1
|
Bi C, Yuan B, Zhang Y, Wang M, Tian Y, Li M. Prevalent integration of genomic repetitive and regulatory elements and donor sequences at CRISPR-Cas9-induced breaks. Commun Biol 2025; 8:94. [PMID: 39833279 PMCID: PMC11747631 DOI: 10.1038/s42003-025-07539-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
CRISPR-Cas9 genome editing has been extensively applied in both academia and clinical settings, but its genotoxic risks, including large insertions (LgIns), remain poorly studied due to methodological limitations. This study presents the first detailed report of unintended LgIns consistently induced by different Cas9 editing regimes using various types of donors across multiple gene loci. Among these insertions, retrotransposable elements (REs) and host genomic coding and regulatory sequences are prevalent. RE frequencies and 3D genome organization analysis suggest LgIns originate from randomly acquired genomic fragments by DNA repair mechanisms. Additionally, significant unintended full-length and concatemeric double-stranded DNA (dsDNA) donor integrations occur when donor DNA is present. We further demonstrate that phosphorylated dsDNA donors consistently reduce large insertions and deletions by almost two-fold without compromising homology-directed repair (HDR) efficiency. Taken together, our study addresses a ubiquitous and overlooked risk of unintended LgIns in Cas9 editing, contributing valuable insights for the safe use of Cas9 editing tools.
Collapse
Affiliation(s)
- Chongwei Bi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Baolei Yuan
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yingzi Zhang
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mengge Wang
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yeteng Tian
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mo Li
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Bioengineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- KAUST Center of Excellence for Smart Health (KCSH), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
2
|
Balubaid A, Alsolami S, Kiani NA, Gomez-Cabrero D, Li M, Tegner J. A comparative analysis of blastoid models through single-cell transcriptomics. iScience 2024; 27:111122. [PMID: 39524369 PMCID: PMC11543915 DOI: 10.1016/j.isci.2024.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/15/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Pluripotent-stem-cell-derived blastocyst-like structures (blastoids) offer insights into early human embryogenesis (5-10 days post-fertilization). The similarity between blastoids and human blastocysts remains uncertain. To investigate, we evaluated single-cell RNA sequencing (scRNAseq) data from seven blastoid models, comparing them to peri-implantation blastocysts. We quantified cell-type composition, transcriptomic overlap, lineage profiles, and developmental propensities for primary (epiblast, primitive endoderm, trophectoderm) and potential lineages (amnion, extravillous cytotrophoblasts, syncytial trophoblasts). Blastoids from extended pluripotent stem cells (EPSCs) are distinct from those from naive pluripotent stem cells (nPSCs), which cluster closer to natural blastocysts. EPSC-blastoids show a higher composition of primitive endoderm cells and ambiguous cells with notable endoderm signatures. Starting cell lines' scRNAseq analysis reveals higher heterogeneity in nPSCs and prevalent amnionic signatures in EPSCs. These findings suggest gene expression heterogeneity in founding cells influences blastoid lineage differentiation, aiding protocol optimization for better human embryogenesis models.
Collapse
Affiliation(s)
- Ali Balubaid
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Samhan Alsolami
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Narsis A. Kiani
- Algorithmic Dynamic Lab, Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:05, SE-171 76 Stockholm, Sweden
| | - David Gomez-Cabrero
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pu'blica de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Mo Li
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jesper Tegner
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:05, SE-171 76 Stockholm, Sweden
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Science for Life Laboratory, Tomtebodavagen 23A, SE-17165 Solna, Sweden
| |
Collapse
|
3
|
Yuan B, Bi C, Tian Y, Wang J, Jin Y, Alsayegh K, Tehseen M, Yi G, Zhou X, Shao Y, Romero FV, Fischle W, Izpisua Belmonte JC, Hamdan S, Huang Y, Li M. Modulation of the microhomology-mediated end joining pathway suppresses large deletions and enhances homology-directed repair following CRISPR-Cas9-induced DNA breaks. BMC Biol 2024; 22:101. [PMID: 38685010 PMCID: PMC11059712 DOI: 10.1186/s12915-024-01896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND CRISPR-Cas9 genome editing often induces unintended, large genomic rearrangements, posing potential safety risks. However, there are no methods for mitigating these risks. RESULTS Using long-read individual-molecule sequencing (IDMseq), we found the microhomology-mediated end joining (MMEJ) DNA repair pathway plays a predominant role in Cas9-induced large deletions (LDs). We targeted MMEJ-associated genes genetically and/or pharmacologically and analyzed Cas9-induced LDs at multiple gene loci using flow cytometry and long-read sequencing. Reducing POLQ levels or activity significantly decreases LDs, while depleting or overexpressing RPA increases or reduces LD frequency, respectively. Interestingly, small-molecule inhibition of POLQ and delivery of recombinant RPA proteins also dramatically promote homology-directed repair (HDR) at multiple disease-relevant gene loci in human pluripotent stem cells and hematopoietic progenitor cells. CONCLUSIONS Our findings reveal the contrasting roles of RPA and POLQ in Cas9-induced LD and HDR, suggesting new strategies for safer and more precise genome editing.
Collapse
Affiliation(s)
- Baolei Yuan
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chongwei Bi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yeteng Tian
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jincheng Wang
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry, College of Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yiqing Jin
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Khaled Alsayegh
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Present address: King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Jeddah, Saudi Arabia
| | - Muhammad Tehseen
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Gang Yi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Xuan Zhou
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | | | - Fernanda Vargas Romero
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Wolfgang Fischle
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Juan Carlos Izpisua Belmonte
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Altos Labs, Inc, San Diego, CA, 92121, USA
| | - Samir Hamdan
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yanyi Huang
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry, College of Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, China
| | - Mo Li
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Bioengineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
4
|
Balmas E, Sozza F, Bottini S, Ratto ML, Savorè G, Becca S, Snijders KE, Bertero A. Manipulating and studying gene function in human pluripotent stem cell models. FEBS Lett 2023; 597:2250-2287. [PMID: 37519013 DOI: 10.1002/1873-3468.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Human pluripotent stem cells (hPSCs) are uniquely suited to study human development and disease and promise to revolutionize regenerative medicine. These applications rely on robust methods to manipulate gene function in hPSC models. This comprehensive review aims to both empower scientists approaching the field and update experienced stem cell biologists. We begin by highlighting challenges with manipulating gene expression in hPSCs and their differentiated derivatives, and relevant solutions (transfection, transduction, transposition, and genomic safe harbor editing). We then outline how to perform robust constitutive or inducible loss-, gain-, and change-of-function experiments in hPSCs models, both using historical methods (RNA interference, transgenesis, and homologous recombination) and modern programmable nucleases (particularly CRISPR/Cas9 and its derivatives, i.e., CRISPR interference, activation, base editing, and prime editing). We further describe extension of these approaches for arrayed or pooled functional studies, including emerging single-cell genomic methods, and the related design and analytical bioinformatic tools. Finally, we suggest some directions for future advancements in all of these areas. Mastering the combination of these transformative technologies will empower unprecedented advances in human biology and medicine.
Collapse
Affiliation(s)
- Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Federica Sozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Maria Luisa Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Giulia Savorè
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Silvia Becca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Kirsten Esmee Snijders
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| |
Collapse
|
5
|
Guo R, Wang H, Meng C, Gui H, Li Y, Chen F, Zhang C, Zhang H, Ding Q, Zhang J, Zhang J, Qian Y, Zhong J, Cao S. Efficient and Specific Generation of MSTN-Edited Hu Sheep Using C-CRISPR. Genes (Basel) 2023; 14:1216. [PMID: 37372396 DOI: 10.3390/genes14061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Hu sheep, an indigenous breed in China known for its high fecundity, are being studied to improve their growth and carcass traits. MSTN is a negative regulator of muscle development, and its inactivation results in muscularity. The C-CRISPR system, utilizing multiple neighboring sgRNAs targeting a key exon, has been successfully used to generate genes for complete knockout (KO) monkeys and mice in one step. In this study, the C-CRISPR system was used to generate MSTN-edited Hu sheep; 70 embryos injected with Cas9 mRNA and four sgRNAs targeting exon 3 of sheep MSTN were transferred to 13 recipients. Out of 10 lambs born from five recipients after full-term pregnancies, nine had complete MSTN KO with various mutations. No off-target effects were found. These MSTN-KO Hu sheep showed a double-muscled (DM) phenotype, characterized by a higher body weight at 3 and 4 months old, prominent muscular protrusion, clearly visible intermuscular groves, and muscle hypertrophy. The molecular analysis indicated enhanced AKT and suppressed ERK1/2 signaling in the gluteus muscle of the edited Hu sheep. In conclusion, MSTN complete KO Hu sheep with a DM phenotype were efficiently and specifically generated using C-CRISPR, and the C-CRISPR method is a promising tool for farm animal breeding.
Collapse
Affiliation(s)
- Rihong Guo
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huili Wang
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chunhua Meng
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongbing Gui
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
| | - Yinxia Li
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fang Chen
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chenjian Zhang
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
| | - Han Zhang
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
| | - Qiang Ding
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianli Zhang
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Zhang
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yong Qian
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jifeng Zhong
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shaoxian Cao
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|
6
|
Muto V, Benigni F, Magliocca V, Borghi R, Flex E, Pallottini V, Rosa A, Compagnucci C, Tartaglia M. CRISPR/Cas9 and piggyBac Transposon-Based Conversion of a Pathogenic Biallelic TBCD Variant in a Patient-Derived iPSC Line Allows Correction of PEBAT-Related Endophenotypes. Int J Mol Sci 2023; 24:ijms24097988. [PMID: 37175696 PMCID: PMC10178052 DOI: 10.3390/ijms24097988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have been established as a reliable in vitro disease model system and represent a particularly informative tool when animal models are not available or do not recapitulate the human pathophenotype. The recognized limit in using this technology is linked to some degree of variability in the behavior of the individual patient-derived clones. The development of CRISPR/Cas9-based gene editing solves this drawback by obtaining isogenic iPSCs in which the genetic lesion is corrected, allowing a straightforward comparison with the parental patient-derived iPSC lines. Here, we report the generation of a footprint-free isogenic cell line of patient-derived TBCD-mutated iPSCs edited using the CRISPR/Cas9 and piggyBac technologies. The corrected iPSC line had no genetic footprint after the removal of the selection cassette and maintained its "stemness". The correction of the disease-causing TBCD missense substitution restored proper protein levels of the chaperone and mitotic spindle organization, as well as reduced cellular death, which were used as read-outs of the TBCD KO-related endophenotype. The generated line represents an informative in vitro model to understand the impact of pathogenic TBCD mutations on nervous system development and physiology.
Collapse
Affiliation(s)
- Valentina Muto
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Federica Benigni
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
- Department of Science, University Roma Tre, 00146 Rome, Italy
| | - Valentina Magliocca
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Rossella Borghi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Valentina Pallottini
- Department of Science, University Roma Tre, 00146 Rome, Italy
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| |
Collapse
|
7
|
Furuno K, Suzuki K, Sakai S. Gelatin nanofiber mats with Lipofectamine/plasmid DNA complexes for in vitro genome editing. Colloids Surf B Biointerfaces 2022; 216:112561. [PMID: 35576881 DOI: 10.1016/j.colsurfb.2022.112561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Gelatin electrospun nanofiber mats are gaining interest for applications in biomaterials science, such as tissue engineering and drug/gene delivery systems. In this study, we report the use of electrospun gelatin nanofiber mats for plasmid DNA (pDNA) delivery. Gelatin nanofiber mats were insolubilized via cross-linking with glutaraldehyde. On the cross-linked mats, human embryonic kidney-derived HEK293 cells demonstrated high viability for 7 days of culture (>95%) and were able to proliferate during that time. The Lipofectamine/pDNA complexes were immobilized on the mats through immersion in a solution, and HEK293 cells cultured on these mats expressed GFP for 7 days. Furthermore, HEK293 cells did not express GFP via the pDNA complexes released from the mats because the ability to deliver pDNA into the cells was lost. Since the mats could be used to transfect multiple types of pDNA into the cells simultaneously, we have achieved targeted genome editing using the mats. These data highlight the potential of gelatin nanofiber mats with Lipofectamine/pDNA complexes for local gene therapy via pDNA delivery as well as genome editing.
Collapse
Affiliation(s)
- Kotoko Furuno
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Keiichiro Suzuki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan; Institute for Advanced Co-Creation Studies, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan; Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
8
|
Tasca F, Brescia M, Wang Q, Liu J, Janssen JM, Szuhai K, Gonçalves MAFV. Large-scale genome editing based on high-capacity adenovectors and CRISPR-Cas9 nucleases rescues full-length dystrophin synthesis in DMD muscle cells. Nucleic Acids Res 2022; 50:7761-7782. [PMID: 35776127 PMCID: PMC9303392 DOI: 10.1093/nar/gkac567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/20/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Targeted chromosomal insertion of large genetic payloads in human cells leverages and broadens synthetic biology and genetic therapy efforts. Yet, obtaining large-scale gene knock-ins remains particularly challenging especially in hard-to-transfect stem and progenitor cells. Here, fully viral gene-deleted adenovector particles (AdVPs) are investigated as sources of optimized high-specificity CRISPR-Cas9 nucleases and donor DNA constructs tailored for targeted insertion of full-length dystrophin expression units (up to 14.8-kb) through homologous recombination (HR) or homology-mediated end joining (HMEJ). In muscle progenitor cells, donors prone to HMEJ yielded higher CRISPR-Cas9-dependent genome editing frequencies than HR donors, with values ranging between 6% and 34%. In contrast, AdVP transduction of HR and HMEJ substrates in induced pluripotent stem cells (iPSCs) resulted in similar CRISPR-Cas9-dependent genome editing levels. Notably, when compared to regular iPSCs, in p53 knockdown iPSCs, CRISPR-Cas9-dependent genome editing frequencies increased up to 6.7-fold specifically when transducing HMEJ donor constructs. Finally, single DNA molecule analysis by molecular combing confirmed that AdVP-based genome editing achieves long-term complementation of DMD-causing mutations through the site-specific insertion of full-length dystrophin expression units. In conclusion, AdVPs are a robust and flexible platform for installing large genomic edits in human cells and p53 inhibition fosters HMEJ-based genome editing in iPSCs.
Collapse
Affiliation(s)
- Francesca Tasca
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Marcella Brescia
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Qian Wang
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Jin Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Josephine M Janssen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| |
Collapse
|
9
|
Yuan B, Zhou X, Suzuki K, Ramos-Mandujano G, Wang M, Tehseen M, Cortés-Medina LV, Moresco JJ, Dunn S, Hernandez-Benitez R, Hishida T, Kim NY, Andijani MM, Bi C, Ku M, Takahashi Y, Xu J, Qiu J, Huang L, Benner C, Aizawa E, Qu J, Liu GH, Li Z, Yi F, Ghosheh Y, Shao C, Shokhirev M, Comoli P, Frassoni F, Yates JR, Fu XD, Esteban CR, Hamdan S, Li M, Izpisua Belmonte JC. Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing. Nat Commun 2022; 13:3646. [PMID: 35752626 PMCID: PMC9233711 DOI: 10.1038/s41467-022-31220-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
The diverse functions of WASP, the deficiency of which causes Wiskott-Aldrich syndrome (WAS), remain poorly defined. We generated three isogenic WAS models using patient induced pluripotent stem cells and genome editing. These models recapitulated WAS phenotypes and revealed that WASP deficiency causes an upregulation of numerous RNA splicing factors and widespread altered splicing. Loss of WASP binding to splicing factor gene promoters frequently leads to aberrant epigenetic activation. WASP interacts with dozens of nuclear speckle constituents and constrains SRSF2 mobility. Using an optogenetic system, we showed that WASP forms phase-separated condensates that encompasses SRSF2, nascent RNA and active Pol II. The role of WASP in gene body condensates is corroborated by ChIPseq and RIPseq. Together our data reveal that WASP is a nexus regulator of RNA splicing that controls the transcription of splicing factors epigenetically and the dynamics of the splicing machinery through liquid-liquid phase separation.
Collapse
Affiliation(s)
- Baolei Yuan
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Xuan Zhou
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Keiichiro Suzuki
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Institute for Advanced Co-Creation Studies, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Gerardo Ramos-Mandujano
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mengge Wang
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Muhammad Tehseen
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lorena V Cortés-Medina
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - James J Moresco
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sarah Dunn
- The Waitt Advanced Biophotonics Core Facility, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Reyna Hernandez-Benitez
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Altos Labs, Inc. 5510 Morehouse Drive, Suite 300, San Diego, CA, 92121, USA
| | - Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shitibancho, Wakayama, Wakayama, 640-8156, Japan
| | - Na Young Kim
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Manal M Andijani
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chongwei Bi
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Manching Ku
- Next-generation sequencing core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yuta Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Jinna Xu
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jinsong Qiu
- Department of Cellular & Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Ling Huang
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Christopher Benner
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Emi Aizawa
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Institute for Advanced Co-Creation Studies, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Jing Qu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongwei Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,University of Southern California, 1333 San Pablo Street, MMR 618, Los Angeles, CA, 90033, USA
| | - Fei Yi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Ambys Medicines, 131 Oyster Point Blvd. Suite 200, South San Francisco, CA, 94080, USA
| | - Yanal Ghosheh
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Changwei Shao
- Department of Cellular & Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Maxim Shokhirev
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Patrizia Comoli
- Pediatric Hematology/Oncology and Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Frassoni
- Department of Research Laboratories and Director of Center for Stem Cell and Cell Therapy, Instituto G. Gaslini Children Hospital Scientific Institute, 16147, Genova, Italy
| | - John R Yates
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xiang-Dong Fu
- Department of Cellular & Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.,Altos Labs, Inc. 5510 Morehouse Drive, Suite 300, San Diego, CA, 92121, USA
| | - Samir Hamdan
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mo Li
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Juan Carlos Izpisua Belmonte
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia. .,Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,Altos Labs, Inc. 5510 Morehouse Drive, Suite 300, San Diego, CA, 92121, USA.
| |
Collapse
|
10
|
Kues WA, Kumar D, Selokar NL, Talluri TR. Applications of genome editing tools in stem cells towards regenerative medicine: An update. Curr Stem Cell Res Ther 2021; 17:267-279. [PMID: 34819011 DOI: 10.2174/1574888x16666211124095527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022]
Abstract
Precise and site specific genome editing through application of emerging and modern gene engineering techniques, namely zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) have swiftly progressed the application and use of the stem cell technology in the sphere of in-vitro disease modelling and regenerative medicine. Genome editing tools facilitate the manipulating of any gene in various types of cells with target specific nucleases. These tools aid in elucidating the genetics and etiology behind different diseases and have immense promise as novel therapeutics for correcting the genetic mutations, make alterations and cure diseases permanently that are not responding and resistant to traditional therapies. These genome engineering tools have evolved in the field of biomedical research and have also shown to have a significant improvement in clinical trials. However, their widespread use in research revealed potential safety issues, which need to be addressed before implementing such techniques in clinical purposes. Significant and valiant attempts are being made in order to surpass those hurdles. The current review outlines the advancements of several genome engineering tools and describes suitable strategies for their application towards regenerative medicine.
Collapse
Affiliation(s)
- Wilfried A Kues
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Department of Biotechnology, Stem Cell Physiology, Höltystr 10, 31535 Neustadt. Germany
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana. India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana. India
| | - Thirumala Rao Talluri
- Equine Production Campus, ICAR- National Research Centre on Equines, Bikaner-334001, Rajasthan. India
| |
Collapse
|
11
|
Abstract
It has been nearly 15 years since the discovery of human-induced pluripotent stem cells (iPSCs). During this time, differentiation methods to targeted cells have dramatically improved, and many types of cells in the human body can be currently generated at high efficiency. In the cardiovascular field, the ability to generate human cardiomyocytes in vitro with the same genetic background as patients has provided a great opportunity to investigate human cardiovascular diseases at the cellular level to clarify the molecular mechanisms underlying the diseases and discover potential therapeutics. Additionally, iPSC-derived cardiomyocytes have provided a powerful platform to study drug-induced cardiotoxicity and identify patients at high risk for the cardiotoxicity; thus, accelerating personalized precision medicine. Moreover, iPSC-derived cardiomyocytes can be sources for cardiac cell therapy. Here, we review these achievements and discuss potential improvements for the future application of iPSC technology in cardiovascular diseases.
Collapse
|
12
|
Atkins A, Chung CH, Allen AG, Dampier W, Gurrola TE, Sariyer IK, Nonnemacher MR, Wigdahl B. Off-Target Analysis in Gene Editing and Applications for Clinical Translation of CRISPR/Cas9 in HIV-1 Therapy. Front Genome Ed 2021; 3:673022. [PMID: 34713260 PMCID: PMC8525399 DOI: 10.3389/fgeed.2021.673022] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
As genome-editing nucleases move toward broader clinical applications, the need to define the limits of their specificity and efficiency increases. A variety of approaches for nuclease cleavage detection have been developed, allowing a full-genome survey of the targeting landscape and the detection of a variety of repair outcomes for nuclease-induced double-strand breaks. Each approach has advantages and disadvantages relating to the means of target-site capture, target enrichment mechanism, cellular environment, false discovery, and validation of bona fide off-target cleavage sites in cells. This review examines the strengths, limitations, and origins of the different classes of off-target cleavage detection systems including anchored primer enrichment (GUIDE-seq), in situ detection (BLISS), in vitro selection libraries (CIRCLE-seq), chromatin immunoprecipitation (ChIP) (DISCOVER-Seq), translocation sequencing (LAM PCR HTGTS), and in vitro genomic DNA digestion (Digenome-seq and SITE-Seq). Emphasis is placed on the specific modifications that give rise to the enhanced performance of contemporary techniques over their predecessors and the comparative performance of techniques for different applications. The clinical relevance of these techniques is discussed in the context of assessing the safety of novel CRISPR/Cas9 HIV-1 curative strategies. With the recent success of HIV-1 and SIV-1 viral suppression in humanized mice and non-human primates, respectively, using CRISPR/Cas9, rigorous exploration of potential off-target effects is of critical importance. Such analyses would benefit from the application of the techniques discussed in this review.
Collapse
Affiliation(s)
- Andrew Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Alexander G. Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Theodore E. Gurrola
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
13
|
De Boeck J, Verfaillie C. Doxycycline inducible overexpression systems: how to induce your gene of interest without inducing misinterpretations. Mol Biol Cell 2021; 32:1517-1522. [PMID: 34383558 PMCID: PMC8351744 DOI: 10.1091/mbc.e21-04-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The doxycycline inducible overexpression system is a highly flexible and widely used tool for both in vitro and in vivo studies. However, during the past decade, a handful of reports have explicitly called for caution when using this system. The raised concerns are based on the notion that doxycycline can impair mitochondrial function of mammalian cells and can alter properties such as cell proliferation. As such, experimental outcomes can be confounded with the side effects of doxycycline and valid interpretation can be seriously threatened. Today, no consensus seems to exist about how these problems should be prevented. Moreover, some of the strategies that have been used to cope with these difficulties can actually introduce additional problems that are related to genomic instability and genetic modification of the cells. Here, we elaborate on the above statements and clarify them by some basic examples taken from our personal wet-lab experience. As such, we provide a nuanced overview of the doxycycline inducible overexpression system, some of its limitations and how to deal with them.
Collapse
Affiliation(s)
- Jolan De Boeck
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
14
|
Hassanzadeh P. The significance of bioengineered nanoplatforms against SARS-CoV-2: From detection to genome editing. Life Sci 2021; 274:119289. [PMID: 33676931 PMCID: PMC7930743 DOI: 10.1016/j.lfs.2021.119289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/19/2022]
Abstract
COVID-19 outbreak can impose serious negative impacts on the infrastructures of societies including the healthcare systems. Despite the increasing research efforts, false positive or negative results that may be associated with serologic or even RT-PCR tests, inappropriate or variable immune response, and high rates of mutations in coronavirus may negatively affect virus detection process and effectiveness of the vaccines or drugs in development. Nanotechnology-based research attempts via developing state-of-the-art techniques such as nanomechatronics ones and advanced materials including the sensors for detecting the pathogen loads at very low concentrations or site-specific delivery of therapeutics, and real-time protections against the pandemic outbreaks by nanorobots can provide outstanding biomedical breakthroughs. Considering the unique characteristics of pathogens particularly the newly-emerged ones and avoiding the exaggerated optimism or simplistic views on the prophylactic and therapeutic approaches including the one-size-fits-all ones or presenting multiple medications that may be associated with synergistic toxicities rather than enhanced efficiencies might pave the way towards the development of more appropriate treatment strategies with reduced safety concerns. This paper highlights the significance of nanoplatforms against the viral disorders and their capabilities of genome editing that may facilitate taking more appropriate measures against SARS-CoV-2.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| |
Collapse
|
15
|
Wang L, Ye Z, Jang YY. Convergence of human pluripotent stem cell, organoid, and genome editing technologies. Exp Biol Med (Maywood) 2021; 246:861-875. [PMID: 33467883 DOI: 10.1177/1535370220985808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The last decade has seen many exciting technological breakthroughs that greatly expanded the toolboxes for biological and biomedical research, yet few have had more impact than induced pluripotent stem cells and modern-day genome editing. These technologies are providing unprecedented opportunities to improve physiological relevance of experimental models, further our understanding of developmental processes, and develop novel therapies. One of the research areas that benefit greatly from these technological advances is the three-dimensional human organoid culture systems that resemble human tissues morphologically and physiologically. Here we summarize the development of human pluripotent stem cells and their differentiation through organoid formation. We further discuss how genetic modifications, genome editing in particular, were applied to answer basic biological and biomedical questions using organoid cultures of both somatic and pluripotent stem cell origins. Finally, we discuss the potential challenges of applying human pluripotent stem cell and organoid technologies for safety and efficiency evaluation of emerging genome editing tools.
Collapse
Affiliation(s)
- Lin Wang
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Zhaohui Ye
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yoon-Young Jang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, John Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
16
|
DGK and DZHK position paper on genome editing: basic science applications and future perspective. Basic Res Cardiol 2021; 116:2. [PMID: 33449167 PMCID: PMC7810637 DOI: 10.1007/s00395-020-00839-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
For a long time, gene editing had been a scientific concept, which was limited to a few applications. With recent developments, following the discovery of TALEN zinc-finger endonucleases and in particular the CRISPR/Cas system, gene editing has become a technique applicable in most laboratories. The current gain- and loss-of function models in basic science are revolutionary as they allow unbiased screens of unprecedented depth and complexity and rapid development of transgenic animals. Modifications of CRISPR/Cas have been developed to precisely interrogate epigenetic regulation or to visualize DNA complexes. Moreover, gene editing as a clinical treatment option is rapidly developing with first trials on the way. This article reviews the most recent progress in the field, covering expert opinions gathered during joint conferences on genome editing of the German Cardiac Society (DGK) and the German Center for Cardiovascular Research (DZHK). Particularly focusing on the translational aspect and the combination of cellular and animal applications, the authors aim to provide direction for the development of the field and the most frequent applications with their problems.
Collapse
|
17
|
Genome-Wide Analysis of Off-Target CRISPR/Cas9 Activity in Single-Cell-Derived Human Hematopoietic Stem and Progenitor Cell Clones. Genes (Basel) 2020; 11:genes11121501. [PMID: 33322084 PMCID: PMC7762975 DOI: 10.3390/genes11121501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/28/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)-mediated genome editing holds remarkable promise for the treatment of human genetic diseases. However, the possibility of off-target Cas9 activity remains a concern. To address this issue using clinically relevant target cells, we electroporated Cas9 ribonucleoprotein (RNP) complexes (independently targeted to two different genomic loci, the CXCR4 locus on chromosome 2 and the AAVS1 locus on chromosome 19) into human mobilized peripheral blood-derived hematopoietic stem and progenitor cells (HSPCs) and assessed the acquisition of somatic mutations in an unbiased, genome-wide manner via whole genome sequencing (WGS) of single-cell-derived HSPC clones. Bioinformatic analysis identified >20,000 total somatic variants (indels, single nucleotide variants, and structural variants) distributed among Cas9-treated and non-Cas9-treated control HSPC clones. Statistical analysis revealed no significant difference in the number of novel non-targeted indels among the samples. Moreover, data analysis showed no evidence of Cas9-mediated indel formation at 623 predicted off-target sites. The median number of novel single nucleotide variants was slightly elevated in Cas9 RNP-recipient sample groups compared to baseline, but did not reach statistical significance. Structural variants were rare and demonstrated no clear causal connection to Cas9-mediated gene editing procedures. We find that the collective somatic mutational burden observed within Cas9 RNP-edited human HSPC clones is indistinguishable from naturally occurring levels of background genetic heterogeneity.
Collapse
|
18
|
Eguizabal C, Herrera L, Inglés-Ferrándiz M, Izpisua Belmonte JC. Treating primary immunodeficiencies with defects in NK cells: from stem cell therapy to gene editing. Stem Cell Res Ther 2020; 11:453. [PMID: 33109263 PMCID: PMC7590703 DOI: 10.1186/s13287-020-01964-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022] Open
Abstract
Primary immunodeficiency diseases (PIDs) are rare diseases that are characterized by genetic mutations that damage immunological function, defense, or both. Some of these rare diseases are caused by aberrations in the normal development of natural killer cells (NKs) or affect their lytic synapse. The pathogenesis of these types of diseases as well as the processes underlying target recognition by human NK cells is not well understood. Utilizing induced pluripotent stem cells (iPSCs) will aid in the study of human disorders, especially in the PIDs with defects in NK cells for PID disease modeling. This, together with genome editing technology, makes it possible for us to facilitate the discovery of future therapeutics and/or cell therapy treatments for these patients, because, to date, the only curative treatment available in the most severe cases is hematopoietic stem cell transplantation (HSCT). Recent progress in gene editing technology using CRISPR/Cas9 has significantly increased our capability to precisely modify target sites in the human genome. Among the many tools available for us to study human PIDs, disease- and patient-specific iPSCs together with gene editing offer unique and exceptional methodologies to gain deeper and more thorough understanding of these diseases as well as develop possible alternative treatment strategies. In this review, we will discuss some immunodeficiency disorders affecting NK cell function, such as classical NK deficiencies (CNKD), functional NK deficiencies (FNKD), and PIDs with involving NK cells as well as strategies to model and correct these diseases for further study and possible avenues for future therapies.
Collapse
Affiliation(s)
- C Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Spain.
| | - L Herrera
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Spain
| | - M Inglés-Ferrándiz
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Spain
| | - J C Izpisua Belmonte
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 93027, USA
| |
Collapse
|
19
|
Yamaguchi T, Uchida E, Okada T, Ozawa K, Onodera M, Kume A, Shimada T, Takahashi S, Tani K, Nasu Y, Mashimo T, Mizuguchi H, Mitani K, Maki K. Aspects of Gene Therapy Products Using Current Genome-Editing Technology in Japan. Hum Gene Ther 2020; 31:1043-1053. [PMID: 32731837 PMCID: PMC7585607 DOI: 10.1089/hum.2020.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022] Open
Abstract
The development of genome-editing technology could lead to breakthrough gene therapy. Genome editing has made it possible to easily knock out or modify a target gene, while current gene therapy using a virus vector or plasmid hampering modification with respect to gene replacement therapies. Clinical development using these genome-editing tools is progressing rapidly. However, it is also becoming clear that there is a possibility of unintended gene sequence modification or deletion, or the insertion of undesired genes, or the selection of cells with abnormalities in the cancer suppressor gene p53; these unwanted actions are not possible with current gene therapy. The Science Board of the Pharmaceuticals and Medical Devices Agency of Japan has compiled a report on the expected aspects of such genome-editing technology and the risks associated with it. This article summarizes the history of that discussion and compares the key concepts with information provided by other regulatory authorities.
Collapse
Affiliation(s)
- Teruhide Yamaguchi
- Kanazawa Institute of Technology, Ishikawa, Japan
- Nihon Pharmaceutical University
| | | | | | | | | | | | | | | | | | - Yasutomo Nasu
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Adenoviral Vectors Meet Gene Editing: A Rising Partnership for the Genomic Engineering of Human Stem Cells and Their Progeny. Cells 2020; 9:cells9040953. [PMID: 32295080 PMCID: PMC7226970 DOI: 10.3390/cells9040953] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Gene editing permits changing specific DNA sequences within the vast genomes of human cells. Stem cells are particularly attractive targets for gene editing interventions as their self-renewal and differentiation capabilities consent studying cellular differentiation processes, screening small-molecule drugs, modeling human disorders, and testing regenerative medicines. To integrate gene editing and stem cell technologies, there is a critical need for achieving efficient delivery of the necessary molecular tools in the form of programmable DNA-targeting enzymes and/or exogenous nucleic acid templates. Moreover, the impact that the delivery agents themselves have on the performance and precision of gene editing procedures is yet another critical parameter to consider. Viral vectors consisting of recombinant replication-defective viruses are under intense investigation for bringing about efficient gene-editing tool delivery and precise gene-editing in human cells. In this review, we focus on the growing role that adenoviral vectors are playing in the targeted genetic manipulation of human stem cells, progenitor cells, and their differentiated progenies in the context of in vitro and ex vivo protocols. As preamble, we provide an overview on the main gene editing principles and adenoviral vector platforms and end by discussing the possibilities ahead resulting from leveraging adenoviral vector, gene editing, and stem cell technologies.
Collapse
|
22
|
Palmer DJ, Turner DL, Ng P. A Single "All-in-One" Helper-Dependent Adenovirus to Deliver Donor DNA and CRISPR/Cas9 for Efficient Homology-Directed Repair. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:441-447. [PMID: 32154329 PMCID: PMC7058846 DOI: 10.1016/j.omtm.2020.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/28/2020] [Indexed: 11/19/2022]
Abstract
In this study, we developed a single helper-dependent adenovirus (HDAd) to deliver all of the components (donor DNA, CRISPR-associated protein 9 [Cas9], and guide RNA [gRNA]) needed to achieve high-efficiency gene targeting and homology-directed repair in transduced cells. We show that these "all-in-one" HDAds are up to 117-fold more efficient at gene targeting than donor HDAds that do not express CRISPR/Cas9 in human induced pluripotent stem cells (iPSCs). The vast majority (>90%) of targeted recombinants had only one allele targeted, and this was accompanied by high-frequency indel formation in the non-targeted allele at the site of Cas9 cleavage. These indels varied in size and nature, and included large deletions of ∼8 kb. The remaining minority of recombinants had both alleles targeted (so-called bi-allelic targeting). These all-in-one HDAds represent an important platform for accomplishing and expanding the utility of homology-directed repair, especially for difficult-to-transfect cells and for in vivo applications.
Collapse
Affiliation(s)
- Donna J. Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dustin L. Turner
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Corresponding author: Philip Ng, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
23
|
van den Brink L, Grandela C, Mummery CL, Davis RP. Inherited cardiac diseases, pluripotent stem cells, and genome editing combined-the past, present, and future. Stem Cells 2020; 38:174-186. [PMID: 31664757 PMCID: PMC7027796 DOI: 10.1002/stem.3110] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
Research on mechanisms underlying monogenic cardiac diseases such as primary arrhythmias and cardiomyopathies has until recently been hampered by inherent limitations of heterologous cell systems, where mutant genes are expressed in noncardiac cells, and physiological differences between humans and experimental animals. Human-induced pluripotent stem cells (hiPSCs) have proven to be a game changer by providing new opportunities for studying the disease in the specific cell type affected, namely the cardiomyocyte. hiPSCs are particularly valuable because not only can they be differentiated into unlimited numbers of these cells, but they also genetically match the individual from whom they were derived. The decade following their discovery showed the potential of hiPSCs for advancing our understanding of cardiovascular diseases, with key pathophysiological features of the patient being reflected in their corresponding hiPSC-derived cardiomyocytes (the past). Now, recent advances in genome editing for repairing or introducing genetic mutations efficiently have enabled the disease etiology and pathogenesis of a particular genotype to be investigated (the present). Finally, we are beginning to witness the promise of hiPSC in personalized therapies for individual patients, as well as their application in identifying genetic variants responsible for or modifying the disease phenotype (the future). In this review, we discuss how hiPSCs could contribute to improving the diagnosis, prognosis, and treatment of an individual with a suspected genetic cardiac disease, thereby developing better risk stratification and clinical management strategies for these potentially lethal but treatable disorders.
Collapse
Affiliation(s)
- Lettine van den Brink
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| | - Catarina Grandela
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| | - Christine L. Mummery
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| | - Richard P. Davis
- Department of Anatomy and EmbryologyLeiden University Medical CenterRC LeidenThe Netherlands
| |
Collapse
|
24
|
Li C, Lieber A. Adenovirus vectors in hematopoietic stem cell genome editing. FEBS Lett 2019; 593:3623-3648. [PMID: 31705806 PMCID: PMC10473235 DOI: 10.1002/1873-3468.13668] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022]
Abstract
Genome editing of hematopoietic stem cells (HSCs) represents a therapeutic option for a number of hematological genetic diseases, as HSCs have the potential for self-renewal and differentiation into all blood cell lineages. This review presents advances of genome editing in HSCs utilizing adenovirus vectors as delivery vehicles. We focus on capsid-modified, helper-dependent adenovirus vectors that are devoid of all viral genes and therefore exhibit an improved safety profile. We discuss HSC genome engineering for several inherited disorders and infectious diseases including hemoglobinopathies, Fanconi anemia, hemophilia, and HIV-1 infection by ex vivo and in vivo editing in transgenic mice, nonhuman primates, as well as in human CD34+ cells. Mechanisms of therapeutic gene transfer including episomal expression of designer nucleases and base editors, transposase-mediated random integration, and targeted homology-directed repair triggered integration into selected genomic safe harbor loci are also reviewed.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
25
|
Bi-allelic Homology-Directed Repair with Helper-Dependent Adenoviruses. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:285-293. [PMID: 31890728 PMCID: PMC6923503 DOI: 10.1016/j.omtm.2019.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/11/2019] [Indexed: 01/29/2023]
Abstract
We describe a strategy to achieve footprintless bi-allelic homology-directed repair (HDR) using helper-dependent adenoviruses (HDAds). This approach utilizes two HDAds to deliver the donor DNA. These two HDAds are identical except for their selectable marker. One expresses the puromycin N-acetyltransferase-herpes simplex virus I thymidine kinase fusion gene (PACTk), while the other expresses the hygromycin phosphotransferase-herpes simplex virus I thymidine kinase fusion gene (HyTk). Therefore, puromycin and hygromycin double resistance can be used to select for targeted HDAd integration into both alleles. Subsequently, piggyBac-mediated excision of both PACTk and HyTk will confer resistance to gancyclovir, resulting in footprintless HDR at both alleles. However, gene-targeting frequency was not high enough to achieve simultaneous targeting at both alleles. Instead, sequential targeting, whereby the two alleles were targeted one at a time, was required in order to achieve bi-allelic HDR with HDAd.
Collapse
|
26
|
Kanton S, Boyle MJ, He Z, Santel M, Weigert A, Sanchís-Calleja F, Guijarro P, Sidow L, Fleck JS, Han D, Qian Z, Heide M, Huttner WB, Khaitovich P, Pääbo S, Treutlein B, Camp JG. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 2019; 574:418-422. [DOI: 10.1038/s41586-019-1654-9] [Citation(s) in RCA: 457] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 09/06/2019] [Indexed: 12/22/2022]
|
27
|
Niu W, Parent JM. Modeling genetic epilepsies in a dish. Dev Dyn 2019; 249:56-75. [DOI: 10.1002/dvdy.79] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Wei Niu
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| | - Jack M. Parent
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| |
Collapse
|
28
|
Dual usage of a stage-specific fluorescent reporter system based on a helper-dependent adenoviral vector to visualize osteogenic differentiation. Sci Rep 2019; 9:9705. [PMID: 31273280 PMCID: PMC6609771 DOI: 10.1038/s41598-019-46105-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/19/2019] [Indexed: 02/08/2023] Open
Abstract
We developed a reporter system that can be used in a dual manner in visualizing mature osteoblast formation. The system is based on a helper-dependent adenoviral vector (HDAdV), in which a fluorescent protein, Venus, is expressed under the control of the 19-kb human osteocalcin (OC) genomic locus. By infecting human and murine primary osteoblast (POB) cultures with this reporter vector, the cells forming bone-like nodules were specifically visualized by the reporter. In addition, the same vector was utilized to efficiently knock-in the reporter into the endogenous OC gene of human induced pluripotent stem cells (iPSCs), by homologous recombination. Neural crest-like cells (NCLCs) derived from the knock-in reporter iPSCs were differentiated into osteoblasts forming bone-like nodules and could be visualized by the expression of the fluorescent reporter. Living mature osteoblasts were then isolated from the murine mixed POB culture by fluorescence-activated cell sorting (FACS), and their mRNA expression profile was analyzed. Our study presents unique utility of reporter HDAdVs in stem cell biology and related applications.
Collapse
|
29
|
Wolf DP, Mitalipov PA, Mitalipov SM. Principles of and strategies for germline gene therapy. Nat Med 2019; 25:890-897. [DOI: 10.1038/s41591-019-0473-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
|
30
|
Nakano C, Kitabatake Y, Takeyari S, Ohata Y, Kubota T, Taketani K, Kogo M, Ozono K. Genetic correction of induced pluripotent stem cells mediated by transcription activator-like effector nucleases targeting ALPL recovers enzyme activity and calcification in vitro. Mol Genet Metab 2019; 127:158-165. [PMID: 31178256 DOI: 10.1016/j.ymgme.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 01/22/2023]
Abstract
Hypophosphatasia (HPP) is an inheritable disease affecting both skeletal systems and extra-skeletal organs due to mutations of the gene ALPL, which encodes tissue-nonspecific alkaline phosphatase. Recently, an enzyme replacement therapy using asfotase alfa was developed to ameliorate the complications of HPP. However, it requires frequent injections and is expensive to maintain. As an alternative, cell and gene therapy using human induced pluripotent stem cells (iPSCs) after precise correction of the mutation is feasible due to advances in genome-editing technology. In the study, we examined the alkaline phosphatase (ALP) activity and calcification in vitro of two childhood HPP patient-derived iPSCs after the correction of the c.1559delT mutation, which is the most frequent mutation in Japanese patients with HPP, using transcription activator-like effector nucleases (TALENs). The gene correction targeting vector was designed for site-directed mutagenesis using TALEN. After selection with antibiotics, some clones with the selection cassette were obtained. Gene correction was confirmed by Sanger sequencing. The mutation was corrected in one allele of ALPL in homozygous patients and compound heterozygous patients. The correction of ALPL did not result in an increase in ALP when the selection cassette remained. Conversely, iPSCs exhibited ALP activity after the elimination of the cassette using Cre/LoxP. The quantitative analysis showed the half ALP activity in corrected iPSCs of that of control iPSCs, corresponding to heterozygous correction of the mutation. In addition, osteoblasts differentiated from the corrected iPSCs exhibited high ALP activity and some calcification in vitro. Moreover, the osteoblast-like phenotype was confirmed by increased expression of osteoblast-specific genes such as COL1A1 and osteocalcin. These results suggest that gene correction in iPSCs may be a candidate treatment for HPP patients.
Collapse
Affiliation(s)
- Chiho Nakano
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan; Unit of Dentistry, Osaka University Hospital, Osaka, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ken Taketani
- Department of Pediatrics, Shimane University, Osaka, Japan
| | - Mikihiko Kogo
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
31
|
Palmer DJ, Turner DL, Ng P. Production of CRISPR/Cas9-Mediated Self-Cleaving Helper-Dependent Adenoviruses. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:432-439. [PMID: 31080846 PMCID: PMC6506437 DOI: 10.1016/j.omtm.2019.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Prolonged expression of CRISPR/Cas9 raises concerns about off-target cleavage, cytotoxicity, and immune responses. To address these issues, we have developed a system to produce helper-dependent adenoviruses that express CRISPR/Cas9 to direct cleavage of the vectors’ own genome after transduction of target cells. To prevent self-cleavage during vector production, it was necessary to downregulate Cas9 mRNA as well as inhibit Cas9 protein activity. Cas9 mRNA downregulation was achieved by inserting the target sequences for the helper-virus-encoded miRNA, mivaRNAI, and producer-cell-encoded miRNAs, hsa-miR183-5p, and hsa-miR218-5p, into the 3′ UTR of the HDAd-encoded Cas9 expression cassette. Cas9 protein activity was inhibited by expressing anti-CRISPR proteins AcrIIA2 and AcrAII4 from both the producer cells and the helper virus. After purification, these helper-dependent adenoviruses will perform CRISPR/Cas9-mediated self-cleavage in the transduced target cells, thereby limiting the duration of Cas9 expression and thus represent an important platform for improving the safety of gene editing by CRISPR/Cas9.
Collapse
Affiliation(s)
- Donna J Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dustin L Turner
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
32
|
FOXO3-Engineered Human ESC-Derived Vascular Cells Promote Vascular Protection and Regeneration. Cell Stem Cell 2019; 24:447-461.e8. [PMID: 30661960 DOI: 10.1016/j.stem.2018.12.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/29/2018] [Accepted: 12/05/2018] [Indexed: 01/21/2023]
Abstract
FOXO3 is an evolutionarily conserved transcription factor that has been linked to longevity. Here we wanted to find out whether human vascular cells could be functionally enhanced by engineering them to express an activated form of FOXO3. This was accomplished via genome editing at two nucleotides in human embryonic stem cells, followed by differentiation into a range of vascular cell types. FOXO3-activated vascular cells exhibited delayed aging and increased resistance to oxidative injury compared with wild-type cells. When tested in a therapeutic context, FOXO3-enhanced vascular cells promoted vascular regeneration in a mouse model of ischemic injury and were resistant to tumorigenic transformation both in vitro and in vivo. Mechanistically, constitutively active FOXO3 conferred cytoprotection by transcriptionally downregulating CSRP1. Taken together, our findings provide mechanistic insights into FOXO3-mediated vascular protection and indicate that FOXO3 activation may provide a means for generating more effective and safe biomaterials for cell replacement therapies.
Collapse
|
33
|
Alsayegh K, Cortés-Medina LV, Ramos-Mandujano G, Badraiq H, Li M. Hematopoietic Differentiation of Human Pluripotent Stem Cells: HOX and GATA Transcription Factors as Master Regulators. Curr Genomics 2019; 20:438-452. [PMID: 32194342 PMCID: PMC7062042 DOI: 10.2174/1389202920666191017163837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
Numerous human disorders of the blood system would directly or indirectly benefit from therapeutic approaches that reconstitute the hematopoietic system. Hematopoietic stem cells (HSCs), either from matched donors or ex vivo manipulated autologous tissues, are the most used cellular source of cell therapy for a wide range of disorders. Due to the scarcity of matched donors and the difficulty of ex vivo expansion of HSCs, there is a growing interest in harnessing the potential of pluripotent stem cells (PSCs) as a de novo source of HSCs. PSCs make an ideal source of cells for regenerative medicine in general and for treating blood disorders in particular because they could expand indefinitely in culture and differentiate to any cell type in the body. However, advancement in deriving functional HSCs from PSCs has been slow. This is partly due to an incomplete understanding of the molecular mechanisms underlying normal hematopoiesis. In this review, we discuss the latest efforts to generate human PSC (hPSC)-derived HSCs capable of long-term engraftment. We review the regulation of the key transcription factors (TFs) in hematopoiesis and hematopoietic differentiation, the Homeobox (HOX) and GATA genes, and the interplay between them and microRNAs. We also propose that precise control of these master regulators during the course of hematopoietic differentiation is key to achieving functional hPSC-derived HSCs.
Collapse
Affiliation(s)
- Khaled Alsayegh
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lorena V Cortés-Medina
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gerardo Ramos-Mandujano
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heba Badraiq
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mo Li
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
34
|
Zhang C, He X, Kwok YK, Wang F, Xue J, Zhao H, Suen KW, Wang CC, Ren J, Chen GG, Lai PBS, Li J, Xia Y, Chan AM, Chan WY, Feng B. Homology-independent multiallelic disruption via CRISPR/Cas9-based knock-in yields distinct functional outcomes in human cells. BMC Biol 2018; 16:151. [PMID: 30593266 PMCID: PMC6310992 DOI: 10.1186/s12915-018-0616-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cultured human cells are pivotal models to study human gene functions, but introducing complete loss of function in diploid or aneuploid cells has been a challenge. The recently developed CRISPR/Cas9-mediated homology-independent knock-in approach permits targeted insertion of large DNA at high efficiency, providing a tool for insertional disruption of a selected gene. Pioneer studies have showed promising results, but the current methodology is still suboptimal and functional outcomes have not been well examined. Taking advantage of the promoterless fluorescence reporter systems established in our previous study, here, we further investigated potentials of this new insertional gene disruption approach and examined its functional outcomes. RESULTS Exemplified by using hyperploid LO2 cells, we demonstrated that simultaneous knock-in of dual fluorescence reporters through CRISPR/Cas9-induced homology-independent DNA repair permitted one-step generation of cells carrying complete disruption of target genes at multiple alleles. Through knocking-in at coding exons, we generated stable single-cell clones carrying complete disruption of ULK1 gene at all four alleles, lacking intact FAT10 in all three alleles, or devoid of intact CtIP at both alleles. We have confirmed the depletion of ULK1 and FAT10 transcripts as well as corresponding proteins in the obtained cell clones. Moreover, consistent with previous reports, we observed impaired mitophagy in ULK1-/- cells and attenuated cytokine-induced cell death in FAT10-/- clones. However, our analysis showed that single-cell clones carrying complete disruption of CtIP gene at both alleles preserved in-frame aberrant CtIP transcripts and produced proteins. Strikingly, the CtIP-disrupted clones raised through another two distinct targeting strategies also produced varied but in-frame aberrant CtIP transcripts. Sequencing analysis suggested that diverse DNA processing and alternative RNA splicing were involved in generating these in-frame aberrant CtIP transcripts, and some infrequent events were biasedly enriched among the CtIP-disrupted cell clones. CONCLUSION Multiallelic gene disruption could be readily introduced through CRISPR/Cas9-induced homology-independent knock-in of dual fluorescence reporters followed by direct tracing and cell isolation. Robust cellular mechanisms exist to spare essential genes from loss-of-function modifications, by generating partially functional transcripts through diverse DNA and RNA processing mechanisms.
Collapse
Affiliation(s)
- Chenzi Zhang
- School of Biomedical Sciences, CUHK-GIBH CAS Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China
| | - Xiangjun He
- School of Biomedical Sciences, CUHK-GIBH CAS Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China
| | - Yvonne K Kwok
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China
| | - Feng Wang
- School of Biomedical Sciences, CUHK-GIBH CAS Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China
| | - Junyi Xue
- School of Biomedical Sciences, CUHK-GIBH CAS Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China.,Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China.,SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, 518057, China
| | - Hui Zhao
- School of Biomedical Sciences, CUHK-GIBH CAS Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China.,Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China.,SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, 518057, China
| | - Kin Wah Suen
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China
| | - Jianwei Ren
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China.,State Key Laboratory in Oncology in South China, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China
| | - Paul B S Lai
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China.,State Key Laboratory in Oncology in South China, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China.,Prince of Wales Hospital, Shatin, New Territories, Hong Kong, Special Administrative Region of China
| | - Jiangchao Li
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yin Xia
- School of Biomedical Sciences, CUHK-GIBH CAS Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China.,SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, 518057, China
| | - Andrew M Chan
- School of Biomedical Sciences, CUHK-GIBH CAS Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China.,SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wai-Yee Chan
- School of Biomedical Sciences, CUHK-GIBH CAS Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China. .,Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China. .,SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, 518057, China. .,Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Bo Feng
- School of Biomedical Sciences, CUHK-GIBH CAS Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China. .,Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region of China. .,SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen, 518057, China. .,Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
35
|
Shultzaberger RK, Abrams RE, Sullivan CJ, Schmitt AD, Thompson TWJ, Dresios J. Agnostic detection of genomic alterations by holistic DNA structural interrogation. PLoS One 2018; 13:e0208054. [PMID: 30496256 PMCID: PMC6264503 DOI: 10.1371/journal.pone.0208054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022] Open
Abstract
There is an established relationship between primary DNA sequence, secondary and tertiary chromatin structure, and transcriptional activity, suggesting that observed differences in one of these properties may reflect changes in the others. Here, we exploit these relationships to show that variations in DNA structure can be used to identify a wide range of genomic alterations in mammalian samples. In this proof-of-concept study we characterized and compared genome-wide histone occupancy by ChIP-Seq, DNA accessibility by ATAC-Seq, and chromosomal conformation by Hi-C for five CRISPR/Cas9-modified mammalian cell lines and their unmodified parent strains, as well as in one modified tissue sample and its parent strain. The results showed that the impact of genomic alterations on each of the levels of DNA organization varied depending on mutation type (insertion or deletion), size, and genomic location. The largest genomic alterations we identified included chromosomal rearrangements and deletions (greater than 200 Kb) in four of the modified cell lines, which can be difficult to identify by standard whole genome sequencing analysis. This multi-level DNA organizational analysis provides a sensitive approach for identifying a wide range of genomic and epigenomic perturbations that can be utilized for biomedical and biosecurity applications.
Collapse
Affiliation(s)
| | | | | | | | | | - John Dresios
- Leidos, Inc., San Diego, CA, United States of America
- * E-mail:
| |
Collapse
|
36
|
Schiwon M, Ehrke-Schulz E, Oswald A, Bergmann T, Michler T, Protzer U, Ehrhardt A. One-Vector System for Multiplexed CRISPR/Cas9 against Hepatitis B Virus cccDNA Utilizing High-Capacity Adenoviral Vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:242-253. [PMID: 30195763 PMCID: PMC6023846 DOI: 10.1016/j.omtn.2018.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 02/08/2023]
Abstract
High-capacity adenoviral vectors (HCAdVs) devoid of all coding genes are powerful tools to deliver large DNA cargos into cells. Here HCAdVs were designed to deliver a multiplexed complete CRISPR/Cas9 nuclease system or a complete pair of transcription activator-like effector nucleases (TALENs) directed against the hepatitis B virus (HBV) genome. HBV, which remains a serious global health burden, forms covalently closed circular DNA (cccDNA) as a persistent DNA species in infected cells. This cccDNA promotes the chronic carrier status, and it represents a major hurdle in the treatment of chronic HBV infection. To date, only one study demonstrated viral delivery of a CRISPR/Cas9 system and a single guide RNA (gRNA) directed against HBV by adeno-associated viral (AAV) vectors. The advancement of this study is the co-delivery of multiple gRNA expression cassettes along with the Cas9 expression cassette in one HCAdV. Treatment of HBV infection models resulted in a significant reduction of HBV antigen production and the introduction of mutations into the HBV genome. In the transduction experiments, the HBV genome, including the HBV cccDNA, was degraded by the CRISPR/Cas9 system. In contrast, the combination of two parts of a TALEN pair in one vector could not be proven to yield an active system. In conclusion, we successfully delivered the CRISPR/Cas9 system containing three gRNAs using HCAdV, and we demonstrated its antiviral effect.
Collapse
Affiliation(s)
- Maren Schiwon
- Center of Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Eric Ehrke-Schulz
- Center of Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Andreas Oswald
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Thorsten Bergmann
- Center of Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Thomas Michler
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Anja Ehrhardt
- Center of Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
37
|
|
38
|
García-Tuñón I, Hernández-Sánchez M, Ordoñez JL, Alonso-Pérez V, Álamo-Quijada M, Benito R, Guerrero C, Hernández-Rivas JM, Sánchez-Martín M. The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of BCR/ABL in vitro and in a xenograft model of chronic myeloid leukemia. Oncotarget 2018; 8:26027-26040. [PMID: 28212528 PMCID: PMC5432235 DOI: 10.18632/oncotarget.15215] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/27/2017] [Indexed: 11/25/2022] Open
Abstract
CRISPR/Cas9 technology was used to abrogate p210 oncoprotein expression in the Boff-p210 cell line, a pro-B line derived from interlukin-3-dependent Baf/3, that shows IL-3-independence arising from the constitutive expression of BCR-ABL p210. Using this approach, pools of Boff-p210-edited cells and single edited cell-derived clones were obtained and functionally studied in vitro. The loss of p210 expression in Boff-p210 cells resulted in the loss of ability to grow in the absence of IL-3, as the Baf/3 parental line, showing significantly increased apoptosis levels. Notably, in a single edited cell-derived clone carrying a frame-shift mutation that prevents p210 oncoprotein expression, the effects were even more drastic, resulting in cell death. These edited cells were injected subcutaneously in immunosuppressed mice and tumor growth was followed for three weeks. BCR/ABL-edited cells developed smaller tumors than those originating from unedited Boff-p210 parental cells. Interestingly, the single edited cell-derived clone was unable to develop tumors, similar to what is observed with the parental Baf/3 cell line. CRISPR/Cas9 genomic editing technology allows the ablation of the BCR/ABL fusion gene, causing an absence of oncoprotein expression, and blocking its tumorigenic effects in vitro and in the in vivo xenograft model of CML. The future application of this approach in in vivo models of CML will allow us to more accurately assess the value of CRISPR/Cas9 technology as a new therapeutic tool that overcomes resistance to the usual treatments for CML patients.
Collapse
Affiliation(s)
- Ignacio García-Tuñón
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - María Hernández-Sánchez
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - José Luis Ordoñez
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Veronica Alonso-Pérez
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Miguel Álamo-Quijada
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Rocio Benito
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Carmen Guerrero
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain.,Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain.,Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Jesús María Hernández-Rivas
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain.,IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain.,Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Manuel Sánchez-Martín
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain.,Servicio de Transgénesis, Nucleus, Universidad de Salamanca, Salamanca, Spain.,Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
39
|
Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, Terzic A, Wu JC. Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e000043. [PMID: 29874173 PMCID: PMC6708586 DOI: 10.1161/hcg.0000000000000043] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem cells (iPSCs) offer an unprece-dented opportunity to study human physiology and disease at the cellular level. They also have the potential to be leveraged in the practice of precision medicine, for example, personalized drug testing. This statement comprehensively describes the provenance of iPSC lines, their use for cardiovascular disease modeling, their use for precision medicine, and strategies through which to promote their wider use for biomedical applications. Human iPSCs exhibit properties that render them uniquely qualified as model systems for studying human diseases: they are of human origin, which means they carry human genomes; they are pluripotent, which means that in principle, they can be differentiated into any of the human body's somatic cell types; and they are stem cells, which means they can be expanded from a single cell into millions or even billions of cell progeny. iPSCs offer the opportunity to study cells that are genetically matched to individual patients, and genome-editing tools allow introduction or correction of genetic variants. Initial progress has been made in using iPSCs to better understand cardiomyopathies, rhythm disorders, valvular and vascular disorders, and metabolic risk factors for ischemic heart disease. This promising work is still in its infancy. Similarly, iPSCs are only just starting to be used to identify the optimal medications to be used in patients from whom the cells were derived. This statement is intended to (1) summarize the state of the science with respect to the use of iPSCs for modeling of cardiovascular traits and disorders and for therapeutic screening; (2) identify opportunities and challenges in the use of iPSCs for disease modeling and precision medicine; and (3) outline strategies that will facilitate the use of iPSCs for biomedical applications. This statement is not intended to address the use of stem cells as regenerative therapy, such as transplantation into the body to treat ischemic heart disease or heart failure.
Collapse
|
40
|
Chaterji S, Ahn EH, Kim DH. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Theranostics 2017; 7:4445-4469. [PMID: 29158838 PMCID: PMC5695142 DOI: 10.7150/thno.18456] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic.
Collapse
|
41
|
Zhang Z, Zhang Y, Gao F, Han S, Cheah KS, Tse HF, Lian Q. CRISPR/Cas9 Genome-Editing System in Human Stem Cells: Current Status and Future Prospects. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:230-241. [PMID: 29246302 PMCID: PMC5651489 DOI: 10.1016/j.omtn.2017.09.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
Abstract
Genome-editing involves the insertion, deletion, or replacement of DNA in the genome of a living organism using “molecular scissors.” Traditional genome editing with engineered nucleases for human stem cells is limited by its low efficiency, high cost, and poor specificity. The CRISPR system has recently emerged as a powerful gene manipulation technique with advantages of high editing efficiency and low cost. Although this technique offers huge potential for gene manipulation in various organisms ranging from prokaryotes to higher mammals, there remain many challenges in human stem cell research. In this review, we highlight the basic biology and application of the CRISPR/Cas9 system in current human stem cell research, discuss its advantages and challenges, and debate the future prospects for human stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Yuelin Zhang
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Fei Gao
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Shuo Han
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Kathryn S Cheah
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Hung-Fat Tse
- Department of Medicine, University of Hong Kong, Hong Kong, China; Shenzhen Institutes of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Qizhou Lian
- Department of Medicine, University of Hong Kong, Hong Kong, China; Shenzhen Institutes of Research and Innovation, University of Hong Kong, Shenzhen, China; School of Biomedical Sciences, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
42
|
Qing X, Walter J, Jarazo J, Arias-Fuenzalida J, Hillje AL, Schwamborn JC. CRISPR/Cas9 and piggyBac-mediated footprint-free LRRK2-G2019S knock-in reveals neuronal complexity phenotypes and α-Synuclein modulation in dopaminergic neurons. Stem Cell Res 2017; 24:44-50. [PMID: 28826027 DOI: 10.1016/j.scr.2017.08.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/25/2017] [Accepted: 08/15/2017] [Indexed: 01/01/2023] Open
Abstract
The p.G2019S mutation of the leucine-rich repeat kinase 2 (LRRK2) has been identified as the most prevalent genetic cause of familial and sporadic Parkinson's disease (PD). The Cre-LoxP recombination system has been used to correct the LRRK2-G2019S mutation in patient derived human induced pluripotent stem cells (hiPSCs) in order to generate isogenic controls. However, the remaining LoxP site can influence gene expression. In this study, we report the generation of a footprint-free LRRK2-G2019S isogenic hiPS cell line edited with the CRISPR/Cas9 and piggyBac technologies. We observed that the percentage of Tyrosine Hydroxylase (TH) positive neurons with a total neurite length of >2000μm was significantly reduced in LRRK2-G2019S dopaminergic (DA) neurons. The average branch number in LRRK2-G2019S DA neurons was also decreased. In addition, we have shown that in vitro TH positive neurons with a total neurite length of >2000μm were positive for Serine 129 phosphorylated (S129P) alpha-Synuclein (αS) and we hypothesize that S129P-αS plays a role in the maintenance or formation of long neurites. In summary, our footprint-free LRRK2-G2019S isogenic cell lines allow standardized, genetic background independent, in vitro PD modeling and provide new insights into the role of LRRK2-G2019S and S129P-αS in the pathogenesis of PD.
Collapse
Affiliation(s)
- Xiaobing Qing
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine (LCSB), 6, avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Jonas Walter
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine (LCSB), 6, avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Javier Jarazo
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine (LCSB), 6, avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Jonathan Arias-Fuenzalida
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine (LCSB), 6, avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Anna-Lena Hillje
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine (LCSB), 6, avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Jens C Schwamborn
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine (LCSB), 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
43
|
Lehmann J, Seebode C, Emmert S. Forschung zu Genodermatosen durch neue Genom-Editing-Methoden. J Dtsch Dermatol Ges 2017; 15:783-790. [PMID: 28763594 DOI: 10.1111/ddg.13270_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/25/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Janin Lehmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock.,Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen
| | - Christina Seebode
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock
| | - Steffen Emmert
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock.,Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen
| |
Collapse
|
44
|
Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G, Leong KW. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery. Chem Rev 2017. [PMID: 28640612 DOI: 10.1021/acs.chemrev.6b00799] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome editing offers promising solutions to genetic disorders by editing DNA sequences or modulating gene expression. The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) technology can be used to edit single or multiple genes in a wide variety of cell types and organisms in vitro and in vivo. Herein, we review the rapidly developing CRISPR/Cas9-based technologies for disease modeling and gene correction and recent progress toward Cas9/guide RNA (gRNA) delivery based on viral and nonviral vectors. We discuss the relative merits of delivering the genome editing elements in the form of DNA, mRNA, or protein, and the opportunities of combining viral delivery of a transgene encoding Cas9 with nonviral delivery of gRNA. We highlight the lessons learned from nonviral gene delivery in the past three decades and consider their applicability for CRISPR/Cas9 delivery. We also include a discussion of bioinformatics tools for gRNA design and chemical modifications of gRNA. Finally, we consider the extracellular and intracellular barriers to nonviral CRISPR/Cas9 delivery and propose strategies that may overcome these barriers to realize the clinical potential of CRISPR/Cas9-based genome editing.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Ciaran M Lee
- Department of Bioengineering, Rice University , Houston, Texas 77005, United States
| | - Syandan Chakraborty
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN) and Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University , Cheonan 31116, Korea
| | - Gang Bao
- Department of Bioengineering, Rice University , Houston, Texas 77005, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| |
Collapse
|
45
|
Lehmann J, Seebode C, Emmert S. Research on genodermatoses using novel genome-editing tools. J Dtsch Dermatol Ges 2017. [PMID: 28622433 DOI: 10.1111/ddg.13270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genodermatoses comprise a clinically heterogeneous group of mostly devastating disorders affecting the skin. To date, treatment options have in general been limited to symptom relief. However, the recent technical evolution in genome editing has ushered in a new era in the development of causal therapies for rare monogenetic diseases such as genodermatoses. The present review revisits the advantages and drawbacks of engineered nuclease tools currently available: zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), meganucleases, and - the most innovative - clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) nuclease 9 (CRISPR/Cas9) system. A mechanistic overview of the different modes of action of these programmable nucleases as well as their significance for causal therapy of genodermatoses is presented. Remaining limitations and challenges such as efficient delivery and off-target activity are critically discussed, highlighting both the past and future of gene therapy in dermatology.
Collapse
Affiliation(s)
- Janin Lehmann
- Clinic for Dermatology und Venereology, University Medical Center, Rostock, Germany.,Clinic for Dermatology, Venereology, and Allergology, University Medical Center Goettingen, Germany
| | - Christina Seebode
- Clinic for Dermatology und Venereology, University Medical Center, Rostock, Germany
| | - Steffen Emmert
- Clinic for Dermatology und Venereology, University Medical Center, Rostock, Germany.,Clinic for Dermatology, Venereology, and Allergology, University Medical Center Goettingen, Germany
| |
Collapse
|
46
|
Palmer DJ, Grove NC, Turner DL, Ng P. Gene Editing with Helper-Dependent Adenovirus Can Efficiently Introduce Multiple Changes Simultaneously over a Large Genomic Region. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:101-110. [PMID: 28918012 PMCID: PMC5493818 DOI: 10.1016/j.omtn.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 11/21/2022]
Abstract
Helper-dependent adenoviral vectors (HDAds) possess long homology arms that mediate high-efficiency gene editing. These long homology arms may permit simultaneous introduction of multiple modifications into a large genomic region or may permit a single HDAd to correct many different individual mutations spread widely across a gene. We investigated this important potential using an HDAd bearing 13 genetic markers in the region of homology to the target CFTR locus in human iPSCs and found that all markers can be simultaneously introduced into the target locus, with the two farthest markers being 22.2 kb apart. We found that genetic markers closer to the HDAd’s selectable marker are more efficiency introduced into the target locus; a marker located 208 bp from the selectable marker was introduced with 100% efficiency. However, even markers 11 kb from the selectable marker were introduced at a relatively high frequency of 21.7%. Our study also revealed extensive heteroduplex DNA formation of up to 10 kb with no bias toward vector or chromosomal repair. However, mismatches escape repair at a frequency of up to 15%, leading to a genetically mixed colony and emphasizing the need for caution, especially if the donor and target sequences are not 100% homologous.
Collapse
Affiliation(s)
- Donna J Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Nathan C Grove
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dustin L Turner
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Abstract
The induced pluripotent stem cell (iPSC) was first described more than 10 years ago and is currently used in various basic science and clinical research fields. The aim of this report is to examine the trends in research using iPSCs over the last 10 years. The 2006-2016 PubMed database was searched using the MeSH term "induced pluripotent stem cells." Only original research articles were selected, with a total of 3323 articles. These were classified according to research theme into reprogramming, differentiation protocols for specific cells and/or tissues, pathophysiological research on diseases, and discovery of new drugs, and then the trends over the years were analyzed. We also focused on 232 research publications on the pathophysiological causes of diseases and drug discovery with impact factor (IF; Thomson Reuters) of six or more. The IF of each article was summed up by year, by main target disease, and by country, and the total IF score was expressed as trends of research. The trends of research activities of reprogramming and differentiation on specific cells and/or tissues reached maxima in 2013/2014. On the other hand, research on pathophysiology and drug discovery increased continuously. The 232 articles with IF ≥6 dealt with neurological, immunological/hematological, cardiovascular, and digestive tract diseases, in that order. The majority of articles were published from the United States, followed by Japan, Germany, and United Kingdom. In conclusion, iPSCs have become a general tool for pathophysiological research on disease and drug discovery.
Collapse
Affiliation(s)
- Takaharu Negoro
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hanayuki Okura
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Akifumi Matsuyama
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
48
|
Yumlu S, Stumm J, Bashir S, Dreyer AK, Lisowski P, Danner E, Kühn R. Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9. Methods 2017; 121-122:29-44. [PMID: 28522326 DOI: 10.1016/j.ymeth.2017.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/04/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) represent an ideal in vitro platform to study human genetics and biology. The recent advent of programmable nucleases makes also the human genome amenable to experimental genetics through either the correction of mutations in patient-derived iPSC lines or the de novo introduction of mutations into otherwise healthy iPSCs. The production of specific and sometimes complex genotypes in multiple cell lines requires efficient and streamlined gene editing technologies. In this article we provide protocols for gene editing in hiPSCs. We presently achieve high rates of gene editing at up to three loci using a modified iCRISPR system. This system includes a doxycycline inducible Cas9 and sgRNA/reporter plasmids for the enrichment of transfected cells by fluorescence-activated cell sorting (FACS). Here we cover the selection of target sites, vector construction, transfection, and isolation and genotyping of modified hiPSC clones.
Collapse
Affiliation(s)
- Saniye Yumlu
- Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany; Berlin Institute of Health, Kapelle-Ufer 2, 10117 Berlin, Germany.
| | - Jürgen Stumm
- Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany; Helmholtz Center Munich, 85764 Neuherberg, Germany.
| | - Sanum Bashir
- Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany; Berlin Institute of Health, Kapelle-Ufer 2, 10117 Berlin, Germany.
| | - Anne-Kathrin Dreyer
- Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany; Berlin Institute of Health, Kapelle-Ufer 2, 10117 Berlin, Germany.
| | - Pawel Lisowski
- Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany; Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Magdalenka, Poland.
| | - Eric Danner
- Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany.
| | - Ralf Kühn
- Max-Delbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany; Berlin Institute of Health, Kapelle-Ufer 2, 10117 Berlin, Germany.
| |
Collapse
|
49
|
CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell 2017; 8:365-378. [PMID: 28401346 PMCID: PMC5413600 DOI: 10.1007/s13238-017-0397-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1+/A272C and FUS+/G1566A mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq) analysis of motor neurons derived from SOD1+/A272C and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.
Collapse
|
50
|
Brunger JM, Zutshi A, Willard VP, Gersbach CA, Guilak F. CRISPR/Cas9 Editing of Murine Induced Pluripotent Stem Cells for Engineering Inflammation-Resistant Tissues. Arthritis Rheumatol 2017; 69:1111-1121. [PMID: 27813286 DOI: 10.1002/art.39982] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/01/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Proinflammatory cytokines such as interleukin-1 (IL-1) are found in elevated levels in diseased or injured tissues and promote rapid tissue degradation while preventing stem cell differentiation. This study was undertaken to engineer inflammation-resistant murine induced pluripotent stem cells (iPSCs) through deletion of the IL-1 signaling pathway and to demonstrate the utility of these cells for engineering replacements for diseased or damaged tissues. METHODS Targeted deletion of the IL-1 receptor type I (IL-1RI) gene in murine iPSCs was achieved using the RNA-guided, site-specific clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome engineering system. Clonal cell populations with homozygous and heterozygous deletions were isolated, and loss of receptor expression and cytokine signaling was confirmed by flow cytometry and transcriptional reporter assays, respectively. Cartilage was engineered from edited iPSCs and tested for its ability to resist IL-1-mediated degradation in gene expression, histologic, and biomechanical assays after a 3-day treatment with 1 ng/ml of IL-1α. RESULTS Three of 41 clones isolated possessed the IL-1RI+/- genotype. Four clones possessed the IL-1RI-/- genotype, and flow cytometry confirmed loss of IL-1RI on the surface of these cells, which led to an absence of NF-κB transcription activation after IL-1α treatment. Cartilage engineered from homozygous null clones was resistant to cytokine-mediated tissue degradation. In contrast, cartilage derived from wild-type and heterozygous clones exhibited significant degradative responses, highlighting the need for complete IL-1 blockade. CONCLUSION This work demonstrates proof-of-concept of the ability to engineer custom-designed stem cells that are immune to proinflammatory cytokines (i.e., IL-1) as a potential cell source for cartilage tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | - Farshid Guilak
- Washington University and Shriners Hospitals for Children, St. Louis, Missouri
| |
Collapse
|