancer. Oncotarget 2017; 8:13099-13115. [PMID: 28055972 PMCID: PMC5355080 DOI: 10.18632/oncotarget.14402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022] Open
Abstract
A wide range of the epigenetic effectors that regulate chromatin modification, gene expression, genomic stability, and DNA repair contain structurally conserved domains called plant homeodomain (PHD) fingers. Alternations of several PHD finger-containing proteins (PHFs) due to genomic amplification, mutations, deletions, and translocations have been linked directly to various types of cancer. However, little is known about the genomic landscape and the clinical significance of PHFs in breast cancer. Hence, we performed a large-scale genomic and transcriptomic analysis of 98 PHF genes in breast cancer using TCGA and METABRIC datasets and correlated the recurrent alterations with clinicopathological features and survival of patients. Different subtypes of breast cancer had different patterns of copy number and expression for each PHF. We identified a subset of PHF genes that was recurrently altered with high prevalence, including PYGO2 (pygopus family PHD finger 2), ZMYND8 (zinc finger, MYND-type containing 8), ASXL1 (additional sex combs like 1) and CHD3 (chromodomain helicase DNA binding protein 3). Copy number increase and overexpression of ZMYND8 were more prevalent in Luminal B subtypes and were significantly associated with shorter survival of breast cancer patients. ZMYND8 was also involved in a positive feedback circuit of the estrogen receptor (ER) pathway, and the expression of ZMYND8 was repressed by the bromodomain and extra terminal (BET) inhibitor in breast cancer. Our findings suggest a promising avenue for future research-to focus on a subset of PHFs to better understand the molecular mechanisms and to identify therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Huimei Yu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- College of Basic Medicine, Jilin University, Changchun, China
| | - Yuanyuan Jiang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lanxin Liu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Wenqi Shan
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xiaofang Chu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zeng-Quan Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| |
Collapse
|
48
|
Fundamental Pathways in Breast Cancer 4: Signaling to Chromatin in Breast Development. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Abstract
Mammalian embryonic development is a tightly regulated process that, from a single zygote, produces a large number of cell types with hugely divergent functions. Distinct cellular differentiation programmes are facilitated by tight transcriptional and epigenetic regulation. However, the contribution of epigenetic regulation to tissue homeostasis after the completion of development is less well understood. In this Review, we explore the effects of epigenetic dysregulation on adult stem cell function. We conclude that, depending on the tissue type and the epigenetic regulator affected, the consequences range from negligible to stem cell malfunction and disruption of tissue homeostasis, which may predispose to diseases such as cancer.
Collapse
|
50
|
Mammary Development and Breast Cancer: A Wnt Perspective. Cancers (Basel) 2016; 8:cancers8070065. [PMID: 27420097 PMCID: PMC4963807 DOI: 10.3390/cancers8070065] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
The Wnt pathway has emerged as a key signaling cascade participating in mammary organogenesis and breast oncogenesis. In this review, we will summarize the current knowledge of how the pathway regulates stem cells and normal development of the mammary gland, and discuss how its various components contribute to breast carcinoma pathology.
Collapse
|