1
|
Kamei N, Day K, Guo W, Haus DL, Nguyen HX, Scarfone VM, Booher K, Jia XY, Cummings BJ, Anderson AJ. Injured inflammatory environment overrides the TET2 shaped epigenetic landscape of pluripotent stem cell derived human neural stem cells. Sci Rep 2024; 14:25186. [PMID: 39448736 PMCID: PMC11502794 DOI: 10.1038/s41598-024-75689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Spinal cord injury creates an inflammatory microenvironment that regulates the capacity of transplanted human Neural Stem Cells (hNSC) to migrate, differentiate, and repair injury. Despite similarities in gene expression and markers detected by immunostaining, hNSC populations exhibit heterogeneous therapeutic potential. This heterogeneity derives in part from the epigenetic landscape in the hNSC genome, specifically methylation (5mC) and hydroxymethylation (5hmC) state, which may affect the response of transplanted hNSC in the injury microenvironment and thereby modulate repair capacity. We demonstrate a significant up-regulation of methylcytosine dioxygenase 2 gene (TET2) expression in undifferentiated hNSC derived from human embryonic stem cells (hES-NSC), and report that this is associated with hES-NSC competence for differentiation marker expression. TET2 protein catalyzes active demethylation and TET2 upregulation could be a signature of pluripotent exit, while shaping the epigenetic landscape in hES-NSC. We determine that the inflammatory environment overrides epigenetic programming in vitro and in vivo by directly modulating TET2 expression levels in hES-NSC to change cell fate. We also report the effect of cell fate and microenvironment on differential methylation 5mC/5hmC balance. Understanding how the activity of epigenetic modifiers changes within the transplantation niche in vivo is crucial for assessment of hES-NSC behavior for potential clinical applications.
Collapse
Affiliation(s)
- Noriko Kamei
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA.
- Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697-4475, USA.
| | - Kenneth Day
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
- Vidium Animal Health, 7201 E Henkel Way Suite210, Scottsdale, AZ, 85255, USA
| | - Wei Guo
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Daniel L Haus
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA
| | - Hal X Nguyen
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA
| | - Vanessa M Scarfone
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA
| | - Keith Booher
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Xi-Yu Jia
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Brian J Cummings
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA.
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA.
| |
Collapse
|
2
|
Fang S, Ji Y, Shen Y, Yang S, Zhang H, Xin W, Shi W, Chen W. TET3 Contributes to Exercise-Induced Functional Axon Regeneration and Visual Restoration. Adv Biol (Weinh) 2024:e2400145. [PMID: 39007414 DOI: 10.1002/adbi.202400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Indexed: 07/16/2024]
Abstract
Axons have intrinsically poor regenerative capacity in the mature central nervous system (CNS), leading to permanent neurological impairments in individuals. There is growing evidence that exercise is a powerful physiological intervention that can obviously enhance cell rejuvenate capacity, but its molecular mechanisms that mediate the axonal regenerative benefits remain largely unclear. Using the eye as the CNS model, here it is first indicated that placing mice in an exercise stimulation environment induced DNA methylation patterns and transcriptomes of retinal ganglion cell, promoted axon regeneration after injury, and reversed vision loss in aged mice. These beneficial effects are dependent on the DNA demethylases TET3-mediated epigenetic effects, which increased the expression of genes associated with the regenerative growth programs, such as STAT3, Wnt5a, Klf6. Exercise training also shows with the improved mitochondrial and metabolic dysfunction in retinas and optic nerves via TET3. Collectively, these results suggested that the increased regenerative capacity induced by enhancing physical activity is mediated through epigenetic reprogramming in mouse model of optic nerve injury and in aged mouse. Understanding the molecular mechanism underlying exercise-dependent neuronal plasticity led to the identification of novel targets for ameliorating pathologies associated with etiologically diverse diseases.
Collapse
Affiliation(s)
- Si Fang
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Yunxiang Ji
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Yilan Shen
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Simin Yang
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Hongli Zhang
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wenfeng Xin
- College of Notoginseng Medicine and Pharmacy, Wenshan University, Wenshan, 663000, China
| | - Weidong Shi
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Wei Chen
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| |
Collapse
|
3
|
Miliotou E, de Lázaro I. A Youthful Touch: Reversal of Aging Hallmarks by Cell Reprogramming. Cells Tissues Organs 2024; 213:538-550. [PMID: 38768583 PMCID: PMC11633886 DOI: 10.1159/000539415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND With the elderly population projected to double by 2050, there is an urgent need to address the increasing prevalence of age-related debilitating diseases and ultimately minimize discrepancies between the rising lifespan and stagnant health span. Cellular reprogramming by overexpression of Oct3/4, Klf4, Sox2, and cMyc (OKSM) transcription factors is gaining attention in this context thanks to demonstrated rejuvenating effects in human cell cultures and live mice, many of which can be uncoupled from dedifferentiation and loss of cell identity. SUMMARY Here, we review current evidence of the impact of cell reprogramming on established aging hallmarks and the underlying mechanisms that mediate these effects. We also provide a critical assessment of the challenges in translating these findings and, overall, cell reprogramming technologies into clinically translatable antiaging interventions. KEY MESSAGES Cellular reprogramming has the potential to reverse at least partially some key hallmarks of aging. However, further research is necessary to determine the biological significance and duration of such changes and to ensure the safety of cell reprogramming as a rejuvenation approach. With this review, we hope to stimulate new research directions in the quest to extend health span effectively.
Collapse
Affiliation(s)
- Eleni Miliotou
- Department of Biomedical Engineering, NYU Tandon School of Engineering, New York University, New York, NY, USA
- Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Irene de Lázaro
- Department of Biomedical Engineering, NYU Tandon School of Engineering, New York University, New York, NY, USA
- Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Harvard John A. Paulson School of Engineering, Harvard University, Cambridge, MA, USA
| |
Collapse
|
4
|
Huang R, Situ Q, Lei J. Dynamics of cell-type transition mediated by epigenetic modifications. J Theor Biol 2024; 577:111664. [PMID: 37977478 DOI: 10.1016/j.jtbi.2023.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Maintaining tissue homeostasis requires appropriate regulation of stem cell differentiation. The Waddington landscape posits that gene circuits in a cell form a potential landscape of different cell types, wherein cells follow attractors of the probability landscape to develop into distinct cell types. However, how adult stem cells achieve a delicate balance between self-renewal and differentiation remains unclear. We propose that random inheritance of epigenetic states plays a pivotal role in stem cell differentiation and present a hybrid model of stem cell differentiation induced by epigenetic modifications. Our comprehensive model integrates gene regulation networks, epigenetic state inheritance, and cell regeneration, encompassing multi-scale dynamics ranging from transcription regulation to cell population. Through model simulations, we demonstrate that random inheritance of epigenetic states during cell divisions can spontaneously induce cell differentiation, dedifferentiation, and transdifferentiation. Furthermore, we investigate the influences of interfering with epigenetic modifications and introducing additional transcription factors on the probabilities of dedifferentiation and transdifferentiation, revealing the underlying mechanism of cell reprogramming. This in silico model provides valuable insights into the intricate mechanism governing stem cell differentiation and cell reprogramming and offers a promising path to enhance the field of regenerative medicine.
Collapse
Affiliation(s)
- Rongsheng Huang
- School of Science, Jimei University, Xiamen, Fujian, 361021, China
| | - Qiaojun Situ
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing, 100084, China
| | - Jinzhi Lei
- School of Mathematical Sciences, Center for Applied Mathematics, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
5
|
Ismail JN, Mantash S, Hallal M, Jabado N, Khoueiry P, Shirinian M. Phenotypic and transcriptomic impact of expressing mammalian TET2 in the Drosophila melanogaster model. Epigenetics 2023; 18:2192375. [PMID: 36989121 PMCID: PMC10072067 DOI: 10.1080/15592294.2023.2192375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Ten-Eleven Translocation (TET) proteins have recently come to light as important epigenetic regulators conserved in multicellular organisms. TET knockdown studies in rodents have highlighted the critical role of these proteins for proper brain development and function. Mutations in mammalian mTET proteins and mTET2 specifically are frequent and deregulated in leukaemia and glioma respectively. Accordingly, we examined the role of mTET2 in tumorigenesis in larval haemocytes and adult heads in Drosophila melanogaster. Our findings showed that expression of mutant and wild type mTET2 resulted in general phenotypic defects in adult flies and accumulation of abdominal melanotic masses. Notably, flies with mTET2-R43G mutation at the N-terminus of mTET2 exhibited locomotor and circadian behavioural deficits, as well as reduced lifespan. Flies with mTET2-R1261C mutation in the catalytic domain, a common mutation in acute myeloid leukaemia (AML), displayed alterations affecting haemocyte haemostasis. Using transcriptomic approach, we identified upregulated immune genes in fly heads that were not exclusive to TET2 mutants but also found in wild type mTET2 flies. Furthermore, inhibiting expression of genes that were found to be deregulated in mTET2 mutants, such as those involved in immune pathways, autophagy, and transcriptional regulation, led to a rescue in fly survival, behaviour, and hemocyte number. This study identifies the transcriptomic profile of wild type mTET2 versus mTET2 mutants (catalytic versus non-catalytic) with indications of TET2 role in normal central nervous system (CNS) function and innate immunity.
Collapse
Affiliation(s)
- Joy N Ismail
- Department of Experimental pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sarah Mantash
- Department of Experimental pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohammad Hallal
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Biomedical Engineering Program, American University of Beirut, Beirut, Lebanon
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Pierre Khoueiry
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Margret Shirinian
- Department of Experimental pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
6
|
Ahmed YW, Alemu BA, Bekele SA, Gizaw ST, Zerihun MF, Wabalo EK, Teklemariam MD, Mihrete TK, Hanurry EY, Amogne TG, Gebrehiwot AD, Berga TN, Haile EA, Edo DO, Alemu BD. Epigenetic tumor heterogeneity in the era of single-cell profiling with nanopore sequencing. Clin Epigenetics 2022; 14:107. [PMID: 36030244 PMCID: PMC9419648 DOI: 10.1186/s13148-022-01323-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Nanopore sequencing has brought the technology to the next generation in the science of sequencing. This is achieved through research advancing on: pore efficiency, creating mechanisms to control DNA translocation, enhancing signal-to-noise ratio, and expanding to long-read ranges. Heterogeneity regarding epigenetics would be broad as mutations in the epigenome are sensitive to cause new challenges in cancer research. Epigenetic enzymes which catalyze DNA methylation and histone modification are dysregulated in cancer cells and cause numerous heterogeneous clones to evolve. Detection of this heterogeneity in these clones plays an indispensable role in the treatment of various cancer types. With single-cell profiling, the nanopore sequencing technology could provide a simple sequence at long reads and is expected to be used soon at the bedside or doctor's office. Here, we review the advancements of nanopore sequencing and its use in the detection of epigenetic heterogeneity in cancer.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia.
| | - Berhan Ababaw Alemu
- Department of Medical Biochemistry, School of Medicine, St. Paul's Hospital, Millennium Medical College, Addis Ababa, Ethiopia
| | - Sisay Addisu Bekele
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Muluken Fekadie Zerihun
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endriyas Kelta Wabalo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Maria Degef Teklemariam
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu Mihrete
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endris Yibru Hanurry
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tensae Gebru Amogne
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Assaye Desalegne Gebrehiwot
- Department of Medical Anatomy, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamirat Nida Berga
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Ebsitu Abate Haile
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Dessiet Oma Edo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Bizuwork Derebew Alemu
- Department of Statistics, College of Natural and Computational Sciences, Mizan Tepi University, Tepi, Ethiopia
| |
Collapse
|
7
|
Feng J, Zhu F, Ye D, Zhang Q, Guo X, Du C, Kang J. Sin3a drives mesenchymal-to-epithelial transition through cooperating with Tet1 in somatic cell reprogramming. Stem Cell Res Ther 2022; 13:29. [PMID: 35073971 PMCID: PMC8785580 DOI: 10.1186/s13287-022-02707-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022] Open
Abstract
Background Identifying novel regulatory factors and uncovered mechanisms of somatic cell reprogramming will be helpful for basic research and clinical application of induced pluripotent stem cells (iPSCs). Sin3a, a multifunctional transcription regulator, has been proven to be involved in the maintenance of pluripotency in embryonic stem cells (ESCs), but the role of Sin3a in somatic cell reprogramming remains unclear. Methods RNA interference of Sin3a during somatic cell reprogramming was realized by short hairpin RNAs. Reprogramming efficiency was evaluated by the number of alkaline phosphatase (AP)-positive colonies and Oct4-GFP-positive colonies. RNA sequencing was performed to identify the influenced biological processes after Sin3a knockdown and further confirmed by quantitative RT-PCR (qRT-PCR), western blotting and flow cytometry. The interaction between Sin3a and Tet1 was detected by coimmunoprecipitation. The enrichment of Sin3a and Tet1 at the epithelial gene promoters was measured by chromatin immunoprecipitation. Furthermore, DNA methylation patterns at the gene loci were investigated by hydroxymethylated DNA immunoprecipitation. Finally, Sin3a mutants that disrupt the interaction of Sin3a and Tet1 were also introduced to assess the importance of the Sin3a–Tet1 interaction during the mesenchymal-to-epithelial transition (MET) process. Results We found that Sin3a was gradually increased during OSKM-induced reprogramming and that knockdown of Sin3a significantly impaired MET at the early stage of reprogramming and iPSC generation. Mechanistic studies showed that Sin3a recruited Tet1 to facilitate the hydroxymethylation of epithelial gene promoters. Moreover, disrupting the interaction of Sin3a and Tet1 significantly blocked MET and iPSC generation. Conclusions Our studies revealed that Sin3a was a novel mediator of MET during early reprogramming, where Sin3a functioned as an epigenetic coactivator, cooperating with Tet1 to activate the epithelial program and promote the initiation of somatic cell reprogramming. These findings highlight the importance of Sin3a in the MET process and deepen our understanding of the epigenetic regulatory network of early reprogramming. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02707-4.
Collapse
Affiliation(s)
- Jiabao Feng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Fugui Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Qingquan Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China. .,Institute for Advanced Study, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Changsheng Du
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
8
|
Seplyarskiy VB, Soldatov RA, Koch E, McGinty RJ, Goldmann JM, Hernandez RD, Barnes K, Correa A, Burchard EG, Ellinor PT, McGarvey ST, Mitchell BD, Vasan RS, Redline S, Silverman E, Weiss ST, Arnett DK, Blangero J, Boerwinkle E, He J, Montgomery C, Rao DC, Rotter JI, Taylor KD, Brody JA, Chen YDI, de las Fuentes L, Hwu CM, Rich SS, Manichaikul AW, Mychaleckyj JC, Palmer ND, Smith JA, Kardia SLR, Peyser PA, Bielak LF, O'Connor TD, Emery LS, Gilissen C, Wong WSW, Kharchenko PV, Sunyaev S. Population sequencing data reveal a compendium of mutational processes in the human germ line. Science 2021; 373:1030-1035. [PMID: 34385354 PMCID: PMC9217108 DOI: 10.1126/science.aba7408] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
Biological mechanisms underlying human germline mutations remain largely unknown. We statistically decompose variation in the rate and spectra of mutations along the genome using volume-regularized nonnegative matrix factorization. The analysis of a sequencing dataset (TOPMed) reveals nine processes that explain the variation in mutation properties between loci. We provide a biological interpretation for seven of these processes. We associate one process with bulky DNA lesions that are resolved asymmetrically with respect to transcription and replication. Two processes track direction of replication fork and replication timing, respectively. We identify a mutagenic effect of active demethylation primarily acting in regulatory regions and a mutagenic effect of long interspersed nuclear elements. We localize a mutagenic process specific to oocytes from population sequencing data. This process appears transcriptionally asymmetric.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Ruslan A Soldatov
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Evan Koch
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Ryan J McGinty
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jakob M Goldmann
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ryan D Hernandez
- Quantitative Life Sciences, McGill University, Montreal, QC, Canada
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Kathleen Barnes
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Population Health Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Esteban G Burchard
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen T McGarvey
- International Health Institute, Brown University, Providence, RI, USA
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Anthropology, Brown University, Providence, RI, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Ramachandran S Vasan
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Susan Redline
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Edwin Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott T Weiss
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Donna K Arnett
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA
| | - John Blangero
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eric Boerwinkle
- University of Texas Health Science Center at Houston, Houston, TX, USA
- Baylor College of Medicine Human Genome Sequencing Center, Houston, TX, USA
| | - Jiang He
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
- Tulane University Translational Science Institute, Tulane University, New Orleans, LA , USA
| | - Courtney Montgomery
- Division of Genomics and Data Science, Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Chii-Min Hwu
- National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
- Survey Research Center, Institute for Social Research, University of Michigan 426 Thompson St, Room Ann Arbor, MI 48104, USA
| | - Sharon L R Kardia
- Survey Research Center, Institute for Social Research, University of Michigan 426 Thompson St, Room Ann Arbor, MI 48104, USA
| | - Patricia A Peyser
- Survey Research Center, Institute for Social Research, University of Michigan 426 Thompson St, Room Ann Arbor, MI 48104, USA
| | - Lawrence F Bielak
- Survey Research Center, Institute for Social Research, University of Michigan 426 Thompson St, Room Ann Arbor, MI 48104, USA
| | - Timothy D O'Connor
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Leslie S Emery
- University of Washington Department of Biostatistics, Seattle, WA 98195, USA
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wendy S W Wong
- Inova Translational Medicine Institute (ITMI), Inova Health Systems, Falls Church, VA, USA
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Shamil Sunyaev
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Du Z, Wen X, Wang Y, Jia L, Zhang S, Liu Y, Zhou L, Li H, Yang W, Wang C, Chen J, Hao Y, Salgado Figueroa D, Chen H, Li D, Chen N, Celik I, Zhu Y, Yan Z, Fu C, Liu S, Jiao B, Wang Z, Zhang H, Gülsoy G, Luo J, Qin B, Gao S, Kapranov P, Esteban MA, Zhang S, Li W, Ay F, Chen R, Hoffman AR, Cui J, Hu JF. Chromatin lncRNA Platr10 controls stem cell pluripotency by coordinating an intrachromosomal regulatory network. Genome Biol 2021; 22:233. [PMID: 34412677 PMCID: PMC8375132 DOI: 10.1186/s13059-021-02444-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/29/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND A specific 3-dimensional intrachromosomal architecture of core stem cell factor genes is required to reprogram a somatic cell into pluripotency. As little is known about the epigenetic readers that orchestrate this architectural remodeling, we used a novel chromatin RNA in situ reverse transcription sequencing (CRIST-seq) approach to profile long noncoding RNAs (lncRNAs) in the Oct4 promoter. RESULTS We identify Platr10 as an Oct4 - Sox2 binding lncRNA that is activated in somatic cell reprogramming. Platr10 is essential for the maintenance of pluripotency, and lack of this lncRNA causes stem cells to exit from pluripotency. In fibroblasts, ectopically expressed Platr10 functions in trans to activate core stem cell factor genes and enhance pluripotent reprogramming. Using RNA reverse transcription-associated trap sequencing (RAT-seq), we show that Platr10 interacts with multiple pluripotency-associated genes, including Oct4, Sox2, Klf4, and c-Myc, which have been extensively used to reprogram somatic cells. Mechanistically, we demonstrate that Platr10 helps orchestrate intrachromosomal promoter-enhancer looping and recruits TET1, the enzyme that actively induces DNA demethylation for the initiation of pluripotency. We further show that Platr10 contains an Oct4 binding element that interacts with the Oct4 promoter and a TET1-binding element that recruits TET1. Mutation of either of these two elements abolishes Platr10 activity. CONCLUSION These data suggest that Platr10 functions as a novel chromatin RNA molecule to control pluripotency in trans by modulating chromatin architecture and regulating DNA methylation in the core stem cell factor network.
Collapse
Affiliation(s)
- Zhonghua Du
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Xue Wen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Yichen Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Lin Jia
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Shilin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Yudi Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Lei Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Hui Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Wang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Cong Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Jingcheng Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Yajing Hao
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | | | - Huiling Chen
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Dan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Naifei Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Ilkay Celik
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Yanbo Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Zi Yan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Changhao Fu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Shanshan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Benzheng Jiao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Zhuo Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Hui Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, People's Republic of China
| | | | - Jianjun Luo
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Baoming Qin
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, People's Republic of China
| | - Sujun Gao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Philipp Kapranov
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Miguel A Esteban
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, People's Republic of China
| | - Songling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037, USA
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China.
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Stem Cell and Cancer Center, First Hospital, Jilin University, Changchun, Jilin, 130061, People's Republic of China.
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
10
|
Liu X, Khan A, Li H, Wang S, Chen X, Huang H. Ascorbic acid in epigenetic reprogramming. Curr Stem Cell Res Ther 2021; 17:13-25. [PMID: 34264189 DOI: 10.2174/1574888x16666210714152730] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
Emerging evidence suggests that ascorbic acid (vitamin C) enhances the reprogramming process by multiple mechanisms. This is primarily due to its cofactor role in Fe(II) and 2-oxoglutarate-dependent dioxygenases, including the DNA demethylases Ten Eleven Translocase (TET) and histone demethylases. Epigenetic variations have been shown to play a critical role in somatic cell reprogramming. DNA methylation and histone methylation are extensively recognized as barriers to somatic cell reprogramming. N6-methyladenosine (m6A), known as RNA methylation, is an epigenetic modification of mRNAs and has also been shown to play a role in regulating cellular reprogramming. Multiple cofactors are reported to promote the activity of demethylases, including vitamin C. This review focuses on examining the evidence and mechanism of vitamin C in DNA and histone demethylation and highlights its potential involvement in regulating m6A demethylation. It also shows the significant contribution of vitamin C in epigenetic regulation and the affiliation of demethylases with vitamin C-facilitated epigenetic reprogramming.
Collapse
Affiliation(s)
- Xinhui Liu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Aamir Khan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Huan Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Shensen Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Xuechai Chen
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Hua Huang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
11
|
Abstract
Determining the effect of DNA methylation on chromatin structure and function in higher organisms is challenging due to the extreme complexity of epigenetic regulation. We studied a simpler model system, budding yeast, that lacks DNA methylation machinery making it a perfect model system to study the intrinsic role of DNA methylation in chromatin structure and function. We expressed the murine DNA methyltransferases in Saccharomyces cerevisiae and analyzed the correlation between DNA methylation, nucleosome positioning, gene expression and 3D genome organization. Despite lacking the machinery for positioning and reading methylation marks, induced DNA methylation follows a conserved pattern with low methylation levels at the 5’ end of the gene increasing gradually toward the 3’ end, with concentration of methylated DNA in linkers and nucleosome free regions, and with actively expressed genes showing low and high levels of methylation at transcription start and terminating sites respectively, mimicking the patterns seen in mammals. We also see that DNA methylation increases chromatin condensation in peri-centromeric regions, decreases overall DNA flexibility, and favors the heterochromatin state. Taken together, these results demonstrate that methylation intrinsically modulates chromatin structure and function even in the absence of cellular machinery evolved to recognize and process the methylation signal. Multi-layered epigenetic regulation in higher eukaryotes makes it challenging to disentangle the individual effects of modifications on chromatin structure and function. Here, the authors expressed mammalian DNA methyltransferases in yeast, which have no DNA methylation, to show that methylation has intrinsic effects on chromatin structure.
Collapse
|
12
|
The epigenetic pioneer EGR2 initiates DNA demethylation in differentiating monocytes at both stable and transient binding sites. Nat Commun 2021; 12:1556. [PMID: 33692344 PMCID: PMC7946903 DOI: 10.1038/s41467-021-21661-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
The differentiation of human blood monocytes (MO), the post-mitotic precursors of macrophages (MAC) and dendritic cells (moDC), is accompanied by the active turnover of DNA methylation, but the extent, consequences and mechanisms of DNA methylation changes remain unclear. Here, we profile and compare epigenetic landscapes during IL-4/GM-CSF-driven MO differentiation across the genome and detect several thousand regions that are actively demethylated during culture, both with or without accompanying changes in chromatin accessibility or transcription factor (TF) binding. We further identify TF that are globally associated with DNA demethylation processes. While interferon regulatory factor 4 (IRF4) is found to control hallmark dendritic cell functions with less impact on DNA methylation, early growth response 2 (EGR2) proves essential for MO differentiation as well as DNA methylation turnover at its binding sites. We also show that ERG2 interacts with the 5mC hydroxylase TET2, and its consensus binding sequences show a characteristic DNA methylation footprint at demethylated sites with or without detectable protein binding. Our findings reveal an essential role for EGR2 as epigenetic pioneer in human MO and suggest that active DNA demethylation can be initiated by the TET2-recruiting TF both at stable and transient binding sites. DNA methylation turnover is an essential epigenetic process during development. Here, the authors look at the changes in DNA methylation during the differentiation of post-mitotic human monocytes (MO), and find that EGR2 interacts with TET2 and is required for DNA demethylation at its binding sites; revealing EGR2 as an epigenetic pioneer factor in human MO.
Collapse
|
13
|
Abstract
5-Methylcytosine (5mC) is an epigenetic mark known to contribute to the regulation of gene expression in a wide range of biological systems. Ten Eleven Translocation (TET) dioxygenases oxidize 5mC to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine in metazoans and fungi. Moreover, two recent reports imply the existence of other species of modified cytosine in unicellular alga Chlamydomonas reinhardtii and malaria parasite Plasmodium falciparum. Here we provide an overview of the spectrum of cytosine modifications and their roles in demethylation of DNA and regulation of gene expression in different eukaryotic organisms.
Collapse
Affiliation(s)
- Maria Eleftheriou
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, UK
| | - Alexey Ruzov
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, UK.
| |
Collapse
|
14
|
Analysis of the stability of 70 housekeeping genes during iPS reprogramming. Sci Rep 2020; 10:21711. [PMID: 33303957 PMCID: PMC7728746 DOI: 10.1038/s41598-020-78863-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022] Open
Abstract
Studies on induced pluripotent stem (iPS) cells highly rely on the investigation of their gene expression which requires normalization by housekeeping genes. Whether the housekeeping genes are stable during the iPS reprogramming, a transition of cell state known to be associated with profound changes, has been overlooked. In this study we analyzed the expression patterns of the most comprehensive list to date of housekeeping genes during iPS reprogramming of a mouse neural stem cell line N31. Our results show that housekeeping genes' expression fluctuates significantly during the iPS reprogramming. Clustering analysis shows that ribosomal genes' expression is rising, while the expression of cell-specific genes, such as vimentin (Vim) or elastin (Eln), is decreasing. To ensure the robustness of the obtained data, we performed a correlative analysis of the genes. Overall, all 70 genes analyzed changed the expression more than two-fold during the reprogramming. The scale of this analysis, that takes into account 70 previously known and newly suggested genes, allowed us to choose the most stable of all genes. We highlight the fact of fluctuation of housekeeping genes during iPS reprogramming, and propose that, to ensure robustness of qPCR experiments in iPS cells, housekeeping genes should be used together in combination, and with a prior testing in a specific line used in each study. We suggest that the longest splice variants of Rpl13a, Rplp1 and Rps18 can be used as a starting point for such initial testing as the most stable candidates.
Collapse
|
15
|
Tobias IC, Kao MMC, Parmentier T, Hunter H, LaMarre J, Betts DH. Targeted expression profiling reveals distinct stages of early canine fibroblast reprogramming are regulated by 2-oxoglutarate hydroxylases. Stem Cell Res Ther 2020; 11:528. [PMID: 33298190 PMCID: PMC7725121 DOI: 10.1186/s13287-020-02047-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Ectopic expression of a defined set of transcription factors allows the reprogramming of mammalian somatic cells to pluripotency. Despite continuous progress in primate and rodent reprogramming, limited attention has been paid to cell reprogramming in domestic and companion species. Previous studies attempting to reprogram canine cells have mostly assessed a small number of presumptive canine induced pluripotent stem cell (iPSC) lines for generic pluripotency attributes. However, why canine cell reprogramming remains extremely inefficient is poorly understood. Methods To better characterize the initial steps of pluripotency induction in canine somatic cells, we optimized an experimental system where canine fetal fibroblasts (cFFs) are transduced with the Yamanaka reprogramming factors by Sendai virus vectors. We use quantitative PCR arrays to measure the expression of 80 target genes at various stages of canine cell reprogramming. We ask how cFF reprogramming is influenced by small molecules affecting the epigenomic modification 5-hydroxymethylcytosine, specifically L-ascorbic acid and retinoic acid (AA/RA). Results We found that the expression and catalytic output of a class of 2-oxoglutarate-dependent (2-OG) hydroxylases, known as ten-eleven translocation (TET) enzymes, can be modulated in canine cells treated with AA/RA. We further show that AA/RA treatment induces TET1 expression and facilitates early canine reprogramming, evidenced by upregulation of epithelial and pluripotency markers. Using a chemical inhibitor of 2-OG hydroxylases, we demonstrate that 2-OG hydroxylase activity regulates the expression of a subset of genes involved in mesenchymal-to-epithelial transition (MET) and pluripotency in early canine reprogramming. We identify a set of transcription factors depleted in maturing reprogramming intermediates compared to pluripotent canine embryonic stem cells. Conclusions Our findings highlight 2-OG hydroxylases have evolutionarily conserved and divergent functions regulating the early reprogramming of canine somatic cells and show reprogramming conditions can be rationally optimized for the generation of maturing canine iPSC.
Collapse
Affiliation(s)
- Ian C Tobias
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, Dental Sciences Building, Room DSB 2022, London, Ontario, N6A 5C1, Canada.,Present Affiliation: Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Mian-Mian C Kao
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, Dental Sciences Building, Room DSB 2022, London, Ontario, N6A 5C1, Canada
| | - Thomas Parmentier
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Hailey Hunter
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, Dental Sciences Building, Room DSB 2022, London, Ontario, N6A 5C1, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Dean H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, Dental Sciences Building, Room DSB 2022, London, Ontario, N6A 5C1, Canada. .,Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
16
|
Rebollo R, Galvão-Ferrarini M, Gagnier L, Zhang Y, Ferraj A, Beck CR, Lorincz MC, Mager DL. Inter-Strain Epigenomic Profiling Reveals a Candidate IAP Master Copy in C3H Mice. Viruses 2020; 12:v12070783. [PMID: 32708087 PMCID: PMC7411935 DOI: 10.3390/v12070783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Insertions of endogenous retroviruses cause a significant fraction of mutations in inbred mice but not all strains are equally susceptible. Notably, most new Intracisternal A particle (IAP) ERV mutagenic insertions have occurred in C3H mice. We show here that strain-specific insertional polymorphic IAPs accumulate faster in C3H/HeJ mice, relative to other sequenced strains, and that IAP transcript levels are higher in C3H/HeJ embryonic stem (ES) cells compared to other ES cells. To investigate the mechanism for high IAP activity in C3H mice, we identified 61 IAP copies in C3H/HeJ ES cells enriched with H3K4me3 (a mark of active promoters) and, among those tested, all are unmethylated in C3H/HeJ ES cells. Notably, 13 of the 61 are specific to C3H/HeJ and are members of the non-autonomous 1Δ1 IAP subfamily that is responsible for nearly all new insertions in C3H. One copy is full length with intact open reading frames and hence potentially capable of providing proteins in trans to other 1Δ1 elements. This potential “master copy” is present in other strains, including 129, but its 5’ long terminal repeat (LTR) is methylated in 129 ES cells. Thus, the unusual IAP activity in C3H may be due to reduced epigenetic repression coupled with the presence of a master copy.
Collapse
Affiliation(s)
- Rita Rebollo
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
- University of Lyon, INSA-Lyon, INRA, BF2i, UMR0203, F-69621 Villeurbanne, France;
- Correspondence: (R.R.); (D.L.M.)
| | | | - Liane Gagnier
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
| | - Ying Zhang
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
| | - Ardian Ferraj
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; (A.F.); (C.R.B.)
| | - Christine R. Beck
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; (A.F.); (C.R.B.)
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Matthew C. Lorincz
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z3, Canada;
| | - Dixie L. Mager
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z3, Canada;
- Correspondence: (R.R.); (D.L.M.)
| |
Collapse
|
17
|
Han X, Xiang J, Li C, Wang J, Wang C, Zhang Y, Li Z, Lu Z, Yue Y, Li X. MLL1 combined with GSK3 and MAP2K inhibition improves the development of in vitro-fertilized embryos. Theriogenology 2020; 146:58-70. [PMID: 32059151 DOI: 10.1016/j.theriogenology.2020.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
Abstract
The MM-102 compound prevents the interaction between mixed lineage leukemia 1 (MLL1) and WD Trp-Asp repeat domain 5 (WDR5) and results in the inhibition of MLL1 H3K4 histone methyltransferase (HMT) activity. The inhibition of the FGFR signaling pathway and activation of the WNT pathway by small molecule inhibitors (known as 2i) improves blastocyst development. However, studies on the effects of MLL1 combined with GSK3 and MAP2K inhibition (3i) on the development of embryos have not been reported. Our results show that 3i improves bovine and mouse IVF development only when added at the appropriate time point and affects ICM-related gene (OCT4, SOX2 and NANOG) expression in a concentration-dependent manner. 3i increases the expression of blastocyst-related genes such as PRDM14, KLF4 and KLF17 and decreases the expression of the de novo DNA methyltransferase genes DNMT3L and DNMT1 in bovines, but increases Prdm14, Stella, Klf2 and Klf4 expression and significantly decreases Dnmt3l, Dnmt3b, and Dnmt1 expression in mice. The analysis of transcription data showed that the expression of DNMTs increases slightly later than that of PRDM14 during embryo development, which indicates that PRDM14 is the upstream regulator. 3i upregulates PRDM14 and then downregulates DNMTs to affect IVF embryo development. When 3i-treated mouse embryos were transplanted, the morphology and body weight of the offspring were not significantly different from those of the control group. These offspring were as fertile as normal mice. 3i improves the development of bovine and mouse IVF embryos but does not affect the quality of the embryos. The application of 3i provides a new method for improving IVF embryo production in domestic animals.
Collapse
Affiliation(s)
- Xuejie Han
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestocks, Inner Mongolia University, Hohhot, China.
| | - Jinzhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestocks, Inner Mongolia University, Hohhot, China.
| | - Chen Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestocks, Inner Mongolia University, Hohhot, China.
| | - Jing Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestocks, Inner Mongolia University, Hohhot, China.
| | - Chen Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestocks, Inner Mongolia University, Hohhot, China.
| | - Yuanyuan Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestocks, Inner Mongolia University, Hohhot, China.
| | - Zihong Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestocks, Inner Mongolia University, Hohhot, China.
| | - Zhenyu Lu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestocks, Inner Mongolia University, Hohhot, China.
| | - Yongli Yue
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestocks, Inner Mongolia University, Hohhot, China.
| | - Xueling Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestocks, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
18
|
Ghazimoradi MH, Farivar S. The role of DNA demethylation in induction of stem cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 153:17-22. [PMID: 31901417 DOI: 10.1016/j.pbiomolbio.2019.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 01/03/2023]
Abstract
DNA methylation is an epigenetic factor, which plays important roles in embryo and many other diseases development. This factor determines gene expression, and when half of them have CpG islands, DNA methylation and its enzyme effectors have been under the vast studies. Whole genome DNA demethylation is a crucial step of embryogenesis and also cell fate determination in embryos. Therefore, demethylation agents were used as a tool for dedifferentiation and transdifferentiation. Although many of these efforts have been successful, but using this method gave us a vast spectral cell type which is confusing. In this article, we briefly reviewed DNA methylation, and its role in embryogenesis and gene expression. In addition to that, we introduce studies that used this action as a direct method in induction of stem cells and cell fate decision.
Collapse
Affiliation(s)
- Mohammad H Ghazimoradi
- Genetics, Stem Cells, Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983963113, Iran
| | - Shirin Farivar
- Genetics, Stem Cells, Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983963113, Iran.
| |
Collapse
|
19
|
Cali CP, Park DS, Lee EB. Targeted DNA methylation of neurodegenerative disease genes via homology directed repair. Nucleic Acids Res 2019; 47:11609-11622. [PMID: 31680172 PMCID: PMC7145628 DOI: 10.1093/nar/gkz979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/18/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
DNA methyltransferases (DNMTs) are thought to be involved in the cellular response to DNA damage, thus linking DNA repair mechanisms with DNA methylation. In this study we present Homology Assisted Repair Dependent Epigenetic eNgineering (HARDEN), a novel method of targeted DNA methylation that utilizes endogenous DNA double strand break repair pathways. This method allows for stable targeted DNA methylation through the process of homology directed repair (HDR) via an in vitro methylated exogenous repair template. We demonstrate that HARDEN can be applied to the neurodegenerative disease genes C9orf72 and APP, and methylation can be induced via HDR with both single and double stranded methylated repair templates. HARDEN allows for higher targeted DNA methylation levels than a dCas9-DNMT3a fusion protein construct at C9orf72, and genome-wide methylation analysis reveals no significant off-target methylation changes when inducing methylation via HARDEN, whereas the dCas9-DNMT3a fusion construct causes global off-target methylation. HARDEN is applied to generate a patient derived iPSC model of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) that recapitulates DNA methylation patterns seen in patients, demonstrating that DNA methylation of the 5' regulatory region directly reduces C9orf72 expression and increases histone H3K9 tri-methylation levels.
Collapse
Affiliation(s)
- Christopher P Cali
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel S Park
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Wang M, Zhang K, Ngo V, Liu C, Fan S, Whitaker JW, Chen Y, Ai R, Chen Z, Wang J, Zheng L, Wang W. Identification of DNA motifs that regulate DNA methylation. Nucleic Acids Res 2019; 47:6753-6768. [PMID: 31334813 PMCID: PMC6649826 DOI: 10.1093/nar/gkz483] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/14/2019] [Accepted: 06/20/2019] [Indexed: 01/11/2023] Open
Abstract
DNA methylation is an important epigenetic mark but how its locus-specificity is decided in relation to DNA sequence is not fully understood. Here, we have analyzed 34 diverse whole-genome bisulfite sequencing datasets in human and identified 313 motifs, including 92 and 221 associated with methylation (methylation motifs, MMs) and unmethylation (unmethylation motifs, UMs), respectively. The functionality of these motifs is supported by multiple lines of evidence. First, the methylation levels at the MM and UM motifs are respectively higher and lower than the genomic background. Second, these motifs are enriched at the binding sites of methylation modifying enzymes including DNMT3A and TET1, indicating their possible roles of recruiting these enzymes. Third, these motifs significantly overlap with "somatic QTLs" (quantitative trait loci) of methylation and expression. Fourth, disruption of these motifs by mutation is associated with significantly altered methylation level of the CpGs in the neighbor regions. Furthermore, these motifs together with somatic mutations are predictive of cancer subtypes and patient survival. We revealed some of these motifs were also associated with histone modifications, suggesting a possible interplay between the two types of epigenetic modifications. We also found some motifs form feed forward loops to contribute to DNA methylation dynamics.
Collapse
Affiliation(s)
- Mengchi Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Kai Zhang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Vu Ngo
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Chengyu Liu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Shicai Fan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - John W Whitaker
- Department of Genomics, Denovo Biopharma, 10240 Science Center Dr., San Diego, CA, USA
| | - Yue Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Rizi Ai
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Zhao Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jun Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Lina Zheng
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Wei Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Han C, Cui C, Xing X, Lu Z, Zhang J, Liu J, Zhang Y. Functions of intrinsic disorder in proteins involved in DNA demethylation during pre-implantation embryonic development. Int J Biol Macromol 2019; 136:962-979. [PMID: 31229544 DOI: 10.1016/j.ijbiomac.2019.06.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/21/2023]
Abstract
DNA demethylation is involved in many biological processes during pre-implantation embryonic development in mammals. To date, the complicated mechanism of DNA demethylation is still not fully understood. Ten-eleven translocation family (TET3, TET1 and TET2), thymine DNA glycosylase (TDG) and DNA methyltransferase 1 (DNMT1) are considered the major protein enzymes of DNA demethylation in pre-implantation embryos. TET3, TET1, TET2, TDG, and DNMT1 contain abundant levels of intrinsically disordered protein regions (IDPRs), which contribute to increasing the functional diversity of proteins. Thus we tried to explore the complicated DNA demethylation in pre-implantation embryos from the intrinsic disorder perspective. These five biological macromolecules all have DNA demethylation-related functional domains. They can work together to fulfill DNA demethylation in pre-implantation embryos through complex protein-protein interaction networks. Intrinsic disorder analysis results showed these proteins were partial intrinsically disordered proteins. Many identifiable disorder-based DNA-binding sites, protein-binding sites and post-translational modification sites located in the intrinsically disordered regions, and DNA demethylation deficiency point mutations in the IDPRs could significantly change the local disorder propensity of these proteins. To the best of our knowledge, this work provides a new viewpoint for studying the mechanism of DNA methylation reprogramming during mammalian pre-implantation embryonic development.
Collapse
Affiliation(s)
- Chengquan Han
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenchen Cui
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xupeng Xing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhenzhen Lu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
22
|
Rivas MP, Aguiar TFM, Fernandes GR, Caires-Júnior LC, Goulart E, Telles-Silva KA, Cypriano M, de Toledo SRC, Rosenberg C, Carraro DM, da Costa CML, da Cunha IW, Krepischi ACV. TET Upregulation Leads to 5-Hydroxymethylation Enrichment in Hepatoblastoma. Front Genet 2019; 10:553. [PMID: 31249594 PMCID: PMC6582250 DOI: 10.3389/fgene.2019.00553] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatoblastoma is an embryonal liver tumor carrying few genetic alterations. We previously disclosed in hepatoblastomas a genome-wide methylation dysfunction, characterized by hypermethylation at specific CpG islands, in addition to a low-level hypomethylation pattern in non-repetitive intergenic sequences, in comparison to non-tumoral liver tissues, shedding light into a crucial role for epigenetic dysregulation in this type of cancer. To explore the underlying mechanisms possibly related to aberrant epigenetic modifications, we evaluated the expression profile of a set of genes engaged in the epigenetic machinery related to DNA methylation (DNMT1, DNMT3A, DNMT3B, DNMT3L, UHRF1, TET1, TET2, and TET3), as well as the 5-hydroxymethylcytosine (5hmC) global level. We observed in hepatoblastomas a general disrupted expression of these genes from the epigenetic machinery, mainly UHRF1, TET1, and TET2 upregulation, in association with an enrichment of 5hmC content. Our findings support a model of active demethylation by TETs in hepatoblastoma, probably during early stages of liver development, which in combination with UHRF1 overexpression would lead to DNA hypomethylation and an increase in overall 5hmC content. Furthermore, our data suggest that decreased 5hmC content might be associated with poor survival rate, highlighting a pivotal role of epigenetics in hepatoblastoma development and progression.
Collapse
Affiliation(s)
- Maria Prates Rivas
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Talita Ferreira Marques Aguiar
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.,International Center of Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Luiz Carlos Caires-Júnior
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ernesto Goulart
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Kayque Alves Telles-Silva
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatrics, Support Group for Children and Adolescents With Cancer (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Support Group for Children and Adolescents With Cancer (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Dirce Maria Carraro
- International Center of Research, A. C. Camargo Cancer Center, São Paulo, Brazil
| | | | | | - Ana Cristina Victorino Krepischi
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Genome-Scale CRISPRa Screen Identifies Novel Factors for Cellular Reprogramming. Stem Cell Reports 2019; 12:757-771. [PMID: 30905739 PMCID: PMC6450436 DOI: 10.1016/j.stemcr.2019.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 01/03/2023] Open
Abstract
Primed epiblast stem cells (EpiSCs) can be reverted to a pluripotent embryonic stem cell (ESC)-like state by expression of single reprogramming factor. We used CRISPR activation to perform a genome-scale, reprogramming screen in EpiSCs and identified 142 candidate genes. Our screen validated a total of 50 genes, previously not known to contribute to reprogramming, of which we chose Sall1 for further investigation. We show that Sall1 augments reprogramming of mouse EpiSCs and embryonic fibroblasts and that these induced pluripotent stem cells are indeed fully pluripotent including formation of chimeric mice. We also demonstrate that Sall1 synergizes with Nanog in reprogramming and that overexpression in ESCs delays their conversion back to EpiSCs. Lastly, using RNA sequencing, we identify and validate Klf5 and Fam189a2 as new downstream targets of Sall1 and Nanog. In summary, our work demonstrates the power of using CRISPR technology in understanding molecular mechanisms that mediate complex cellular processes such as reprogramming. Genome-scale CRISPRa screen in mouse EpiSCs identifies novel reprogramming factors 50 novel genes, including Sall1 and Fam189a2, identified to mediate reprogramming Sall1 synergizes with Nanog to increase reprogramming efficiency in EpiSCs and MEFs RNA-seq provides insight into downstream pathways of Sall1 and Nanog-mediated reprogramming
Collapse
|
24
|
Yu M, Li D, Cao W, Chen X, Du W. Effects of ten–eleven translocation 1 (Tet1) on DNA methylation and gene expression in chicken primordial germ cells. Reprod Fertil Dev 2019; 31:509-520. [DOI: 10.1071/rd18145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Ten–eleven translocation 1 (Tet1) is involved in DNA demethylation in primordial germ cells (PGCs); however, the precise regulatory mechanism remains unclear. In the present study the dynamics of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in developing PGCs and the role of Tet1 in PGC demethylation were analysed. Results show that 5mC levels dropped significantly after embryonic Day 4 (E4) and 5hmC levels increased reaching a peak at E5–E5.5. Interestingly, TET1 protein was highly expressed during E5 to E5.5, which showed a consistent trend with 5hmC. The expression of pluripotency-associated genes (Nanog, PouV and SRY-box 2 (Sox2)) and germ cell-specific genes (caveolin 1 (Cav1), piwi-like RNA-mediated gene silencing 1 (Piwi1) and deleted in azoospermia-like (Dazl)) was upregulated after E5, whereas the expression of genes from the DNA methyltransferase family was decreased. Moreover, the Dazl gene was highly methylated in early PGCs and then gradually hypomethylated. Knockdown of Tet1 showed impaired survival and proliferation of PGCs, as well as increased 5mC levels and reduced 5hmC levels. Further analysis showed that knockdown of Tet1 led to elevated DNA methylation levels of Dazl and downregulated gene expression including Dazl. Thus, this study reveals the dynamic epigenetic reprogramming of chicken PGCs invivo and the molecular mechanism of Tet1 in regulating genomic DNA demethylation and hypomethylation of Dazl during PGC development.
Collapse
|
25
|
Abstract
The notion of reprogramming cell fate is a direct challenge to the traditional view in developmental biology that a cell's phenotypic identity is sealed after undergoing differentiation. Direct experimental evidence, beginning with the somatic cell nuclear transfer experiments of the twentieth century and culminating in the more recent breakthroughs in transdifferentiation and induced pluripotent stem cell (iPSC) reprogramming, have rewritten the rules for what is possible with cell fate transformation. Research is ongoing in the manipulation of cell fate for basic research in disease modeling, drug discovery, and clinical therapeutics. In many of these cell fate reprogramming experiments, there is often little known about the genetic and molecular changes accompanying the reprogramming process. However, gene regulatory networks (GRNs) can in some cases be implicated in the switching of phenotypes, providing a starting point for understanding the dynamic changes that accompany a given cell fate reprogramming process. In this chapter, we present a framework for computationally analyzing cell fate changes by mathematically modeling these GRNs. We provide a user guide with several tutorials of a set of techniques from dynamical systems theory that can be used to probe the intrinsic properties of GRNs as well as study their responses to external perturbations.
Collapse
Affiliation(s)
- Hussein M Abdallah
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
26
|
Validation of Common Housekeeping Genes as Reference for qPCR Gene Expression Analysis During iPS Reprogramming Process. Sci Rep 2018; 8:8716. [PMID: 29880849 PMCID: PMC5992140 DOI: 10.1038/s41598-018-26707-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/16/2018] [Indexed: 11/23/2022] Open
Abstract
Induced pluripotent stem cell (iPS) reprogramming allows to turn a differentiated somatic cell into a pluripotent cell. This process is accompanied by many changes in fundamental cell properties, such as energy production, cell-to-cell interactions, cytoskeletal organization, and others. Real-time quantitative polymerase chain reaction (RT-qPCR) can be used as a quantitative method of gene expression analysis to investigate iPS reprogramming but it requires a validation of reference genes for the accurate assessment of target genes’ expression. Currently, studies evaluating the performance of reference genes during iPS reprogramming are lacking. In this study we analysed the stability of 12 housekeeping genes during 20 days of iPS reprogramming of murine cells based on statistical analyses of RT-qPCR data using five different statistical algorithms. This study reports strong variations in housekeeping gene stability during the reprogramming process. Most stable genes were Atp5f1, Pgk1 and Gapdh, while the least stable genes were Rps18, Hprt, Tbp and Actb. The results were validated by a proof-of-point qPCR experiment with pluripotent markers Nanog, Rex1 and Oct4 normalized to the best and the worst reference gene identified by the analyses. Overall, this study and its implications are particularly relevant to investigations on the cell-state and pluripotency in iPS reprogramming.
Collapse
|
27
|
Gomes KMS, Costa IC, Santos JFD, Dourado PMM, Forni MF, Ferreira JCB. Induced pluripotent stem cells reprogramming: Epigenetics and applications in the regenerative medicine. Rev Assoc Med Bras (1992) 2017; 63:180-189. [PMID: 28355380 DOI: 10.1590/1806-9282.63.02.180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are somatic cells reprogrammed into an embryonic-like pluripotent state by the expression of specific transcription factors. iPSC technology is expected to revolutionize regenerative medicine in the near future. Despite the fact that these cells have the capacity to self-renew, they present low efficiency of reprogramming. Recent studies have demonstrated that the previous somatic epigenetic signature is a limiting factor in iPSC performance. Indeed, the process of effective reprogramming involves a complete remodeling of the existing somatic epigenetic memory, followed by the establishment of a "new epigenetic signature" that complies with the new type of cell to be differentiated. Therefore, further investigations of epigenetic modifications associated with iPSC reprogramming are required in an attempt to improve their self-renew capacity and potency, as well as their application in regenerative medicine, with a new strategy to reduce the damage in degenerative diseases. Our review aimed to summarize the most recent findings on epigenetics and iPSC, focusing on DNA methylation, histone modifications and microRNAs, highlighting their potential in translating cell therapy into clinics.
Collapse
Affiliation(s)
- Kátia Maria Sampaio Gomes
- Department of Anatomy, Institute of Biomedical Sciences III, Universidade de São Paulo (ICB III/USP), São Paulo, SP, Brazil
| | - Ismael Cabral Costa
- Department of Anatomy, Institute of Biomedical Sciences III, Universidade de São Paulo (ICB III/USP), São Paulo, SP, Brazil
| | | | | | | | - Julio Cesar Batista Ferreira
- Department of Anatomy, Institute of Biomedical Sciences III, Universidade de São Paulo (ICB III/USP), São Paulo, SP, Brazil
| |
Collapse
|
28
|
He Y, Bao B, Li H. Using zebrafish as a model to study the role of epigenetics in hearing loss. Expert Opin Drug Discov 2017; 12:967-975. [PMID: 28682135 DOI: 10.1080/17460441.2017.1340270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The rapid progress of bioinformatics and high-throughput screening techniques in recent years has led to the identification of many candidate genes and small-molecule drugs that have the potential to make significant contributions to our understanding of the developmental and pathological processes of hearing, but it remains unclear how these genes and regulatory factors are coordinated. Increasing evidence suggests that epigenetic mechanisms are essential for establishing gene expression profiles and likely play an important role in the development of inner ear and in the pathology of hearing-associated diseases. Zebrafish are a valuable and tractable in vivo model organism for monitoring changes in the epigenome and for identifying new epigenetic processes and drug molecules that can influence vertebrate development. Areas covered: In this review, the authors focus on zebrafish as a model to summarize recent findings concerning the roles of epigenetics in the development, regeneration, and protection of hair cells. Expert opinion: Using the zebrafish model in combination with high-throughput screening and genome-editing technologies to investigate the function of epigenetics in hearing is crucial to help us better understand the molecular and genetic mechanisms of auditory development and function. It will also contribute to the development of new strategies to restore hearing loss.
Collapse
Affiliation(s)
- Yingzi He
- a ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology , Fudan University , Shanghai , China.,c Key Laboratory of Hearing Medicine of NHFPC , Shanghai , China
| | - Beier Bao
- a ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology , Fudan University , Shanghai , China
| | - Huawei Li
- a ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology , Fudan University , Shanghai , China.,b Institutes of Biomedical Sciences , Fudan University , Shanghai , China.,c Key Laboratory of Hearing Medicine of NHFPC , Shanghai , China.,d Shanghai Engineering Research Centre of Cochlear Implant , Shanghai , China.,e The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science , Fudan University , Shanghai , China
| |
Collapse
|
29
|
2i Maintains a Naive Ground State in ESCs through Two Distinct Epigenetic Mechanisms. Stem Cell Reports 2017; 8:1312-1328. [PMID: 28457889 PMCID: PMC5425728 DOI: 10.1016/j.stemcr.2017.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 01/08/2023] Open
Abstract
Mouse embryonic stem cells (ESCs) are maintained in serum with leukemia inhibitory factor (LIF) to maintain self-renewal and pluripotency. Recently, a 2i culture method was reported using a combination of MEK inhibition (MEKi) and GSK3 inhibition (GSK3i) with LIF to maintain ESCs in a naive ground state. How 2i maintains a ground state of ESCs remains elusive. Here we show that MEKi and GSK3i maintain the ESC ground state by downregulating global DNA methylation through two distinct mechanisms. MEK1 phosphorylates JMJD2C for ubiquitin-mediated protein degradation. Therefore, MEKi increased JMJD2C protein levels but decreased DNMT3 expression. JMJD2C promotes TET1 activity to increase 5-hydroxymethylcytosine (5hmC) levels. GSK3i suppressed DNMT3 expression, thereby decreasing DNA methylation without affecting 5hmC levels. Furthermore, 2i increased PRDM14 expression to inhibit DNMT3A/B protein expression by promoting G9a-mediated DNMT3A/B protein degradation. Collectively, 2i allows ESCs to maintain a naive ground state through JMJD2C-dependent TET1 activation and PRDM14/G9a-mediated DNMT3A/B protein degradation. MEKi increases JMJD2C protein levels and decreases DNMT3 expression in ESCs JMJD2C promotes TET1 hydroxylase activity to increase global 5hmC levels GSK3i decreases global DNA methylation without affecting 5hmC levels 2i-induced PRDM14 expression promotes G9a-mediated DNMT3A/B protein degradation
Collapse
|
30
|
Peat JR, Ortega-Recalde O, Kardailsky O, Hore TA. The elephant shark methylome reveals conservation of epigenetic regulation across jawed vertebrates. F1000Res 2017; 6:526. [PMID: 28580133 PMCID: PMC5437953 DOI: 10.12688/f1000research.11281.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Methylation of CG dinucleotides constitutes a critical system of epigenetic memory in bony vertebrates, where it modulates gene expression and suppresses transposon activity. The genomes of studied vertebrates are pervasively hypermethylated, with the exception of regulatory elements such as transcription start sites (TSSs), where the presence of methylation is associated with gene silencing. This system is not found in the sparsely methylated genomes of invertebrates, and establishing how it arose during early vertebrate evolution is impeded by a paucity of epigenetic data from basal vertebrates. METHODS We perform whole-genome bisulfite sequencing to generate the first genome-wide methylation profiles of a cartilaginous fish, the elephant shark Callorhinchus milii. Employing these to determine the elephant shark methylome structure and its relationship with expression, we compare this with higher vertebrates and an invertebrate chordate using published methylation and transcriptome data. Results: Like higher vertebrates, the majority of elephant shark CG sites are highly methylated, and methylation is abundant across the genome rather than patterned in the mosaic configuration of invertebrates. This global hypermethylation includes transposable elements and the bodies of genes at all expression levels. Significantly, we document an inverse relationship between TSS methylation and expression in the elephant shark, supporting the presence of the repressive regulatory architecture shared by higher vertebrates. CONCLUSIONS Our demonstration that methylation patterns in a cartilaginous fish are characteristic of higher vertebrates imply the conservation of this epigenetic modification system across jawed vertebrates separated by 465 million years of evolution. In addition, these findings position the elephant shark as a valuable model to explore the evolutionary history and function of vertebrate methylation.
Collapse
Affiliation(s)
- Julian R Peat
- Department of Anatomy, University of Otago, Dunedin, 9016, New Zealand
| | | | - Olga Kardailsky
- Department of Anatomy, University of Otago, Dunedin, 9016, New Zealand
| | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
31
|
Weng YL, An R, Cassin J, Joseph J, Mi R, Wang C, Zhong C, Jin SG, Pfeifer GP, Bellacosa A, Dong X, Hoke A, He Z, Song H, Ming GL. An Intrinsic Epigenetic Barrier for Functional Axon Regeneration. Neuron 2017; 94:337-346.e6. [PMID: 28426967 PMCID: PMC6007997 DOI: 10.1016/j.neuron.2017.03.034] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 02/05/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
Mature neurons in the adult peripheral nervous system can effectively switch from a dormant state with little axonal growth to robust axon regeneration upon injury. The mechanisms by which injury unlocks mature neurons' intrinsic axonal growth competence are not well understood. Here, we show that peripheral sciatic nerve lesion in adult mice leads to elevated levels of Tet3 and 5-hydroxylmethylcytosine in dorsal root ganglion (DRG) neurons. Functionally, Tet3 is required for robust axon regeneration of DRG neurons and behavioral recovery. Mechanistically, peripheral nerve injury induces DNA demethylation and upregulation of multiple regeneration-associated genes in a Tet3- and thymine DNA glycosylase-dependent fashion in DRG neurons. In addition, Pten deletion-induced axon regeneration of retinal ganglion neurons in the adult CNS is attenuated upon Tet1 knockdown. Together, our study suggests an epigenetic barrier that can be removed by active DNA demethylation to permit axon regeneration in the adult mammalian nervous system.
Collapse
Affiliation(s)
- Yi-Lan Weng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ran An
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Jessica Cassin
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pre-doctoral Human Genetics Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica Joseph
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruifa Mi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Chun Zhong
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seung-Gi Jin
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Gerd P. Pfeifer
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Alfonso Bellacosa
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pre-doctoral Human Genetics Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
Zhao M, Hur TY, No J, Nam Y, Kim H, Im GS, Lee S. Ascorbic acid increases demethylation in somatic cell nuclear transfer embryos of the pig ( Sus scrofa). ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:944-949. [PMID: 28111439 PMCID: PMC5495672 DOI: 10.5713/ajas.16.0818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 11/30/2022]
Abstract
Objective Investigated the effect and mechanism of ascorbic acid on the development of porcine embryos produced by somatic cell nuclear transfer (SCNT). Methods Porcine embryos were produced by SCNT and cultured in the presence or absence of ascorbic acid. Ten-eleven translocation 3 (TET3) in oocytes was knocked down by siRNA injection. After ascorbic acid treatment, reprogramming genes were analyzed by realtime reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, relative 5-methylcytosine and 5-hydroxymethylcytosine content in pronucleus were detected by realtime PCR. Results Ascorbic acid significantly increased the development of porcine embryos produced by SCNT. After SCNT, transcript levels of reprogramming genes, Pou5f1, Sox2, and Klf were significantly increased in blastocysts. Furthermore, ascorbic acid reduced 5-methylcytosine content in pronuclear embryos compared with the control group. Knock down of TET3 in porcine oocytes significantly prevents the demethylation of somatic cell nucleus after SCNT, even if in the presence of ascorbic acid. Conclusion Ascorbic acid enhanced the development of porcine SCNT embryos via the increased TET3 mediated demethylation of somatic nucleus.
Collapse
Affiliation(s)
- Minghui Zhao
- National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Tai-Young Hur
- National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Jingu No
- National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Yoonseok Nam
- National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Hyeunkyu Kim
- National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Gi-Sun Im
- National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Seunghoon Lee
- National Institute of Animal Science, RDA, Wanju 55365, Korea
| |
Collapse
|
33
|
Grzybek M, Golonko A, Walczak M, Lisowski P. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling. Neurobiol Dis 2016; 99:84-120. [PMID: 27890672 DOI: 10.1016/j.nbd.2016.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
The reprogramming of human induced pluripotent stem cells (hiPSCs) proceeds in a stepwise manner with reprogramming factors binding and epigenetic composition changes during transition to maintain the epigenetic landscape, important for pluripotency. There arises a question as to whether the aberrant epigenetic state after reprogramming leads to epigenetic defects in induced stem cells causing unpredictable long term effects in differentiated cells. In this review, we present a comprehensive view of epigenetic alterations accompanying reprogramming, cell maintenance and differentiation as factors that influence applications of hiPSCs in stem cell based technologies. We conclude that sample heterogeneity masks DNA methylation signatures in subpopulations of cells and thus believe that beside a genetic evaluation, extensive epigenomic screening should become a standard procedure to ensure hiPSCs state before they are used for genome editing and differentiation into neurons of interest. In particular, we suggest that exploitation of the single-cell composition of the epigenome will provide important insights into heterogeneity within hiPSCs subpopulations to fast forward development of reliable hiPSC-based analytical platforms in neurological disorders modelling and before completed hiPSC technology will be implemented in clinical approaches.
Collapse
Affiliation(s)
- Maciej Grzybek
- Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Aleksandra Golonko
- Department of Biotechnology, Faculty of Civil and Environmental Engineering, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Marta Walczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Pawel Lisowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland; iPS Cell-Based Disease Modelling Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| |
Collapse
|
34
|
Liu L. Linking Telomere Regulation to Stem Cell Pluripotency. Trends Genet 2016; 33:16-33. [PMID: 27889084 DOI: 10.1016/j.tig.2016.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
Abstract
Embryonic stem cells (ESCs), somatic cell nuclear transfer ESCs, and induced pluripotent stem cells (iPSCs) represent the most studied group of PSCs. Unlimited self-renewal without incurring chromosomal instability and pluripotency are essential for the potential use of PSCs in regenerative therapy. Telomere length maintenance is critical for the unlimited self-renewal, pluripotency, and chromosomal stability of PSCs. While telomerase has a primary role in telomere maintenance, alternative lengthening of telomere pathways involving recombination and epigenetic modifications are also required for telomere length regulation, notably in mouse PSCs. Telomere rejuvenation is part of epigenetic reprogramming to pluripotency. Insights into telomere reprogramming and maintenance in PSCs may have implications for understanding of aging and tumorigenesis. Here, I discuss the link between telomere elongation and homeostasis to the acquisition and maintenance of stem cell pluripotency, and their regulatory mechanisms by epigenetic modifications.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin 300071, China.
| |
Collapse
|
35
|
Tet3-Mediated DNA Demethylation Contributes to the Direct Conversion of Fibroblast to Functional Neuron. Cell Rep 2016; 17:2326-2339. [DOI: 10.1016/j.celrep.2016.10.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/29/2016] [Accepted: 10/24/2016] [Indexed: 11/21/2022] Open
|
36
|
Abstract
microRNAs are a subclass of small non-coding RNAs that fine-tune the regulation of gene expression at the post-transcriptional level. The miR-302/367 cluster, generally consisting of five members, miR-367, miR-302d, miR-302a, miR-302c and miR-302b, is ubiquitously distributed in vertebrates and occupies an intragenic cluster located in the gene La-related protein 7 (LARP7). The cluster was demonstrated to play an important role in diverse biological processes, such as the pluripotency of human embryonic stem cells (hESCs), self-renewal and reprogramming. This paper provides an overview of the mir-302/367 cluster, discusses our current understanding of the cluster's evolutionary history and transcriptional regulation and reviews the literature surrounding the cluster's roles in cell cycle regulation, epigenetic regulation and different cellular signalling pathways.
Collapse
Affiliation(s)
- Zeqian Gao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Yanchangbu, Lanzhou, 730046 Gansu, China
| | - Xueliang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Yanchangbu, Lanzhou, 730046 Gansu, China
| | - Yongxi Dou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Yanchangbu, Lanzhou, 730046 Gansu, China
| |
Collapse
|
37
|
Zhou Y, Hu Z. Epigenetic DNA Demethylation Causes Inner Ear Stem Cell Differentiation into Hair Cell-Like Cells. Front Cell Neurosci 2016; 10:185. [PMID: 27536218 PMCID: PMC4971107 DOI: 10.3389/fncel.2016.00185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022] Open
Abstract
The DNA methyltransferase (DNMT) inhibitor 5-azacytidine (5-aza) causes genomic demethylation to regulate gene expression. However, it remains unclear whether 5-aza affects gene expression and cell fate determination of stem cells. In this study, 5-aza was applied to mouse utricle sensory epithelia-derived progenitor cells (MUCs) to investigate whether 5-aza stimulated MUCs to become sensory hair cells. After treatment, MUCs increased expression of hair cell genes and proteins. The DNA methylation level (indicated by percentage of 5-methylcytosine) showed a 28.57% decrease after treatment, which causes significantly repressed DNMT1 protein expression and DNMT activity. Additionally, FM1-43 permeation assays indicated that the permeability of 5-aza-treated MUCs was similar to that of sensory hair cells, which may result from mechanotransduction channels. This study not only demonstrates a possible epigenetic approach to induce tissue specific stem/progenitor cells to become sensory hair cell-like cells, but also provides a cell model to epigenetically modulate stem cell fate determination.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine Detroit, MI, USA
| | - Zhengqing Hu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
38
|
Ohbo K, Tomizawa SI. Epigenetic regulation in stem cell development, cell fate conversion, and reprogramming. Biomol Concepts 2016; 6:1-9. [PMID: 25720089 DOI: 10.1515/bmc-2014-0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/30/2014] [Indexed: 01/07/2023] Open
Abstract
Stem cells are identified classically by an in vivo transplantation assay plus additional characterization, such as marker analysis, linage-tracing and in vitro/ex vivo differentiation assays. Stem cell lines have been derived, in vitro, from adult tissues, the inner cell mass (ICM), epiblast, and male germ stem cells, providing intriguing insight into stem cell biology, plasticity, heterogeneity, metastable state, and the pivotal point at which stem cells irreversibly differentiate to non-stem cells. During the past decade, strategies for manipulating cell fate have revolutionized our understanding about the basic concept of cell differentiation: stem cell lines can be established by introducing transcription factors, as with the case for iPSCs, revealing some of the molecular interplay of key factors during the course of phenotypic changes. In addition to de-differentiation approaches for establishing stem cells, another method has been developed whereby induced expression of certain transcription factors and/or micro RNAs artificially converts differentiated cells from one committed lineage to another; notably, these cells need not transit through a stem/progenitor state. The molecular cues guiding such cell fate conversion and reprogramming remain largely unknown. As differentiation and de-differentiation are directly linked to epigenetic changes, we overview cell fate decisions, and associated gene and epigenetic regulations.
Collapse
|
39
|
Abstract
Revealing how the core pluripotency circuitry is orchestrated to maintain the ground state of embryonic stem cells (ESCs) is fundamental for understanding self-renewal and early lineage specifications. In this issue of Cell Stem Cell, Ding et al. (2015) identify a new Sox2-interacting protein, Tex10, which, together with Tet1 and p300, regulate super-enhancers to sustain pluripotency.
Collapse
Affiliation(s)
- Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem 91120, Israel.
| |
Collapse
|
40
|
Yang Q, Mas A, Diamond MP, Al-Hendy A. The Mechanism and Function of Epigenetics in Uterine Leiomyoma Development. Reprod Sci 2016; 23:163-75. [PMID: 25922306 PMCID: PMC5933172 DOI: 10.1177/1933719115584449] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Uterine leiomyomas, also known as uterine fibroids, are the most common pelvic tumors, occurring in nearly 70% of all reproductive-aged women and are the leading indication for hysterectomy worldwide. The development of uterine leiomyomas involve a complex and heterogeneous constellation of hormones, growth factors, stem cells, genetic, and epigenetic abnormalities. An increasing body of evidence emphasizes the important contribution of epigenetics in the pathogenesis of leiomyomas. Genome-wide methylation analysis demonstrates that a subset of estrogen receptor (ER) response genes exhibit abnormal hypermethylation levels that are inversely correlated with their RNA expression. Several tumor suppressor genes, including Kruppel-like factor 11 (KLF11), deleted in lung and esophageal cancer 1 (DLEC1), keratin 19 (KRT19), and death-associated protein kinase 1 (DAPK1) also display higher hypermethylation levels in leiomyomas when compared to adjacent normal tissues. The important role of active DNA demethylation was recently identified with regard to the ten-eleven translocation protein 1 and ten-eleven translocation protein 3-mediated elevated levels of 5-hydroxymethylcytosine in leiomyoma. In addition, both histone deacetylase and histone methyltransferase are reported to be involved in the biology of leiomyomas. A number of deregulated microRNAs have been identified in leiomyomas, leading to an altered expression of their targets. More recently, the existence of side population (SP) cells with characteristics of tumor-initiating cells have been characterized in leiomyomas. These SP cells exhibit a tumorigenic capacity in immunodeficient mice when exposed to 17β-estradiol and progesterone, giving rise to fibroid-like tissue in vivo. These new findings will likely enhance our understanding of the crucial role epigenetics plays in the pathogenesis of uterine leiomyomas as well as point the way to novel therapeutic options.
Collapse
Affiliation(s)
- Qiwei Yang
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| | - Aymara Mas
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| | - Michael P Diamond
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| | - Ayman Al-Hendy
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
41
|
Induced Pluripotent Stem Cells: Generation Strategy and Epigenetic Mystery behind Reprogramming. Stem Cells Int 2016; 2016:8415010. [PMID: 26880993 PMCID: PMC4736417 DOI: 10.1155/2016/8415010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/03/2015] [Accepted: 11/11/2015] [Indexed: 01/06/2023] Open
Abstract
Possessing the ability of self-renewal with immortalization and potential for differentiation into different cell types, stem cells, particularly embryonic stem cells (ESC), have attracted significant attention since their discovery. As ESC research has played an essential role in developing our understanding of the mechanisms underlying reproduction, development, and cell (de)differentiation, significant efforts have been made in the biomedical study of ESC in recent decades. However, such studies of ESC have been hampered by the ethical issues and technological challenges surrounding them, therefore dramatically inhibiting the potential applications of ESC in basic biomedical studies and clinical medicine. Induced pluripotent stem cells (iPSCs), generated from the reprogrammed somatic cells, share similar characteristics including but not limited to the morphology and growth of ESC, self-renewal, and potential differentiation into various cell types. The discovery of the iPSC, unhindered by the aforementioned limitations of ESC, introduces a viable alternative to ESC. More importantly, the applications of iPSC in the development of disease models such as neurodegenerative disorders greatly enhance our understanding of the pathogenesis of such diseases and also facilitate the development of clinical therapeutic strategies using iPSC generated from patient somatic cells to avoid an immune rejection. In this review, we highlight the advances in iPSCs generation methods as well as the mechanisms behind their reprogramming. We also discuss future perspectives for the development of iPSC generation methods with higher efficiency and safety.
Collapse
|
42
|
GŁADYCH M, NIJAK A, LOTA P, OLEKSIEWICZ U. Epigenetics: the guardian of pluripotency and differentiation. Turk J Biol 2016. [DOI: 10.3906/biy-1509-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
43
|
Ni A, Wu MJ, Chavala SH. Sphere formation permits Oct4 reprogramming of ciliary body epithelial cells into induced pluripotent stem cells. Stem Cells Dev 2015; 23:3065-71. [PMID: 25027059 DOI: 10.1089/scd.2014.0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Somatic cells can be reprogrammed to induced pluripotent stem (iPS) cells by defined sets of transcription factors. We previously described reprogramming of monolayer-cultured adult mouse ciliary body epithelial (CE) cells by Oct4 and Klf4, but not with Oct4 alone. In this study, we report that Oct4 alone is sufficient to reprogram CE cells to iPS cells through sphere formation. Furthermore, we demonstrate that sphere formation induces a partial reprogramming state characterized by expression of retinal progenitor markers, upregulation of reprogramming transcription factors, such as Sall4 and Nanog, demethylation in the promoter regions of pluripotency associated genes, and mesenchymal to epithelial transition. The Oct4-iPS cells maintained normal karyotypes, expressed markers for pluripotent stem cells, and were capable of differentiating into derivatives of all three embryonic germ layers in vivo and in vitro. These findings suggest that sphere formation may render somatic cells more susceptible to reprogramming.
Collapse
Affiliation(s)
- Aiguo Ni
- Department of Ophthalmology, University of North Carolina , Chapel Hill, North Carolina
| | | | | |
Collapse
|
44
|
Sebban S, Buganim Y. Nuclear Reprogramming by Defined Factors: Quantity Versus Quality. Trends Cell Biol 2015; 26:65-75. [PMID: 26437595 DOI: 10.1016/j.tcb.2015.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/04/2015] [Accepted: 08/21/2015] [Indexed: 01/29/2023]
Abstract
The generation of induced pluripotent stem cells (iPSCs) and directly converted cells holds great promise in regenerative medicine. However, after in-depth studies of the murine system, we know that the current methodologies to produce these cells are not ideal and mostly yield cells of poor quality that might hold a risk in therapeutic applications. In this review we address the duality found in the literature regarding the use of 'quality' as a criterion for the clinic. We discuss the elements that influence reprogramming quality, and provide evidence that safety and functionality are directly linked to cell quality. Finally, because most of the available data come from murine systems, we speculate about what aspects can be applied to human cells.
Collapse
Affiliation(s)
- Shulamit Sebban
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
45
|
Welling M, Chen HH, Muñoz J, Musheev MU, Kester L, Junker JP, Mischerikow N, Arbab M, Kuijk E, Silberstein L, Kharchenko PV, Geens M, Niehrs C, van de Velde H, van Oudenaarden A, Heck AJR, Geijsen N. DAZL regulates Tet1 translation in murine embryonic stem cells. EMBO Rep 2015; 16:791-802. [PMID: 26077710 DOI: 10.15252/embr.201540538] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 11/09/2022] Open
Abstract
Embryonic stem cell (ESC) cultures display a heterogeneous gene expression profile, ranging from a pristine naïve pluripotent state to a primed epiblast state. Addition of inhibitors of GSK3β and MEK (so-called 2i conditions) pushes ESC cultures toward a more homogeneous naïve pluripotent state, but the molecular underpinnings of this naïve transition are not completely understood. Here, we demonstrate that DAZL, an RNA-binding protein known to play a key role in germ-cell development, marks a subpopulation of ESCs that is actively transitioning toward naïve pluripotency. Moreover, DAZL plays an essential role in the active reprogramming of cytosine methylation. We demonstrate that DAZL associates with mRNA of Tet1, a catalyst of 5-hydroxylation of methyl-cytosine, and enhances Tet1 mRNA translation. Overexpression of DAZL in heterogeneous ESC cultures results in elevated TET1 protein levels as well as increased global hydroxymethylation. Conversely, null mutation of Dazl severely stunts 2i-mediated TET1 induction and hydroxymethylation. Our results provide insight into the regulation of the acquisition of naïve pluripotency and demonstrate that DAZL enhances TET1-mediated cytosine hydroxymethylation in ESCs that are actively reprogramming to a pluripotent ground state.
Collapse
Affiliation(s)
- Maaike Welling
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hsu-Hsin Chen
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Javier Muñoz
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands Netherlands Proteomics Centre, Utrecht, The Netherlands
| | | | - Lennart Kester
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Philipp Junker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nikolai Mischerikow
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Mandana Arbab
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ewart Kuijk
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lev Silberstein
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Peter V Kharchenko
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Mieke Geens
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christof Niehrs
- Institute of Molecular Biology, Mainz, Germany Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Hilde van de Velde
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Niels Geijsen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands Department of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
46
|
Chen Q, Gao S, He W, Kou X, Zhao Y, Wang H, Gao S. Xist repression shows time-dependent effects on the reprogramming of female somatic cells to induced pluripotent stem cells. Stem Cells 2015; 32:2642-56. [PMID: 24965076 DOI: 10.1002/stem.1775] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/17/2014] [Accepted: 05/23/2014] [Indexed: 11/10/2022]
Abstract
Although the reactivation of silenced X chromosomes has been observed as part of the process of reprogramming female somatic cells into induced pluripotent stem cells (iPSCs), it remains unknown whether repression of the X-inactive specific transcript (Xist) can greatly enhance female iPSC induction similar to that observed in somatic cell nuclear transfer studies. In this study, we discovered that the repression of Xist plays opposite roles in the early and late phases of female iPSCs induction. Our results demonstrate that the downregulation of Xist by an isopropyl β-d-1-thiogalactopyranoside (IPTG)-inducible short hairpin RNA (shRNA) system can greatly impair the mesenchymal-to-epithelial transition (MET) in the early phase of iPSC induction but can significantly promote the transition of pre-iPSCs to iPSCs in the late phase. Furthermore, we demonstrate that although the knockdown of Xist did not affect the H3K27me3 modification on the X chromosome, macroH2A was released from the inactivated X chromosome (Xi). This enables the X chromosome silencing to be a reversible event. Moreover, we demonstrate that the supplementation of vitamin C (Vc) can augment and stabilize the reversible X chromosome by preventing the relocalization of macroH2A to the Xi. Therefore, our study reveals an opposite role of Xist repression in the early and late stages of reprogramming female somatic cells to pluripotency and demonstrates that the release of macroH2A by Xist repression enables the transition from pre-iPSCs to iPSCs.
Collapse
Affiliation(s)
- Qi Chen
- School of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences (NIBS), Beijing, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Wei T, Chen W, Wang X, Zhang M, Chen J, Zhu S, Chen L, Yang D, Wang G, Jia W, Yu Y, Duan T, Wu M, Liu H, Gao S, Kang J. An HDAC2-TET1 switch at distinct chromatin regions significantly promotes the maturation of pre-iPS to iPS cells. Nucleic Acids Res 2015; 43:5409-22. [PMID: 25934799 PMCID: PMC4477660 DOI: 10.1093/nar/gkv430] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/22/2015] [Indexed: 01/13/2023] Open
Abstract
The maturation of induced pluripotent stem cells (iPS) is one of the limiting steps of somatic cell reprogramming, but the underlying mechanism is largely unknown. Here, we reported that knockdown of histone deacetylase 2 (HDAC2) specifically promoted the maturation of iPS cells. Further studies showed that HDAC2 knockdown significantly increased histone acetylation, facilitated TET1 binding and DNA demethylation at the promoters of iPS cell maturation-related genes during the transition of pre-iPS cells to a fully reprogrammed state. We also found that HDAC2 competed with TET1 in the binding of the RbAp46 protein at the promoters of maturation genes and knockdown of TET1 markedly prevented the activation of these genes. Collectively, our data not only demonstrated a novel intrinsic mechanism that the HDAC2-TET1 switch critically regulates iPS cell maturation, but also revealed an underlying mechanism of the interplay between histone acetylation and DNA demethylation in gene regulation.
Collapse
Affiliation(s)
- Tingyi Wei
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xiukun Wang
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Man Zhang
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Songcheng Zhu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Long Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Dandan Yang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yangyang Yu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Tao Duan
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Minjuan Wu
- Department of Embryology and Histology, Second Military Medical University, Shanghai 200433, PR China
| | - Houqi Liu
- Department of Embryology and Histology, Second Military Medical University, Shanghai 200433, PR China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
48
|
Neri F, Incarnato D, Krepelova A, Dettori D, Rapelli S, Maldotti M, Parlato C, Anselmi F, Galvagni F, Oliviero S. TET1 is controlled by pluripotency-associated factors in ESCs and downmodulated by PRC2 in differentiated cells and tissues. Nucleic Acids Res 2015; 43:6814-26. [PMID: 25925565 PMCID: PMC4538807 DOI: 10.1093/nar/gkv392] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/14/2015] [Indexed: 12/22/2022] Open
Abstract
Ten-eleven translocation (Tet) genes encode for a family of hydroxymethylase enzymes involved in regulating DNA methylation dynamics. Tet1 is highly expressed in mouse embryonic stem cells (ESCs) where it plays a critical role the pluripotency maintenance. Tet1 is also involved in cell reprogramming events and in cancer progression. Although the functional role of Tet1 has been largely studied, its regulation is poorly understood. Here we show that Tet1 gene is regulated, both in mouse and human ESCs, by the stemness specific factors Oct3/4, Nanog and by Myc. Thus Tet1 is integrated in the pluripotency transcriptional network of ESCs. We found that Tet1 is switched off by cell proliferation in adult cells and tissues with a consequent genome-wide reduction of 5hmC, which is more evident in hypermethylated regions and promoters. Tet1 downmodulation is mediated by the Polycomb repressive complex 2 (PRC2) through H3K27me3 histone mark deposition. This study expands the knowledge about Tet1 involvement in stemness circuits in ESCs and provides evidence for a transcriptional relationship between Tet1 and PRC2 in adult proliferating cells improving our understanding of the crosstalk between the epigenetic events mediated by these factors.
Collapse
Affiliation(s)
- Francesco Neri
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy
| | - Danny Incarnato
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Anna Krepelova
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy
| | - Daniela Dettori
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy
| | - Stefania Rapelli
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Mara Maldotti
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy
| | - Caterina Parlato
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy
| | - Francesca Anselmi
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy
| | - Federico Galvagni
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Salvatore Oliviero
- Human Genetics Foundation (HuGeF), via Nizza 52, Torino, 10126, Italy Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
49
|
Abstract
In this issue, Wang et al., 2015 describes that WT1 recruits TET2 to the DNA, an important feature of a new regulatory pathway linked to the development of acute myeloid leukemia (AML). This pathway consists of WT1, IDH1/2, and TET2 (WIT) genes, with exclusive mutations of the three genes inducing myeloid cell proliferation.
Collapse
Affiliation(s)
- Jose Luis Sardina
- Center for Genomic Regulation, C/Dr. Aiguader, 88, PRBB Building, 08003 Barcelona, Spain; Pompeu Fabra University, Plaça de la Mercè, 10, 08002 Barcelona, Spain.
| | - Thomas Graf
- Center for Genomic Regulation, C/Dr. Aiguader, 88, PRBB Building, 08003 Barcelona, Spain; Pompeu Fabra University, Plaça de la Mercè, 10, 08002 Barcelona, Spain.
| |
Collapse
|
50
|
Yeo JC, Jiang J, Tan ZY, Yim GR, Ng JH, Göke J, Kraus P, Liang H, Gonzales KAU, Chong HC, Tan CP, Lim YS, Tan NS, Lufkin T, Ng HH. Klf2 is an essential factor that sustains ground state pluripotency. Cell Stem Cell 2015; 14:864-72. [PMID: 24905170 DOI: 10.1016/j.stem.2014.04.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/14/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
The maintenance of mouse embryonic stem cells (mESCs) requires LIF and serum. However, a pluripotent "ground state," bearing resemblance to preimplantation mouse epiblasts, can be established through dual inhibition (2i) of both prodifferentiation Mek/Erk and Gsk3/Tcf3 pathways. While Gsk3 inhibition has been attributed to the transcriptional derepression of Esrrb, the molecular mechanism mediated by Mek inhibition remains unclear. In this study, we show that Krüppel-like factor 2 (Klf2) is phosphorylated by Erk2 and that phospho-Klf2 is proteosomally degraded. Mek inhibition hence prevents Klf2 protein phosphodegradation to sustain pluripotency. Indeed, while Klf2-null mESCs can survive under LIF/Serum, they are not viable under 2i, demonstrating that Klf2 is essential for ground state pluripotency. Importantly, we also show that ectopic Klf2 expression can replace Mek inhibition in mESCs, allowing the culture of Klf2-null mESCs under Gsk3 inhibition alone. Collectively, our study defines the Mek/Erk/Klf2 axis that cooperates with the Gsk3/Tcf3/Esrrb pathway in mediating ground state pluripotency.
Collapse
Affiliation(s)
- Jia-Chi Yeo
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jianming Jiang
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Zi-Ying Tan
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Guo-Rong Yim
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Jia-Hui Ng
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Jonathan Göke
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Petra Kraus
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Hongqing Liang
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Kevin Andrew Uy Gonzales
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Han-Chung Chong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Cheng-Peow Tan
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Yee-Siang Lim
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore
| | - Nguan-Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, A(∗)STAR, Singapore 138673, Singapore
| | - Thomas Lufkin
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Huck-Hui Ng
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome Building, Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Block MD6, Centre for Translational Medicine, 14 Medical Drive #14-01T, Singapore 117599, Singapore.
| |
Collapse
|