1
|
Cellini BR, Edachola SV, Faw TD, Cigliola V. Blueprints for healing: central nervous system regeneration in zebrafish and neonatal mice. BMC Biol 2025; 23:115. [PMID: 40307837 PMCID: PMC12044871 DOI: 10.1186/s12915-025-02203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
In adult mammals, including humans, neurons, and axons in the brain and spinal cord are inherently incapable of regenerating after injury. Studies of animals with innate capacity for regeneration are providing valuable insights into the mechanisms driving tissue healing. The aim of this review is to summarize recent data on regeneration mechanisms in the brain and spinal cord of zebrafish and neonatal mice. We infer that elucidating these mechanisms and understanding how and why they are lost in adult mammals will contribute to the development of strategies to promote central nervous system regeneration.
Collapse
Affiliation(s)
- Brianna R Cellini
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA
| | | | - Timothy D Faw
- Department of Orthopaedic Surgery, Duke University, Durham, NC, 27710, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA
| | - Valentina Cigliola
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
2
|
Kawase K, Nakamura Y, Wolbeck L, Takemura S, Zaitsu K, Ando T, Jinnou H, Sawada M, Nakajima C, Rydbirk R, Gokenya S, Ito A, Fujiyama H, Saito A, Iguchi A, Kratimenos P, Ishibashi N, Gallo V, Iwata O, Saitoh S, Khodosevich K, Sawamoto K. Significance of birth in the maintenance of quiescent neural stem cells. SCIENCE ADVANCES 2025; 11:eadn6377. [PMID: 39841848 PMCID: PMC11753423 DOI: 10.1126/sciadv.adn6377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Birth is one of the most important life events for animals. However, its significance in the developmental process is not fully understood. Here, we found that birth-induced alteration of glutamine metabolism in radial glia (RG), the embryonic neural stem cells (NSCs), is required for the acquisition of quiescence and long-term maintenance of postnatal NSCs. Preterm birth impairs this cellular process, leading to transient hyperactivation of RG. Consequently, in the postnatal brain, the NSC pool is depleted and neurogenesis is decreased. We also found that the maintenance of quiescent RG after preterm birth improves postnatal neurogenesis. This study demonstrates the significance of birth in the maintenance of quiescent NSCs.
Collapse
Affiliation(s)
- Koya Kawase
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Yasuhisa Nakamura
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Department of Pediatrics, Nagoya City University West Medical Center, 1-1-1 Hiratecho, Kita-ku, Nagoya, Aichi 462-8508, Japan
| | - Laura Wolbeck
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Shoko Takemura
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Kei Zaitsu
- Multimodal Informatics and Wide-data Analytics Laboratory, Department of Computational Systems Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishi Mitani, Kinokawa, Wakayama 649-6493, Japan
| | - Takehiro Ando
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Hideo Jinnou
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Masato Sawada
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Chikako Nakajima
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Rasmus Rydbirk
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sakura Gokenya
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Akira Ito
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Hitomi Fujiyama
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Akari Saito
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
- Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Panagiotis Kratimenos
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Division of Neonatology, Children’s National Hospital, Washington, DC 20010, USA
| | - Nobuyuki Ishibashi
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Norcliffe Foundation Center for Integrative Brain Research Seattle Children’s Research Institute Seattle Children’s Seattle, Seattle, WA 98145-5005, USA
| | - Osuke Iwata
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Konstantin Khodosevich
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
3
|
Gall LG, Stains CM, Freitas-Andrade M, Jia BZ, Patel N, Megason SG, Lacoste B, O’Brown NM. Zebrafish glial-vascular interactions progressively expand over the course of brain development. iScience 2025; 28:111549. [PMID: 39811646 PMCID: PMC11731618 DOI: 10.1016/j.isci.2024.111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Glial-vascular interactions are critical for the formation and maintenance of brain blood vessels and the blood-brain barrier (BBB) in mammals, but their role in the zebrafish BBB remains unclear. Using three glial gene promoters-gfap, glast, and glastini (a truncated glast)-we explored glial-vascular development in zebrafish. Sparse labeling showed fewer glial-vascular interactions at early stages, with glial coverage and contact area increasing with age. Stable transgenic lines for glast and glastini revealed similar developmental increases, starting at ∼30% coverage at 3 days post-fertilization (dpf) and peaking at ∼60% by 10 dpf, and consistently higher glial coverage in the forebrain and midbrain than in the hindbrain. Electron microscopy analyses showed similar progressive increases in glial-vascular interactions, with maximal coverage of ∼70% in adults-significantly lower than the ∼100% seen in mammals. These findings define the temporal and regional maturation of glial-vascular interactions in zebrafish and highlight differences from mammalian systems.
Collapse
Affiliation(s)
- Lewis G. Gall
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Courtney M. Stains
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | | | - Bill Z. Jia
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Nishi Patel
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Sean G. Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Natasha M. O’Brown
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Miyamoto T, Kuboyama K, Honda M, Ohkawa Y, Oki S, Sawamoto K. High spatial resolution gene expression profiling and characterization of neuroblasts migrating in the peri-injured cortex using photo-isolation chemistry. Front Neurosci 2025; 18:1504047. [PMID: 39840011 PMCID: PMC11747130 DOI: 10.3389/fnins.2024.1504047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
In the ventricular-subventricular-zone (V-SVZ) of the postnatal mammalian brain, immature neurons (neuroblasts) are generated from neural stem cells throughout their lifetime. These V-SVZ-derived neuroblasts normally migrate to the olfactory bulb through the rostral migratory stream, differentiate into interneurons, and are integrated into the preexisting olfactory circuit. When the brain is injured, some neuroblasts initiate migration toward the lesion and attempt to repair the damaged neuronal circuitry, but their low regeneration efficiency prevents functional recovery. Elucidation of the molecular basis of neuroblast migration toward lesions is expected to lead to the development of new therapeutic strategies for brain regenerative medicine. Here, we show gene expression profiles of neuroblasts migrating in the peri-injured cortex compared with those migrating in the V-SVZ using photo-isolation chemistry, a method for spatial transcriptome analysis. Differentially expressed gene analysis showed that the expression levels of 215 genes (97 upregulated and 118 downregulated genes) were significantly different in neuroblasts migrating in the peri-injured cortex from those migrating in the V-SVZ. Gene Ontology analysis revealed that in neuroblasts migrating in the peri-injured cortex, expression of genes involved in regulating migration direction and preventing cell death was upregulated, while the expression of genes involved in cell proliferation and maintenance of the immature state was downregulated. Indeed, neuroblasts migrating in the peri-injured cortex had significantly lower Cyclin D2 mRNA and Ki67 protein expression levels than those in the V-SVZ. In the injured brain, amoeboid microglia/macrophages expressed transforming growth factor-β (TGF-β), and neuroblasts migrating in the peri-injured cortex expressed TGF-β receptors. Experiments using primary cultured neuroblasts showed that application of TGF-β significantly decreased proliferating cells labeled with BrdU. These data suggest that the proliferative activity of neuroblasts migrating toward lesions is suppressed by TGF-β secreted from cells surrounding the lesion. This is the first comprehensive study characterizing the gene expression profiles of neuroblasts migrating in the peri-injured cortex.
Collapse
Affiliation(s)
- Takuya Miyamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuya Kuboyama
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mizuki Honda
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
5
|
Liu K, Kang Z, Yang M, Chen F, Xia M, Dai W, Zheng S, Chen H, Lu QR, Zhou W, Lin Y. The role of oligodendrocyte progenitor cells in the spatiotemporal vascularization of the human and mouse neocortex. Glia 2025; 73:140-158. [PMID: 39392208 DOI: 10.1002/glia.24625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/21/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Brain vasculature formation begins with vessel invasion from the perineural vascular plexus, which expands through vessel sprouting and growth. Recent studies have indicated the existence of oligodendrocyte-vascular crosstalk during development. However, the relationship between oligodendrocyte progenitor cells (OPCs) and the ordered spatiotemporal vascularization of the neocortex has not been elucidated. Our findings suggest that OPCs play a complex role in the vessel density of the embryonic and postnatal neocortex. Analyses of normal human and mouse embryonic cerebral cortex show that vascularization and OPC distribution are tightly controlled in a spatially and temporally restricted manner, exhibiting a positive correlation. Loss of OPCs at both embryonic and postnatal stages led to a reduction in vascular density, suggesting that OPC populations play a role in vascular density. Nonetheless, dynamic observation on cultured brain slices and staining of tissue sections indicate that OPC migration is unassociated with the proximity to blood vessels, primarily occurring along radial glial cell processes. Additionally, in vitro experiments demonstrate that OPC secretions promote vascular endothelial cell (VEC) growth. Together, these observations suggest that vessel density is influenced by OPC secretions.
Collapse
Affiliation(s)
- Kaiyi Liu
- Key Laboratory of Birth Defects, Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhiruo Kang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Min Yang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Fangbing Chen
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Mingyang Xia
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Wenjuan Dai
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Shiyi Zheng
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Q Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yifeng Lin
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Wu N, Li W, Chen Q, Chen M, Chen S, Cheng C, Xie Y. Research Advances in Neuroblast Migration in Traumatic Brain Injury. Mol Neurobiol 2024; 61:1-13. [PMID: 38507029 DOI: 10.1007/s12035-024-04117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
Neuroblasts were first derived from the adult mammalian brains in the 1990s by Reynolds et al. Since then, persistent neurogenesis in the subgranular zone (SGZ) of the hippocampus and subventricular zone (SVZ) has gradually been recognized. To date, reviews on neuroblast migration have largely investigated glial cells and molecular signaling mechanisms, while the relationship between vasculature and cell migration remains a mystery. Thus, this paper underlines the partial biological features of neuroblast migration and unravels the significance and mechanisms of the vasculature in the process to further clarify theoretically the neural repair mechanism after brain injury. Neuroblast migration presents three modes according to the characteristics of cells that act as scaffolds during the migration process: gliophilic migration, neurophilic migration, and vasophilic migration. Many signaling molecules, including brain-derived neurotrophic factor (BDNF), stromal cell-derived factor 1 (SDF-1), vascular endothelial growth factor (VEGF), and angiopoietin-1 (Ang-1), affect vasophilic migration, synergistically regulating the migration of neuroblasts to target areas along blood vessels. However, the precise role of blood vessels in the migration of neuroblasts needs to be further explored. The in-depth study of neuroblast migration will most probably provide theoretical basis and breakthrough for the clinical treatment of brain injury diseases.
Collapse
Affiliation(s)
- Na Wu
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Wenlang Li
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Qiang Chen
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Meng Chen
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Siyuan Chen
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China
| | - Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Yimin Xie
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Wanzhou District, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China.
| |
Collapse
|
7
|
Wang P, Luo L, Chen J. Her4.3 + radial glial cells maintain the brain vascular network through activation of Wnt signaling. J Biol Chem 2024; 300:107570. [PMID: 39019216 PMCID: PMC11342778 DOI: 10.1016/j.jbc.2024.107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/19/2024] Open
Abstract
During vascular development, radial glial cells (RGCs) regulate vascular patterning in the trunk and contribute to the early differentiation of the blood-brain barrier. Ablation of RGCs results in excessive sprouting vessels or the absence of bilateral vertebral arteries. However, interactions of RGCs with later brain vascular networks after pattern formation remain unknown. Here, we generated a her4.3 transgenic line to label RGCs and applied the metronidazole/nitroreductase system to ablate her4.3+ RGCs. The ablation of her4.3+ RGCs led to the collapse of the cerebral vascular network, disruption of the blood-brain barrier, and downregulation of Wnt signaling. The inhibition of Wnt signaling resulted in the collapse of cerebral vasculature, similar to that caused by her4.3+ RGC ablation. The defects in the maintenance of brain vasculature resulting from the absence of her4.3+ RGCs were partially rescued by the activation of Wnt signaling or overexpression of Wnt7aa or Wnt7bb. Together, our study suggests that her4.3+ RGCs maintain the cerebral vascular network through Wnt signaling.
Collapse
Affiliation(s)
- Pengcheng Wang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China; Department of Anaesthesia of Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingying Chen
- Department of Anaesthesia of Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Purvis EM, Garcia-Epelboim AD, Krizman EN, O’Donnell JC, Cullen DK. A three-dimensional tissue-engineered rostral migratory stream as an in vitro platform for subventricular zone-derived cell migration. Front Bioeng Biotechnol 2024; 12:1410717. [PMID: 38933539 PMCID: PMC11199690 DOI: 10.3389/fbioe.2024.1410717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
In the brains of most adult mammals, neural precursor cells (NPCs) from the subventricular zone (SVZ) migrate through the rostral migratory stream (RMS) to replace olfactory bulb interneurons. Following brain injury, published studies have shown that NPCs can divert from the SVZ-RMS-OB route and migrate toward injured brain regions, but the quantity of arriving cells, the lack of survival and terminal differentiation of neuroblasts into neurons, and their limited capacity to re-connect into circuitry are insufficient to promote functional recovery in the absence of therapeutic intervention. Our lab has fabricated a biomimetic tissue-engineered rostral migratory stream (TE-RMS) that replicates some notable structural and functional components of the endogenous rat RMS. Based on the design attributes for the TE-RMS platform, it may serve as a regenerative medicine strategy to facilitate sustained neuronal replacement into an injured brain region or an in vitro tool to investigate cell-cell communication and neuroblast migration. Previous work has demonstrated that the TE-RMS replicates the basic structure, unique nuclear shape, cytoskeletal arrangement, and surface protein expression of the endogenous rat RMS. Here, we developed an enhanced TE-RMS fabrication method in hydrogel microchannels that allowed more robust and high-throughput TE-RMS assembly. We report unique astrocyte behavior, including astrocyte bundling into the TE-RMS, the presence of multiple TE-RMS bundles, and observations of discontinuities in TE-RMS bundles, when microtissues are fabricated in agarose microchannels containing different critical curved or straight geometric features. We also demonstrate that we can harvest NPCs from the SVZ of adult rat brains and that EGFP+ cells migrate in chain formation from SVZ neurospheres through the TE-RMS in vitro. Overall, the TE-RMS can be utilized as an in vitro platform to investigate the pivotal cell-cell signaling mechanisms underlying the synergy of molecular cues involved in immature neuronal migration and differentiation.
Collapse
Affiliation(s)
- Erin M. Purvis
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrés D. Garcia-Epelboim
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Physics and Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Elizabeth N. Krizman
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - John C. O’Donnell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Matsumoto M, Matsushita K, Hane M, Wen C, Kurematsu C, Ota H, Bang Nguyen H, Quynh Thai T, Herranz-Pérez V, Sawada M, Fujimoto K, García-Verdugo JM, Kimura KD, Seki T, Sato C, Ohno N, Sawamoto K. Neuraminidase inhibition promotes the collective migration of neurons and recovery of brain function. EMBO Mol Med 2024; 16:1228-1253. [PMID: 38789599 PMCID: PMC11178813 DOI: 10.1038/s44321-024-00073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
In the injured brain, new neurons produced from endogenous neural stem cells form chains and migrate to injured areas and contribute to the regeneration of lost neurons. However, this endogenous regenerative capacity of the brain has not yet been leveraged for the treatment of brain injury. Here, we show that in healthy brain chains of migrating new neurons maintain unexpectedly large non-adherent areas between neighboring cells, allowing for efficient migration. In instances of brain injury, neuraminidase reduces polysialic acid levels, which negatively regulates adhesion, leading to increased cell-cell adhesion and reduced migration efficiency. The administration of zanamivir, a neuraminidase inhibitor used for influenza treatment, promotes neuronal migration toward damaged regions, fosters neuronal regeneration, and facilitates functional recovery. Together, these findings shed light on a new mechanism governing efficient neuronal migration in the adult brain under physiological conditions, pinpoint the disruption of this mechanism during brain injury, and propose a promising therapeutic avenue for brain injury through drug repositioning.
Collapse
Affiliation(s)
- Mami Matsumoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Katsuyoshi Matsushita
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Masaya Hane
- Bioscience and Biotechnology Center, Graduate School of Bioagricultural Sciences, and Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan
| | - Chentao Wen
- Graduate School of Science, Nagoya City University, Nagoya, 467-8501, Japan
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Chihiro Kurematsu
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Haruko Ota
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Huy Bang Nguyen
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
- Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ho Chi Minh City, 70000, Vietnam
| | - Truc Quynh Thai
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan
- Department of Histology-Embryology-Genetics, Faculty of Basic Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 70000, Vietnam
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute, University of Valencia, CIBERNED-ISCIII, Valencia, 46980, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot, 46100, Spain
| | - Masato Sawada
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Koichi Fujimoto
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute, University of Valencia, CIBERNED-ISCIII, Valencia, 46980, Spain
| | - Koutarou D Kimura
- Graduate School of Science, Nagoya City University, Nagoya, 467-8501, Japan
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, 160-8402, Japan
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, 160-8402, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Graduate School of Bioagricultural Sciences, and Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8601, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Shimotsuke, 329-0498, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.
| |
Collapse
|
10
|
Sun Z, Chen Z, Yin M, Wu X, Guo B, Cheng X, Quan R, Sun Y, Zhang Q, Fan Y, Jin C, Yin Y, Hou X, Liu W, Shu M, Xue X, Shi Y, Chen B, Xiao Z, Dai J, Zhao Y. Harnessing developmental dynamics of spinal cord extracellular matrix improves regenerative potential of spinal cord organoids. Cell Stem Cell 2024; 31:772-787.e11. [PMID: 38565140 DOI: 10.1016/j.stem.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Neonatal spinal cord tissues exhibit remarkable regenerative capabilities as compared to adult spinal cord tissues after injury, but the role of extracellular matrix (ECM) in this process has remained elusive. Here, we found that early developmental spinal cord had higher levels of ECM proteins associated with neural development and axon growth, but fewer inhibitory proteoglycans, compared to those of adult spinal cord. Decellularized spinal cord ECM from neonatal (DNSCM) and adult (DASCM) rabbits preserved these differences. DNSCM promoted proliferation, migration, and neuronal differentiation of neural progenitor cells (NPCs) and facilitated axonal outgrowth and regeneration of spinal cord organoids more effectively than DASCM. Pleiotrophin (PTN) and Tenascin (TNC) in DNSCM were identified as contributors to these abilities. Furthermore, DNSCM demonstrated superior performance as a delivery vehicle for NPCs and organoids in spinal cord injury (SCI) models. This suggests that ECM cues from early development stages might significantly contribute to the prominent regeneration ability in spinal cord.
Collapse
Affiliation(s)
- Zheng Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenni Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Man Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaokang Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Quan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongheng Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Jin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiyuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muya Shu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyu Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Nakajima C, Sawada M, Umeda E, Takagi Y, Nakashima N, Kuboyama K, Kaneko N, Yamamoto S, Nakamura H, Shimada N, Nakamura K, Matsuno K, Uesugi S, Vepřek NA, Küllmer F, Nasufović V, Uchiyama H, Nakada M, Otsuka Y, Ito Y, Herranz-Pérez V, García-Verdugo JM, Ohno N, Arndt HD, Trauner D, Tabata Y, Igarashi M, Sawamoto K. Identification of the growth cone as a probe and driver of neuronal migration in the injured brain. Nat Commun 2024; 15:1877. [PMID: 38461182 PMCID: PMC10924819 DOI: 10.1038/s41467-024-45825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/01/2024] [Indexed: 03/11/2024] Open
Abstract
Axonal growth cones mediate axonal guidance and growth regulation. We show that migrating neurons in mice possess a growth cone at the tip of their leading process, similar to that of axons, in terms of the cytoskeletal dynamics and functional responsivity through protein tyrosine phosphatase receptor type sigma (PTPσ). Migrating-neuron growth cones respond to chondroitin sulfate (CS) through PTPσ and collapse, which leads to inhibition of neuronal migration. In the presence of CS, the growth cones can revert to their extended morphology when their leading filopodia interact with heparan sulfate (HS), thus re-enabling neuronal migration. Implantation of an HS-containing biomaterial in the CS-rich injured cortex promotes the extension of the growth cone and improve the migration and regeneration of neurons, thereby enabling functional recovery. Thus, the growth cone of migrating neurons is responsive to extracellular environments and acts as a primary regulator of neuronal migration.
Collapse
Affiliation(s)
- Chikako Nakajima
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Erika Umeda
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Yuma Takagi
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Norihiko Nakashima
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Kazuya Kuboyama
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
- Laboratory of Neuronal Regeneration, Graduate School of Brain Science, Doshisha University, Kyoto, 610-0394, Japan
| | - Satoaki Yamamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Haruno Nakamura
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Naoki Shimada
- Research and Development Center, The Japan Wool Textile Co., Ltd., Kobe, 675-0053, Japan
| | - Koichiro Nakamura
- Medical Device Department, Nikke Medical Co., Ltd., Osaka, 541-0048, Japan
| | - Kumiko Matsuno
- Research and Development Center, The Japan Wool Textile Co., Ltd., Kobe, 675-0053, Japan
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, 606-8507, Japan
| | - Shoji Uesugi
- Medical Device Department, Nikke Medical Co., Ltd., Osaka, 541-0048, Japan
| | - Nynke A Vepřek
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Florian Küllmer
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Veselin Nasufović
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany
| | | | | | - Yuji Otsuka
- Toray Research Center, Inc., Otsu, 520-8567, Japan
| | - Yasuyuki Ito
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute, University of Valencia, CIBERNED, Valencia, 46980, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute, University of Valencia, CIBERNED, Valencia, 46980, Spain
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, 329-0498, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Hans-Dieter Arndt
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY, 10003, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, 606-8507, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.
| |
Collapse
|
12
|
Foucault L, Capeliez T, Angonin D, Lentini C, Bezin L, Heinrich C, Parras C, Donega V, Marcy G, Raineteau O. Neonatal brain injury unravels transcriptional and signaling changes underlying the reactivation of cortical progenitors. Cell Rep 2024; 43:113734. [PMID: 38349790 DOI: 10.1016/j.celrep.2024.113734] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Germinal activity persists throughout life within the ventricular-subventricular zone (V-SVZ) of the postnatal forebrain due to the presence of neural stem cells (NSCs). Accumulating evidence points to a recruitment for these cells following early brain injuries and suggests their amenability to manipulations. We used chronic hypoxia as a rodent model of early brain injury to investigate the reactivation of cortical progenitors at postnatal times. Our results reveal an increased proliferation and production of glutamatergic progenitors within the dorsal V-SVZ. Fate mapping of V-SVZ NSCs demonstrates their contribution to de novo cortical neurogenesis. Transcriptional analysis of glutamatergic progenitors shows parallel changes in methyltransferase 14 (Mettl14) and Wnt/β-catenin signaling. In agreement, manipulations through genetic and pharmacological activation of Mettl14 and the Wnt/β-catenin pathway, respectively, induce neurogenesis and promote newly-formed cell maturation. Finally, labeling of young adult NSCs demonstrates that pharmacological NSC activation has no adverse effects on the reservoir of V-SVZ NSCs and on their germinal activity.
Collapse
Affiliation(s)
- Louis Foucault
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| | - Timothy Capeliez
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Diane Angonin
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Celia Lentini
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Laurent Bezin
- University Lyon, Université Claude Bernard Lyon 1, INSERM, Centre de Recherche en Neuroscience de Lyon U1028 - CNRS UMR5292, 69500 Bron, France
| | - Christophe Heinrich
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Carlos Parras
- Paris Brain Institute, Sorbonne Université, INSERM U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Vanessa Donega
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands
| | - Guillaume Marcy
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Olivier Raineteau
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
13
|
Kobayashi K, Maeda T, Ayodeji M, Tu SC, Chen A, Rajtboriraks M, Hsu CH, Tu TW, Wang PC, Hanley PJ, Jonas RA, Ishibashi N. Dose Effect of Mesenchymal Stromal Cell Delivery Through Cardiopulmonary Bypass. Ann Thorac Surg 2023; 116:1337-1345. [PMID: 35952858 PMCID: PMC10009803 DOI: 10.1016/j.athoracsur.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neurologic impairments are a significant concern for survivors after pediatric cardiac surgery with cardiopulmonary bypass (CPB). We have previously shown that mesenchymal stromal cell (MSC) delivery through CPB has the potential to mitigate the effects of CPB on neural stem/progenitor cells. This study assessed the dose effects of MSCs. METHODS Piglets (n = 20) were randomly assigned to 1 of 4 groups: control, CPB, or CPB followed by MSC administration with low and high doses (10 × 106 and 100 × 106 cells per kilogram). We assessed acute dose effect on cell distribution, multiorgan functions, systemic inflammation, microglia activation, and neural stem/progenitor cell activities. RESULTS By magnetic resonance imaging, approximately 10 times more MSCs were detected within the entire brain after high-dose delivery than after low-dose delivery. No adverse events affecting hemodynamics, various biomarkers, and neuroimaging were detected after high-dose MSC delivery. High-dose MSCs significantly increased circulating levels of interleukin 4 after CPB. Both MSC groups normalized microglia activation after CPB, demonstrating MSC-induced reduction in cerebral inflammation. There was a significant increase in neuroblasts in the subventricular zone in both treatment groups. The thickness of the most active neurogenic area within the subventricular zone was significantly increased after high-dose treatment compared with CPB and low-dose MSCs, suggesting dose-dependent effects on the neurogenic niche. CONCLUSIONS MSC delivery through CPB is feasible up to 100 × 106 cells per kilogram. MSC treatment during cardiac surgery has the potential to reduce systemic and cerebral inflammation and to modulate responses of an active neurogenic niche to CPB. Further investigation is necessary to assess the long-term effects and to develop a more complete dose-response curve.
Collapse
Affiliation(s)
- Kei Kobayashi
- Department of Cardiac Surgery, Children's National Hospital, Washington, DC; Center for Neuroscience Research, Children's National Hospital, Washington, DC; Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC
| | - Takuya Maeda
- Department of Cardiac Surgery, Children's National Hospital, Washington, DC; Center for Neuroscience Research, Children's National Hospital, Washington, DC; Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC
| | - Mobolanle Ayodeji
- Center for Neuroscience Research, Children's National Hospital, Washington, DC; Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC
| | - Shao Ching Tu
- Center for Neuroscience Research, Children's National Hospital, Washington, DC; Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC; Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri
| | - Alice Chen
- Center for Neuroscience Research, Children's National Hospital, Washington, DC; Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC; George Washington University, School of Medicine and Health Sciences, George Washington University, Washington, DC
| | - May Rajtboriraks
- Center for Neuroscience Research, Children's National Hospital, Washington, DC; Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC; Department of Biomedical Engineering, The Catholic University of America, Washington, DC
| | - Chao-Hsiung Hsu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC
| | - Tsang-Wei Tu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Paul C Wang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC; Department of Electrical Engineering, Fu Jen Catholic University, Taipei, Taiwan
| | - Patrick J Hanley
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC; Program for Cell Enhancement and Technologies for Immunotherapy, Division of Blood and Marrow Transplantation, Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC
| | - Richard A Jonas
- Department of Cardiac Surgery, Children's National Hospital, Washington, DC; Center for Neuroscience Research, Children's National Hospital, Washington, DC; Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Nobuyuki Ishibashi
- Department of Cardiac Surgery, Children's National Hospital, Washington, DC; Center for Neuroscience Research, Children's National Hospital, Washington, DC; Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC; Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC.
| |
Collapse
|
14
|
Li Y, Cheng S, Wen H, Xiao L, Deng Z, Huang J, Zhang Z. Coaxial 3D printing of hierarchical structured hydrogel scaffolds for on-demand repair of spinal cord injury. Acta Biomater 2023; 168:400-415. [PMID: 37479156 DOI: 10.1016/j.actbio.2023.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/24/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
After spinal cord injury (SCI), endogenous neural stem cells (NSCs) near the damaged site are activated, but few NSCs migrate to the injury epicenter and differentiate into neurons because of the harsh microenvironment. It has demonstrated that implantation of hydrogel scaffold loaded with multiple cues can enhance the function of endogenous NSCs. However, programming different cues on request remains a great challenge. Herein, a time-programmed linear hierarchical structure scaffold is developed for spinal cord injury recovery. The scaffold is obtained through coaxial 3D printing by encapsulating a dual-network hydrogel (composed of hyaluronic acid derivatives and N-cadherin modified sodium alginate, inner layer) into a temperature responsive gelatin/cellulose nanofiber hydrogel (Gel/CNF, outer layer). The reactive species scavenger, metalloporphyrin, loaded in the outer layer is released rapidly by the degradation of Gel/CNF, inhibiting the initial oxidative stress at lesion site to protect endogenous NSCs; while the inner hydrogel with appropriate mechanical support, linear topology structure and bioactive cues facilitates the migration and neuronal differentiation of NSCs at the later stage of SCI treatment, thereby promoting motor functional restorations in SCI rats. This study offers an innovative strategy for fabrication of multifunctional nerve regeneration scaffold, which has potential for clinical treatment of SCI. STATEMENT OF SIGNIFICANCE: Two major challenges facing the recovery from spinal cord injury (SCI) are the low viability of endogenous neural stem cells (NSCs) within the damaged microenvironment, as well as the difficulty of neuronal regeneration at the injured site. To address these issues, a spinal cord-like coaxial scaffold was fabricated with free radical scavenging agent metalloporphyrin Mn (III) tetrakis (4-benzoic acid) porphyrin and chemokine N-cadherin. The scaffold was constructed by 3D bioprinting for time-programmed protection and modulation of NSCs to effectively repair SCI. This 3D coaxially bioprinted biomimetic construct enables multi-factor on-demand repair and may be a promising therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Huilong Wen
- The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Longyi Xiao
- The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, Guangdong Province, China
| | - Zongwu Deng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
15
|
Kim JT, Cho SM, Youn DH, Hong EP, Park CH, Lee Y, Jung H, Jeon JP. Therapeutic Effect of a Hydrogel-based Neural Stem Cell Delivery Sheet for Mild Traumatic Brain Injury. Acta Biomater 2023:S1742-7061(23)00351-3. [PMID: 37356785 DOI: 10.1016/j.actbio.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE There are no effective clinically applicable treatments for neuronal dysfunction after mild traumatic brain injury (TBI). Here, we evaluated the therapeutic effect of a new delivery method of mouse neural stem cell (mNSC) spheroids using a hydrogel, in terms of improvement in damaged cortical lesions and cognitive impairment after mild TBI. METHODS mNSCs were isolated from the subventricular zone and subgranular zone by a hydrogel-based culture system. GFP-transduced mNSCs were generated into spheroids and wrapped into a sheet for transplantation. Male C57BL/6J mice were randomly divided into four groups: sham operation, TBI, TBI with mNSC spheroids, and TBI with mNSC spheroid sheet transplantation covering the damaged cortex. Histopathological and immunohistochemical features and cognitive function were evaluated 7, 14, and 28 days after transplantation following TBI. RESULTS Hydrogel-based culture systems and mNSC isolation were successfully established from the adult mice. Essential transcription factors for NSCs, such as SOX2, PAX6, Olig2, nestin, and doublecortin (DCX), were highly expressed in the mNSCs. A transplanted hydrogel-based mNSC spheroid sheet showed good engraftment and survival ability, differentiated into TUJ1-positive neurons, promoted angiogenesis, and reduced neuronal degeneration. Also, TBI mice treated with mNSC spheroid sheet transplantation exhibited a significantly increased preference for a new object, suggesting improved cognitive function compared to the mNSC spheroids or no treatment groups. CONCLUSION Transplantation with a hydrogel-based mNSC spheroid sheet showed engraftment, migration, and stability of delivered cells in a hostile microenvironment after TBI, resulting in improved cognitive function via reconstruction of the damaged cortex. STATEMENT OF SIGNIFICANCE This study presents the therapeutic effect of a new delivery method of mouse neural stem cells spheroids using a hydrogel, in terms of improvement in damaged cortical lesions and cognitive impairment after traumatic brain injury. Collagen/fibrin hydrogel allowed long-term survival and migratory ability of NSCs spheroids. Furthermore, transplanted hydrogel-based mNSCs spheroids sheet showed good engraftment, migration, and stability of delivered cells in a hostile microenvironment, resulting in reconstruction of the damaged cortex and improved cognitive function after TBI. Therefore, we suggest that a hydrogel-based mNSCs spheroids sheet could help to improve cognitive impairment after TBI.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Sung Min Cho
- Department of Neurosurgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Chan Hum Park
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Younghyurk Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea.
| |
Collapse
|
16
|
Mehdipour M, Park S, Huang GN. Unlocking cardiomyocyte renewal potential for myocardial regeneration therapy. J Mol Cell Cardiol 2023; 177:9-20. [PMID: 36801396 PMCID: PMC10699255 DOI: 10.1016/j.yjmcc.2023.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Cardiovascular disease remains the leading cause of mortality worldwide. Cardiomyocytes are irreversibly lost due to cardiac ischemia secondary to disease. This leads to increased cardiac fibrosis, poor contractility, cardiac hypertrophy, and subsequent life-threatening heart failure. Adult mammalian hearts exhibit notoriously low regenerative potential, further compounding the calamities described above. Neonatal mammalian hearts, on the other hand, display robust regenerative capacities. Lower vertebrates such as zebrafish and salamanders retain the ability to replenish lost cardiomyocytes throughout life. It is critical to understand the varying mechanisms that are responsible for these differences in cardiac regeneration across phylogeny and ontogeny. Adult mammalian cardiomyocyte cell cycle arrest and polyploidization have been proposed as major barriers to heart regeneration. Here we review current models about why adult mammalian cardiac regenerative potential is lost including changes in environmental oxygen levels, acquisition of endothermy, complex immune system development, and possible cancer risk tradeoffs. We also discuss recent progress and highlight conflicting reports pertaining to extrinsic and intrinsic signaling pathways that control cardiomyocyte proliferation and polyploidization in growth and regeneration. Uncovering the physiological brakes of cardiac regeneration could illuminate novel molecular targets and offer promising therapeutic strategies to treat heart failure.
Collapse
Affiliation(s)
- Melod Mehdipour
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sangsoon Park
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Bai T, Duan H, Zhang B, Hao P, Zhao W, Gao Y, Yang Z, Li X. Neuronal differentiation and functional maturation of neurons from neural stem cells induced by bFGF-chitosan controlled release system. Drug Deliv Transl Res 2023:10.1007/s13346-023-01322-x. [PMID: 36943630 DOI: 10.1007/s13346-023-01322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Available methods for differentiating stem cells into neurons require a large number of cytokines and neurotrophic factors, with complex steps and slow processes, and are inefficient to produce functional neurons and form synaptic contacts, which is expensive and impractical in clinical application. Here, we demonstrated a bioactive material, basic fibroblast growth factor (bFGF)-chitosan controlled release system, for facilitating neuronal differentiation from NSCs and the functional maturation of the induced neurons with high efficiency. We illustrated by immunostaining that the neurons derived from NSCs expressed mature immunomarkers of interneurons and excitatory neurons. And we found by patch-clamp that the induced neurons exhibited diverse electrophysiological properties as well as formed functional synapses. In vivo, we implanted bFGF-chitosan into lesion area in traumatic brain injury (TBI) mice and similarly observed abundance of neuroblasts in SVZ and the presence of newborn functional neurons in injury area, which integrated into synaptic networks. Taken together, our efficient and rapid tissue engineering approach may be a potential method for the generation of functional neuronal lineage cells from stem cells and a therapy of brain injury and disease.
Collapse
Affiliation(s)
- Tianyu Bai
- School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Hongmei Duan
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China
| | - Boya Zhang
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China
| | - Peng Hao
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China
| | - Wen Zhao
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China
| | - Yudan Gao
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China
| | - Zhaoyang Yang
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China.
| | - Xiaoguang Li
- School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
- Department of Neurobiology, Fengtai District, Capital Medical University, No. 10 Xitoutiao Strip, Beijing, 100069, People's Republic of China.
| |
Collapse
|
18
|
Evano B, Sarde L, Tajbakhsh S. Temporal static and dynamic imaging of skeletal muscle in vivo. Exp Cell Res 2023; 424:113484. [PMID: 36693490 DOI: 10.1016/j.yexcr.2023.113484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
A major challenge in the study of living systems is understanding how tissues and organs are established, maintained during homeostasis, reconstituted following injury or deteriorated during disease. Most of the studies that interrogate in vivo cell biological properties of cell populations within tissues are obtained through static imaging approaches. However, in vertebrates, little is known about which, when, and how extracellular and intracellular signals are dynamically integrated to regulate cell behaviour and fates, due largely to technical challenges. Intravital imaging of cellular dynamics in mammalian models has exposed surprising properties that have been missed by conventional static imaging approaches. Here we highlight some selected examples of intravital imaging in mouse intestinal stem cells, hematopoietic stem cells, hair follicle stem cells, and neural stem cells in the brain, each of which have distinct features from an anatomical and niche-architecture perspective. Intravital imaging of mouse skeletal muscles is comparatively less advanced due to several technical constraints that will be discussed, yet this approach holds great promise as a complementary investigative method to validate findings obtained by static imaging, as well as a method for discovery.
Collapse
Affiliation(s)
- Brendan Evano
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France
| | - Liza Sarde
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France; Sorbonne Université, Complexité Du Vivant, F-75005, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
19
|
Ohno Y, Nakajima C, Ajioka I, Muraoka T, Yaguchi A, Fujioka T, Akimoto S, Matsuo M, Lotfy A, Nakamura S, Herranz-Pérez V, García-Verdugo JM, Matsukawa N, Kaneko N, Sawamoto K. Amphiphilic peptide-tagged N-cadherin forms radial glial-like fibers that enhance neuronal migration in injured brain and promote sensorimotor recovery. Biomaterials 2023; 294:122003. [PMID: 36736095 DOI: 10.1016/j.biomaterials.2023.122003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/05/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
The mammalian brain has very limited ability to regenerate lost neurons and recover function after injury. Promoting the migration of young neurons (neuroblasts) derived from endogenous neural stem cells using biomaterials is a new and promising approach to aid recovery of the brain after injury. However, the delivery of sufficient neuroblasts to distant injured sites is a major challenge because of the limited number of scaffold cells that are available to guide neuroblast migration. To address this issue, we have developed an amphiphilic peptide [(RADA)3-(RADG)] (mRADA)-tagged N-cadherin extracellular domain (Ncad-mRADA), which can remain in mRADA hydrogels and be injected into deep brain tissue to facilitate neuroblast migration. Migrating neuroblasts directly contacted the fiber-like Ncad-mRADA hydrogel and efficiently migrated toward an injured site in the striatum, a deep brain area. Furthermore, application of Ncad-mRADA to neonatal cortical brain injury efficiently promoted neuronal regeneration and functional recovery. These results demonstrate that self-assembling Ncad-mRADA peptides mimic both the function and structure of endogenous scaffold cells and provide a novel strategy for regenerative therapy.
Collapse
Affiliation(s)
- Yuya Ohno
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan; Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Chikako Nakajima
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Itsuki Ajioka
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan
| | - Takahiro Muraoka
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan; Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Atsuya Yaguchi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Teppei Fujioka
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Saori Akimoto
- Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8510, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan
| | - Misaki Matsuo
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Sayuri Nakamura
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute, University of Valencia, CIBERNED, Valencia, 46980, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute, University of Valencia, CIBERNED, Valencia, 46980, Spain
| | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan; Laboratory of Neuronal Regeneration, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan.
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan; Division of Neural Development and Regeneration, National Institute of Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
20
|
Liu Y, Hong W, Gong P, Qi G, Wang X, Kang S, Tang H, Qin S. Specific knockout of Sox2 in astrocytes reduces reactive astrocyte formation and promotes recovery after early postnatal traumatic brain injury in mouse cortex. Glia 2023; 71:602-615. [PMID: 36353976 DOI: 10.1002/glia.24298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
In response to central nervous system (CNS) injury, astrocytes go through a series of alterations, referred to as reactive astrogliosis, ranging from changes in gene expression and cell hypertrophy to permanent astrocyte borders around stromal cell scars in CNS lesions. The mechanisms underlying injury-induced reactive astrocytes in the adult CNS have been extensively studied. However, little is known about injury-induced reactive astrocytes during early postnatal development. Astrocytes in the mouse cortex are mainly produced through local proliferation during the first 2 weeks after birth. Here we show that Sox2, a transcription factor critical for stem cells and brain development, is expressed in the early postnatal astrocytes and its expression level was increased in reactive astrocytes after traumatic brain injury (TBI) at postnatal day (P) 7 in the cortex. Using a tamoxifen-induced hGFAP-CreERT2; Sox2flox/flox ; Rosa-tdT mouse model, we found that specific knockout of Sox2 in astrocytes greatly inhibited the proliferation of reactive astrocytes, the formation of glia limitans borders and subsequently promoted the tissue recovery after postnatal TBI at P7 in the cortex. In addition, we found that injury-induced glia limitans borders were still formed at P2 in the wild-type mouse cortex, and knockout of Sox2 in astrocytes inhibited the reactivity of both astrocytes and microglia. Together, these findings provide evidence that Sox2 is essential for the reactivity of astrocytes in response to the cortical TBI during the early postnatal period and suggest that Sox2-dependent astrocyte reactivity is a potential target for therapeutic treatment after TBI.
Collapse
Affiliation(s)
- Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wentong Hong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoxuan Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Siying Kang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Han Tang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Glial Cell Modulation of Dendritic Spine Structure and Synaptic Function. ADVANCES IN NEUROBIOLOGY 2023; 34:255-310. [PMID: 37962798 DOI: 10.1007/978-3-031-36159-3_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glia comprise a heterogeneous group of cells involved in the structure and function of the central and peripheral nervous system. Glial cells are found from invertebrates to humans with morphological specializations related to the neural circuits in which they are embedded. Glial cells modulate neuronal functions, brain wiring and myelination, and information processing. For example, astrocytes send processes to the synaptic cleft, actively participate in the metabolism of neurotransmitters, and release gliotransmitters, whose multiple effects depend on the targeting cells. Human astrocytes are larger and more complex than their mice and rats counterparts. Astrocytes and microglia participate in the development and plasticity of neural circuits by modulating dendritic spines. Spines enhance neuronal connectivity, integrate most postsynaptic excitatory potentials, and balance the strength of each input. Not all central synapses are engulfed by astrocytic processes. When that relationship occurs, a different pattern for thin and large spines reflects an activity-dependent remodeling of motile astrocytic processes around presynaptic and postsynaptic elements. Microglia are equally relevant for synaptic processing, and both glial cells modulate the switch of neuroendocrine secretion and behavioral display needed for reproduction. In this chapter, we provide an overview of the structure, function, and plasticity of glial cells and relate them to synaptic maturation and modulation, also involving neurotrophic factors. Together, neurons and glia coordinate synaptic transmission in both normal and abnormal conditions. Neglected over decades, this exciting research field can unravel the complexity of species-specific neural cytoarchitecture as well as the dynamic region-specific functional interactions between diverse neurons and glial subtypes.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
22
|
Tsuboi Y, Ito A, Otsuka T, Murakami H, Sawada M, Sawamoto K. Habilitation Improves Mouse Gait Development Following Neonatal Brain Injury. Prog Rehabil Med 2022; 7:20220061. [PMID: 36479304 PMCID: PMC9706041 DOI: 10.2490/prm.20220061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/16/2022] [Indexed: 08/30/2023] Open
Abstract
OBJECTIVES Neonatal brain injury during gait development disrupts neural circuits and causes permanent gait dysfunction. Rehabilitation as an intervention to improve impaired gait function has been used in adults as a treatment for stroke and spinal cord injury. However, although neonates have greater neuroplasticity and regenerative capacity than adults, normal gait development and the effects of habilitation on gait function following neonatal brain injury are largely unknown. METHODS In this study, we generated cryogenic injury in mice at postnatal day 2 and subsequently performed habilitative training to promote autonomous limb movement for 4 weeks. We also quantitatively analyzed the gait acquisition process in developing mice using the Catwalk XT system. RESULTS Using quantitative gait analyses, we showed that during normal gait development in mice, stance phase function matures later than swing phase function. We also demonstrated that habilitation in which active limb movements were enhanced by suspending mice with a rubber band with no floor grounding promotes motor learning, including gait function, in mice with impaired acquisition of gait function resulting from neonatal brain injury. CONCLUSIONS Our findings provide a basis for research on gait development in mice and suggest new habilitation strategies for patients with impaired gait development caused by perinatal brain diseases such as hypoxic-ischemic encephalopathy and periventricular leukomalacia.
Collapse
Affiliation(s)
- Yoshiaki Tsuboi
- Department of Developmental and Regenerative Neurobiology,
Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences,
Nagoya, Japan
- Department of Orthopaedic Surgery, Nagoya City University
Graduate School of Medical Sciences, Nagoya, Japan
| | - Akira Ito
- Department of Developmental and Regenerative Neurobiology,
Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences,
Nagoya, Japan
| | - Takanobu Otsuka
- Department of Orthopaedic Surgery, Nagoya City University
Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Murakami
- Department of Orthopaedic Surgery, Nagoya City University
Graduate School of Medical Sciences, Nagoya, Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Neurobiology,
Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences,
Nagoya, Japan
- Division of Neural Development and Regeneration, National
Institute for Physiological Sciences, Okazaki, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology,
Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences,
Nagoya, Japan
- Division of Neural Development and Regeneration, National
Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
23
|
Miranda-Negrón Y, García-Arrarás JE. Radial glia and radial glia-like cells: Their role in neurogenesis and regeneration. Front Neurosci 2022; 16:1006037. [PMID: 36466166 PMCID: PMC9708897 DOI: 10.3389/fnins.2022.1006037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2024] Open
Abstract
Radial glia is a cell type traditionally associated with the developing nervous system, particularly with the formation of cortical layers in the mammalian brain. Nonetheless, some of these cells, or closely related types, called radial glia-like cells are found in adult central nervous system structures, functioning as neurogenic progenitors in normal homeostatic maintenance and in response to injury. The heterogeneity of radial glia-like cells is nowadays being probed with molecular tools, primarily by the expression of specific genes that define cell types. Similar markers have identified radial glia-like cells in the nervous system of non-vertebrate organisms. In this review, we focus on adult radial glia-like cells in neurogenic processes during homeostasis and in response to injury. We highlight our results using a non-vertebrate model system, the echinoderm Holothuria glaberrima where we have described a radial glia-like cell that plays a prominent role in the regeneration of the holothurian central nervous system.
Collapse
Affiliation(s)
| | - José E. García-Arrarás
- Department of Biology, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
24
|
de Thonel A, Ahlskog JK, Daupin K, Dubreuil V, Berthelet J, Chaput C, Pires G, Leonetti C, Abane R, Barris LC, Leray I, Aalto AL, Naceri S, Cordonnier M, Benasolo C, Sanial M, Duchateau A, Vihervaara A, Puustinen MC, Miozzo F, Fergelot P, Lebigot É, Verloes A, Gressens P, Lacombe D, Gobbo J, Garrido C, Westerheide SD, David L, Petitjean M, Taboureau O, Rodrigues-Lima F, Passemard S, Sabéran-Djoneidi D, Nguyen L, Lancaster M, Sistonen L, Mezger V. CBP-HSF2 structural and functional interplay in Rubinstein-Taybi neurodevelopmental disorder. Nat Commun 2022; 13:7002. [PMID: 36385105 PMCID: PMC9668993 DOI: 10.1038/s41467-022-34476-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology.
Collapse
Affiliation(s)
- Aurélie de Thonel
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France.
| | - Johanna K Ahlskog
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kevin Daupin
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Véronique Dubreuil
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Jérémy Berthelet
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Carole Chaput
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
- Ksilink, Strasbourg, France
| | - Geoffrey Pires
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Camille Leonetti
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Ryma Abane
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Lluís Cordón Barris
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Isabelle Leray
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000, Nantes, France
| | - Anna L Aalto
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sarah Naceri
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Marine Cordonnier
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Département d'Oncologie médicale, Centre Georges-François Leclerc, Dijon, France
| | - Carène Benasolo
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Matthieu Sanial
- CNRS, UMR 7592 Institut Jacques Monod, F-75205, Paris, France
| | - Agathe Duchateau
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Anniina Vihervaara
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael C Puustinen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Federico Miozzo
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
- Neuroscience Institute-CNR (IN-CNR), Milan, Italy
| | - Patricia Fergelot
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Élise Lebigot
- Service de Biochimie-pharmaco-toxicologie, Hôpital Bicêtre, Hopitaux Universitaires Paris-Sud, 94270 Le Kremlin Bicêtre, Paris-Sud, France
| | - Alain Verloes
- Université de Paris, INSERM, NeuroDiderot, Robert-Debré Hospital, F-75019, Paris, France
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Pierre Gressens
- Université de Paris, INSERM, NeuroDiderot, Robert-Debré Hospital, F-75019, Paris, France
| | - Didier Lacombe
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Jessica Gobbo
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Département d'Oncologie médicale, Centre Georges-François Leclerc, Dijon, France
| | - Carmen Garrido
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Département d'Oncologie médicale, Centre Georges-François Leclerc, Dijon, France
| | - Sandy D Westerheide
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| | - Laurent David
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000, Nantes, France
| | - Michel Petitjean
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Olivier Taboureau
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | | | - Sandrine Passemard
- Université de Paris, INSERM, NeuroDiderot, Robert-Debré Hospital, F-75019, Paris, France
| | | | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Madeline Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical, Campus, Cambridge, UK
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Valérie Mezger
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France.
| |
Collapse
|
25
|
Abstract
It is well established that humans and other mammals are minimally regenerative compared with organisms such as zebrafish, salamander or amphibians. In recent years, however, the identification of regenerative potential in neonatal mouse tissues that normally heal poorly in adults has transformed our understanding of regenerative capacity in mammals. In this Review, we survey the mammalian tissues for which regenerative or improved neonatal healing has been established, including the heart, cochlear hair cells, the brain and spinal cord, and dense connective tissues. We also highlight common and/or tissue-specific mechanisms of neonatal regeneration, which involve cells, signaling pathways, extracellular matrix, immune cells and other factors. The identification of such common features across neonatal tissues may direct therapeutic strategies that will be broadly applicable to multiple adult tissues.
Collapse
Affiliation(s)
| | - Alice H. Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
26
|
Abdi S, Javanmehr N, Ghasemi-Kasman M, Bali HY, Pirzadeh M. Stem Cell-based Therapeutic and Diagnostic Approaches in Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1093-1115. [PMID: 34970956 PMCID: PMC9886816 DOI: 10.2174/1570159x20666211231090659] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative impairment mainly recognized by memory loss and cognitive deficits. However, the current therapies against AD are mostly limited to palliative medications, prompting researchers to investigate more efficient therapeutic approaches for AD, such as stem cell therapy. Recent evidence has proposed that extensive neuronal and synaptic loss and altered adult neurogenesis, which is perceived pivotal in terms of plasticity and network maintenance, occurs early in the course of AD, which exacerbates neuronal vulnerability to AD. Thus, regeneration and replenishing the depleted neuronal networks by strengthening the endogenous repair mechanisms or exogenous stem cells and their cargoes is a rational therapeutic approach. Currently, several stem cell-based therapies as well as stem cell products like exosomes, have shown promising results in the early diagnosis of AD. OBJECTIVE This review begins with a comparison between AD and normal aging pathophysiology and a discussion on open questions in the field. Next, summarizing the current stem cell-based therapeutic and diagnostic approaches, we declare the advantages and disadvantages of each method. Also, we comprehensively evaluate the human clinical trials of stem cell therapies for AD. METHODOLOGY Peer-reviewed reports were extracted through Embase, PubMed, and Google Scholar until 2021. RESULTS With several ongoing clinical trials, stem cells and their derivatives (e.g., exosomes) are an emerging and encouraging field in diagnosing and treating neurodegenerative diseases. Although stem cell therapies have been successful in animal models, numerous clinical trials in AD patients have yielded unpromising results, which we will further discuss.
Collapse
Affiliation(s)
- Sadaf Abdi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran;,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran,Address correspondence to this author at the Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, P.O. Box 4136747176, Babol, Iran; Tel/Fax: +98-11-32190557; E-mail:
| | | | - Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
27
|
Ikeda-Yorifuji I, Tsujioka H, Sakata Y, Yamashita T. Single-nucleus RNA sequencing identified cells with ependymal cell-like features enriched in neonatal mice after spinal cord injury. Neurosci Res 2022; 181:22-38. [PMID: 35452717 DOI: 10.1016/j.neures.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
The adult mammalian central nervous system has limited regenerative ability, and spinal cord injury (SCI) often causes lifelong motor disability. While regeneration is limited in adults, injured spinal cord tissue can be regenerated and neural function can be almost completely restored in neonates. However, difference of cellular composition in lesion has not been well characterized. To gain insight into the age-dependent cellular reaction after SCI, we performed single-nucleus RNA sequencing, analyzing 4,076 nuclei from sham and injured spinal cords from adult and neonatal mice. Clustering analysis identified 18 cell populations. We identified previously undescribed cells with ependymal cell-like gene expression profile, the number of which was increased in neonates after SCI. Histological analysis revealed that these cells line the central canal under physiological conditions in both adults and neonates. We confirmed that they were enriched in the lesion only in neonates. We further showed that these cells were positive for the cellular markers of ependymal cells, astrocytes and radial glial cells. This study provides a deeper understanding of neonate-specific cellular responses after SCI, which may determine regenerative capacity.
Collapse
Affiliation(s)
- Iyo Ikeda-Yorifuji
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Tsujioka
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
28
|
Dou Y, Cui W, Yang X, Lin Y, Ma X, Cai X. Applications of tetrahedral DNA nanostructures in wound repair and tissue regeneration. BURNS & TRAUMA 2022; 10:tkac006. [PMID: 35280457 PMCID: PMC8912983 DOI: 10.1093/burnst/tkac006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Indexed: 02/05/2023]
Abstract
Tetrahedral DNA nanostructures (TDNs) are molecules with a pyramidal structure formed by folding four single strands of DNA based on the principle of base pairing. Although DNA has polyanionic properties, the special spatial structure of TDNs allows them to penetrate the cell membrane without the aid of transfection agents in a caveolin-dependent manner and enables them to participate in the regulation of cellular processes without obvious toxic side effects. Because of their stable spatial structure, TDNs resist the limitations imposed by nuclease activity and innate immune responses to DNA. In addition, TDNs have good editability and biocompatibility, giving them great advantages for biomedical applications. Previous studies have found that TDNs have a variety of biological properties, including promoting cell migration, proliferation and differentiation, as well as having anti-inflammatory, antioxidant, anti-infective and immune regulation capabilities. Moreover, we confirmed that TDNs can promote the regeneration and repair of skin, blood vessels, muscles and bone tissues. Based on these findings, we believe that TDNs have broad prospects for application in wound repair and regeneration. This article reviews recent progress in TDN research and its applications.
Collapse
Affiliation(s)
- Yikai Dou
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, 610064, China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiao Yang
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
29
|
Unique Astrocyte Cytoskeletal and Nuclear Morphology in a Three-Dimensional Tissue-Engineered Rostral Migratory Stream. NEUROGLIA (BASEL, SWITZERLAND) 2022; 3:41-60. [PMID: 36776937 PMCID: PMC9910099 DOI: 10.3390/neuroglia3010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neural precursor cells (NPCs) are generated in the subventricular zone (SVZ) and travel through the rostral migratory stream (RMS) to replace olfactory bulb interneurons in the brains of most adult mammals. Following brain injury, SVZ-derived NPCs can divert from the RMS and migrate toward injured brain regions but arrive in numbers too low to promote functional recovery without experimental intervention. Our lab has biofabricated a "living scaffold" that replicates the structural and functional features of the endogenous RMS. This tissue-engineered rostral migratory stream (TE-RMS) is a new regenerative medicine strategy designed to facilitate stable and sustained NPC delivery into neuron-deficient brain regions following brain injury or neurodegenerative disease and an in vitro tool to investigate the mechanisms of neuronal migration and cell-cell communication. We have previously shown that the TE-RMS replicates the basic structure and protein expression of the endogenous RMS and can direct immature neuronal migration in vitro and in vivo. Here, we further describe profound morphological changes that occur following precise physical manipulation and subsequent self-assembly of astrocytes into the TE-RMS, including significant cytoskeletal rearrangement and nuclear elongation. The unique cytoskeletal and nuclear architecture of TE-RMS astrocytes mimics astrocytes in the endogenous rat RMS. Advanced imaging techniques reveal the unique morphology of TE-RMS cells that has yet to be described of astrocytes in vitro. The TE-RMS offers a novel platform to elucidate astrocyte cytoskeletal and nuclear dynamics and their relationship to cell behavior and function.
Collapse
|
30
|
Chai Y, Zhao H, Yang S, Gao X, Cao Z, Lu J, Sun Q, Liu W, Zhang Z, Yang J, Wang X, Chen T, Kong X, Mikos AG, Zhang X, Zhang Y, Wang X. Structural alignment guides oriented migration and differentiation of endogenous neural stem cells for neurogenesis in brain injury treatment. Biomaterials 2021; 280:121310. [PMID: 34890972 DOI: 10.1016/j.biomaterials.2021.121310] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 02/04/2023]
Abstract
Radial glia (RG) cells that align in parallel in the embryonic brain are found to be able to guide the directed migration of neurons in response to brain injury. Therefore, biomaterials with aligned architectures are supposed to have positive effects on neural migration and neurogenic differentiation for brain injury repair that are rarely addressed, although they have been widely demonstrated in spinal cord and peripheral nerve system. Here, we present a highly biomimetic scaffold of aligned fibrin hydrogel (AFG) that mimics the oriented structure of RG fibers. Through a combination of histological, behavioral, imaging, and transcriptomic analyses, we demonstrated that transplanting the AFG scaffold into injured cortical brains promotes effective migration, differentiation, and maturation of endogenous neural stem cells, resulting in neurological functional recovery. Therefore, this study will light up a new perspective on applying an aligned scaffold to promote cortical regeneration after injury by inducing endogenous neurogenesis.
Collapse
Affiliation(s)
- Yi Chai
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China; Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China; Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160, Pujian Road, District Pudong, Shanghai, 200127, China
| | - He Zhao
- Department of orthopacdic III, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaohan Gao
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China
| | - Zheng Cao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiaju Lu
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qingling Sun
- Department of orthopacdic III, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Wei Liu
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Hebei, 050000, China
| | - Zhe Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Junyi Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xuelin Wang
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| | - Tuoyu Chen
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China
| | - Xiangdong Kong
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160, Pujian Road, District Pudong, Shanghai, 200127, China
| | - Yuqi Zhang
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China.
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
31
|
Frondelli MJ, Mather ML, Levison SW. Oligodendrocyte progenitor proliferation is disinhibited following traumatic brain injury in leukemia inhibitory factor heterozygous mice. J Neurosci Res 2021; 100:578-597. [PMID: 34811802 DOI: 10.1002/jnr.24984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury (TBI) is a significant problem that affects over 800,000 children each year. As cell proliferation is disturbed by injury and required for normal brain development, we investigated how a pediatric closed head injury (CHI) would affect the progenitors of the subventricular zone (SVZ). Additionally, we evaluated the contribution of leukemia inhibitory factor (LIF) using germline LIF heterozygous mice (LIF Het), as LIF is an injury-induced cytokine, known to influence neurogenesis and gliogenesis. CHIs were performed on P20 LIF Het and wild-type (WT) mice. Ki-67 immunostaining and stereology revealed that cell proliferation increased ~250% in injured LIF Het mice compared to the 30% increase observed in injured WT mice at 48-hr post-CHI. OLIG2+ cell proliferation increased in the SVZ and white matter of LIF Het injured mice at 48-hr recovery. Using an 8-color flow cytometry panel, the proliferation of three distinct multipotential progenitors and early oligodendrocyte progenitor cell proliferation was significantly increased in LIF Het injured mice compared to WT injured mice. Supporting its cytostatic function, LIF decreased neurosphere progenitor and oligodendrocyte progenitor cell proliferation compared to controls. In highly enriched mouse oligodendrocyte progenitor cell cultures, LIF increased phospho-protein kinase B after 20 min and increased phospho-S6 ribosomal protein at 20 and 40 min of exposure, which are downstream targets of the mammalian target of rapamycin pathway. Altogether, our data provide new insights into the regulatory role of LIF in suppressing neural progenitor cell proliferation and, in particular, oligodendrocyte progenitor cell proliferation after a mild TBI.
Collapse
Affiliation(s)
- Michelle J Frondelli
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Marie L Mather
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Steven W Levison
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
32
|
Induced Neural Cells from Human Dental Pulp Ameliorate Functional Recovery in a Murine Model of Cerebral Infarction. Stem Cell Rev Rep 2021; 18:595-608. [PMID: 34453695 DOI: 10.1007/s12015-021-10223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Human mesenchymal stem cells are a promising cell source for the treatment of stroke. Their primary mechanism of action occurs via neuroprotective effects by trophic factors, anti-inflammatory effects, and immunomodulation. However, the regeneration of damaged neuronal networks by cell transplantation remains challenging. We hypothesized that cells induced to neural lineages would fit the niche, replace the lesion, and be more effective in improving symptoms compared with stem cells themselves. We investigated the characteristics of induced neural cells from human dental pulp tissue and compared the transplantation effects between these induced neural cells and uninduced dental pulp stem cells. Induced neural cells or dental pulp stem cells were intracerebrally transplanted 5 days after cerebral infarction induced by permanent middle cerebral artery occlusion in immunodeficient mice. Effects on functional recovery were also assessed through behavior testing. We used immunohistochemistry and neuron tracing to analyze the differentiation, axonal extension, and connectivity of transplanted cells to the host's neural circuit. Transplantation of induced neural cells from human dental pulp ameliorated functional recovery after cerebral infarction compared with dental pulp stem cells. The induced neural cells comprised both neurons and glia and expressed functional voltage, and they were more related to neurogenesis in terms of transcriptomics. Induced neural cells had a higher viability than did dental pulp stem cells in hypoxic culture. We showed that induced neural cells from dental pulp tissue offer a novel therapeutic approach for recovery after cerebral infarction.
Collapse
|
33
|
An implantable human stem cell-derived tissue-engineered rostral migratory stream for directed neuronal replacement. Commun Biol 2021; 4:879. [PMID: 34267315 PMCID: PMC8282659 DOI: 10.1038/s42003-021-02392-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
The rostral migratory stream (RMS) facilitates neuroblast migration from the subventricular zone to the olfactory bulb throughout adulthood. Brain lesions attract neuroblast migration out of the RMS, but resultant regeneration is insufficient. Increasing neuroblast migration into lesions has improved recovery in rodent studies. We previously developed techniques for fabricating an astrocyte-based Tissue-Engineered RMS (TE-RMS) intended to redirect endogenous neuroblasts into distal brain lesions for sustained neuronal replacement. Here, we demonstrate that astrocyte-like-cells can be derived from adult human gingiva mesenchymal stem cells and used for TE-RMS fabrication. We report that key proteins enriched in the RMS are enriched in TE-RMSs. Furthermore, the human TE-RMS facilitates directed migration of immature neurons in vitro. Finally, human TE-RMSs implanted in athymic rat brains redirect migration of neuroblasts out of the endogenous RMS. By emulating the brain’s most efficient means for directing neuroblast migration, the TE-RMS offers a promising new approach to neuroregenerative medicine. O’Donnell et al. describe their Tissue-Engineered Rostral Migratory Stream (TE-RMS) comprised of human astrocyte-like cells that can be derived from adult gingival stem cells within one week, which reorganizes into bundles of bidirectional, longitudinally-aligned astrocytes to emulate the endogenous RMS. Establishing immature neuronal migration in vitro and in vivo, their study demonstrates surgical feasibility and proof-of-concept evidence for this nascent technology.
Collapse
|
34
|
Sachana M, Willett C, Pistollato F, Bal-Price A. The potential of mechanistic information organised within the AOP framework to increase regulatory uptake of the developmental neurotoxicity (DNT) in vitro battery of assays. Reprod Toxicol 2021; 103:159-170. [PMID: 34147625 PMCID: PMC8279093 DOI: 10.1016/j.reprotox.2021.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022]
Abstract
Current in vivo DNT testing for regulatory purposes is not effective. In vitro assays anchored to key neurodevelopmental processes are available. Development of Adverse Outcome Pathways is required to increase mechanistic understanding of DNT effects. DNT Integrated Approaches to Testing and Assessment for various regulatory purposes should be developed. The OECD Guidance Document on use of in vitro DNT battery of assays is currently under development.
A major challenge in regulatory developmental neurotoxicity (DNT) assessment is lack of toxicological information for many compounds. Therefore, the Test Guidelines programme of the Organisation for Economic Cooperation and Development (OECD) took the initiative to coordinate an international collaboration between diverse stakeholders to consider integration of alternative approaches towards improving the current chemical DNT testing. During the past few years, a series of workshops was organized during which a consensus was reached that incorporation of a DNT testing battery that relies on in vitro assays anchored to key neurodevelopmental processes should be developed. These key developmental processes include neural progenitor cell proliferation, neuronal and oligodendrocyte differentiation, neural cell migration, neurite outgrowth, synaptogenesis and neuronal network formation, as well key events identified in the existing Adverse Outcome Pathways (AOPs). AOPs deliver mechanistic information on the causal links between molecular initiating event, intermediate key events and an adverse outcome of regulatory concern, providing the biological context to facilitate development of Integrated Approaches to Testing and Assessment (IATA) for various regulatory purposes. Developing IATA case studies, using mechanistic information derived from AOPs, is expected to increase scientific confidence for the use of in vitro methods within an IATA, thereby facilitating regulatory uptake. This manuscript summarizes the current state of international efforts to enhance DNT testing by using an in vitro battery of assays focusing on the role of AOPs in informing the development of IATA for different regulatory purposes, aiming to deliver an OECD guidance document on use of in vitro DNT battery of assays that include in vitro data interpretation.
Collapse
Affiliation(s)
- Magdalini Sachana
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-Operation and Development (OECD), 75775, Paris Cedex 16, France
| | - Catherine Willett
- Humane Society International, 1255 23rd Street NW, Washington, DC, 20037, USA
| | | | - Anna Bal-Price
- European Commission Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
35
|
Sokpor G, Kerimoglu C, Nguyen H, Pham L, Rosenbusch J, Wagener R, Nguyen HP, Fischer A, Staiger JF, Tuoc T. Loss of BAF Complex in Developing Cortex Perturbs Radial Neuronal Migration in a WNT Signaling-Dependent Manner. Front Mol Neurosci 2021; 14:687581. [PMID: 34220450 PMCID: PMC8243374 DOI: 10.3389/fnmol.2021.687581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
Radial neuronal migration is a key neurodevelopmental event indispensable for proper cortical laminar organization. Cortical neurons mainly use glial fiber guides, cell adhesion dynamics, and cytoskeletal remodeling, among other discrete processes, to radially trek from their birthplace to final layer positions. Dysregulated radial migration can engender cortical mis-lamination, leading to neurodevelopmental disorders. Epigenetic factors, including chromatin remodelers have emerged as formidable regulators of corticogenesis. Notably, the chromatin remodeler BAF complex has been shown to regulate several aspects of cortical histogenesis. Nonetheless, our understanding of how BAF complex regulates neuronal migration is limited. Here, we report that BAF complex is required for neuron migration during cortical development. Ablation of BAF complex in the developing mouse cortex caused alteration in the cortical gene expression program, leading to loss of radial migration-related factors critical for proper cortical layer formation. Of note, BAF complex inactivation in cortex caused defective neuronal polarization resulting in diminished multipolar-to-bipolar transition and eventual disruption of radial migration of cortical neurons. The abnormal radial migration and cortical mis-lamination can be partly rescued by downregulating WNT signaling hyperactivity in the BAF complex mutant cortex. By implication, the BAF complex modulates WNT signaling to establish the gene expression program required for glial fiber-dependent neuronal migration, and cortical lamination. Overall, BAF complex has been identified to be crucial for cortical morphogenesis through instructing multiple aspects of radial neuronal migration in a WNT signaling-dependent manner.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Cemil Kerimoglu
- German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Huong Nguyen
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Linh Pham
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany
| | - Robin Wagener
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Neurology, University Medical Center Heidelberg, Heidelberg, Germany.,Neurooncology Clinical Cooperation Unit, German Cancer Research Center, Heidelberg, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany.,Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| |
Collapse
|
36
|
Li Y, Zhang LN, Chong L, Liu Y, Xi FY, Zhang H, Duan XL. Prenatal ethanol exposure impairs the formation of radial glial fibers and promotes the transformation of GFAPδ‑positive radial glial cells into astrocytes. Mol Med Rep 2021; 23:274. [PMID: 33576465 PMCID: PMC7893684 DOI: 10.3892/mmr.2021.11913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
During embryonic cortical development, radial glial cells (RGCs) are the major source of neurons, and these also serve as a supportive scaffold to guide neuronal migration. Similar to Vimentin, glial fibrillary acidic protein (GFAP) is one of the major intermediate filament proteins present in glial cells. Previous studies confirmed that prenatal ethanol exposure (PEE) significantly affected the levels of GFAP and increased the disassembly of radial glial fibers. GFAPδ is a variant of GFAP that is specifically expressed in RGCs; however, to the best of our knowledge, there are no reports regarding how PEE influences its expression during cortical development. In the present study, the effects of PEE on the expression and distribution of GFAPδ during early cortical development were assessed. It was found that PEE significantly decreased the expression levels of GFAP and GFAPδ. Using double immunostaining, GFAPδ was identified to be specifically expressed in apical and basal RGCs, and was co‑localized with other intermediate filament proteins, such as GFAP, Nestin and Vimentin. Additionally, PEE significantly affected the morphology of radial glial fibers and altered the behavior of RGCs. The loss of GFAPδ accelerated the transformation of RGCs into astrocytes. Using co‑immunostaining with Ki67 or phospho‑histone H3, GFAPδ+ cells were observed to be proliferative or mitotic cells, and ethanol treatment significantly decreased the proliferative or mitotic activities of GFAPδ+ RGCs. Taken together, the results suggested that PEE altered the expression patterns of GFAPδ and impaired the development of radial glial fibers and RGC behavior. The results of the present study provided evidence that GFAPδ may be a promising target to rescue the damage induced by PEE.
Collapse
Affiliation(s)
- Yu Li
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
- Shaanxi Center for Models of Clinical Medicine in International Cooperation of Science and Technology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Li-Na Zhang
- The Third Department of Neurology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Li Chong
- The Third Department of Neurology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Yue Liu
- The Third Department of Neurology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Feng-Yu Xi
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Hong Zhang
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Xiang-Long Duan
- Shaanxi Center for Models of Clinical Medicine in International Cooperation of Science and Technology, Shaanxi Provincial People's Hospital and The Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
37
|
Jinnou H. Regeneration using endogenous neural stem cells following neonatal brain injury. Pediatr Int 2021; 63:13-21. [PMID: 32609915 DOI: 10.1111/ped.14368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/29/2020] [Accepted: 06/25/2020] [Indexed: 01/25/2023]
Abstract
Despite recent advancements in perinatal care, the incidence of neonatal brain injury has not decreased. No therapies are currently available to repair injured brain tissues. In the postnatal brain, neural stem cells reside in the ventricular-subventricular zone (V-SVZ) and continuously generate new immature neurons (neuroblasts). After brain injury in rodents, V-SVZ-derived neuroblasts migrate toward the injured area using blood vessels as a scaffold. Notably, the neonatal V-SVZ has a remarkable neurogenic capacity. Furthermore, compared with the adult brain, after neonatal brain injury, larger numbers of neuroblasts migrate toward the lesion, raising the possibility that the V-SVZ could be a source for endogenous neuronal regeneration after neonatal brain injury. We recently demonstrated that efficient migration of V-SVZ-derived neuroblasts toward a lesion is supported by neonatal radial glia via neural cadherin (N-cadherin)-mediated neuron-fiber contact, which promotes RhoA activity. Moreover, providing blood vessel- and radial glia-mimetic scaffolds for migrating neuroblasts promotes neuronal migration and improves functional gait behaviors after neonatal brain injury. In the V-SVZ, oligodendrocyte progenitor cells (OPCs) are also generated and migrate toward the surrounding white matter, where they differentiate and form myelin. After white matter injury in rodents, the production and subsequent migration of V-SVZ-derived OPCs are enhanced. In the neonatal period, administration of growth factors at a specific time promotes oligodendrocyte regeneration and functional recovery after brain injury. These findings suggest that activating the high regenerative capacity that is specific to the neonatal period could lead to the development of new therapeutic strategies for neonatal brain injury.
Collapse
Affiliation(s)
- Hideo Jinnou
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
38
|
Uchiyama A. A window of hope: Cell therapy using neural stem cells for neonatal brain injury. Pediatr Int 2021; 63:3-4. [PMID: 33486872 DOI: 10.1111/ped.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Atsushi Uchiyama
- Department of Pediatrics, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
39
|
Neurogenesis of medium spiny neurons in the nucleus accumbens continues into adulthood and is enhanced by pathological pain. Mol Psychiatry 2021; 26:4616-4632. [PMID: 32612250 PMCID: PMC8589654 DOI: 10.1038/s41380-020-0823-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
In mammals, most adult neural stem cells (NSCs) are located in the ventricular-subventricular zone (V-SVZ) along the wall of the lateral ventricles and they are the source of olfactory bulb interneurons. Adult NSCs exhibit an apico-basal polarity; they harbor a short apical process and a long basal process, reminiscent of radial glia morphology. In the adult mouse brain, we detected extremely long radial glia-like fibers that originate from the anterior-ventral V-SVZ and that are directed to the ventral striatum. Interestingly, a fraction of adult V-SVZ-derived neuroblasts dispersed in close association with the radial glia-like fibers in the nucleus accumbens (NAc). Using several in vivo mouse models, we show that newborn neurons integrate into preexisting circuits in the NAc where they mature as medium spiny neurons (MSNs), i.e., a type of projection neurons formerly believed to be generated only during embryonic development. Moreover, we found that the number of newborn neurons in the NAc is dynamically regulated by persistent pain, suggesting that adult neurogenesis of MSNs is an experience-modulated process.
Collapse
|
40
|
Kaczmarek P, Rupik W. Structural and ultrastructural studies on the developing vomeronasal sensory epithelium in the grass snake Natrix natrix (Squamata: Colubroidea). J Morphol 2020; 282:378-407. [PMID: 33340145 DOI: 10.1002/jmor.21311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022]
Abstract
The sensory olfactory epithelium and the vomeronasal sensory epithelium (VSE) are characterized by continuous turnover of the receptor cells during postnatal life and are capable of regeneration after injury. The VSE, like the entire vomeronasal organ, is generally well developed in squamates and is crucial for detection of pheromones and prey odors. Despite the numerous studies on embryonic development of the VSE in squamates, especially in snakes, an ultrastructural analysis, as far as we know, has never been performed. Therefore, we investigated the embryology of the VSE of the grass snake (Natrix natrix) using electron microscopy (SEM and TEM) and light microscopy. As was shown for adult snakes, the hypertrophied ophidian VSE may provide great resolution of changes in neuron morphology located at various epithelial levels. The results of this study suggest that different populations of stem/progenitor cells occur at the base of the ophidian VSE during embryonic development. One of them may be radial glia-like cells, described previously in mouse. The various structure and ultrastructure of neurons located at different parts of the VSE provide evidence for neuronal maturation and aging. Based on these results, a few nonmutually exclusive hypotheses explaining the formation of the peculiar columnar organization of the VSE in snakes were proposed.
Collapse
Affiliation(s)
- Paweł Kaczmarek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Weronika Rupik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
41
|
Sawada M, Matsumoto M, Narita K, Kumamoto N, Ugawa S, Takeda S, Sawamoto K. In vitro Time-lapse Imaging of Primary Cilium in Migrating Neuroblasts. Bio Protoc 2020; 10:e3823. [PMID: 33659475 DOI: 10.21769/bioprotoc.3823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 01/03/2023] Open
Abstract
Neuronal migration is a critical step for the development of neuronal circuits in the brain. Immature new neurons (neuroblasts) generated in the postnatal ventricular-subventricular zone (V-SVZ) show a remarkable potential to migrate for a long distance at a high speed in the postnatal mammalian brain, and are thus a powerful model to analyze the molecular and cellular mechanisms of neuronal migration. Here we describe a methodology for in vitro time-lapse imaging of the primary cilium and its related structures in migrating V-SVZ-derived neuroblasts using confocal or superresolution laser-scanning microscopy. The V-SVZ tissues are dissected from postnatal day 0-1 (P0-1) mouse brains and dissociated into single cells by trypsinization and gentle pipetting. These cells are then transduced with a plasmid(s) encoding a gene(s) of interest, aggregated by centrifugation, and cultured for 2 days in Matrigel. Time-lapse images of migratory behaviors of cultured neuroblasts and their ciliary structures, including the ciliary membrane and basal body, are acquired by confocal or superresolution laser-scanning microscopy. This method provides information about the spatiotemporal dynamics of neuroblasts' morphology and ciliary structures, and is widely applicable to various types of migrating neuronal and nonneuronal cells in various species.
Collapse
Affiliation(s)
- Masato Sawada
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Mami Matsumoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Keishi Narita
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Natsuko Kumamoto
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| |
Collapse
|
42
|
Pinheiro T, Mayor I, Edwards S, Joven A, Kantzer CG, Kirkham M, Simon A. CUBIC-f: An optimized clearing method for cell tracing and evaluation of neurite density in the salamander brain. J Neurosci Methods 2020; 348:109002. [PMID: 33217411 DOI: 10.1016/j.jneumeth.2020.109002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although tissue clearing and subsequent whole-brain imaging is now possible, standard protocols need to be adjusted to the innate properties of each specific tissue for optimal results. This work modifies exiting protocols to clear fragile brain samples and documents a downstream pipeline for image processing and data analysis. NEW METHOD We developed a clearing protocol, CUBIC-f, which we optimized for fragile samples, such as the salamander brain. We modified hydrophilic and aqueous' tissue-clearing methods based on Advanced CUBIC by incorporating Omnipaque 350 for refractive index matching. RESULTS By combining CUBIC-f, light sheet microscopy and bioinformatic pipelines, we quantified neuronal cell density, traced genetically marked fluorescent cells over long distance, and performed high resolution characterization of neural progenitor cells in the salamander brain. We also found that CUBIC-f is suitable for conserving tissue integrity in embryonic mouse brains. COMPARISON WITH EXITING METHODS CUBIC-f shortens clearing and staining times, and requires less reagent use than Advanced CUBIC and Advanced CLARITY. CONCLUSION CUBIC-f is suitable for conserving tissue integrity in embryonic mouse brains, larval and adult salamander brains which display considerable deformation using traditional CUBIC and CLARITY protocols.
Collapse
Affiliation(s)
- Tiago Pinheiro
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ivy Mayor
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Steven Edwards
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Alberto Joven
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christina G Kantzer
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Kirkham
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Shibata-Seki T, Nagaoka M, Goto M, Kobatake E, Akaike T. Direct visualization of the extracellular binding structure of E-cadherins in liquid. Sci Rep 2020; 10:17044. [PMID: 33046720 PMCID: PMC7552386 DOI: 10.1038/s41598-020-72517-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
E-cadherin is a key Ca-dependent cell adhesion molecule, which is expressed on many cell surfaces and involved in cell morphogenesis, embryonic development, EMT, etc. The fusion protein E-cad-Fc consists of the extracellular domain of E-cadherin and the IgG Fc domain. On plates coated with this chimeric protein, ES/iPS cells are cultivated particularly well and induced to differentiate. The cells adhere to the plate via E-cad-Fc in the presence of Ca2+ and detach by a chelating agent. For the purpose of clarifying the structures of E-cad-Fc in the presence and absence of Ca2+, we analyzed the molecular structure of E-cad-Fc by AFM in liquid. Our AFM observations revealed a rod-like structure of the entire extracellular domain of E-cad-Fc in the presence of Ca2+ as well as trans-binding of E-cad-Fc with adjacent molecules, which may be the first, direct confirmation of trans-dimerization of E-cadherin. The observed structures were in good agreement with an X-ray crystallographic model. Furthermore, we succeeded in visualizing the changes in the rod-like structure of the EC domains with and without calcium. The biomatrix surface plays an important role in cell culture, so the analysis of its structure and function may help promote cell engineering based on cell recognition.
Collapse
Affiliation(s)
- Teiko Shibata-Seki
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16 Kasuga, 3-chome, Tsukuba, Ibaraki, 305-0821, Japan
| | - Masato Nagaoka
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16 Kasuga, 3-chome, Tsukuba, Ibaraki, 305-0821, Japan
| | - Mitsuaki Goto
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16 Kasuga, 3-chome, Tsukuba, Ibaraki, 305-0821, Japan.
| | - Eiry Kobatake
- School of Life Science and Technology, Tokyo Institute of Technology, G1-13, 4259, Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Toshihiro Akaike
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16 Kasuga, 3-chome, Tsukuba, Ibaraki, 305-0821, Japan
| |
Collapse
|
44
|
Nakajima C, Sawada M, Sawamoto K. Postnatal neuronal migration in health and disease. Curr Opin Neurobiol 2020; 66:1-9. [PMID: 32717548 DOI: 10.1016/j.conb.2020.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
Postnatal neuronal migration modulates neuronal circuit formation and function throughout life and is conserved among species. Pathological conditions activate the generation of neuroblasts in the ventricular-subventricular zone (V-SVZ) and promote their migration towards a lesion. However, the neuroblasts generally terminate their migration before reaching the lesion site unless their intrinsic capacity is modified or the environment is improved. It is important to understand which factors impede neuronal migration for functional recovery of the brain. We highlight similarities and differences in the mechanisms of neuroblast migration under physiological and pathological conditions to provide novel insights into endogenous neuronal regeneration.
Collapse
Affiliation(s)
- Chikako Nakajima
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.
| |
Collapse
|
45
|
Chang GQ, Karatayev O, Boorgu DSSK, Leibowitz SF. CCL2/CCR2 system in neuroepithelial radial glia progenitor cells: involvement in stimulatory, sexually dimorphic effects of maternal ethanol on embryonic development of hypothalamic peptide neurons. J Neuroinflammation 2020; 17:207. [PMID: 32650794 PMCID: PMC7353676 DOI: 10.1186/s12974-020-01875-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/16/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Clinical and animal studies show that alcohol consumption during pregnancy produces lasting behavioral disturbances in offspring, including increased alcohol drinking, which are linked to inflammation in the brain and disturbances in neurochemical systems that promote these behaviors. These include the neuropeptide, melanin-concentrating hormone (MCH), which is mostly expressed in the lateral hypothalamus (LH). Maternal ethanol administration at low-to-moderate doses, while stimulating MCH neurons without affecting apoptosis or gliogenesis, increases in LH the density of neurons expressing the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 and their colocalization with MCH. These neural effects associated with behavioral changes are reproduced by maternal CCL2 administration, reversed by a CCR2 antagonist, and consistently stronger in females than males. The present study investigates in the embryo the developmental origins of this CCL2/CCR2-mediated stimulatory effect of maternal ethanol exposure on MCH neurons. METHODS Pregnant rats from embryonic day 10 (E10) to E15 during peak neurogenesis were orally administered ethanol at a moderate dose (2 g/kg/day) or peripherally injected with CCL2 or CCR2 antagonist to test this neuroimmune system's role in ethanol's actions. Using real-time quantitative PCR, immunofluorescence histochemistry, in situ hybridization, and confocal microscopy, we examined in embryos at E19 the CCL2/CCR2 system and MCH neurons in relation to radial glia progenitor cells in the hypothalamic neuroepithelium where neurons are born and radial glia processes projecting laterally through the medial hypothalamus that provide scaffolds for neuronal migration into LH. RESULTS We demonstrate that maternal ethanol increases radial glia cell density and their processes while stimulating the CCL2/CCR2 system and these effects are mimicked by maternal administration of CCL2 and blocked by a CCR2 antagonist. While stimulating CCL2 colocalization with radial glia and neurons but not microglia, ethanol increases MCH neuronal number near radial glia cells and making contact along their processes projecting into LH. Further tests identify the CCL2/CCR2 system in NEP as a primary source of ethanol's sexually dimorphic actions. CONCLUSIONS These findings provide new evidence for how an inflammatory chemokine pathway functions within neuroprogenitor cells to mediate ethanol's long-lasting, stimulatory effects on peptide neurons linked to adolescent drinking behavior.
Collapse
Affiliation(s)
- Guo-Qing Chang
- The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Olga Karatayev
- The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | | | | |
Collapse
|
46
|
Akter M, Kaneko N, Sawamoto K. Neurogenesis and neuronal migration in the postnatal ventricular-subventricular zone: Similarities and dissimilarities between rodents and primates. Neurosci Res 2020; 167:64-69. [PMID: 32553727 DOI: 10.1016/j.neures.2020.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
The ventricular-subventricular zone (V-SVZ) is located in the walls of the lateral ventricles and produces new neurons in the postnatal brain of mammals, including humans. Immature new neurons called "neuroblasts" generated by neural stem cells in the V-SVZ migrate toward their final destinations and contribute to brain development and plasticity. In this review, we describe recent progress in understanding the similarities and dissimilarities in postnatal neurogenesis and neuronal migration between rodents and primates. In rodents, most new V-SVZ-derived neurons migrate along the rostral migratory stream towards the olfactory bulb, where they differentiate into interneurons. In contrast, in humans, the extensive migration of new neurons towards the neocortex continues for several months after birth and might be involved in the development of the expanded neocortex. The mode of migration and the fate of neuroblasts seem to change depending on their environment, destination, and roles in the brain. A better understanding of these similarities and differences between rodents and primates will help translate important findings from animal models and may contribute to the development of clinical strategies for brain repair.
Collapse
Affiliation(s)
- Mariyam Akter
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan; Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
47
|
Liu W, Xu B, Xue W, Yang B, Fan Y, Chen B, Xiao Z, Xue X, Sun Z, Shu M, Zhang Q, Shi Y, Zhao Y, Dai J. A functional scaffold to promote the migration and neuronal differentiation of neural stem/progenitor cells for spinal cord injury repair. Biomaterials 2020; 243:119941. [DOI: 10.1016/j.biomaterials.2020.119941] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
|
48
|
Shin JE, Lee H, Jung K, Kim M, Hwang K, Han J, Lim J, Kim IS, Lim KI, Park KI. Cellular Response of Ventricular-Subventricular Neural Progenitor/Stem Cells to Neonatal Hypoxic-Ischemic Brain Injury and Their Enhanced Neurogenesis. Yonsei Med J 2020; 61:492-505. [PMID: 32469173 PMCID: PMC7256006 DOI: 10.3349/ymj.2020.61.6.492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To elucidate the brain's intrinsic response to injury, we tracked the response of neural stem/progenitor cells (NSPCs) located in ventricular-subventricular zone (V-SVZ) to hypoxic-ischemic brain injury (HI). We also evaluated whether transduction of V-SVZ NSPCs with neurogenic factor NeuroD1 could enhance their neurogenesis in HI. MATERIALS AND METHODS Unilateral HI was induced in ICR neonatal mice. To label proliferative V-SVZ NSPCs in response to HI, bromodeoxyuridine (BrdU) and retroviral particles encoding LacZ or NeuroD1/GFP were injected. The cellular responses of NSPCs were analyzed by immunohistochemistry. RESULTS Unilateral HI increased the number of BrdU+ newly-born cells in the V-SVZ ipsilateral to the lesion while injury reduced the number of newly-born cells reaching the ipsilateral olfactory bulb, which is the programmed destination of migratory V-SVZ NSPCs in the intact brain. These newly-born cells were directed from this pathway towards the lesions. HI significantly increased the number of newly-born cells in the cortex and striatum by the altered migration of V-SVZ cells. Many of these newly-born cells differentiated into active neurons and glia. LacZ-expressing V-SVZ NSPCs also showed extensive migration towards the non-neurogenic regions ipsilateral to the lesion, and expressed the neuronal marker NeuN. NeuroD1+/GFP+ V-SVZ NSPCs almost differentiated into neurons in the peri-infarct regions. CONCLUSION HI promotes the establishment of a substantial number of new neurons in non-neurogenic regions, suggesting intrinsic repair mechanisms of the brain, by controlling the behavior of endogenous NSPCs. The activation of NeuroD1 expression may improve the therapeutic potential of endogenous NSPCs by increasing their neuronal differentiation in HI.
Collapse
Affiliation(s)
- Jeong Eun Shin
- Division of Neonatology, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Haejin Lee
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kwangsoo Jung
- Division of Neonatology, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Miri Kim
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyujin Hwang
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jungho Han
- Division of Neonatology, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Joohee Lim
- Division of Neonatology, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Il Sun Kim
- Division of Neonatology, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Kook In Park
- Division of Neonatology, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
49
|
Purvis EM, O'Donnell JC, Chen HI, Cullen DK. Tissue Engineering and Biomaterial Strategies to Elicit Endogenous Neuronal Replacement in the Brain. Front Neurol 2020; 11:344. [PMID: 32411087 PMCID: PMC7199479 DOI: 10.3389/fneur.2020.00344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Neurogenesis in the postnatal mammalian brain is known to occur in the dentate gyrus of the hippocampus and the subventricular zone. These neurogenic niches serve as endogenous sources of neural precursor cells that could potentially replace neurons that have been lost or damaged throughout the brain. As an example, manipulation of the subventricular zone to augment neurogenesis has become a popular strategy for attempting to replace neurons that have been lost due to acute brain injury or neurodegenerative disease. In this review article, we describe current experimental strategies to enhance the regenerative potential of endogenous neural precursor cell sources by enhancing cell proliferation in neurogenic regions and/or redirecting migration, including pharmacological, biomaterial, and tissue engineering strategies. In particular, we discuss a novel replacement strategy based on exogenously biofabricated "living scaffolds" that could enhance and redirect endogenous neuroblast migration from the subventricular zone to specified regions throughout the brain. This approach utilizes the first implantable, biomimetic tissue-engineered rostral migratory stream, thereby leveraging the brain's natural mechanism for sustained neuronal replacement by replicating the structure and function of the native rostral migratory stream. Across all these strategies, we discuss several challenges that need to be overcome to successfully harness endogenous neural precursor cells to promote nervous system repair and functional restoration. With further development, the diverse and innovative tissue engineering and biomaterial strategies explored in this review have the potential to facilitate functional neuronal replacement to mitigate neurological and psychiatric symptoms caused by injury, developmental disorders, or neurodegenerative disease.
Collapse
Affiliation(s)
- Erin M. Purvis
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - John C. O'Donnell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
50
|
Duchateau A, de Thonel A, El Fatimy R, Dubreuil V, Mezger V. The "HSF connection": Pleiotropic regulation and activities of Heat Shock Factors shape pathophysiological brain development. Neurosci Lett 2020; 725:134895. [PMID: 32147500 DOI: 10.1016/j.neulet.2020.134895] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022]
Abstract
The Heat Shock Factors (HSFs) have been historically identified as a family of transcription factors that are activated and work in a stress-responsive manner, after exposure to a large variety of stimuli. However, they are also critical in normal conditions, in a life long manner, in a number of physiological processes that encompass gametogenesis, embryonic development and the integrity of adult organs and organisms. The importance of such roles is emphasized by the devastating impact of their deregulation on health, ranging from reproductive failure, neurodevelopmental disorders, cancer, and aging pathologies, including neurodegenerative disorders. Here, we provide an overview of the delicate choreography of the regulation of HSFs during neurodevelopment, at prenatal and postnatal stages. The regulation of HSFs acts at multiple layers and steps, and comprises the control of (i) HSF mRNA and protein levels, (ii) HSF activity in terms of DNA-binding and transcription, (iii) HSF homo- and hetero-oligomerization capacities, and (iv) HSF combinatory set of post-translational modifications. We also describe how these regulatory mechanisms operate in the normal developing brain and how their perturbation impact neurodevelopment under prenatal or perinatal stress conditions. In addition, we put into perspective the possible role of HSFs in the evolution of the vertebrate brains and the importance of the HSF pathway in a large variety of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Agathe Duchateau
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France; ED 562 BioSPC, Université de Paris, F-75205, Paris Cedex 13, France
| | - Aurélie de Thonel
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Rachid El Fatimy
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Véronique Dubreuil
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Valérie Mezger
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France.
| |
Collapse
|